
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POLYNET: LEARNING DIVERSE SOLUTION STRATE-
GIES FOR NEURAL COMBINATORIAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning-based methods for constructing solutions to combinatorial
optimization problems are rapidly approaching the performance of human-designed
algorithms. To further narrow the gap, learning-based approaches must efficiently
explore the solution space during the search process. Recent approaches artificially
increase exploration by enforcing diverse solution generation through handcrafted
rules, however, these rules can impair solution quality and are difficult to design
for more complex problems. In this paper, we introduce PolyNet, an approach for
improving exploration of the solution space by learning complementary solution
strategies. In contrast to other works, PolyNet uses only a single-decoder and a
training schema that does not enforce diverse solution generation through hand-
crafted rules. We evaluate PolyNet on four combinatorial optimization problems
and observe that the implicit diversity mechanism allows PolyNet to find better
solutions than approaches that explicitly enforce diverse solution generation.

1 INTRODUCTION

There have been remarkable advancements in recent years in the field of learning-based approaches
for solving combinatorial optimization (CO) problems (Bello et al., 2016; Kool et al., 2019; Kwon
et al., 2020). Notably, reinforcement learning (RL) methods have emerged that build a solution
to a problem step-by-step in a sequential decision making process. Initially, these construction
techniques struggled to produce high-quality solutions. However, recent methods have surpassed
even established operations research heuristics, such as LKH3, for simpler, smaller-scale routing
problems. Learning-based approaches thus now have the potential to become versatile tools, capable
of learning specialized heuristics tailored to unique business-specific problems. Moreover, with
access to sufficiently large training datasets, they may consistently outperform off-the-shelf solvers
in numerous scenarios. This work aims to tackle some of the remaining challenges that currently
impede the widespread adoption of learning-based heuristic methods in practical applications.

A key limitation of learning-based approaches is that they struggle to sufficiently explore the solution
space. The metaheuristics literature identifies exploration as a key component of heuristic optimization
procedures Blum & Roli (2003), but examining diverse solutions alone is not enough to find high-
quality solutions. Mahfoud (1995) discuss the need for useful diversity, i.e., diversity that “helps in
achieving some purpose or goal.” To encourage search diversity, many recent neural construction
methods (e.g., Li et al. (2023a); Choo et al. (2022)) follow the POMO approach (Kwon et al., 2020)
and improve exploration by forcing diverse first actions during solution construction. While this
creates significant diversity through exploiting symmetries in the problem representation (every
solution has a different first action), no effort is made to encourage diversity subsequent to the first
action. Furthermore, in more complex optimization problems the initial action can significantly
influence the solution quality, rendering these methods less effective at generating solutions.

Acknowledging that useful diversity is an essential component of search techniques, neural CO
approaches have begun attempting to encourage more exploration during search. Xin et al. (2021)
propose a transformer model with multiple decoders that encourage each decoder to learn a distinct
solution strategy during training by maximizing the Kullback-Leibler (KL) divergence between
decoder output probabilities. However, to manage computational costs, diversity is only promoted in
the initial construction step. In contrast, Grinsztajn et al. (2022) introduce Poppy, a training procedure
for multi-decoder models that increases diversity without relying on KL divergence. Poppy generates

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

a population (i.e., a set) of decoders during the learning phase by training only the best-performing
decoder for each problem instance. While effective, Poppy is computationally intensive, requiring a
separate decoder for each policy, thus limiting the number of learnable policies per problem.

In this paper, we introduce PolyNet to address the previously discussed limitations:

1. PolyNet learns a diverse and complementary set of solution strategies for improved explo-
ration using a single decoder.

2. PolyNet increases exploration without enforcing the first construction action, allowing its
applicability to a wider range of CO problems

By utilizing a single decoder to learn multiple strategies, PolyNet quickly generates a set of diverse
solutions for a problem instance. This significantly enhances exploration, allowing us to find better
solution during training and testing. Furthermore, by abandoning the concept of forcing diverse
first actions, we exclusively rely on PolyNet’s inherent diversity mechanism to facilitate exploration
during the search process. This fundamental change significantly impacts solution generation for
problems in which the first move greatly influences performance, such as in the CVRP with time
windows (CVRPTW).

PolyNet is an autoregressive construction method, which makes a direct application to large-scale
routing problems computationally impractical. However, small- and medium-scale routing problems,
which often involve numerous constraints (e.g., customer time windows), are frequently encountered
in practice. This is reflected in the current focus of the operations research community, which
prioritizes smaller problems with numerous complex constraints (e.g., Zhang et al. (2024); Cataldo-
Díaz et al. (2024); Lera-Romero et al. (2024); Jolfaei & Alinaghian (2024)). With PolyNet, we aim to
take a step toward addressing these more complex problems by enabling diverse solution generation
without relying on the symmetries characteristic of simpler routing problems.

We assess PolyNet’s performance across four problems: the TSP, the CVRP, CVRPTW, and the
flexible flow shop problem (FFSP). Across all problems, PolyNet consistently demonstrates a
significant advancement over the state-of-the-art in both swift solution generation and comprehensive
search efforts. Moreover, we observe that the solution diversity arising during PolyNet’s training
enables the discovery of superior solutions compared to artificially enforcing diversity by fixing the
initial solution construction step.

2 LITERATURE REVIEW

Neural CO In their seminal work, Vinyals et al. (2015) introduce the pointer network architecture,
an early application of modern machine learning methods to solve CO problems. Pointer networks
autoregressively generate discrete outputs corresponding to input positions. When trained via
supervised learning, they can produce solutions for the TSP with up to 50 nodes. Bello et al.
(2016) propose training pointer networks using reinforcement learning instead and illustrate the
efficacy of this method in solving larger TSP instances. However, these early methods are limited in
generalization and in the quality of the generated solutions.

Nazari et al. (2018) extend the pointer network architecture to address the CVRP with up to 100
nodes. Building on this, Kool et al. (2019) enhance the architecture by introducing a transformer-
based encoder with self-attention (Vaswani et al., 2017), enabling the model to learn more effective
policies and produce higher-quality solutions. Recognizing that many CO problems exhibit inherent
symmetries, Kwon et al. (2020) propose POMO, a method that exploits these symmetries to generate
diverse initial solutions. However, POMO’s effectiveness is heavily dependent on the assumption that
such symmetries can be efficiently leveraged, which limits its applicability to more complex problems.
Kim et al. (2022) extend these ideas and propose a general-purpose symmetric learning scheme.
Drakulic et al. (2023) use bisimulation quotienting (Givan et al., 2003) to improve out-of-distribution
generalization of neural CO methods. However, they use imitation learning which requires a large
training set of high-quality solutions limiting the applicability of their method. Luo et al. (2023)
improves generalization in neural CO by using a “heavy” decoder to make more effective node
selections during solution construction, but this increases computational overhead. Despite these
advancements, only a few works, such as Falkner & Schmidt-Thieme (2020) and Kool et al. (2022a),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

target routing problems with additional constraints like time windows, highlighting a gap in extending
neural CO approaches to more complex problem variants.

