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Abstract

As Transformers become more popular for graph machine learning, a significant issue has
recently been observed. Their global attention mechanisms tend to overemphasize distant
vertices, leading to the phenomenon of “over-globalising.” This phenomenon often results
in the dilution of essential local information, particularly in graphs where local neighbour-
hoods carry significant predictive power. Existing methods often struggle with rigidity in
their local processing, where tightly coupled operations limit flexibility and adaptability
in diverse graph structures. Additionally, these methods can overlook critical structural
nuances, resulting in an incomplete integration of local and global contexts. This paper
addresses these issues by proposing LocalFormer, a novel framework, to effectively localise
a transformer model by integrating a distinct local module and a complementary module
that integrates global information. The local module focuses on capturing and preserving
fine-grained, neighbourhood-specific patterns, ensuring that the model maintains sensitivity
to critical local structures. In contrast, the complementary module dynamically integrates
broader context without overshadowing the localised information, offering a balanced ap-
proach to feature aggregation across different scales of the graph. Through collaborative
and warm-up training strategies, these modules work synergistically to mitigate the adverse
effects of over-globalising, leading to improved empirical performance. Our experimental
results demonstrate the effectiveness of LocalFormer compared to state-of-the-art baselines
on vertex-classification tasks.

1 Introduction

Graph representation learning Hamilton (2020) enables the extraction of meaningful patterns and relation-
ships from graph-structured data, which is prevalent in many real-world applications such as social networks,
biological networks, and transportation systems. Graph Neural Networks (GNNs) Kipf and Welling (2017);
Veličković et al. (2018); Hamilton et al. (2017); Xu et al. (2019) effectively extract information from graph
data Wu et al. (2022a); Ma and Tang (2020) but struggle with over-smoothing Li et al. (2018) and over-
squashing Alon and Yahav (2021), limiting their receptive fields. In contrast, Transformers Vaswani et al.
(2017), with their global attention mechanism, offer a promising solution by naturally considering all vertex
pairs and adaptively learning interaction relationships from graph data Müller et al. (2024).

The remarkable success of transformers on graphs in graph-level tasks (e.g., molecular property prediction)
Kreuzer et al. (2021); Ying et al. (2021); Rampasek et al. (2022a); Wu et al. (2023a) is mainly attributed
to their global attention mechanism, which offers enhanced global perception. However, efforts to apply
this mechanism to vertex-level tasks have recently revealed the issue of over-globalising Xing et al. (2024),
where the attention mechanism disproportionately focuses on higher-order nodes, neglecting more informative
lower-order nodes (i.e., local neighbourhoods). Empirical and theoretical analyses indicate that an excessively
expanded receptive field can diminish the effectiveness of the global attention mechanism, suggesting the
need for a more balanced approach to optimise transformer performance on graphs.

Identifying the weakness of the global attention mechanism of transformers on graphs naturally raises the
question of how to improve it to prevent over-globalising while still extracting valuable information from
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high-order nodes. Integrating a local module, such as GNNs, can alleviate this issue ZHANG et al. (2022);
Kong et al. (2023); Liu et al. (2023); Chen et al. (2022); Wu et al. (2021), but the differing properties of
local smoothing in GNNs and over-globalising in Graph Transformers complicate the influence on vertex
representations. Additionally, the common practice of fusing local and global information through linear
combination is inadequate and leads to incorrect predictions Xing et al. (2024), even when either local or
global information alone could have been accurate.

To effectively mitigate the over-globalising problem in graph transformers, a balanced approach is crucial:
one that integrates a focused local module with a complementary module that focuses on global information
trained and optimised collaboratively. This collaborative training allows for the preservation of fine-grained,
neighborhood-specific details while simultaneously capturing broader patterns. CoBFormer Xing et al. (2024)
adopts this strategy by employing a graph convolutional network (GCN) alongside intra- and inter-cluster
transformers to manage local and global information.

Despite these innovations, existing methods face notable limitations. Specifically, the coupled nature of the
GCN-based local module restricts flexibility, preventing adaptation to diverse graph structures and limiting
the ability to skip irrelevant local information (e.g., less informative one-hop neighbours on heterophilic
tasks). To overcome these limitations and address the over-globalising problem, we present the following
contributions:

• We introduce LocalFormer, a novel training framework designed to localise a transformer on graphs,
and demonstrate that the only existing method is a specific instance of LocalFormer.

• To address the over-globalising issue in transformers on graphs, we explore novel training strategies
of LocalFormer, featuring ideas such as collaborative and warm-up training strategies.

• We conduct extensive experimentation on vertex classification datasets to demonstrate the effective-
ness of LocalFormer in mitigating over-globalising compared to state-of-the-art baselines.

2 Related Work

Graph Neural Networks (GNNs) Wu et al. (2022a) are designed to compute vertex representations by
recursively aggregating and combining information from neighbouring vertices through a message-passing
framework Gilmer et al. (2017). Prominent examples of GNNs include Graph Convolutional Network (GCN)
Kipf and Welling (2017), Graph Attention Networks (GAT) Veličković et al. (2018), Graph Sample and
Aggregate (GraphSAGE) Hamilton et al. (2017), and Graph Isomorphism Network (GIN)Xu et al. (2019).
The issues of over-smoothing Li et al. (2018) and over-squashing Alon and Yahav (2021) hinder GNNs from
effectively stacking multiple layers, thereby limiting their ability to capture information from distant vertices.
Furthermore, the initial designs of GNNs were based on the homophily assumption Zhu et al. (2020), which
posits that connected vertices belong to the same type. Although many GNNs have been designed to handle
heterophilic graphs including the most recent methods Wang et al. (2024a); Liang et al. (2024); Wang et al.
(2024b); Yu et al. (2024), they continue to encounter challenges such as over-smoothing Park et al. (2024),
restricting their potential.

