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ABSTRACT

Reinforcement learning-based methods for constructing solutions to combinatorial
optimization problems are rapidly approaching the performance of human-designed
algorithms. To further narrow the gap, learning-based approaches must efficiently
explore the solution space during the search process. Recent approaches artificially
increase exploration by enforcing diverse solution generation through handcrafted
rules, however, these rules can impair solution quality and are difficult to design
for more complex problems. In this paper, we introduce PolyNet, an approach for
improving exploration of the solution space by learning complementary solution
strategies. In contrast to other works, PolyNet uses only a single-decoder and a
training schema that does not enforce diverse solution generation through hand-
crafted rules. We evaluate PolyNet on four combinatorial optimization problems
and observe that the implicit diversity mechanism allows PolyNet to find better
solutions than approaches that explicitly enforce diverse solution generation.

1 INTRODUCTION

There have been remarkable advancements in recent years in the field of learning-based approaches
for solving combinatorial optimization (CO) problems (Bello et al., 2016; Kool et al., 2019; Kwon
et al., 2020). Notably, reinforcement learning (RL) methods have emerged that build a solution
to a problem step-by-step in a sequential decision making process. Initially, these construction
techniques struggled to produce high-quality solutions. However, recent methods have surpassed
even established operations research heuristics, such as LKH3, for simpler, smaller-scale routing
problems. Learning-based approaches thus now have the potential to become versatile tools, capable
of learning specialized heuristics tailored to unique business-specific problems. Moreover, with
access to sufficiently large training datasets, they may consistently outperform off-the-shelf solvers
in numerous scenarios. This work aims to tackle some of the remaining challenges that currently
impede the widespread adoption of learning-based heuristic methods in practical applications.

A key limitation of learning-based approaches is that they struggle to sufficiently explore the solution
space. The metaheuristics literature identifies exploration as a key component of heuristic optimization
procedures Blum & Roli (2003), but examining diverse solutions alone is not enough to find high-
quality solutions. Mahfoud (1995) discuss the need for useful diversity, i.e., diversity that “helps in
achieving some purpose or goal.” To encourage search diversity, many recent neural construction
methods (e.g., Li et al. (2023a); Choo et al. (2022)) follow the POMO approach (Kwon et al., 2020)
and improve exploration by forcing diverse first actions during solution construction. While this
creates significant diversity through exploiting symmetries in the problem representation (every
solution has a different first action), no effort is made to encourage diversity subsequent to the first
action. Furthermore, in more complex optimization problems the initial action can significantly
influence the solution quality, rendering these methods less effective at generating solutions.

Acknowledging that useful diversity is an essential component of search techniques, neural CO
approaches have begun attempting to encourage more exploration during search. Xin et al. (2021)
propose a transformer model with multiple decoders that encourage each decoder to learn a distinct
solution strategy during training by maximizing the Kullback-Leibler (KL) divergence between
decoder output probabilities. However, to manage computational costs, diversity is only promoted in
the initial construction step. In contrast, Grinsztajn et al. (2022) introduce Poppy, a training procedure
for multi-decoder models that increases diversity without relying on KL divergence. Poppy generates
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a population (i.e., a set) of decoders during the learning phase by training only the best-performing
decoder for each problem instance. While effective, Poppy is computationally intensive, requiring a
separate decoder for each policy, thus limiting the number of learnable policies per problem.

In this paper, we introduce PolyNet to address the previously discussed limitations:

1. PolyNet learns a diverse and complementary set of solution strategies for improved explo-
ration using a single decoder.

2. PolyNet increases exploration without enforcing the first construction action, allowing its
applicability to a wider range of CO problems

By utilizing a single decoder to learn multiple strategies, PolyNet quickly generates a set of diverse
solutions for a problem instance. This significantly enhances exploration, allowing us to find better
solution during training and testing. Furthermore, by abandoning the concept of forcing diverse
first actions, we exclusively rely on PolyNet’s inherent diversity mechanism to facilitate exploration
during the search process. This fundamental change significantly impacts solution generation for
problems in which the first move greatly influences performance, such as in the CVRP with time
windows (CVRPTW).

PolyNet is an autoregressive construction method, which makes a direct application to large-scale
routing problems computationally impractical. However, small- and medium-scale routing problems,
which often involve numerous constraints (e.g., customer time windows), are frequently encountered
in practice. This is reflected in the current focus of the operations research community, which
prioritizes smaller problems with numerous complex constraints (e.g., Zhang et al. (2024); Cataldo-
Díaz et al. (2024); Lera-Romero et al. (2024); Jolfaei & Alinaghian (2024)). With PolyNet, we aim to
take a step toward addressing these more complex problems by enabling diverse solution generation
without relying on the symmetries characteristic of simpler routing problems.

We assess PolyNet’s performance across four problems: the TSP, the CVRP, CVRPTW, and the
flexible flow shop problem (FFSP). Across all problems, PolyNet consistently demonstrates a
significant advancement over the state-of-the-art in both swift solution generation and comprehensive
search efforts. Moreover, we observe that the solution diversity arising during PolyNet’s training
enables the discovery of superior solutions compared to artificially enforcing diversity by fixing the
initial solution construction step.

2 LITERATURE REVIEW

Neural CO In their seminal work, Vinyals et al. (2015) introduce the pointer network architecture,
an early application of modern machine learning methods to solve CO problems. Pointer networks
autoregressively generate discrete outputs corresponding to input positions. When trained via
supervised learning, they can produce solutions for the TSP with up to 50 nodes. Bello et al.
(2016) propose training pointer networks using reinforcement learning instead and illustrate the
efficacy of this method in solving larger TSP instances. However, these early methods are limited in
generalization and in the quality of the generated solutions.