Instead of constructing solutions autoregressively, some methods predict a heat-map that emphasize
promising solution components (e.g., arcs in a graph). This is subsequently used in a post-hoc
search for solution construction (Joshi et al., 2019; Fu et al., 2021; Kool et al., 2022b; Min et al.,
2023). However, Xia et al. (2024) reveal that these methods often underperform compared to simpler
baselines. Another class of methods iteratively improves initial solutions. Hottung & Tierney (2020);
Ma et al. (2021); Chen & Tian (2019) iteratively improve an initial solution by performing local
adjustments. Similarly, several works guide the k-opt heuristic for vehicle routing problems, e.g., Wu
et al. (2019); da Costa et al. (2020); Ma et al. (2023). These improvement methods require longer
runtimes to be effective. In contrast, PolyNet also excels at generating high-quality solutions quickly.
Sun & Yang (2023) cast CO problems as discrete {0, 1}-vector optimization problems and utilize
denoising diffusion models for solution generation and Kim et al. (2024) utilize the solution symmetry
in the combinatorial space to improve the sample efficiency during training. Both approaches fail to
generalize to problems with more complex constraints like the CVRPTW.

Hottung et al. (2022) introduce efficient active search (EAS), a method that guides the search by
updating a subset of the policy parameters during inference. Choo et al. (2022) propose SGBS, an
inference mechanism that combines Monte-Carlo tree search with beam search to provide search
guidance. When used in combination with EAS, it achieves state-of-the-art performance on several
problems. Li et al. (2023b) learn a distribution of high-quality solutions using diffusion models and
perform a gradient-based search at test time. PolyNet outperforms these recent approaches while
being able to even tackle problems with more complex constraints.

Diversity in metaheuristics In the context of metaheuristics, solution diversity plays a crucial role
in balancing the exploration-exploitation trade-off. Population-based algorithms, such as genetic
algorithms, aim to maintain a pool of diverse solutions to promote thorough exploration of the search
space (Gendreau et al., 2010). Additionally, some works specifically target generating multiple
solutions for single-objective problems. For instance, Hanaka et al. (2022) introduce a polynomial-
time algorithm to compute multiple diverse shortest paths in weighted directed graphs. Similarly,
Huang et al. (2019) propose a niching memetic algorithm designed to identify multiple optimal
solutions for TSP instances, emphasizing diversity within the solution set.

Diversity mechanisms in RL Diversity mechanisms in RL aim to encourage exploration by generat-
ing a range of strategies or solutions. Skill-learning algorithms, such as those by Eysenbach et al.
(2018) and Sharma et al. (2019), aim to learn policies with diverse behaviors to accelerate training.
However, these methods are not directly applicable to CO tasks, where diversity must also consider
the quality of solutions, not just behavioral variation.

In contrast to implicitly maintaining a collection of agents through context, population-based RL
techniques explicitly maintain a finite agent population and use diversity mechanisms to discover
diverse strategies for solving RL tasks, e.g., Zhang et al. (2019), (Pierrot & Flajolet, 2023), Wu
et al. (2023). In neural program synthesis, Bunel et al. (2018) optimize the expected reward when
sampling a pool of solutions and keep the best one. Li et al. (2021) use the mutual information
between agents’ identities and trajectories as an intrinsic reward to promote diversity and thus solve
cooperative tasks requiring diverse strategies.Population-based approaches explicitly maintain diverse
policy collections but require substantial computational resources.

Diversity mechanisms in neural CO Kim et al. (2021) present a hierarchical strategy for solving
routing problems, where a base policy learns to generate diverse candidate solutions through entropy
regularization. While entropy regularization can be used to increase diversity during solution sampling,
it does not allow to learn truly different strategies. Xin et al. (2021) encourage diverse solutions
using multiple decoders and KL divergence regularization, while Grinsztajn et al. (2022) use an agent
population through multiple decoders to learn complementary strategies, updating exclusively the
best-performing agent at each iteration similar to Bunel et al. (2018). While using multiple-decoders
encourages diversity, it results in a large computational overhead. In contrast, PolyNet learns diverse
strategies with only a single decoder. Hottung et al. (2021) and Chalumeau et al. (2023) learn a
continuous latent space that encodes solutions for CO problems and use it to sample diverse solutions
at test time. Both approaches are designed for longer runtimes and can not be easily applied to more
difficult optimization problems.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: PolyNet solution generation.

3 POLYNET

3.1 BACKGROUND

Neural CO approaches seek to train a neural network denoted as πθ with learnable weights θ. The
network’s purpose is to generate a solution τ when provided with an instance l. To achieve this,
we employ RL techniques and model the problem as a Markov decision process (MDP), wherein a
solution is sequentially constructed in T discrete time steps. At each step t ∈ (1, . . . , T), an action
at is selected based on the probability distribution πθ(at|st) defined by the neural network where
st is the current state. The initial state s1 encapsulates the information about the problem instance
l, while subsequent states st+1 are derived by applying the action at to the previous state st. A
(partial) solution denoted as τ̄t is defined by the sequence of selected actions (a1, a2, . . . , at). Once
a complete solution τ = τ̄T satisfying all problem constraints is constructed, we can compute its
associated reward R(τ, l). The overall probability of generating a solution τ for an instance l is
defined as πθ(τ | l) =

∏T
t=1 πθ(at | st).

3.2 OVERVIEW

PolyNet is a learning-based approach designed to learn a set of diverse solution strategies for CO
problems. During training, each strategy is allowed to specialize on a subset of the training data,
and thus need not be the best strategy for the entire dataset. This essentially results in a portfolio
of strategies, which are known to be highly effective for solving CO problems (Bischl et al., 2016).
Our pursuit of diversity is fundamentally a means to enhance exploration and consequently solution
quality. Note that PolyNet not only enhances performance at test time (where we sample multiple
solutions for each strategy and keep only the best one), but also improves exploration during training.

PolyNet aims to learn K different solution strategies π1, . . . , πK using a single neural network. To
achieve this, we condition the solution generation process on an additional input vi ∈ {v1, . . . , vK}
that defines which of the strategies should be used to sample a solution so that

π1, . . . , πK = πθ(τ1 | l, v1), . . . , πθ(τK | l, vK). (1)

We use a set of unique bit vectors for {v1, . . . , vK}. Alternative representations should also be
feasible as long as they are easily distinguishable by the network.

PolyNet uses a neural network that builds on the established transformer architecture for neural CO
(Kool et al., 2019). The model consists of an encoder that creates an embedding of a problem instance,
and a decoder that generates multiple solutions for an instance based on the embedding. To generate
solutions quickly, we only insert the bit vector v into the decoder, allowing us to generate multiple
diverse solutions for an instance with only a single pass through the computationally expensive
encoder. Figure 1 shows the overall solution generation process of the model where bit vectors of
size 4 are used to generate to generate K = 16 different solutions for a CVRP instance.

3.3 TRAINING

During training we (repeatedly) sample K solutions {τ1, . . . , τK} for an instance l based on K
different vectors {v1, . . . , vK}, where the solution τi is sampled from the probability distribution
πθ(τi | l, vi). To allow the network to learn K different solution strategies, we follow the Poppy
method (Grinsztajn et al., 2022) and only update the model weights with respect to the best of the
K solutions. Let τ∗ be the best solution, i.e., τ∗ = argminτi∈{τ1,...,τK} R(τi, l), and let v∗ be the

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

corresponding vector (ties are broken arbitrarily). We then update the model using the gradient

∇θL = Eτ∗
[
(R(τ∗, l)− b◦)∇θ log πθ(τ

∗ | l, v∗)
]
, (2)

where b◦ is a baseline (which we discuss in detail below). Updating the model weights only based on
the best found solution allows the network to learn specialized strategies that do not have to work
well on all instances from the training set. While this approach does not explicitly enforce diversity, it
incentivizes the model to learn diverse strategies in order to optimize overall performance. For a more
in depth discussion on how this loss leads to diverse solution generation, see Grinsztajn et al. (2022).