Transformers Vaswani et al. (2017) utilise global attention mechanisms, effectively constructing fully con-
nected computation graphs with adjustable and learnable edge weights. Extensive research Kreuzer et al.
(2021); Ying et al. (2021); Rampasek et al. (2022a) has achieved remarkable success in graph-level tasks, pri-
marily due to their global awareness capability, which is crucial for these tasks. Building on the achievements
in graph-level tasks, researchers are exploring how to integrate global attention mechanisms into vertex-level
tasks especially on large-scale datasets Wu et al. (2023a; 2022b); Kong et al. (2023); Liu et al. (2023); Chen
et al. (2022); Wu et al. (2021). Despite the potential benefits, over-globalising in transformers on graphs
can lead to the loss of important local details. Effective strategies are needed to maintain a balance be-
tween global and local information Xing et al. (2024). This research precisely focuses on exploring effective
approaches, striving to achieve an optimal balance between global and local information. While existing
works [1,2,3] demonstrate that proper positional encoding can ensure expressivity and capture specific graph
structures, they primarily focus on architectural modifications rather than the training process itself.
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Positioning the Contributions of Our Paper. While existing transformers, surveyed extensively Müller
et al. (2024); Shehzad et al. (2024), demonstrate that proper positional encoding can ensure expressivity and
capture specific graph structures, they primarily focus on architectural modifications rather than the training
process itself. Our paper introduces CollaborativeLocalFormer (CLF) and WarmLocalFormer (WLF), which
systematically mitigate the over-globalising issue in Graph Transformers—an aspect that prior studies have
overlooked. Fundamentally, all Graph Transformer architectures inherently suffer from the over-globalising
issue due to the nature of the global attention mechanism, which distributes focus across all nodes rather
than emphasizing essential local structures Xing et al. (2024). This phenomenon persists regardless of
architectural modifications, as global attention mechanisms tend to dilute important local relationships,
leading to suboptimal learning. Our primary objective in this paper is to explicitly mitigate this issue
through carefully designed training strategies rather than architectural alterations. The superior performance
observed in our experimental results is a direct consequence of effectively alleviating this issue, ensuring a
more balanced integration of local and global information in Graph Transformers.

3 Problem: Over-Globalising of Transformers in Graphs

3.1 Notations

We are given an input graph denoted as G = (V, E), where the set of vertices V contains n nodes and the set of
edges E contains m edges. The edges of the graph are encoded by an adjacency matrix A = [Auv] ∈ {0, 1}n×n,
where Auv = 1 if there exists an edge from vertex u to v, and 0 otherwise. We use dv to denote the degree
of each vertex v ∈ V, so dv =

∑
u∈V Avu. Often independent of the structural information in the edges of E ,

we are also given input vertex features encoded in the matrix X = [xv] ∈ Rn×d, where xv is a d dimensional
feature vector of vertex u.

Let the number of output features for a general task be c. In the vertex classification task, vertices are
labelled from a label set denoted as Y. Vertex labels are represented with a label matrix Y = [yu] ∈ Rn×c,
where yv is the one-hot label of vertex v. Let the c classes or labels be 1, · · · , c. We denote matrices with
bold uppercase letters and vectors with bold lowercase letters.

Transformers on graphs allow each vertex in a graph to attend to all other vertices through their global
self-attention mechanism as follows:

Attn(H) = Softmax
(

QKT

√
h

)
V,

Q = HWQ, K = HWK , V = HWV ,

(1)

where H ∈ Rn×h denotes the hidden representation matrix and h is the hidden representation dimension.
WQ, WK , WV ∈ Rh×h are trainable query, key, and value weight matrices of linear projection layers. The
attention score matrix is Â = Softmax

(
QKT

√
h

)
∈ [0, 1]n×n, containing the attention scores of all vertex

pairs. Let αuv be the element of Â representing the attention score between vertex u and v. Transformers
on graphs update vertex representations globally by multiplying the attention score matrix Â with the vertex
representation matrix V.

3.2 Graph Property: k-hop Homophily

While existing homophily metrics primarily capture the overall tendency of connected vertices to share
the same label, they often fail to provide insights into the varying label similarities across different hops.
In the context of over-globalising in Graph Transformers, it is crucial to identify at which hop distances
neighbours contribute the most useful information for label inference. To address this, we introduce the k-hop
homophily metric, which systematically quantifies the label consistency across different neighborhood ranges.
This allows us to visualise and analyse how attention should ideally be distributed in Graph Transformers,
ensuring that models do not excessively focus on distant vertices at the cost of local structures.
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To demonstrate the over-globalising issue of transformers on graph datasets, we consider two types of graph
datasets: heterophilic and homophilic datasets. To measure the homophily level of any type of graph
dataset, we adopt the “adjusted homophily” metric of prior work Platonov et al. (2023a;b). It is defined

as η =
ηedge−

∑c

j=1

∑
v:yv=j

d2
v/(2|E|)2

1−
∑c

j=1

∑
v:yv=j

d2
v/(2|E|)2 where ηedge is the edge homophily defined as ηedge = |{{u,v}∈E: yu=yv}|

|E| .

“Adjusted” homophily is a refined measure that captures the tendency of vertices in a graph to connect with
vertices that have the same label, while adjusting for biases such as class imbalances and differences in the
number of vertices per class Platonov et al. (2023a;b).