Nazari et al. (2018) extend the pointer network architecture to address the CVRP with up to 100
nodes. Building on this, Kool et al. (2019) enhance the architecture by introducing a transformer-
based encoder with self-attention (Vaswani et al., 2017), enabling the model to learn more effective
policies and produce higher-quality solutions. Recognizing that many CO problems exhibit inherent
symmetries, Kwon et al. (2020) propose POMO, a method that exploits these symmetries to generate
diverse initial solutions. However, POMO’s effectiveness is heavily dependent on the assumption that
such symmetries can be efficiently leveraged, which limits its applicability to more complex problems.
Kim et al. (2022) extend these ideas and propose a general-purpose symmetric learning scheme.
Drakulic et al. (2023) use bisimulation quotienting (Givan et al., 2003) to improve out-of-distribution
generalization of neural CO methods. However, they use imitation learning which requires a large
training set of high-quality solutions limiting the applicability of their method. Luo et al. (2023)
improves generalization in neural CO by using a “heavy” decoder to make more effective node
selections during solution construction, but this increases computational overhead. Despite these
advancements, only a few works, such as Falkner & Schmidt-Thieme (2020) and Kool et al. (2022a),
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target routing problems with additional constraints like time windows, highlighting a gap in extending
neural CO approaches to more complex problem variants.

Instead of constructing solutions autoregressively, some methods predict a heat-map that emphasize
promising solution components (e.g., arcs in a graph). This is subsequently used in a post-hoc
search for solution construction (Joshi et al., 2019; Fu et al., 2021; Kool et al., 2022b; Min et al.,
2023). However, Xia et al. (2024) reveal that these methods often underperform compared to simpler
baselines. Another class of methods iteratively improves initial solutions. Hottung & Tierney (2020);
Ma et al. (2021); Chen & Tian (2019) iteratively improve an initial solution by performing local
adjustments. Similarly, several works guide the k-opt heuristic for vehicle routing problems, e.g., Wu
et al. (2019); da Costa et al. (2020); Ma et al. (2023). These improvement methods require longer
runtimes to be effective. In contrast, PolyNet also excels at generating high-quality solutions quickly.
Sun & Yang (2023) cast CO problems as discrete {0, 1}-vector optimization problems and utilize
denoising diffusion models for solution generation and Kim et al. (2024) utilize the solution symmetry
in the combinatorial space to improve the sample efficiency during training. Both approaches fail to
generalize to problems with more complex constraints like the CVRPTW.

Hottung et al. (2022) introduce efficient active search (EAS), a method that guides the search by
updating a subset of the policy parameters during inference. Choo et al. (2022) propose SGBS, an
inference mechanism that combines Monte-Carlo tree search with beam search to provide search
guidance. When used in combination with EAS, it achieves state-of-the-art performance on several
problems. Li et al. (2023b) learn a distribution of high-quality solutions using diffusion models and
perform a gradient-based search at test time. PolyNet outperforms these recent approaches while
being able to even tackle problems with more complex constraints.

Diversity in metaheuristics In the context of metaheuristics, solution diversity plays a crucial role
in balancing the exploration-exploitation trade-off. Population-based algorithms, such as genetic
algorithms, aim to maintain a pool of diverse solutions to promote thorough exploration of the search
space (Gendreau et al., 2010). Additionally, some works specifically target generating multiple
solutions for single-objective problems. For instance, Hanaka et al. (2022) introduce a polynomial-
time algorithm to compute multiple diverse shortest paths in weighted directed graphs. Similarly,
Huang et al. (2019) propose a niching memetic algorithm designed to identify multiple optimal
solutions for TSP instances, emphasizing diversity within the solution set.

Diversity mechanisms in RL Diversity mechanisms in RL aim to encourage exploration by generat-
ing a range of strategies or solutions. Skill-learning algorithms, such as those by Eysenbach et al.
(2018) and Sharma et al. (2019), aim to learn policies with diverse behaviors to accelerate training.
However, these methods are not directly applicable to CO tasks, where diversity must also consider
the quality of solutions, not just behavioral variation.

In contrast to implicitly maintaining a collection of agents through context, population-based RL
techniques explicitly maintain a finite agent population and use diversity mechanisms to discover
diverse strategies for solving RL tasks, e.g., Zhang et al. (2019), (Pierrot & Flajolet, 2023), Wu
et al. (2023). In neural program synthesis, Bunel et al. (2018) optimize the expected reward when
sampling a pool of solutions and keep the best one. Li et al. (2021) use the mutual information
between agents’ identities and trajectories as an intrinsic reward to promote diversity and thus solve
cooperative tasks requiring diverse strategies.Population-based approaches explicitly maintain diverse
policy collections but require substantial computational resources.

Diversity mechanisms in neural CO Kim et al. (2021) present a hierarchical strategy for solving
routing problems, where a base policy learns to generate diverse candidate solutions through entropy
regularization. While entropy regularization can be used to increase diversity during solution sampling,
it does not allow to learn truly different strategies. Xin et al. (2021) encourage diverse solutions
using multiple decoders and KL divergence regularization, while Grinsztajn et al. (2022) use an agent
population through multiple decoders to learn complementary strategies, updating exclusively the
best-performing agent at each iteration similar to Bunel et al. (2018). While using multiple-decoders
encourages diversity, it results in a large computational overhead. In contrast, PolyNet learns diverse
strategies with only a single decoder. Hottung et al. (2021) and Chalumeau et al. (2023) learn a
continuous latent space that encodes solutions for CO problems and use it to sample diverse solutions
at test time. Both approaches are designed for longer runtimes and can not be easily applied to more
difficult optimization problems.
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Figure 1: PolyNet solution generation.