Exploration & baseline Many recent neural construction heuristics follow the POMO approach
and rollout N solutions from N different starting states per instance to increase exploration. This is
possible because many CO problems contain symmetries in the solution space that allow an optimal
solution to be found from different states. In practice, this mechanism is implemented by forcing
a different first construction action for each of the N rollouts. Forcing diverse rollouts not only
improves exploration, but also allows the average reward of all N rollouts to be used as a baseline.
However, this exploration mechanism should not be used when the first action can not be freely
chosen without impacting the solution quality.

In PolyNet, we do not use an exploration mechanism or a baseline that assumes symmetries in the
solution space during training. Instead, we only rely on the exploration provided by our conditional
solution generation. This allows us to solve a wider range of optimization problems. As a baseline
we simply use the average reward of all K rollouts for an instance, i.e., b◦ = 1

K

∑K
i=1 R(τi, l).

3.4 NETWORK ARCHITECTURE

Figure 2: Decoder architecture.

PolyNet extends the neural network architecture of
the POMO approach by a new residual block in the
decoder. This design allows us to start PolyNet’s
training from an already trained POMO model, which
significantly reduces the amount of training time
needed. Figure 2 shows the overall architecture of
the modified decoder including the new PolyNet lay-
ers. The new layers accept the bit vector v as input
and use it to calculate an update for the output of
the masked multi-head attention mechanism. They
consist of a concatenation operation followed by two
linear layers with a ReLU activation function in be-
tween. See Kwon et al. (2020) for more details on
the encoder and decoder.

The output of the new layers directly impacts the pointer mechanism used to calculate the output
probabilities, allowing the new layers to significantly influence the solution generation based on v.
However, the model can also learn to completely ignore v by setting all weights of the second linear
layer to zero. This is intentional, as our objective is to increase diversity via the loss function, rather
than force unproductive diversity through the network architecture.

3.5 SEARCH

A simple and fast search procedure given an unseen test instance l is to sample multiple solutions in
parallel and return the best one. Specifically, to construct a set of M distinct solutions, we initially
draw M binary vectors from the set v1, . . . , vK , allowing for replacement if M exceeds the size of
K. Subsequently, we employ each of these M vectors to sample individual solutions. This approach
generates a diverse set of instances in a parallel and independent manner, making it particularly
suitable for real-world decision support settings where little time is available.

To facilitate a more extensive, guided search, PolyNet can be combined with EAS. EAS is a simple
technique to fine-tune a subset of model parameters for a single instance in an iterative process driven
by gradient descent. In contrast to the EAS variants described in Hottung et al. (2022), we do not
insert any new layers into the network or update the instance embeddings. Instead, we only fine-tune
the new PolyNet layers during search. Since PolyNet is specifically trained to create diverse solutions

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

based on these layers, EAS can easily explore a wide variety of solutions while modifying only a
portion of the model’s parameters.

4 EXPERIMENTS

We compare PolyNet’s search performance to state-of-the-art methods on four established problems.
We also explore solution diversity during the training and testing phases and analyze the impact of
the free first move selection. An ablation study for our network architecture changes is provided
in Appendix B. While most of our evaluation is focused on routing problems, we demonstrate
that PolyNet can also be used to solve other CO problems by applying PolyNet to the FFSP (see
Appendix A). Our experiments are conducted on a GPU cluster utilizing a single Nvidia A100
GPU per run. In all experiments, the new PolyNet layers comprise two linear layers, each with a
dimensionality of 256. PolyNet will be made publicly available upon acceptance.

4.1 PROBLEMS

TSP The TSP is a thoroughly researched routing problem in which the goal is to find the shortest
tour among a set of n nodes. The tour must visit each node exactly once and then return to the
initial starting node. We consider the TSP due to its significant attention from the machine learning
(ML) community, making it a well-established benchmark for ML-based optimization approaches.
However, it is important to note that instances with n ≤ 300 can be quickly solved to optimality by
CO solvers that have been available for many years. To generate problem instances, we adhere to the
methodology outlined in Kool et al. (2019).

CVRP The objective of the CVRP is to determine the shortest routes for a fleet of vehicles tasked
with delivering goods to a set of n customers. These vehicles start and conclude their routes at a
depot and have a limited capacity of goods that they can carry. CVRP instances are considerably
more difficult to solve than TSP instances of equivalent size (despite both problems being of the same
computational complexity class). Even cutting-edge CO methods struggle to reliably find optimal
solutions for instances with n ≤ 300 customers. To generate problem instances, we again adopt the
approach outlined in Kool et al. (2019).

CVRPTW The CVRPTW is an extension of the CVRP that introduces temporal constraints limiting
when a customer can receive deliveries from a vehicle. Each customer i is associated with a time
window, comprising an earliest arrival time ei and a latest allowable arrival time li. Vehicles may
arrive early at a customer i, but they must wait until the specified earliest arrival time ei before making
a delivery. The travel duration between customer i and customer j is calculated as the Euclidean
distance between their locations, and each delivery has a fixed duration. All vehicles initiate their
routes from the depot at time 0. We use the CVRP instance generator outlined in Queiroga et al.
(2022) to generate customer positions and demands, and we adhere to the methodology established in
Solomon (1987) for generating the time windows. It’s essential to note that customer positions are
not sampled from a uniform distribution; instead, they are clustered to replicate real-world scenarios.
Further details for instance generation are given in Appendix F.

FFSP The description of the FFSP and all experimental results can be found Appendix A.

4.2 SEARCH PERFORMANCE

We conduct an extensive evaluation of PolyNet’s search performance, benchmarking it against
state-of-the-art neural CO methods. For the considered routing problems, we train separate models
for problem instances of size 100 and 200, and then evaluate the models trained on n= 100 using
instances with 100 and 150 nodes, and the models trained on n= 200 using instances with 200 and
300 nodes. We can thus assess the model’s capability to generalize to instances that diverge from the
training data. Throughout our evaluation, we employ the instance augmentation technique introduced
in Kwon et al. (2020).

For the training of PolyNet models, we set the parameter K to 128 across all problems. We use a
learning rate of 10−4 for the TSP and CVRP and 10−5 for the CVRPTW. For instances of size n=100,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Search performance results for TSP.

Method
Test (10K instances) Test (1K instances) Generalization (1K instances)
ntr =neval = 100 ntr =neval = 200 ntr = 100, neval = 150 ntr = 200, neval = 300

Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde 7.765 - 82m 10.687 - 31m 9.346 - 17m 12.949 - 83m
LKH3 7.765 0.000% 8h 10.687 0.000% 3h 9.346 0.000% 99m 12.949 0.000% 5h

U
ng

ui
de

d POMO greedy 7.775 0.135% 1m 10.770 0.780% <1m 9.393 0.494% <1m 13.216 2.061% 1m
sampling 7.772 0.100% 3m 10.759 0.674% 2m 9.385 0.411% 1m 13.257 2.378% 7m

Poppy 7.766 0.015% 4m 10.711 0.226% 2m 9.362 0.164% 1m 13.052 0.793% 7m

PolyNet 7.765 0.000% 4m 10.690 0.032% 2m 9.352 0.055% 1m 12.995 0.351% 8m

G
ui

de
d

DPDP 7.765 0.004% 2h - - - 9.434 0.937% 44m - - -
COMPASS 7.765 0.002% 2h - - - 9.354 0.083% 32m - - -
MDAM 7.781 0.208% 4h - - - 9.403 0.603% 1h - - -
POMO EAS 7.769 0.053% 3h 10.720 0.310% 3h 9.363 0.172% 1h 13.048 0.761% 8h

SGBS 7.769 0.058% 9m 10.727 0.380% 24m 9.367 0.220% 8m 13.073 0.951% 77m
SGBS+EAS 7.767 0.035% 3h 10.719 0.300% 3h 9.359 0.136% 1h 13.050 0.776% 8h

PolyNet EAS 7.765 0.000% 3h 10.687 0.001% 2h 9.347 0.001% 1h 12.952 0.018% 7h

Table 2: Search performance results for CVRP.