We extend the definition to incorporate vertices in the k-hop neighbourhood. We define dv,k as the number
of unique vertices exactly k-hops away from the vertex v in the graph G and Ek as the set of all paths
connecting two vertices of length k. We propose the k-hop homophily as follows:

ηk =
ηedge,k −

∑c
j=1

∑
v:yv=j d2

v,k/(2|Ek|)2

1 −
∑c

j=1
∑

v:yv=j d2
v,k/(2|Ek|)2 , ηedge,k = |{{u, v} ∈ Ek : yu = yv}|

|Ek|
. (2)

Notice that when k = 1, we get adjusted homophily, i.e., η1 = η and ηedge,1 = ηedge. The proposed metric
has the following unique advantages in terms of the interpretation of its value:

• When ηk > 0, it means that vertices that are k hops away are more likely to share the same label
than would be expected by chance.

• ηk = 0 indicates that there is no specific tendency for vertices at a distance of k to either be similar
or dissimilar in terms of their labels.

• When ηk < 0, it means that vertices that are k hops away exhibit heterophilous tendencies, meaning
that vertices at a distance of k are more likely to have different labels than would be expected in a
random graph.

Data-driven Analysis To clarify the nuanced interpretation of the proposed metric, we analyse sev-
eral graph datasets. We examine six datasets in this section. Please see the appendix Section A.4 for
more datasets. These include three heterophilic datasets: amazon-ratings, minesweeper, and roman-empire
Platonov et al. (2023a;b). The remaining three are homophilic datasets: amazon-photo, coauthor-cs Shchur
et al. (2018), and wikics Mernyei and Cangea (2020). It is important to note that previous research Xing
et al. (2024) has examined over-globalising with respect to homophily using values between 0 and 1 with no
specific interpretation for the value of 0.5. In contrast, our proposed k-hop homophily metric takes on values
between −1 and +1 with clear interpretations for positive, zero, and negative values.

Figure 1 shows the proposed k-hop homophily values on the datasets for varying k from 1 to 9. Firstly,
across all datasets, the k-hop homophily score shows a downward trend from k = 2 onwards, suggesting that
vertices farther away are less likely to share the same label. More important, the downward trend levels off
at zero, with ηk < 0 observed only once (in the roman-empire dataset at k = 1). This indicates no specific
tendency for vertices at a distance of large k to be either similar or dissimilar in terms of their labels.

Interestingly, the k-hop homophily values show a peak at k = 2 in heterophilic datasets and at k = 1 in
homophilic datasets. This suggests that in heterophilic datasets, direct neighbours are more likely to have
different labels (heterophily), but second neighbours are more likely to have similar labels (homophily). In
homophilic graphs, label similarity is strongest locally. Direct neighbours are highly likely to share the same
label, but as we move farther, label similarity drops off.

The proposed k-hop homophily metric effectively captures the main differences between homophilic and
heterophilic graph datasets in this paper, offering a nuanced understanding of label dynamics. Specifically,
in homophilic graphs, the metric exhibits a consistent downward trend from the first hop, reflecting the
diminishing influence of localized label similarity as neighborhoods expand. In contrast, the three heterophilic
graphs considered demonstrate an initial upward trend, followed by a downward trajectory as demonstrated
in Part A of Figure 1.
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A. k-hop homophily across hop sizes k.
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B. Attn-k Distribution in NodeFormer vs. k.

Figure 1: (Best seen in colour) Empirical observations to demonstrate the over-globalising issue in het-
erophilic and homophilic graphs. The figures show k-hop homophily scores (A) and Attn-k (B) of Node-
Former Wu et al. (2022b) for heterophilic (top) and homophilic (bottom) datasets across varying hop sizes
k. The plots highlight how homophily decreases with hop sizes, while attention is overly allocated to distant
vertices, demonstrating the over-globalising issue. Please see Section 3.2 for details.

3.3 Over-Globalising of Transformers on Graphs

In this section, we describe the issue of over-globalising by examining the distribution of attention scores αuv

in the matrix Â of a well-trained state-of-the-art Transformer on graphs Wu et al. (2022b). We observed
that vanilla transformers and most other well-trained transformers on graphs with a globabl self-attention
mechansism followed the same trends observed for NodeFormer Wu et al. (2022b). We adopt the average
attention score Attn-k of prior work Xing et al. (2024), defined as Attn-k = Ev∈V

∑
u∈Nv,k

αvu.

Figure 1 shows the visualisation of Attn-k distributions of the well-trained NodeFormer Wu et al. (2022b)
on the heterophilic (top right) and homophilic (bottom right) datasets. A higher Attn-k value indicates that
the model focuses more on the information from the k-th hop. We expect the trends of Attn-k to be roughly
similar to those of k-hop homophily values (shown correspondingly on the left). However, the situation is
different than expected, as the observed results do not align with our expectations.

To begin with, the Attn-k value is lowest at k = 1 across all datasets, indicating that there is minimal
attention given to the one-hop neighbouring vertices. The observation that Attn-k is nearly zero in homophilic
datasets, rises sharply to a peak at k = 2, and then shows a slight decline suggests a tendency towards
over-globalising when compared to the related k-hop homophily values. More importantly, on heterophilic
datasets, the variation is much more erratic with values of k = 5 (minesweeper), and k = 6 (amazon ratings
and roman-empire) getting very high Attn-k values, suggesting a much more severe form of over-globalising.