3 POLYNET

3.1 BACKGROUND

Neural CO approaches seek to train a neural network denoted as πθ with learnable weights θ. The
network’s purpose is to generate a solution τ when provided with an instance l. To achieve this,
we employ RL techniques and model the problem as a Markov decision process (MDP), wherein a
solution is sequentially constructed in T discrete time steps. At each step t ∈ (1, . . . , T ), an action
at is selected based on the probability distribution πθ(at|st) defined by the neural network where
st is the current state. The initial state s1 encapsulates the information about the problem instance
l, while subsequent states st+1 are derived by applying the action at to the previous state st. A
(partial) solution denoted as τ̄t is defined by the sequence of selected actions (a1, a2, . . . , at). Once
a complete solution τ = τ̄T satisfying all problem constraints is constructed, we can compute its
associated reward R(τ, l). The overall probability of generating a solution τ for an instance l is
defined as πθ(τ | l) =

∏T
t=1 πθ(at | st).

3.2 OVERVIEW

PolyNet is a learning-based approach designed to learn a set of diverse solution strategies for CO
problems. During training, each strategy is allowed to specialize on a subset of the training data,
and thus need not be the best strategy for the entire dataset. This essentially results in a portfolio
of strategies, which are known to be highly effective for solving CO problems (Bischl et al., 2016).
Our pursuit of diversity is fundamentally a means to enhance exploration and consequently solution
quality. Note that PolyNet not only enhances performance at test time (where we sample multiple
solutions for each strategy and keep only the best one), but also improves exploration during training.

PolyNet aims to learn K different solution strategies π1, . . . , πK using a single neural network. To
achieve this, we condition the solution generation process on an additional input vi ∈ {v1, . . . , vK}
that defines which of the strategies should be used to sample a solution so that

π1, . . . , πK = πθ(τ1 | l, v1), . . . , πθ(τK | l, vK). (1)

We use a set of unique bit vectors for {v1, . . . , vK}. Alternative representations should also be
feasible as long as they are easily distinguishable by the network.

PolyNet uses a neural network that builds on the established transformer architecture for neural CO
(Kool et al., 2019). The model consists of an encoder that creates an embedding of a problem instance,
and a decoder that generates multiple solutions for an instance based on the embedding. To generate
solutions quickly, we only insert the bit vector v into the decoder, allowing us to generate multiple
diverse solutions for an instance with only a single pass through the computationally expensive
encoder. Figure 1 shows the overall solution generation process of the model where bit vectors of
size 4 are used to generate to generate K = 16 different solutions for a CVRP instance.

3.3 TRAINING

During training we (repeatedly) sample K solutions {τ1, . . . , τK} for an instance l based on K
different vectors {v1, . . . , vK}, where the solution τi is sampled from the probability distribution
πθ(τi | l, vi). To allow the network to learn K different solution strategies, we follow the Poppy
method (Grinsztajn et al., 2022) and only update the model weights with respect to the best of the
K solutions. Let τ∗ be the best solution, i.e., τ∗ = argminτi∈{τ1,...,τK} R(τi, l), and let v∗ be the
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corresponding vector (ties are broken arbitrarily). We then update the model using the gradient

∇θL = Eτ∗
[
(R(τ∗, l)− b◦)∇θ log πθ(τ

∗ | l, v∗)
]
, (2)

where b◦ is a baseline (which we discuss in detail below). Updating the model weights only based on
the best found solution allows the network to learn specialized strategies that do not have to work
well on all instances from the training set. While this approach does not explicitly enforce diversity, it
incentivizes the model to learn diverse strategies in order to optimize overall performance. For a more
in depth discussion on how this loss leads to diverse solution generation, see Grinsztajn et al. (2022).

Exploration & baseline Many recent neural construction heuristics follow the POMO approach
and rollout N solutions from N different starting states per instance to increase exploration. This is
possible because many CO problems contain symmetries in the solution space that allow an optimal
solution to be found from different states. In practice, this mechanism is implemented by forcing
a different first construction action for each of the N rollouts. Forcing diverse rollouts not only
improves exploration, but also allows the average reward of all N rollouts to be used as a baseline.
However, this exploration mechanism should not be used when the first action can not be freely
chosen without impacting the solution quality.

In PolyNet, we do not use an exploration mechanism or a baseline that assumes symmetries in the
solution space during training. Instead, we only rely on the exploration provided by our conditional
solution generation. This allows us to solve a wider range of optimization problems. As a baseline
we simply use the average reward of all K rollouts for an instance, i.e., b◦ = 1

K

∑K
i=1 R(τi, l).

3.4 NETWORK ARCHITECTURE

Figure 2: Decoder architecture.

PolyNet extends the neural network architecture of
the POMO approach by a new residual block in the
decoder. This design allows us to start PolyNet’s
training from an already trained POMO model, which
significantly reduces the amount of training time
needed. Figure 2 shows the overall architecture of
the modified decoder including the new PolyNet lay-
ers. The new layers accept the bit vector v as input
and use it to calculate an update for the output of
the masked multi-head attention mechanism. They
consist of a concatenation operation followed by two
linear layers with a ReLU activation function in be-
tween. See Kwon et al. (2020) for more details on
the encoder and decoder.

The output of the new layers directly impacts the pointer mechanism used to calculate the output
probabilities, allowing the new layers to significantly influence the solution generation based on v.
However, the model can also learn to completely ignore v by setting all weights of the second linear
layer to zero. This is intentional, as our objective is to increase diversity via the loss function, rather
than force unproductive diversity through the network architecture.