Method
Test (10K instances) Test (1K instances) Generalization (1K instances)
ntr =neval = 100 ntr =neval = 200 ntr = 100, neval = 150 ntr = 200, neval = 300
Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

HGS 15.563 - 54h 21.766 - 17h 19.055 - 9h 27.737 - 46h
LKH3 15.646 0.53% 6d 22.003 1.09% 25h 19.222 0.88% 20h 28.157 1.51% 34h

U
ng

ui
de

d POMO greedy 15.754 1.23% 1m 22.194 1.97% <1m 19.684 3.30% <1m 28.627 3.21% 1m
sampling 15.705 0.91% 5m 22.136 1.70% 3m 20.109 5.53% 1m 28.613 3.16% 9m

Poppy 15.685 0.78% 5m 22.040 1.26% 3m 19.578 2.74% 1m 28.648 3.28% 8m

PolyNet 15.640 0.49% 5m 21.957 0.88% 3m 19.501 2.34% 1m 28.552 2.94% 8m

G
ui

de
d

DACT 15.747 1.18% 22h - - - 19.594 2.83% 16h - - -
DPDP 15.627 0.41% 23h - - - 19.312 1.35% 5h - - -
COMPASS 15.594 0.20% 4h - - - 19.313 1.35% 1h - - -
MDAM 15.885 2.07% 5h - - - 19.686 3.31% 1h - - -
POMO EAS 15.618 0.35% 6h 21.900 0.61% 3h 19.205 0.79% 2h 28.053 1.14% 12h

SGBS 15.659 0.62% 10m 22.016 1.15% 7m 19.426 1.95% 4m 28.293 2.00% 22m
SGBS+EAS 15.594 0.20% 6h 21.866 0.46% 4h 19.168 0.60% 2h 28.015 1.00% 12h

PolyNet EAS 15.584 0.14% 4h 21.821 0.25% 2h 19.166 0.59% 1h 27.993 0.92% 9h

we train our models for 300 epochs (200 for the TSP), with each epoch comprising 4× 108 solution
rollouts. Note that we warm-start the training for these models using previously trained POMO
models to reduce training times (results for cold-starting training can be found in Appendix C). For
instances with n=200, we start training based on the n= 100 PolyNet models, running 40 additional
training epochs (20 for the TSP). To optimize GPU memory utilization, we adjust the batch size
separately for each problem and its dimensions.

Table 3: Search performance results for CVRPTW.

Method
Test (10K instances) Test (1K instances) Generalization (1K instances)
ntr =neval = 100 ntr =neval = 200 ntr = 100, neval = 150 ntr = 200, neval = 300
Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

PyVRP 12,534 - 39h 18,422 - 11h 17,408 - 9h 25,732 - 26h

U
ng

ui
de

d POMO greedy 13,120 4.67% 1m 19,656 6.70% 1m 18,670 7.25% <1m 28,022 8.90% 2m
sampling 13,019 3.87% 7m 19,531 6.02% 4m 18,571 6.68% 2m 28,017 8.88% 13m

Poppy 12,969 3.47% 5m 19,406 5.34% 3m 18,612 6.91% 2m 28,104 9.22% 10m

PolyNet 12,876 2.73% 5m 19,232 4.40% 3m 18,429 5.86% 2m 27,807 8.07% 10m

G
ui

de
d POMO EAS 12,762 1.81% 6h 18,966 2.96% 4h 17,851 2.54% 2h 26,608 3.40% 14h

SGBS 12,897 2.89% 12m 19,240 4.44% 8m 18,201 4.55% 4m 27,264 5.95% 25m
SGBS+EAS 12,714 1.43% 7h 18,912 2.66% 4h 17,835 2.45% 2h 26,651 3.57% 15h

PolyNet EAS 12,654 0.96% 5h 18,739 1.72% 3h 17701 1.68% 1h 26,504 3.00% 10h

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We categorize the evaluated algorithms into two groups: unguided and guided methods. Unguided
algorithms generate solutions independently, while guided methods incorporate a high-level search
component capable of navigating the search space. For a comparison to unguided algorithms, we
compare PolyNet to POMO and the Poppy approach with a population size of 8. To ensure fairness
we retrain Poppy using the same training setup as for PolyNet. Note that POMO has already been
trained to full convergence and does not benefit from additional training (see Figure 3). For all
approaches, we sample 64 × n solutions per instance (except for POMO using greedy solution
generation). For our comparison to guided algorithms, we use PolyNet with EAS and compare it with
POMO combined with EAS (Hottung et al., 2022) and SGBS (Choo et al., 2022). For PolyNet, we
sample 200×8×n solutions per instance over the course of 200 iterations. Furthermore, we compare
to some problem-specific approaches that are explained below. Note that we provide additional search
trajectory plots in Appendix E. Results for the FFSP can be found in Appendix A.

TSP We use the 10,000 test instances with n= 100 from Kool et al. (2019) and test sets consisting
of 1, 000 instances from Hottung et al. (2021) for n= 150 and n= 200. For n= 300, we generate
new instances. As a baseline, we use the exact solver Concorde (Applegate et al., 2006) and the
heuristic solver LKH3 (Helsgaun, 2017). Additionally, we also compare to DPDP (Kool et al., 2022b),
COMPASS (Chalumeau et al., 2023), and the diversity-focused method MDAM (Xin et al., 2021)
with a beam search width of 256.

Table 1 provides our results on the TSP, showing clear performance improvements of PolyNet during
fast solution generation and extensive search with EAS for all considered instance sets. For TSP
instances with 100 nodes, PolyNet achieves a gap that is practically zero while being roughly 120
times faster than LKH3. Furthermore, on all four instance sets, PolyNet with unguided solution
sampling finds solutions with significantly lower costs in comparison to guided learning approaches
while reducing the runtime by a factor of more than 100 in many cases.

CVRP Similar to the TSP, we use the test sets from Kool et al. (2019) and Hottung et al. (2021).
As a baseline, we use LKH3 (Helsgaun, 2000) and the state-of-the-art (OR) solver HGS (Vidal et al.,
2012; Vidal, 2022). We compare to the same learning methods as for the TSP with the addition of
DACT (Ma et al., 2021).

The CVRP results in Table 2 once again indicate consistent improvement across all considered
problem sizes. Especially on the instances with 100 and 200 customers, PolyNet improves upon
the state-of-the-art learning-based approaches by reducing the gap by more than 30% during fast
solution generation and extensive search. Also note that PolyNet significantly outperforms the other
diversity-focused approaches Poppy and MDAM.

CVRPTW For the CVRPTW, we use the state-of-the-art CO solver PyVRP (Wouda et al., 2023) as
a baseline stopping the search after 1,000 iterations without improvement. We compare to a POMO
implementation that we adjusted to solve the CVRPTW by extending the node features with the time
windows and the context information used at each decoding step by the current time point. These
models are trained for 50,000 epochs, mirroring the training setup used for the CVRP.