Why NodeFormer Was Selected. NodeFormer’s design Wu et al. (2022b) represents a state-of-the-art
approach to attention mechanisms in graph transformers, offering scalability and efficiency, which makes it
a relevant choice for analyzing attention score distribution trends. Although trivial non-graph transformers
exhibit over-globalising, it is noteworthy—and not immediately apparent—that even state-of-the-art methods
are affected by this issue. Selecting a model that yields unsatisfactory results (please see Tables 1 and 2) on
datasets makes over-globalising obvious in a simple attention score visualization, visible to the naked eye.
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Figure 2: (Best seen in colour) Overview of Collaborative and Warm-up Training Strategies in LocalFormer.
In the CollaborativeLocalFormer (CLF) approach, the local and global modules are trained simultaneously,
mutually benefiting from each other’s learning through collaborative loss Lco. In the WarmupLocalFormer
(WLF) approach, the local module is trained independently for the initial τ epochs, followed by the integra-
tion of global information from the global module to refine vertex representations, progressively balancing
local and global insights. Please see Section 4 for details.

4 LocalFormer: Enabling Localised Training in Global Transformers

Considering the findings from the previous section, tackling the over-globalising issue necessitates a balanced
strategy that thoughtfully combines both local and global information, ensuring that distant relationships
are not given undue priority.

Two Schemes for Localised Training

The proposed LocalFormer integrates a local module fθ(A, X) (e.g., sparse attention) to address over-
globalising in transformers on graphs. Let gΘ represent the global transformer function parameterised by Θ.
Unlike the vanilla transformer, which uses only X as input, graph transformers with a global self-attention
mechanism such as NodeFormer Wu et al. (2022b) utilise both the adjacency matrix A and vertex features
X. We denote this global module as gΘ(A, X). It is crucial to note that the local module fθ, and the global
module gΘ, do not share any information at the hidden layers. Consequently, there is no parameter sharing
between θ and Θ.

The outputs of the local and global modules are integrated at the loss function level, using the collaborative
loss Lco. This integration allows both modules to independently learn complementary representations while
contributing to the overall optimisation objective.

Let the output features of f and g be Zf = [zf
v ] and Zg = [zg

v]. We investigate two training schemes to
mitigate the over-globalising of gΘ by incorporating fθ. Since f is a local module, we refer to this process
as “localised training”.

Scheme 1: Collaborative Training In this setup, two models are simultaneously trained on the same
training data to improve generalisation capabilities Song and Chai (2018). Within the context of graph
machine learning, we train the local f and the global g in a way that they can benefit from each other’s
learning process. More formally, the collaborative training setup considers two loss functions: a task-specific
loss Ltask(θ, Θ) and a collaborative loss Lco(θ, Θ) that is designed to encourage mutual supervision between
f and g. Mathematically,

Zf = fθ(A, X) ∈ Rn×c, Zg = gΘ(A, X) ∈ Rn×c,

θ∗, Θ∗ = arg min
θ,Θ

αLtask + (1 − α)Lco.
(3)
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where α is a hyperparameter used to balance the contributions of Ltask and Lco. We call this training
strategy with the local f and the global g, “CollaborativeLocalFormer” (CLF).

Intuition and Details of the Collaborative Loss Function. Firstly in Equation 3, there is a local
module fθ and a global module gΘ trained collaboritively. Intuitively, the collaborative loss Lco ensures
that the two modules communicate with each other by exchanging their expectations about unlabelled data.
By considering the confidence or certainty that one module places in its predictions, the other module can
reinforce its own learning approach. Mathematically, the loss function Lco can be broken down into two
terms as follows:

Lco(θ, Θ) = Lco,g→f (θ, Θ) + Lco,f→g(θ, Θ)

The purpose is to create two-way communication: f learns from g and g learns from f . The first term
represents a learning mechanism where the local module f is encouraged to align its predictions with those
of the global module g, particularly for unlabelled vertices. Intuitively, this means that module g acts as a
teacher, providing soft predictions for vertices where labels are unavailable. The local module f then adjusts
its outputs to be more consistent with these predictions. Mathematically, the first term is given by:

Lco,g→f (θ, Θ) = −Ezg
v,v∈VU

log(zf
v ).

Here, VU denotes the set of unlabelled vertices and we consider each vertex v ∈ VU . The subscript g → f
indicates that module g is guiding module f . The term zg

v is the soft prediction made by module g for
an unlabelled vertex v. The term log(zf

v ) is the logarithm of the prediction that module f makes for the
same vertex. The logarithmic term ensures that the loss is higher when f significantly deviates from g,
pushing f to refine its understanding in a way that incorporates the global perspective while maintaining
local structural awareness. The other term has a similar form as follows:

Lco,f→g(θ, Θ) = −Ezf
v ,v∈VU

log(zg
v).

Intuitively, this term works by having module g adjust its predictions in a way that is consistent with the
confidence provided by module f . This helps module g refine its predictions based on what module f predicts
about the data. The term Ltask in Equation 3 represents the primary objective function that ensures both
the local module fθ and the global module gΘ learn to perform the main predictive task effectively. It is
typically defined based on supervised learning criteria, such as cross-entropy loss for classification or mean
squared error for regression, guiding the models to optimise their outputs towards the ground-truth labels.
Theorem 4.1. CoBFormer Xing et al. (2024) to mitigate over-globalising is an instance of our CLF.