3.5 SEARCH

A simple and fast search procedure given an unseen test instance l is to sample multiple solutions in
parallel and return the best one. Specifically, to construct a set of M distinct solutions, we initially
draw M binary vectors from the set v1, . . . , vK , allowing for replacement if M exceeds the size of
K. Subsequently, we employ each of these M vectors to sample individual solutions. This approach
generates a diverse set of instances in a parallel and independent manner, making it particularly
suitable for real-world decision support settings where little time is available.

To facilitate a more extensive, guided search, PolyNet can be combined with EAS. EAS is a simple
technique to fine-tune a subset of model parameters for a single instance in an iterative process driven
by gradient descent. In contrast to the EAS variants described in Hottung et al. (2022), we do not
insert any new layers into the network or update the instance embeddings. Instead, we only fine-tune
the new PolyNet layers during search. Since PolyNet is specifically trained to create diverse solutions
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based on these layers, EAS can easily explore a wide variety of solutions while modifying only a
portion of the model’s parameters.

4 EXPERIMENTS

We compare PolyNet’s search performance to state-of-the-art methods on four established problems.
We also explore solution diversity during the training and testing phases and analyze the impact of
the free first move selection. An ablation study for our network architecture changes is provided
in Appendix B. While most of our evaluation is focused on routing problems, we demonstrate
that PolyNet can also be used to solve other CO problems by applying PolyNet to the FFSP (see
Appendix A). Our experiments are conducted on a GPU cluster utilizing a single Nvidia A100
GPU per run. In all experiments, the new PolyNet layers comprise two linear layers, each with a
dimensionality of 256. PolyNet will be made publicly available upon acceptance.

4.1 PROBLEMS

TSP The TSP is a thoroughly researched routing problem in which the goal is to find the shortest
tour among a set of n nodes. The tour must visit each node exactly once and then return to the
initial starting node. We consider the TSP due to its significant attention from the machine learning
(ML) community, making it a well-established benchmark for ML-based optimization approaches.
However, it is important to note that instances with n ≤ 300 can be quickly solved to optimality by
CO solvers that have been available for many years. To generate problem instances, we adhere to the
methodology outlined in Kool et al. (2019).

CVRP The objective of the CVRP is to determine the shortest routes for a fleet of vehicles tasked
with delivering goods to a set of n customers. These vehicles start and conclude their routes at a
depot and have a limited capacity of goods that they can carry. CVRP instances are considerably
more difficult to solve than TSP instances of equivalent size (despite both problems being of the same
computational complexity class). Even cutting-edge CO methods struggle to reliably find optimal
solutions for instances with n ≤ 300 customers. To generate problem instances, we again adopt the
approach outlined in Kool et al. (2019).

CVRPTW The CVRPTW is an extension of the CVRP that introduces temporal constraints limiting
when a customer can receive deliveries from a vehicle. Each customer i is associated with a time
window, comprising an earliest arrival time ei and a latest allowable arrival time li. Vehicles may
arrive early at a customer i, but they must wait until the specified earliest arrival time ei before making
a delivery. The travel duration between customer i and customer j is calculated as the Euclidean
distance between their locations, and each delivery has a fixed duration. All vehicles initiate their
routes from the depot at time 0. We use the CVRP instance generator outlined in Queiroga et al.
(2022) to generate customer positions and demands, and we adhere to the methodology established in
Solomon (1987) for generating the time windows. It’s essential to note that customer positions are
not sampled from a uniform distribution; instead, they are clustered to replicate real-world scenarios.
Further details for instance generation are given in Appendix F.

FFSP The description of the FFSP and all experimental results can be found Appendix A.

4.2 SEARCH PERFORMANCE

We conduct an extensive evaluation of PolyNet’s search performance, benchmarking it against
state-of-the-art neural CO methods. For the considered routing problems, we train separate models
for problem instances of size 100 and 200, and then evaluate the models trained on n= 100 using
instances with 100 and 150 nodes, and the models trained on n= 200 using instances with 200 and
300 nodes. We can thus assess the model’s capability to generalize to instances that diverge from the
training data. Throughout our evaluation, we employ the instance augmentation technique introduced
in Kwon et al. (2020).

For the training of PolyNet models, we set the parameter K to 128 across all problems. We use a
learning rate of 10−4 for the TSP and CVRP and 10−5 for the CVRPTW. For instances of size n=100,
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Table 1: Search performance results for TSP.

Method
Test (10K instances) Test (1K instances) Generalization (1K instances)
ntr =neval = 100 ntr =neval = 200 ntr = 100, neval = 150 ntr = 200, neval = 300

Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

Concorde 7.765 - 82m 10.687 - 31m 9.346 - 17m 12.949 - 83m
LKH3 7.765 0.000% 8h 10.687 0.000% 3h 9.346 0.000% 99m 12.949 0.000% 5h

U
ng

ui
de

d POMO greedy 7.775 0.135% 1m 10.770 0.780% <1m 9.393 0.494% <1m 13.216 2.061% 1m
sampling 7.772 0.100% 3m 10.759 0.674% 2m 9.385 0.411% 1m 13.257 2.378% 7m

Poppy 7.766 0.015% 4m 10.711 0.226% 2m 9.362 0.164% 1m 13.052 0.793% 7m

PolyNet 7.765 0.000% 4m 10.690 0.032% 2m 9.352 0.055% 1m 12.995 0.351% 8m

G
ui

de
d

DPDP 7.765 0.004% 2h - - - 9.434 0.937% 44m - - -
COMPASS 7.765 0.002% 2h - - - 9.354 0.083% 32m - - -
MDAM 7.781 0.208% 4h - - - 9.403 0.603% 1h - - -
POMO EAS 7.769 0.053% 3h 10.720 0.310% 3h 9.363 0.172% 1h 13.048 0.761% 8h

SGBS 7.769 0.058% 9m 10.727 0.380% 24m 9.367 0.220% 8m 13.073 0.951% 77m
SGBS+EAS 7.767 0.035% 3h 10.719 0.300% 3h 9.359 0.136% 1h 13.050 0.776% 8h

PolyNet EAS 7.765 0.000% 3h 10.687 0.001% 2h 9.347 0.001% 1h 12.952 0.018% 7h

Table 2: Search performance results for CVRP.