Table 3 presents the CVRPTW results, demonstrating PolyNet’s consistent and superior performance
across all settings compared to Poppy and POMO (with SGBS and EAS). Notably, for instances with
100 customers, PolyNet matches almost the CO solver PyVRP with a gap below 1%.

Table 4: Solution diversity measured
using avg. broken pairs distance.

Method TSP CVRP CVRPTW

PolyNet 4.621 18.535 19.969

POMO 2.400 16.785 18.162

Table 5: Ablation results for free first move selection.

Method TSP CVRP CVRPTW
Gap Time Gap Time Gap Time

PolyNet Free first move 0.000% 4m 0.49% 5m 2.73% 5m
Forced first move 0.006% 4m 0.59% 5m 3.00% 6m

Poppy 0.015% 4m 0.78% 5m 3.47% 5m

4.3 DIVERSITY

Does PolyNet’s training encourage diversity? To assess the effectiveness of our diversity mech-
anism, we conduct short training runs of PolyNet for the TSP, CVRP, and CVRPTW with varying

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Validation performance during training (log scale).

values of K. As a baseline we report results for the training of the POMO model. For all runs, we use
a batch size of 480 and a learning rate set at 10−4. To ensure a stable initial state for training runs, we
start all runs from a trained POMO model. For PolyNet, we initialize the PolyNet layer weights to
zero, minimizing initial randomness. During training, we perform regular evaluations on a separate
validation set of 10 000 instances, sampling 800 solutions per instance.

Our evaluation tracks the cost of the best solution and the percentage of unique solutions among
the 800 solutions per instance. Figure 3 presents the evaluation results. Across all three problems,
we observe a clear trend: higher values of K lead to a more rapid reduction in average costs on the
validation set and are associated with a greater percentage of unique solutions. Note that POMO
does not benefit from further training. These results underscore the effectiveness of our approach in
promoting solution diversity and improving solution quality.

Does PolyNet generate diverse solutions at test time? In this experiment we evaluate the diversity
of PolyNet. As a baseline we use the POMO approach, which enforces diverse solution generation by
forcing the first action. For each test instance, we sample 100 solutions with both approaches and
calculate the average broken pairs distance (Prins, 2009), which is an established method to measure
diversity for routing problem solutions (see, e.g., (Vidal et al., 2012)). The broken pairs distance
d(A,B) for two solutions A and B is the number of edges of A that are not in B. We measure the
diversity of a set of solutions using the average across the broken pairs distances between all solution
pairs of the set. The results shown in Table 4 confirm that PolyNet is able to generate more diverse
solutions than POMO at test time. An additional visual comparison of the differences in solution
diversity between POMO and PolyNet can be found in Appendix D.

Does PolyNet encourage useful diversity? As discussed in the introduction, solution diversity
alone is neither inherently beneficial nor difficult to achieve (e.g., by generating random solutions).
What truly matters is that the diversity is useful, meaning it contributes to finding high-quality
solutions. To assess the diversity of PolyNet we conduct two separate experiments.

First, we evaluate the importance of each of the K learned strategies at test time by counting how
often each strategy finds the best solution across 10 000 test instances. The results, shown in Figure 4,
indicate that all K strategies contribute significantly to performance. Even the least effective strategies
identify the best solution on 544, 61, and 54 instances for the TSP, CVRP, and CVRPTW, respectively.
Note that for the TSP, multiple strategies often converge to the same best solution, likely because
most instances are solved to optimality. However, for the CVRP and CVRPTW, the best solution
for an instance is typically found by only one strategy. These results demonstrate that all learned
strategies are able to generate high-quality solutions and that all strategies contribute meaningfully to
the overall sampling performance of PolyNet.

Second, we evaluate the number of distinct first nodes selected by the K different strategies of
PolyNet. This provides insights into the diversity achieved by PolyNet, particularly in comparison to

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1 32 64 96 128
Search Strategy

0

200

400

600

800

1000

B
es

t
S

ol
u

ti
on

s
F

ou
n

d

TSP

1 32 64 96 128
Search Strategy

0

20

40

60

80

100

CVRP

1 32 64 96 128
Search Strategy

0

20

40

60

80

100

CVRPTW

Figure 4: Contribution of different search strategies. Strategies are sorted based on their contribution.

0 25 50 75 100
Unique First Nodes

0

2000

4000

6000

8000

N
u

m
b

er
of

V
al

u
es

TSP

0 25 50 75 100
Unique First Nodes

0

5000

10000

15000

CVRP

0 25 50 75 100
Unique First Nodes

0

2500

5000

7500

10000

12500

CVRPTW

Figure 5: Frequency plots for the number of unique first nodes.

POMO, which enforces diversity by selecting different first actions. As shown in Figure 5, PolyNet
selects fewer distinct first nodes than POMO. On average, PolyNet selects 24.5, 3.8, and 7.0 distinct
first nodes for the TSP, CVRP, and CVRPTW, respectively. Despite selecting fewer different first
nodes, PolyNet is able to generate solutions that are more diverse overall than those generated by
POMO, as shown in Table 4. This suggests that PolyNet achieves diversity through means other than
enforcing the first action. By not constraining the first node selection, PolyNet is able to leverage
variability in first node choices in a way that improves overall performance.

4.4 ABLATION STUDY: FORCING THE FIRST MOVE

PolyNet does not force diverse first construction actions and relies solely on its built-in diversity
mechanism to select the first node. To assess this approach, we compare the performance of PolyNet
with and without forced first move selection when sampling 64× 100 solutions per instance.

Table 5 shows the results for all problems with n= 100. Remarkably, across all scenarios, allowing
PolyNet to select the first move yields superior performance compared to forcing the first move.
This finding is particularly striking for the TSP, where the first move does not affect solution quality.
Furthermore, PolyNet with forced first move selection outperforms Poppy (which also enforces the
first move), underscoring that PolyNet’s single-decoder architecture delivers better results.

5 CONCLUSION

We introduced the novel approach PolyNet, which is capable of learning diverse solution strategies
using a single-decoder model. PolyNet deviates from the prevailing trend in neural construction
methods, in which diverse first construction steps are forced to improve exploration. Instead, it
relies on its diverse strategies for exploration, enabling its seamless adaptation to problems where
the first move significantly impacts solution quality. In our comprehensive evaluation across four
problems, including the more challenging CVRPTW, PolyNet consistently demonstrates performance
improvements over all other learning-based methods, particularly those focused on diversity.

Regarding our approach’s limitations, we acknowledge that the computational complexity of the
attention mechanism we employ restricts its applicability to instances with less than 1000 nodes.
However, it is essential to emphasize that the problem sizes examined in this paper for the CVRP(TW)
remain challenging for traditional CO solvers and are highly significant in real-world applications.
Furthermore, we note that the black-box nature of the PolyNet’s decision-making may be unacceptable
in certain decision contexts.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David Applegate, Ribert Bixby, Vasek Chvatal, and William Cook. Concorde TSP solver, 2006.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural Combinatorial
Optimization with Reinforcement Learning. ArXiv, abs/1611.0, 2016.

Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre Fréchette,
Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, et al. ASlib: A benchmark
library for algorithm selection. Artificial Intelligence, 237:41–58, 2016.

Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Comput. Surv., 35(3):268–308, Sep 2003. ISSN 0360-0300. doi:
10.1145/937503.937505.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
Grammar and Reinforcement Learning for Neural Program Synthesis. ICLR, 2018.