Proof. The specific instantiation is obtained by setting fθ to the GCN module Kipf and Welling (2017) and
gΘ to the Bi-level Global Attention (BGA) module Xing et al. (2024). In the task of vertex classification,
the set of vertices V is partitioned into labelled vertices and unlabelled vertices, so, V = VL ∪ VU . The
task-specific loss, Ltask is typically cross-entropy, Ltask(θ, Θ) =

(
Eyv,v∈VL log(zf

v ) + Eyv,v∈VL log(zg
v)

)
. The

collaborative loss function is designed to encourage mutual supervision between f and g on the unlablled set
VU , given by Lco(θ, Θ) = −

(
Ezg

v,v∈VU log(zf
v ) + Ezf

v ,v∈VU
log(zg

v)
)

.

Scheme 2: Warm-up Training This scheme is inspired from techniques that gradually increase the
learning rate, starting from a very small value Vaswani et al. (2017); Kalra and Barkeshli (2024). The
learning rate slowly reaches a desired level over several iterations or epochs during a “warm-up” phase.

Based on the strong local tendencies of k-hop homophily observed in Figure 1, we propose using only the
local module fθ for the initial warm-up period of τ epochs. Afterwards, we refine the vertex representations
from the local module fθ using gΘ in a sequential manner. Mathematically, letting t to be the training epoch
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Table 1: Averaged vertex classification results over 10 runs on heterophilic datasets — Accuracy is reported
for roman-empire and amazon-ratings, and ROC AUC is reported for minesweeper, tolokers, and ques-
tions.We highlight the first and the second best results on each dataset.

roman-empire amazon-ratings minesweeper tolokers questions
GraphGPS 82.00 ± 0.61 53.10 ± 0.42 90.63 ± 0.67 83.71 ± 0.48 71.73 ± 1.47
NAGphormer 74.34 ± 0.77 51.26 ± 0.72 84.19 ± 0.66 78.32 ± 0.95 68.17 ± 1.53
Exphormer 89.03 ± 0.37 53.51 ± 0.46 90.74 ± 0.53 83.77 ± 0.78 73.94 ± 1.06
NodeFormer 64.49 ± 0.73 43.86 ± 0.35 86.71 ± 0.88 78.10 ± 1.03 74.27 ± 1.46
DIFFormer 79.10 ± 0.32 47.84 ± 0.65 90.89 ± 0.58 83.57 ± 0.68 72.15 ± 1.31
GOAT 71.59 ± 1.25 44.61 ± 0.50 81.09 ± 1.02 83.11 ± 1.04 75.76 ± 1.66
SGFormer 88.62 ± 0.50 53.06 ± 0.29 90.30 ± 0.28 83.33 ± 0.68 73.54 ± 0.65
CobFormer-G 88.27 ± 0.37 52.79 ± 0.30 89.97 ± 0.49 83.00 ± 0.56 73.23 ± 0.59
CobFormer-T 88.56 ± 0.45 53.04 ± 0.50 90.30 ± 0.57 83.36 ± 0.52 73.48 ± 0.44
CLF (Ours) 91.36 ± 0.39 53.54 ± 0.24 96.20 ± 0.68 84.09 ± 0.40 77.23 ± 0.66
WLF (Ours) 91.71 ± 0.68 54.02 ± 0.40 96.53 ± 0.64 84.34 ± 0.67 77.52 ± 0.55

of the optimisation algorithm and the vertex classification task to be VCT,

Zf = fθ(A, X) ∈ Rn×c, Zg = gΘ(A, Zf ) ∈ Rn×c, θ∗, Θ∗ = arg min
θ,Θ

Ltask,

Ltask =
{

Ltask(θ) if t ≤ τ

Ltask(θ, Θ) if t > τ
, VCT :

{
Ltask(θ) = Eyv,v∈VL log(zf

v ) if t ≤ τ

Ltask(θ, Θ) = Eyv,v∈VL log(zg
v) if t > τ

.
(4)

We refer to this training strategy as WLF, which stands for WarmLocalFormer with a warm-up period
of τ epochs. Naturally, WLF with τ = 0 corresponds to the typical sequential model where the vertex
representations from the local module fθ are sequentially refined by gΘ to produce the output Zg.

Please see Appendix Section A.3 for an analysis of computational complexity.

5 Experiments

We thoroughly assess LocalFormer to mitigate over-globalising by comparing it with the latest graph trans-
former models on both homophilic and heterophilic graphs. It is important to note that our primary emphasis
in the paper is to mitigate over-globalising and not to achieve state-of-the-art on the datasets we evaluated. In
fact, because over-globalising is a phenomenon specific to transformers and not to neighbourhood message-
passing models, we chose not to include GNN baselines in some of our analysis (e.g., comparison of test
accuracy on datasets). Additionally, we conduct ablation studies to evaluate the effectiveness of all the com-
ponents of LocalFormer. We also analyse the attention score distribution of LocalFormer to demonstrate its
capability in mitigating over-globalising.

5.1 Performance Comparison with Existing Transformers

We choose a total of ten datasets for our evaluation. Five of them are the homophilic graphs Computer,
Photo, CS, Physics Shchur et al. (2018), and WikiCS Mernyei and Cangea (2020). The remaining five are
the heterophilic graphs roman-empire, amazon-rarings, minesweeper, tolokers, and questions Platonov et al.
(2023a;b). We utilise the public splits from prior work for these datasets. These splits are divided into
training, validation, and test sets, maintaining a 50%:25%:25% ratio. Please Appendix Section A.1 for more
details on the datasets.