Method
Test (10K instances) Test (1K instances) Generalization (1K instances)
ntr =neval = 100 ntr =neval = 200 ntr = 100, neval = 150 ntr = 200, neval = 300
Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

HGS 15.563 - 54h 21.766 - 17h 19.055 - 9h 27.737 - 46h
LKH3 15.646 0.53% 6d 22.003 1.09% 25h 19.222 0.88% 20h 28.157 1.51% 34h

U
ng

ui
de

d POMO greedy 15.754 1.23% 1m 22.194 1.97% <1m 19.684 3.30% <1m 28.627 3.21% 1m
sampling 15.705 0.91% 5m 22.136 1.70% 3m 20.109 5.53% 1m 28.613 3.16% 9m

Poppy 15.685 0.78% 5m 22.040 1.26% 3m 19.578 2.74% 1m 28.648 3.28% 8m

PolyNet 15.640 0.49% 5m 21.957 0.88% 3m 19.501 2.34% 1m 28.552 2.94% 8m

G
ui

de
d

DACT 15.747 1.18% 22h - - - 19.594 2.83% 16h - - -
DPDP 15.627 0.41% 23h - - - 19.312 1.35% 5h - - -
COMPASS 15.594 0.20% 4h - - - 19.313 1.35% 1h - - -
MDAM 15.885 2.07% 5h - - - 19.686 3.31% 1h - - -
POMO EAS 15.618 0.35% 6h 21.900 0.61% 3h 19.205 0.79% 2h 28.053 1.14% 12h

SGBS 15.659 0.62% 10m 22.016 1.15% 7m 19.426 1.95% 4m 28.293 2.00% 22m
SGBS+EAS 15.594 0.20% 6h 21.866 0.46% 4h 19.168 0.60% 2h 28.015 1.00% 12h

PolyNet EAS 15.584 0.14% 4h 21.821 0.25% 2h 19.166 0.59% 1h 27.993 0.92% 9h

we train our models for 300 epochs (200 for the TSP), with each epoch comprising 4× 108 solution
rollouts. Note that we warm-start the training for these models using previously trained POMO
models to reduce training times (results for cold-starting training can be found in Appendix C). For
instances with n=200, we start training based on the n= 100 PolyNet models, running 40 additional
training epochs (20 for the TSP). To optimize GPU memory utilization, we adjust the batch size
separately for each problem and its dimensions.

Table 3: Search performance results for CVRPTW.

Method
Test (10K instances) Test (1K instances) Generalization (1K instances)
ntr =neval = 100 ntr =neval = 200 ntr = 100, neval = 150 ntr = 200, neval = 300
Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

PyVRP 12,534 - 39h 18,422 - 11h 17,408 - 9h 25,732 - 26h

U
ng

ui
de

d POMO greedy 13,120 4.67% 1m 19,656 6.70% 1m 18,670 7.25% <1m 28,022 8.90% 2m
sampling 13,019 3.87% 7m 19,531 6.02% 4m 18,571 6.68% 2m 28,017 8.88% 13m

Poppy 12,969 3.47% 5m 19,406 5.34% 3m 18,612 6.91% 2m 28,104 9.22% 10m

PolyNet 12,876 2.73% 5m 19,232 4.40% 3m 18,429 5.86% 2m 27,807 8.07% 10m

G
ui

de
d POMO EAS 12,762 1.81% 6h 18,966 2.96% 4h 17,851 2.54% 2h 26,608 3.40% 14h

SGBS 12,897 2.89% 12m 19,240 4.44% 8m 18,201 4.55% 4m 27,264 5.95% 25m
SGBS+EAS 12,714 1.43% 7h 18,912 2.66% 4h 17,835 2.45% 2h 26,651 3.57% 15h

PolyNet EAS 12,654 0.96% 5h 18,739 1.72% 3h 17701 1.68% 1h 26,504 3.00% 10h
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We categorize the evaluated algorithms into two groups: unguided and guided methods. Unguided
algorithms generate solutions independently, while guided methods incorporate a high-level search
component capable of navigating the search space. For a comparison to unguided algorithms, we
compare PolyNet to POMO and the Poppy approach with a population size of 8. To ensure fairness
we retrain Poppy using the same training setup as for PolyNet. Note that POMO has already been
trained to full convergence and does not benefit from additional training (see Figure 3). For all
approaches, we sample 64 × n solutions per instance (except for POMO using greedy solution
generation). For our comparison to guided algorithms, we use PolyNet with EAS and compare it with
POMO combined with EAS (Hottung et al., 2022) and SGBS (Choo et al., 2022). For PolyNet, we
sample 200×8×n solutions per instance over the course of 200 iterations. Furthermore, we compare
to some problem-specific approaches that are explained below. Note that we provide additional search
trajectory plots in Appendix E. Results for the FFSP can be found in Appendix A.

TSP We use the 10,000 test instances with n= 100 from Kool et al. (2019) and test sets consisting
of 1, 000 instances from Hottung et al. (2021) for n= 150 and n= 200. For n= 300, we generate
new instances. As a baseline, we use the exact solver Concorde (Applegate et al., 2006) and the
heuristic solver LKH3 (Helsgaun, 2017). Additionally, we also compare to DPDP (Kool et al., 2022b),
COMPASS (Chalumeau et al., 2023), and the diversity-focused method MDAM (Xin et al., 2021)
with a beam search width of 256.