Cristian Cataldo-Díaz, Rodrigo Linfati, and John Willmer Escobar. Mathematical models for the
electric vehicle routing problem with time windows considering different aspects of the charging
process. Operational Research, 24(1):1, 2024.

Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre
Laterre, and Thomas D Barrett. Combinatorial Optimization with Policy Adaptation using Latent
Space Search. In Neural Information Processing Systems, 2023.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimization.
In Advances in Neural Information Processing Systems, pp. 6278–6289, 2019.

Jinho Choo, Yeong-Dae Kwon, Jihoon Kim, Jeongwoo Jae, André Hottung, Kevin Tierney, and
Youngjune Gwon. Simulation-guided beam search for neural combinatorial optimization. Advances
in Neural Information Processing Systems, 35:8760–8772, 2022.

CPLEX-Optimization-Studio. V20.1: User’s Manual for CPLEX, 2020.

Paulo da Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Eren Akçay. Learning 2-opt Heuristics
for the Traveling Salesman Problem via Deep Reinforcement Learning. In Asian Conference on
Machine Learning, 2020.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO: Bisim-
ulation Quotienting for Generalizable Neural Combinatorial Optimization. ArXiv, abs/2301.03313,
2023.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is All You Need:
Learning Skills without a Reward Function. ArXiv, abs/1802.06070, 2018.

Jonas K Falkner and Lars Schmidt-Thieme. Learning to Solve Vehicle Routing Problems with Time
Windows through Joint Attention. arXiv preprint arXiv:2006.09100, 2020.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large TSP instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474–7482, 2021.

Michel Gendreau, Jean-Yves Potvin, et al. Handbook of metaheuristics, volume 2. Springer, 2010.

Robert Givan, Thomas L. Dean, and Matthew Greig. Equivalence notions and model minimization in
Markov decision processes. Artif. Intell., 147:163–223, 2003.

Nathan Grinsztajn, Daniel Furelos-Blanco, and Thomas D Barrett. Population-Based Reinforcement
Learning for Combinatorial Optimization. arXiv preprint arXiv:2210.03475, 2022.

Tesshu Hanaka, Yasuaki Kobayashi, Kazuhiro Kurita, See Woo Lee, and Yota Otachi. Computing
diverse shortest paths efficiently: A theoretical and experimental study. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 3758–3766, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Keld Helsgaun. An effective implementation of the Lin–Kernighan traveling salesman heuristic.
European Journal of Operational Research, 126:106–130, 2000.

Keld Helsgaun. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 2017.

André Hottung and Kevin Tierney. Neural Large Neighborhood Search for the Capacitated Vehicle
Routing Problem. In European Conference on Artificial Intelligence, pp. 443–450, 2020.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a Latent Search Space for Routing
Problems using Variational Autoencoders. In International Conference on Learning Representa-
tions, 2021.

André Hottung, Yeong-Dae Kwon, and Kevin Tierney. Efficient Active Search for Combinatorial
Optimization Problems. International Conference on Learning Representations, 2022.

Ting Huang, Yue-Jiao Gong, Sam Kwong, Hua Wang, and Jun Zhang. A niching memetic algorithm
for multi-solution traveling salesman problem. IEEE Transactions on Evolutionary Computation,
24(3):508–522, 2019.

Ali Aghadavoudi Jolfaei and Mahdi Alinaghian. Multi-depot vehicle routing problem with roaming
delivery locations considering hard time windows: Solved by a hybrid els-lns algorithm. Expert
Systems with Applications, 255:124608, 2024.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An Efficient Graph Convolutional Network
Technique for the Travelling Salesman Problem. arXiv preprint arXiv:1906.01227, 2019.

Hyeonah Kim, Minsu Kim, Sungsoo Ahn, and Jinkyoo Park. Symmetric Replay Training: En-
hancing Sample Efficiency in Deep Reinforcement Learning for Combinatorial Optimization. In
International Conference on Machine Learning, 2024.

Minsu Kim, Jinkyoo Park, and Joungho Kim. Learning Collaborative Policies to Solve NP-hard
Routing Problems. In Neural Information Processing Systems, 2021.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-NCO: Leveraging Symmetricity for Neural
Combinatorial Optimization. In NeurIPS, 2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, Learn to Solve Routing Problems! In
International Conference on Learning Representations, 2019.

Wouter Kool, Laurens Bliek, Danilo Numeroso, Yingqian Zhang, Tom Catshoek, Kevin Tierney,
Thibaut Vidal, and Joaquim Gromicho. The EURO Meets NeurIPS 2022 Vehicle Routing Compe-
tition. In Proceedings of the NeurIPS 2022 Competitions Track, 2022a.

Wouter Kool, Herke van Hoof, Joaquim Gromicho, and Max Welling. Deep Policy Dynamic
Programming for Vehicle Routing Problems. In Integration of Constraint Programming, Artificial
Intelligence, and Operations Research, 2022b.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
POMO: Policy Optimization with Multiple Optima for Reinforcement Learning. In Advances in
Neural Information Processing Systems, volume 33, pp. 21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Matrix
encoding networks for neural combinatorial optimization. In NeurIPS, 2021.

Gonzalo Lera-Romero, Juan José Miranda Bront, and Francisco J Soulignac. A branch-cut-and-price
algorithm for the time-dependent electric vehicle routing problem with time windows. European
Journal of Operational Research, 312(3):978–995, 2024.

Chenghao Li, Chengjie Wu, Tonghan Wang, Jun Yang, Qianchuan Zhao, and Chongjie Zhang.
Celebrating Diversity in Shared Multi-Agent Reinforcement Learning. In NeurIPS, 2021.

Jingwen Li, Yining Ma, Zhiguang Cao, Yaoxin Wu, Wen Song, Jie Zhang, and Yeow Meng Chee.
Learning Feature Embedding Refiner for Solving Vehicle Routing Problems. IEEE Transactions
on Neural Networks and Learning Systems, 2023a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From Distribution Learning in Training to
Gradient Search in Testing for Combinatorial Optimization. In Neural Information Processing
Systems, 2023b.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural Combinatorial Optimization with
Heavy Decoder: Toward Large Scale Generalization. In Neural Information Processing Systems,
2023.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to Iteratively Solve Routing Problems with Dual-Aspect Collaborative Transformer. In
Neural Information Processing Systems, 2021.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to Search Feasible and Infeasible Regions
of Routing Problems with Flexible Neural k-Opt. In Neural Information Processing Systems, 2023.

Samir W Mahfoud. Niching methods for genetic algorithms. University of Illinois at Urbana-
Champaign, 1995.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised Learning for Solving the Travelling
Salesman Problem. In Neural Information Processing Systems, 2023.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, pp. 9839–9849, 2018.

Thomas Pierrot and Arthur Flajolet. Evolving Populations of Diverse RL Agents with MAP-Elites.
In ICLR, 2023.

Christian Prins. Two memetic algorithms for heterogeneous fleet vehicle routing problems. Engineer-
ing Applications of Artificial Intelligence, 22(6):916–928, 2009.

Eduardo Queiroga, Ruslan Sadykov, Eduardo Uchoa, and Thibaut Vidal. 10,000 optimal CVRP
solutions for testing machine learning based heuristics. In AAAI-22 Workshop on Machine Learning
for Operations Research (ML4OR), 2022.