Baselines. We compare our proposed methods with eight transformer baselines: GraphGPS Rampasek
et al. (2022b), NAGphormer Chen et al. (2023), Exphormer Shirzad et al. (2023), NodeFormer Wu et al.
(2022b), DIFFormer Wu et al. (2023b), GOAT Kong et al. (2023), CoBFormer Xing et al. (2024), and
SGFormer Wu et al. (2023a). Please see Section A.2 for details on the hyperparameters.
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Table 2: Averaged vertex classification accuracy (%) ± std over 10 runs on homophilic datasets. We highlight
the first and the second best results on each dataset.

Computer Photo CS Physics WikiCS
GraphGPS 91.19 ± 0.54 95.06 ± 0.13 93.93 ± 0.12 97.12 ± 0.19 78.66 ± 0.49
NAGphormer 91.22 ± 0.14 95.49 ± 0.11 95.75 ± 0.09 97.34 ± 0.03 77.16 ± 0.72
Exphormer 91.47 ± 0.17 95.35 ± 0.22 94.93 ± 0.01 96.89 ± 0.09 78.54 ± 0.49
NodeFormer 86.98 ± 0.62 93.46 ± 0.35 95.64 ± 0.22 96.45 ± 0.28 74.73 ± 0.94
DIFFormer 91.99 ± 0.76 95.10 ± 0.47 94.78 ± 0.20 96.60 ± 0.18 73.46 ± 0.56
GOAT 90.96 ± 0.90 92.96 ± 1.48 94.21 ± 0.38 96.24 ± 0.24 77.00 ± 0.77
SGFormer 91.70 ± 0.20 94.85 ± 0.45 94.57 ± 0.40 96.40 ± 0.52 73.23 ± 0.58
CoBFormer-G 91.53 ± 0.24 94.65 ± 0.22 94.35 ± 0.40 96.16 ± 0.54 73.02 ± 0.64
CoBFormer-T 91.81 ± 0.33 94.61 ± 0.22 94.39 ± 0.27 96.57 ± 0.68 73.97 ± 0.76
CLF (Ours) 92.18 ± 0.29 95.46 ± 0.20 95.53 ± 0.16 97.02 ± 0.18 78.74 ± 0.47
WLF (Ours) 92.69 ± 0.41 95.63 ± 0.14 95.98 ± 0.35 97.25 ± 0.15 79.04 ± 0.44

We report the best models across hyperparameters as in Section A.2. CLF generates two predictions: one
from the local module f and another from the global module g. We present the superior result of the two.
Please see Appendix 7 and 8 for an analysis of CLF’s two modules with different α.

Performance on Heterophilic Graphs. The empirical results on heterophilic datasets, shown in Table 1,
compare the performance of various graph transformer models on vertex classification tasks. The models
include the proposed Collaborative LocalFormer (CLF) and Warm-up LocalFormer (WLF). The evaluation
metrics are accuracy for roman-empire and amazon-ratings, and ROC AUC scores for minesweeper, tolokers,
and questions.

Both CLF and WLF consistently outperform state-of-the-art graph transformer baselines across all het-
erophilic datasets, with WLF showing the best performance overall, slightly ahead of CLF. This highlights
LocalFormer’s effectiveness in addressing the over-globalising issue in heterophilic graphs.

The superior performance of CLF and WLF is due to their ability to balance local and global information,
avoiding the problem of high attention scores being assigned to distant, often irrelevant nodes in heterophilic
graphs.

The k-hop homophily plots essentially show that vertices in the 2-hop neighbourhood are the most useful for
classification in heterophilic graphs. 2-hop neighbourhoods are still local because they retain meaningful label
structure around each vertex without requiring full global attention. Our LocalFormer methods outperform
previous methods because it dynamically selects the most relevant local information.

Performance on Homophilic Graphs. Table 2 shows empirical performance on homophilic datasets.
The experimental results demonstrate that LocalFormer effectively addresses the issue of over-globalising in
transformers on graphs. The empirical results on homophilic datasets validate the observations made earlier
regarding the strong local tendencies in homophilic graphs.

Experiments on More Non-Homophilic Datasets. We conduct experiments on more non-homophilic
datasets in Appendix Section A.5. The WebKB datasets (Texas, Cornell, and Wisconsin) exhibit fluctuating
k-hop homophily trends as shown in Figure 9, with values neither consistently decreasing nor following the
heterophilic pattern we previously observed (initial increase followed by a decline). The Wikipedia datasets
(Chameleon, Actor, and Squirrel) present intriguing k-hop homophily patterns as shown in Figure 9, with
values fluctuating close to zero across different hop sizes.

We selected the three best-performing transformer baselines (Exphormer, SGFormer, CoBFormer) on the
initial three heterophilic datasets as baselines for comparison in this new study. We found that our proposed
methods (CLF and WLF) performed competitively across all six datasets, though the performance differences
were less pronounced than in the three heterophilic datasets initially examined in the paper. Please see
Appendix Section A.5 for more details.
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5.2 Performance-Efficiency Tradeoff Analysis
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Figure 3: (Best seen in colour) Comparison of ROC-AUC
versus relative training time on the questions dataset.
Please see Section 5.2 for details.

Figure 3 evaluates the performance of several
graph transformer models by plotting test per-
formance (in terms of ROC-AUC) against rela-
tive training time on the questions dataset. The
aim is to visualise which models strike the best
balance between training efficiency and predic-
tive performance. CLF and WLF both achieve
a strong balance, with high ROC-AUC scores
and moderate relative training times compared
to other models. This positions both models as
strong candidates for tasks requiring fast yet re-
liable performance, making them ideal for practi-
cal applications where both speed and accuracy
are crucial. The visualisation clearly highlights
their efficiency and effectiveness in comparison
to other existing transformer models.