Table 1 provides our results on the TSP, showing clear performance improvements of PolyNet during
fast solution generation and extensive search with EAS for all considered instance sets. For TSP
instances with 100 nodes, PolyNet achieves a gap that is practically zero while being roughly 120
times faster than LKH3. Furthermore, on all four instance sets, PolyNet with unguided solution
sampling finds solutions with significantly lower costs in comparison to guided learning approaches
while reducing the runtime by a factor of more than 100 in many cases.

CVRP Similar to the TSP, we use the test sets from Kool et al. (2019) and Hottung et al. (2021).
As a baseline, we use LKH3 (Helsgaun, 2000) and the state-of-the-art (OR) solver HGS (Vidal et al.,
2012; Vidal, 2022). We compare to the same learning methods as for the TSP with the addition of
DACT (Ma et al., 2021).

The CVRP results in Table 2 once again indicate consistent improvement across all considered
problem sizes. Especially on the instances with 100 and 200 customers, PolyNet improves upon
the state-of-the-art learning-based approaches by reducing the gap by more than 30% during fast
solution generation and extensive search. Also note that PolyNet significantly outperforms the other
diversity-focused approaches Poppy and MDAM.

CVRPTW For the CVRPTW, we use the state-of-the-art CO solver PyVRP (Wouda et al., 2023) as
a baseline stopping the search after 1,000 iterations without improvement. We compare to a POMO
implementation that we adjusted to solve the CVRPTW by extending the node features with the time
windows and the context information used at each decoding step by the current time point. These
models are trained for 50,000 epochs, mirroring the training setup used for the CVRP.

Table 3 presents the CVRPTW results, demonstrating PolyNet’s consistent and superior performance
across all settings compared to Poppy and POMO (with SGBS and EAS). Notably, for instances with
100 customers, PolyNet matches almost the CO solver PyVRP with a gap below 1%.

Table 4: Solution diversity measured
using avg. broken pairs distance.

Method TSP CVRP CVRPTW

PolyNet 4.621 18.535 19.969

POMO 2.400 16.785 18.162

Table 5: Ablation results for free first move selection.

Method TSP CVRP CVRPTW
Gap Time Gap Time Gap Time

PolyNet Free first move 0.000% 4m 0.49% 5m 2.73% 5m
Forced first move 0.006% 4m 0.59% 5m 3.00% 6m

Poppy 0.015% 4m 0.78% 5m 3.47% 5m

4.3 DIVERSITY

Does PolyNet’s training encourage diversity? To assess the effectiveness of our diversity mech-
anism, we conduct short training runs of PolyNet for the TSP, CVRP, and CVRPTW with varying
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Figure 3: Validation performance during training (log scale).

values of K. As a baseline we report results for the training of the POMO model. For all runs, we use
a batch size of 480 and a learning rate set at 10−4. To ensure a stable initial state for training runs, we
start all runs from a trained POMO model. For PolyNet, we initialize the PolyNet layer weights to
zero, minimizing initial randomness. During training, we perform regular evaluations on a separate
validation set of 10 000 instances, sampling 800 solutions per instance.

Our evaluation tracks the cost of the best solution and the percentage of unique solutions among
the 800 solutions per instance. Figure 3 presents the evaluation results. Across all three problems,
we observe a clear trend: higher values of K lead to a more rapid reduction in average costs on the
validation set and are associated with a greater percentage of unique solutions. Note that POMO
does not benefit from further training. These results underscore the effectiveness of our approach in
promoting solution diversity and improving solution quality.

Does PolyNet generate diverse solutions at test time? In this experiment we evaluate the diversity
of PolyNet. As a baseline we use the POMO approach, which enforces diverse solution generation by
forcing the first action. For each test instance, we sample 100 solutions with both approaches and
calculate the average broken pairs distance (Prins, 2009), which is an established method to measure
diversity for routing problem solutions (see, e.g., (Vidal et al., 2012)). The broken pairs distance
d(A,B) for two solutions A and B is the number of edges of A that are not in B. We measure the
diversity of a set of solutions using the average across the broken pairs distances between all solution
pairs of the set. The results shown in Table 4 confirm that PolyNet is able to generate more diverse
solutions than POMO at test time. An additional visual comparison of the differences in solution
diversity between POMO and PolyNet can be found in Appendix D.

Does PolyNet encourage useful diversity? As discussed in the introduction, solution diversity
alone is neither inherently beneficial nor difficult to achieve (e.g., by generating random solutions).
What truly matters is that the diversity is useful, meaning it contributes to finding high-quality
solutions. To assess the diversity of PolyNet we conduct two separate experiments.

First, we evaluate the importance of each of the K learned strategies at test time by counting how
often each strategy finds the best solution across 10 000 test instances. The results, shown in Figure 4,
indicate that all K strategies contribute significantly to performance. Even the least effective strategies
identify the best solution on 544, 61, and 54 instances for the TSP, CVRP, and CVRPTW, respectively.
Note that for the TSP, multiple strategies often converge to the same best solution, likely because
most instances are solved to optimality. However, for the CVRP and CVRPTW, the best solution
for an instance is typically found by only one strategy. These results demonstrate that all learned
strategies are able to generate high-quality solutions and that all strategies contribute meaningfully to
the overall sampling performance of PolyNet.

Second, we evaluate the number of distinct first nodes selected by the K different strategies of
PolyNet. This provides insights into the diversity achieved by PolyNet, particularly in comparison to

9
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Figure 4: Contribution of different search strategies. Strategies are sorted based on their contribution.
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Figure 5: Frequency plots for the number of unique first nodes.