Archit Sharma, Shixiang Shane Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-
Aware Unsupervised Discovery of Skills. ArXiv, abs/1907.01657, 2019.

Marius M Solomon. Algorithms for the vehicle routing and scheduling problems with time window
constraints. Operations research, 35(2):254–265, 1987.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based Diffusion Solvers for Combinatorial
Optimization. In Neural Information Processing Systems, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

Thibaut Vidal. Hybrid genetic search for the CVRP: Open-source implementation and SWAP*
Neighborhood. Computers & Operations Research, 140:105643, 2022.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A Hybrid
Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems. Operations Research,
60(3):611–624, 2012.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer Networks. In C Cortes, N D Lawrence,
D D Lee, M Sugiyama, and R Garnett (eds.), Advances in Neural Information Processing Systems
28, pp. 2692–2700. Curran Associates, Inc., 2015.

Niels Wouda, Leon Lan, and Wouter Kool. PyVRP Solver (Version 0.5.0), 2023. URL https:
//github.com/PyVRP/PyVRP.

13

https://github.com/PyVRP/PyVRP
https://github.com/PyVRP/PyVRP

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shuang Wu, Jian Yao, Haobo Fu, Ye Tian, Chao Qian, Yaodong Yang, QIANG FU, and Yang
Wei. Quality-Similar Diversity via Population Based Reinforcement Learning. In The Eleventh
International Conference on Learning Representations, 2023.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning Improvement Heuristics
for Solving Routing Problems. IEEE Transactions on Neural Networks and Learning Systems,
2019.

Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Rethinking
Post-Hoc Search-Based Neural Approaches for Solving Large-Scale Traveling Salesman Problems.
In International Conference on Machine Learning, 2024.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042–12049, 2021.

Jie Zhang, Yanfeng Li, and Zhaoyang Lu. Multi-period vehicle routing problem with time win-
dows for drug distribution in the epidemic situation. Transportation Research Part C: Emerging
Technologies, 160:104484, 2024.

Yunbo Zhang, Wenhao Yu, and Greg Turk. Learning Novel Policies For Tasks. ArXiv, abs/1905.05252,
2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL RESULTS FOR THE FFSP

We examine the flexible flow shop problem (FFSP) to further demonstrate PolyNet’s versatility
beyond routing problems, and the generality of the technique beyond the POMO architecture. In the
FFSP, a set of n jobs must be processed in a series of stages, with each stage comprising multiple
machines that each require different processing times. A machine cannot process more than one
job at the same time. The objective is to determine a job schedule with the shortest makespan. We
generate problem instances randomly according to the method in Kwon et al. (2021). We experiment
on FFSP instances with n = 20, 50, and 100 jobs, where each instance consists of 3 stages and each
stage has 4 machines.

Network architecture We use a neural network that extends the architecture of MatNet (Kwon
et al., 2021). More concretely, we introduce a residual block for each of the decoding networks. In all
experiments, the PolyNet layers in every block comprise two linear layers, each with a dimensionality
of 256.

Training To train the PolyNet models, we use a learning rate set to 10−4, and batch sizes of 256,
128, and 32 for instances comprising n = 20, 50, and 100 jobs, respectively. We set the parameter K
to 24 across all problem sizes. The training runs start from trained MatNet models and continue for
100 (20 for n = 100) epochs, with each epoch comprising 24× 105 solution rollouts.

Search performance For the FFSP, we use the randomly generated test sets from Kwon et al.
(2021) and comparison algorithms. In addition to MatNet (Kwon et al., 2021), we compare our
method to CPLEX CPLEX-Optimization-Studio (2020) with mixed-integer programming models
and metaheuristic solvers. Table 6 provides the results for the FFSP. The gaps are reported with
respect to PolyNet with ×128 augmentation result, as optimal solutions are not available. The results
demonstrate PolyNet’s consistent improvement in performance across all problem sizes. Notably,
PolyNet outperforms MatNet-based solvers for the FFSP on all problem sizes and produces solutions
of even higher quality within similar run times. Given the different architecture of MatNet compared
to those used for routing problems, the results highlight that the performance gains from PolyNet
are not confined to a specific network architecture. Moreover, these gains extend beyond routing
problems, indicating PolyNet’s broad applicability across various CO problems.

B ABLATION STUDY: POLYNET LAYERS

To assess the influence of our new PolyNet layers, we perform an ablation experiment in which we
systematically remove these additional layers during the training. In this modified version of PolyNet,
we add the vector v directly to the output of the masked multi-head attention mechanism (shown
in Figure 2). To achieve this, the vector v is zero-padded to match the necessary dimensions. Note
that this altered PolyNet configuration has exactly the same number of total model parameters as the
POMO model.

Table 6: Search performance results for FFSP.

Method FFSP20 FFSP50 FFSP100
MS Gap Time MS Gap Time MS Gap Time

CPLEX (60s) 46.4 21.5 (17h) × ×
CPLEX (600s) 36.6 11.7 (167h)

Random 47.8 22.9 (1m) 93.2 44 (2m) 167.2 78.0 (3m)
Shortest Job First 31.3 6.4 (40s) 57.0 7.8 (1m) 99.3 10.1 (2m)
Genetic Algorithm 30.6 5.7 (7h) 56.4 7.2 (16h) 98.7 9.5 (29h)
Particle Swarm Opt. 29.1 4.2 (13h) 55.1 5.9 (26h) 97.3 8.1 (48h)

MatNet 27.1 2.2 (5s) 51.5 2.3 (9s) 91.6 2.4 (17s)
PolyNet 26.7 1.8 (5s) 51.0 1.8 (10s) 91.2 2.0 (18s)
MatNet (×128) 25.4 0.5 (3m) 49.6 0.4 (8m) 89.8 0.6 (19m)
PolyNet (×128) 24.9 - (4m) 49.2 - (9m) 89.2 - (23m)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

5 10 15 20

Training Progress (in Epochs)

7.770

7.775

7.780

7.785

7.790

C
os

ts

TSP

POMO

POMO with
Added Layers

PolyNet w/o
Added Layers

PolyNet with
Added Layers

5 10 15 20

Training Progress (in Epochs)

15.70

15.72

15.74

15.76

CVRP

5 10 15 20

Training Progress (in Epochs)

13050

13075

13100

13125

CVRPTW

Figure 6: Validation performance during training.

0 200 400

Training Progress (in Epochs)

7.768

7.770

7.772

7.774

C
os

ts

TSP

Cold-Start

Warm-Start

0 200 400

Training Progress (in Epochs)

15.68

15.70

15.72

15.74

15.76
CVRP

0 200 400

Training Progress (in Epochs)

13000

13100

13200

13300

13400
CVRPTW

Figure 7: Validation performance during training: Starting training from scratch (cold-start) vs.
starting from a trained POMO model (warm-start).

For a fair comparison we also extend the baseline POMO model by our additional PolyNet layers. The
modified POMO model comprises the same number of model parameters as our PolyNet architecture.
Note that the modified POMO model does not accept a vector v. Instead, the PolyNet layers directly
receive the output of the masked multi-head attention mechanism.

We train all models for 20 epochs using the same training hyperparameters as for our main training
run described in Section 4.2. After each epoch we evaluate the model performance on our validation
set that comprises 10, 000 instances, sampling 800 solutions per instance.

Figure 6 shows the validation costs over the course of the training. On all three problems, PolyNet
without the added layers performs worse than its original version, which demonstrates the importance
of the PolyNet layers. Nonetheless, even PolyNet without the added layers is able to significantly
outperform POMO with additional layers.