5.3 Ablation Analyses
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Figure 4: (Best seen in colour) Ablation study on the roman-empire, minesweeper (heterophilic), amazon-
photo, and wikics (homophilic) datasets. The results compare the performance of the state-of-the-art (SOTA)
baseline, Local Module alone, Global Module alone, and the WarmLocalFormer (WLF) method, showing
how integrating both local and global information achieves superior results across different graph types.
Please see Section 5.3 for details.

Ablation of Local and Global Modules Figure 4 evaluates the impact of the Local Module, Global
Module, and their combination in the WarmLocalFormer (WLF) training strategy on heterophilic (roman-
empire, minesweeper) and homophilic (amazon-photo, WikiCS) graphs. This ablation study supports the key
claim that over-globalizing in transformers can dilute critical local information. By showing the individual
contributions of both modules, it highlights the necessity of a balanced approach. The superior performance
of WLF, especially on heterophilic datasets, demonstrates how combining these modules effectively integrates
fine-grained, neighborhood-specific patterns with broader graph-wide context, reinforcing the efficacy of
LocalFormer. Please see Appendix Figure 7 and Figure 8 for a detailed analysis of the components of CLF.
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Figure 7 illustrates scenarios where both local and global modules were trained without Lco in Equation 3.
They were trained with the task-specific cross-entropy loss Ltask. The CLF model, trained with αLtask +
(1 − α)Lco, outperforms these ablated models, highlighting the critical role of Lco. Figure 8 examines how
the hyperparameter α balances Lco for unlabelled vertices and Ltask for labelled vertices. Results indicate
that α = 0.8 yields optimal performance, with α = 0.7 as a close contender.

Ablation of the Number of Warm-Up Epochs τ Figure 5 shows the performance of the WarmLocal-
Former (WLF) method across different datasets with varying warm-up epochs (τ = 0, 10, 50, 100, 200) over
a fixed 1000 epochs. The warm-up period allows the local module to learn independently before introducing
the global module. The study demonstrates that a balanced warm-up period optimises performance by
stabilising local features before integrating global information. Shorter warm-ups miss local details, while
longer ones can hinder efficient global feature integration.
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Figure 5: (Best seen in colour) Impact of varying the number of warm-up epochs on the accuracy of the
roman-empire, minesweeper, amazon-photo, and WikiCS datasets. Results compare models with no warm-
up, τ = 10, τ = 50, τ = 100, and τ = 200 warm-up epochs, illustrating the optimal balance between local
and global information at different stages of training. Please see Section 5.3.

5.4 Attention Score Distribution of LocalFormer Training Strategies

Figure 6 shows the Attn-k distribution plots for both CLF and WLF, validating the strategies employed
by these methods in addressing the over-globalising problem. The collaborative learning in CLF between
the local and global modules is evident in the attention distribution, particularly on heterophilic datasets.
CLF effectively balances between local and global attention, but it focuses more on semi-distant nodes (3-5
hops), which helps capture cross-cluster relationships crucial for heterophilic graphs. The warm-up strategy
of WLF allows the model to first prioritize local information and then gradually integrate global context.
The smoother attention distribution across all hop sizes demonstrates the strength of this approach. The
attention distributions also show how WLF mitigates the attention spikes observed in existing transformers,
offering a more consistent and balanced approach to local-global integration.

The comparison between CLF and WLF highlights their distinct yet complementary strategies in overcoming
the over-globalizing challenge in attention mechanisms. By emphasizing semi-distant nodes, CLF enhances
the model’s ability to capture nuanced relationships across clusters, which is particularly beneficial for
heterophilic graphs where nodes differ significantly. In contrast, WLF’s gradual integration of global context
ensures a smoother transition and a more balanced attention distribution, reducing the potential for attention
spikes that can cause instability in the model’s focus. These findings imply that leveraging both local and
global contexts in a balanced manner can significantly improve the model’s performance on complex graph
structures by addressing inherent biases and promoting a comprehensive understanding of the data.
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Figure 6: (Best seen in colour) Average attention distribution of CLF and WLF across different hop sizes
(1 − 9) for heterophilic datasets (amazon-ratings, minesweeper, roman-empire) and homophilic datasets
(amazon-photo, coauthor-cs, wikics). Please see Section 5.4 for details.

6 Limitations and Future Work

In conclusion, our proposed LocalFormer effectively addresses the issue of over-globalising in graph trans-
formers by introducing two training strategies: collaborative training and warm-up training. This method
enhances the selectivity of attention distributions, allowing vertices to prioritise local, relevant informa-
tion over distant, less pertinent data on both homophilic and heterophilic data. Our paper can be further
developed in several directions, particularly by addressing its current limitations.

• Addressing Structural Dynamics in Graph Data: Heterophilic and more generally non-
homophilic datasets can exhibit counter-intuitive positive homophily values as in Figures 1, 9,
and 10, which we believe result from structural factors such as localised homophilic substructures
and degree heterogeneity. Investigating these sophisticated dynamics could lead to a refined under-
standing of graph metrics. This direction warrants further exploration.

• Theoretical Understanding of Homophily Metrics: While the paper focuses on overcoming
the issue of over-globalising in graph transformers, future research could delve into refining homophily
metrics for deeper structural insights. Exploring this comprehensive theoretical analysis can offer
a broader perspective on existing measures, informed by recent studies that critically assess and
propose new homophily metrics Mironov and Prokhorenkova (2024).