POMO, which enforces diversity by selecting different first actions. As shown in Figure 5, PolyNet
selects fewer distinct first nodes than POMO. On average, PolyNet selects 24.5, 3.8, and 7.0 distinct
first nodes for the TSP, CVRP, and CVRPTW, respectively. Despite selecting fewer different first
nodes, PolyNet is able to generate solutions that are more diverse overall than those generated by
POMO, as shown in Table 4. This suggests that PolyNet achieves diversity through means other than
enforcing the first action. By not constraining the first node selection, PolyNet is able to leverage
variability in first node choices in a way that improves overall performance.

4.4 ABLATION STUDY: FORCING THE FIRST MOVE

PolyNet does not force diverse first construction actions and relies solely on its built-in diversity
mechanism to select the first node. To assess this approach, we compare the performance of PolyNet
with and without forced first move selection when sampling 64× 100 solutions per instance.

Table 5 shows the results for all problems with n= 100. Remarkably, across all scenarios, allowing
PolyNet to select the first move yields superior performance compared to forcing the first move.
This finding is particularly striking for the TSP, where the first move does not affect solution quality.
Furthermore, PolyNet with forced first move selection outperforms Poppy (which also enforces the
first move), underscoring that PolyNet’s single-decoder architecture delivers better results.

5 CONCLUSION

We introduced the novel approach PolyNet, which is capable of learning diverse solution strategies
using a single-decoder model. PolyNet deviates from the prevailing trend in neural construction
methods, in which diverse first construction steps are forced to improve exploration. Instead, it
relies on its diverse strategies for exploration, enabling its seamless adaptation to problems where
the first move significantly impacts solution quality. In our comprehensive evaluation across four
problems, including the more challenging CVRPTW, PolyNet consistently demonstrates performance
improvements over all other learning-based methods, particularly those focused on diversity.

Regarding our approach’s limitations, we acknowledge that the computational complexity of the
attention mechanism we employ restricts its applicability to instances with less than 1000 nodes.
However, it is essential to emphasize that the problem sizes examined in this paper for the CVRP(TW)
remain challenging for traditional CO solvers and are highly significant in real-world applications.
Furthermore, we note that the black-box nature of the PolyNet’s decision-making may be unacceptable
in certain decision contexts.
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A EXPERIMENTAL RESULTS FOR THE FFSP

We examine the flexible flow shop problem (FFSP) to further demonstrate PolyNet’s versatility
beyond routing problems, and the generality of the technique beyond the POMO architecture. In the
FFSP, a set of n jobs must be processed in a series of stages, with each stage comprising multiple
machines that each require different processing times. A machine cannot process more than one
job at the same time. The objective is to determine a job schedule with the shortest makespan. We
generate problem instances randomly according to the method in Kwon et al. (2021). We experiment
on FFSP instances with n = 20, 50, and 100 jobs, where each instance consists of 3 stages and each
stage has 4 machines.

Network architecture We use a neural network that extends the architecture of MatNet (Kwon
et al., 2021). More concretely, we introduce a residual block for each of the decoding networks. In all
experiments, the PolyNet layers in every block comprise two linear layers, each with a dimensionality
of 256.

Training To train the PolyNet models, we use a learning rate set to 10−4, and batch sizes of 256,
128, and 32 for instances comprising n = 20, 50, and 100 jobs, respectively. We set the parameter K
to 24 across all problem sizes. The training runs start from trained MatNet models and continue for
100 (20 for n = 100) epochs, with each epoch comprising 24× 105 solution rollouts.

Search performance For the FFSP, we use the randomly generated test sets from Kwon et al.
(2021) and comparison algorithms. In addition to MatNet (Kwon et al., 2021), we compare our
method to CPLEX CPLEX-Optimization-Studio (2020) with mixed-integer programming models
and metaheuristic solvers. Table 6 provides the results for the FFSP. The gaps are reported with
respect to PolyNet with ×128 augmentation result, as optimal solutions are not available. The results
demonstrate PolyNet’s consistent improvement in performance across all problem sizes. Notably,
PolyNet outperforms MatNet-based solvers for the FFSP on all problem sizes and produces solutions
of even higher quality within similar run times. Given the different architecture of MatNet compared
to those used for routing problems, the results highlight that the performance gains from PolyNet
are not confined to a specific network architecture. Moreover, these gains extend beyond routing
problems, indicating PolyNet’s broad applicability across various CO problems.

B ABLATION STUDY: POLYNET LAYERS

To assess the influence of our new PolyNet layers, we perform an ablation experiment in which we
systematically remove these additional layers during the training. In this modified version of PolyNet,
we add the vector v directly to the output of the masked multi-head attention mechanism (shown
in Figure 2). To achieve this, the vector v is zero-padded to match the necessary dimensions. Note
that this altered PolyNet configuration has exactly the same number of total model parameters as the
POMO model.

Table 6: Search performance results for FFSP.

Method FFSP20 FFSP50 FFSP100
MS Gap Time MS Gap Time MS Gap Time

CPLEX (60s) 46.4 21.5 (17h) × ×
CPLEX (600s) 36.6 11.7 (167h)

Random 47.8 22.9 (1m) 93.2 44 (2m) 167.2 78.0 (3m)
Shortest Job First 31.3 6.4 (40s) 57.0 7.8 (1m) 99.3 10.1 (2m)
Genetic Algorithm 30.6 5.7 (7h) 56.4 7.2 (16h) 98.7 9.5 (29h)
Particle Swarm Opt. 29.1 4.2 (13h) 55.1 5.9 (26h) 97.3 8.1 (48h)

MatNet 27.1 2.2 (5s) 51.5 2.3 (9s) 91.6 2.4 (17s)
PolyNet 26.7 1.8 (5s) 51.0 1.8 (10s) 91.2 2.0 (18s)
MatNet (×128) 25.4 0.5 (3m) 49.6 0.4 (8m) 89.8 0.6 (19m)
PolyNet (×128) 24.9 - (4m) 49.2 - (9m) 89.2 - (23m)
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Figure 6: Validation performance during training.
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Figure 7: Validation performance during training: Starting training from scratch (cold-start) vs.
starting from a trained POMO model (warm-start).