C POLYNET TRAINING: WARM-START VS. COLD-START

In all of our previous experiments, we initialize the training process using a pre-trained POMO model.
To assess the implications of this setup, we conduct additional training runs where models are either
warm-started or trained from scratch. These runs utilize identical hyperparameters as our primary
training sessions, but extend training for a total of 400 epochs. It’s worth noting that these extended
training runs span several weeks and that the additional insights gained by even longer training runs
are likely limited.

Figure 7 illustrates the validation performance throughout these training sessions. We observe notable
benefits from warm-starting the training process. Specifically, on the CVRP and CVRPTW tasks,
models initialized from a cold start consistently exhibit poorer performance even after 400 epochs
of training. This discrepancy is particularly evident in the CVRPTW task, where the lower learning
rate of 10−5 leads to slower training progress. Only in the TSP task does the performance of the
cold-started model converge with that of the warm-started model after 400 epochs. We thus infer that
while PolyNet can indeed be trained from scratch, warm-starting the training process is advisable to
mitigate computational costs.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D SOLUTION UNIQUENESS VS. COSTS PLOTS

In this experiment, we compare the solutions generated by POMO to those generated by PolyNet
with respect to their cost and their uniqueness on an instance-by-instance basis. More specifically, for
a subset of test instances, we sample 100 solutions per instance with both approaches and compare
the solutions found on the basis of their uniqueness and their cost. We calculate the uniqueness of
a solution by using the average of the broken pairs distance (Prins, 2009) to all other 99 generated
solutions.

Figures 8-10 shows the results for the first six TSP, CVRP, and CVRPTW test instances. PolyNet
generates more unique solutions on most instances. Especially on the TSP the solutions from PolyNet
are much more diverse, however this diversity occasionally comes at the expense of solution quality.
Since we ultimately only care about the solution with the minimal costs in the generated solution set
and, not the average solution quality, this is not a limitation of the method. PolyNet is only able to
increase its performance in the minimum cost case by sometimes trying out solutions that a greedier
method, like POMO, ignores.

7.5 8.0 8.5 9.0

Cost

2

4

6

S
ol

u
ti

o
n

U
n

iq
u

en
es

s

POMO PolyNet

(a) Instance 1

8.5 9.0 9.5 10.0

Cost

2

4

6

8

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(b) Instance 2

8.0 8.5 9.0 9.5

Cost

2

4

6

8

S
ol

u
ti

o
n

U
n

iq
u

en
es

s

POMO PolyNet

(c) Instance 3

8 9 10 11 12

Cost

2

4

6

8

10

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(d) Instance 4

9 10 11

Cost

2

4

6

8

10

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(e) Instance 5

7.6 7.8 8.0 8.2 8.4

Cost

1

2

3

4

5

6

S
ol

u
ti

o
n

U
n

iq
u

en
es

s

POMO PolyNet

(f) Instance 6

Figure 8: Solution diversity vs. costs for the TSP.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

14.8 15.0 15.2 15.4 15.6

Cost

16

18

20

22

24

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(a) Instance 1

14.5 15.0 15.5

Cost

16

18

20

22

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(b) Instance 2

14.8 15.0 15.2 15.4 15.6

Cost

14

16

18

20

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(c) Instance 3

15.4 15.6 15.8 16.0 16.2 16.4

Cost

16

18

20

22

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(d) Instance 4

19.0 19.5 20.0 20.5

Cost

12

14

16

18

20

22

24

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(e) Instance 5

13.75 14.00 14.25 14.50

Cost

10

12

14

16

18

20

22

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(f) Instance 6

Figure 9: Solution diversity vs. costs for the CVRP

16000 17000 18000 19000

Cost

14

16

18

20

22

24

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(a) Instance 1

12500 13000 13500 14000 14500

Cost

15.0

17.5

20.0

22.5

25.0

27.5

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(b) Instance 2

13500 14000 14500

Cost

12

14

16

18

20

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(c) Instance 3

9750 10000 10250 10500 10750

Cost

18

20

22

24

26

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(d) Instance 4

15000 15500 16000 16500

Cost

16

18

20

22

24

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(e) Instance 5

11000 11500 12000 12500

Cost

12

14

16

18

20

22

24

S
ol

u
ti

on
U

n
iq

u
en

es
s

POMO PolyNet

(f) Instance 6

Figure 10: Solution diversity vs. costs for the CVRPTW

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E SEARCH TRAJECTORY ANALYSIS

In Figure 11, we show the search trajectories for models trained with varying values of K across all
three routing problems featuring 100 nodes. The search process employs solution sampling without
EAS and without the use of instance augmentations. These models used for the search undergo
training for 150 epochs (except for the CVRP, where the training spans 200 epochs).

It is evident across all three problems that the search does not achieve full convergence within 10,000
iterations. This observation once again underscores PolyNet’s capability to discover diverse solutions,
enabling it to yield improved results with extended search budgets. It’s important to note that this
experiment, including model training, has not been replicated with multiple seeds. Nevertheless, the
results suggest that models trained with larger K values benefit more from longer search budgets
compared to models trained with smaller values.

0 2500 5000 7500 10000

Search Progress (in Sampled Solutions)

7.7655

7.7660

7.7665

C
os

t

TSP

0 2500 5000 7500 10000

Search Progress (in Sampled Solutions)

15.67

15.68

15.69

CVRP

0 2500 5000 7500 10000

Search Progress (in Sampled Solutions)

12900

12940

12980

CVRPTW

K

32

64

128

Figure 11: Search trajectories.

F CVRPTW INSTANCE GENERATION

We generate instances for the CVRPTW with the goal of including real-world structures. To achieve
this, we employ a two-step approach. First, we use the CVRP instance generator developed by
Queiroga et al. (2022) to produce the positions and demands of customers. Subsequently, we follow
the methodology outlined by Solomon (1987) to create the time windows. We generate different
instance sets for training, validation, and testing.

Customer positions are generated using the clustered setting (configuration 2) and customer demands
are based on the small, large variance setting (configuration 2). The depot is always centered
(configuration 2). It is worth noting that the instance generator samples customer positions within the
2D space defined by [0, 999]2. Independently from the instance generator, vehicle capacities are set
at 50 for instances involving fewer than 200 customers and increased to 70 for instances with 200 or
more customers.

To generate the time windows, we adhere to the procedure outlined by Solomon (1987) for instances
with randomly clustered customers (i.e., we do not utilize the 3-opt technique to create reference
routes). We randomly generate time windows (ei, li) for all customers, and set 2400 as the latest
possible time for a vehicle to return to the depot. The time window generation process, as described
in Solomon (1987), limits the time windows to ensure feasibility (e.g., by selecting li so that there is
always sufficient time for servicing the customer and returning to the depot). The center of the time
window is uniformly sampled from range defined by these limits. We set the maximum width of the
time window to 500 and the service duration to 50. These parameter values have been deliberately
chosen to strike a balance between the constraints of vehicle capacity and time windows, requiring
both aspects to be considered during the solution generation proces.

19

	Introduction
	Literature review
	PolyNet
	Background
	Overview
	Training
	Network architecture
	Search

	Experiments
	Problems
	Search performance
	Diversity
	Ablation study: Forcing the first move

	Conclusion
	Experimental results for the FFSP
	Ablation study: PolyNet layers
	PolyNet training: Warm-start vs. cold-start
	Solution uniqueness vs. costs plots
	Search trajectory analysis
	CVRPTW instance generation