For a fair comparison we also extend the baseline POMO model by our additional PolyNet layers. The
modified POMO model comprises the same number of model parameters as our PolyNet architecture.
Note that the modified POMO model does not accept a vector v. Instead, the PolyNet layers directly
receive the output of the masked multi-head attention mechanism.

We train all models for 20 epochs using the same training hyperparameters as for our main training
run described in Section 4.2. After each epoch we evaluate the model performance on our validation
set that comprises 10, 000 instances, sampling 800 solutions per instance.

Figure 6 shows the validation costs over the course of the training. On all three problems, PolyNet
without the added layers performs worse than its original version, which demonstrates the importance
of the PolyNet layers. Nonetheless, even PolyNet without the added layers is able to significantly
outperform POMO with additional layers.

C POLYNET TRAINING: WARM-START VS. COLD-START

In all of our previous experiments, we initialize the training process using a pre-trained POMO model.
To assess the implications of this setup, we conduct additional training runs where models are either
warm-started or trained from scratch. These runs utilize identical hyperparameters as our primary
training sessions, but extend training for a total of 400 epochs. It’s worth noting that these extended
training runs span several weeks and that the additional insights gained by even longer training runs
are likely limited.

Figure 7 illustrates the validation performance throughout these training sessions. We observe notable
benefits from warm-starting the training process. Specifically, on the CVRP and CVRPTW tasks,
models initialized from a cold start consistently exhibit poorer performance even after 400 epochs
of training. This discrepancy is particularly evident in the CVRPTW task, where the lower learning
rate of 10−5 leads to slower training progress. Only in the TSP task does the performance of the
cold-started model converge with that of the warm-started model after 400 epochs. We thus infer that
while PolyNet can indeed be trained from scratch, warm-starting the training process is advisable to
mitigate computational costs.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

D SOLUTION UNIQUENESS VS. COSTS PLOTS

In this experiment, we compare the solutions generated by POMO to those generated by PolyNet
with respect to their cost and their uniqueness on an instance-by-instance basis. More specifically, for
a subset of test instances, we sample 100 solutions per instance with both approaches and compare
the solutions found on the basis of their uniqueness and their cost. We calculate the uniqueness of
a solution by using the average of the broken pairs distance (Prins, 2009) to all other 99 generated
solutions.

Figures 8-10 shows the results for the first six TSP, CVRP, and CVRPTW test instances. PolyNet
generates more unique solutions on most instances. Especially on the TSP the solutions from PolyNet
are much more diverse, however this diversity occasionally comes at the expense of solution quality.
Since we ultimately only care about the solution with the minimal costs in the generated solution set
and, not the average solution quality, this is not a limitation of the method. PolyNet is only able to
increase its performance in the minimum cost case by sometimes trying out solutions that a greedier
method, like POMO, ignores.
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Figure 8: Solution diversity vs. costs for the TSP.
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Figure 9: Solution diversity vs. costs for the CVRP
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Figure 10: Solution diversity vs. costs for the CVRPTW
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E SEARCH TRAJECTORY ANALYSIS

In Figure 11, we show the search trajectories for models trained with varying values of K across all
three routing problems featuring 100 nodes. The search process employs solution sampling without
EAS and without the use of instance augmentations. These models used for the search undergo
training for 150 epochs (except for the CVRP, where the training spans 200 epochs).

It is evident across all three problems that the search does not achieve full convergence within 10,000
iterations. This observation once again underscores PolyNet’s capability to discover diverse solutions,
enabling it to yield improved results with extended search budgets. It’s important to note that this
experiment, including model training, has not been replicated with multiple seeds. Nevertheless, the
results suggest that models trained with larger K values benefit more from longer search budgets
compared to models trained with smaller values.
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Figure 11: Search trajectories.

F CVRPTW INSTANCE GENERATION

We generate instances for the CVRPTW with the goal of including real-world structures. To achieve
this, we employ a two-step approach. First, we use the CVRP instance generator developed by
Queiroga et al. (2022) to produce the positions and demands of customers. Subsequently, we follow
the methodology outlined by Solomon (1987) to create the time windows. We generate different
instance sets for training, validation, and testing.

Customer positions are generated using the clustered setting (configuration 2) and customer demands
are based on the small, large variance setting (configuration 2). The depot is always centered
(configuration 2). It is worth noting that the instance generator samples customer positions within the
2D space defined by [0, 999]2. Independently from the instance generator, vehicle capacities are set
at 50 for instances involving fewer than 200 customers and increased to 70 for instances with 200 or
more customers.

To generate the time windows, we adhere to the procedure outlined by Solomon (1987) for instances
with randomly clustered customers (i.e., we do not utilize the 3-opt technique to create reference
routes). We randomly generate time windows (ei, li) for all customers, and set 2400 as the latest
possible time for a vehicle to return to the depot. The time window generation process, as described
in Solomon (1987), limits the time windows to ensure feasibility (e.g., by selecting li so that there is
always sufficient time for servicing the customer and returning to the depot). The center of the time
window is uniformly sampled from range defined by these limits. We set the maximum width of the
time window to 500 and the service duration to 50. These parameter values have been deliberately
chosen to strike a balance between the constraints of vehicle capacity and time windows, requiring
both aspects to be considered during the solution generation proces.
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