• Mitigating Over-Globalising Specifically On Heterophilic Graph Datasets: Future work
will explore transformer architectures specifically tailored to heterophilic graphs, particularly focus-
ing on the most informative 2-hop homophily, observed in Figure 1.

• Scalability: As transformer models expand to handle larger homophilic Hu et al. (2020) and het-
erophilic Lim et al. (2021) graphs, scalability becomes crucial. Future work will focus on developing
scalable algorithms to mitigate over-globalising, such as sampling-based methods.

• Metrics for Over-Globalising: Another key area for future work is the development of quantita-
tive metrics to assess the over-globalising issue in transformers with global self-attention modules.

12



Under review as submission to TMLR

References
William L. Hamilton. Graph Representation Learning. Synthesis Lectures on Artificial Intelligence and

Machine Learning, 14(3):1–159, 2020.

Thomas N Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks. In
International Conference on Learning Representations (ICLR), 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph Attention Networks. In International Conference on Learning Representations (ICLR), 2018.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning On Large Graphs. In
Advances in Neural Information Processing Systems (NeurIPS) 30, pages 1024–1034. Curran Associates,
Inc., 2017.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful Are Graph Neural Networks?
In International Conference on Learning Representations (ICLR), 2019.

Lingfei Wu, Peng Cui, Jian Pei, and Liang Zhao. Graph Neural Networks: Foundations, Frontiers, and
Applications. Springer Singapore, 2022a.

Yao Ma and Jiliang Tang. Deep Learning On Graphs. Cambridge University Press, 2020.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper Insights Into Graph Convolutional Networks for Semi-
Supervised Learning. In Proceedings of the Thirty-Second Conference on Association for the Advancement
of Artificial Intelligence (AAAI), pages 3538–3545, 2018.

Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and Its Practical Implications. In
International Conference on Learning Representations (ICLR), 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention Is All You Need. In Advances in Neural Information Processing Systems
(NeurIPS), pages 5998–6008. Curran Associates, Inc., 2017.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to Graph Transformers.
Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Rethinking
Graph Transformers With Spectral Attention. In Advances in Neural Information Processing Systems
(NeurIPS) 34, pages 21618–21629. Curran Associates, Inc., 2021.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-
Yan Liu. Do Transformers Really Perform Badly For Graph Representation? In Advances in Neural
Information Processing Systems (NeurIPS) 34, pages 28877–28888. Curran Associates, Inc., 2021.

Ladislav Rampasek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe For A General, Powerful, Scalable Graph Transformer. In Advances in Neural Information
Processing Systems (NeurIPS) 35, pages 14501–14515. Curran Associates, Inc., 2022a.

Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao Bian, and Junchi
Yan. SGFormer: Simplifying and Empowering Transformers for Large-Graph Representations. In Advances
in Neural Information Processing Systems (NeurIPS), pages 64753–64773, 2023a.

Yujie Xing, Xiao Wang, Yibo Li, Hai Huang, and Chuan Shi. Less is More: On the Over-Globalizing Problem
in Graph Transformers. In Proceedings of the 41st International Conference on Machine Learning (ICML),
pages 54656–54672, 2024.

Zaixi ZHANG, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical Graph Transformer With Adaptive
Node Sampling. In Advances in Neural Information Processing Systems (NeurIPS) 35, pages 21171–21183.
Curran Associates, Inc., 2022.

13



Under review as submission to TMLR

Kezhi Kong, Jiuhai Chen, John Kirchenbauer, Renkun Ni, C. Bayan Bruss, and Tom Goldstein. GOAT:
A Global Transformer On Large-scale Graphs. In Proceedings of the 40th International Conference on
Machine Learning (ICML), pages 17375–17390, 2023.

Chuang Liu, Yibing Zhan, Xueqi Ma, Liang Ding, Dapeng Tao, Jia Wu, and Wenbin Hu. Gapformer:
Graph Transformer With Graph Pooling For Node Classification. In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence (IJCAI), pages 2196–2205, 2023.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-Aware Transformer For Graph Represen-
tation Learning. In Proceedings of the 39th International Conference on Machine Learning (ICML), pages
3469–3489, 2022.

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica. Repre-
senting Long-Range Context For Graph Neural Networks With Global Attention. In Advances in Neural
Information Processing Systems (NeurIPS) 34, pages 13266–13279. Curran Associates, Inc., 2021.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural Message
Passing For Quantum Chemistry. In Proceedings of the 34th International Conference on Machine Learning
(ICML), pages 1263–1272, 2017.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond Homophily
In Graph Neural Networks: Current Limitations And Effective Designs. In Advances in Neural Information
Processing Systems (NeurIPS) 33, pages 7793–7804. Curran Associates, Inc., 2020.

Kun Wang, Guibin Zhang, Xinnan Zhang, Junfeng Fang, Xun Wu, Guohao Li, Shirui Pan, Wei Huang, and
Yuxuan Liang. The Heterophilic Snowflake Hypothesis: Training And Empowering GNNs For Heterophilic
Graphs. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
(KDD), pages 3164–3175, 2024a.

Langzhang Liang, Sunwoo Kim, Kijung Shin, Zenglin Xu, Shirui Pan, and Yuan Qi. Sign Is Not A Remedy:
Multiset-to-Multiset Message Passing For Learning On Heterophilic Graphs. In Proceedings of the 41st
International Conference on Machine Learning (ICML), pages 29621–29643, 2024.

Junfu Wang, Yuanfang Guo, Liang Yang, and Yunhong Wang. Understanding Heterophily For Graph
Neural Networks. In Proceedings of the 41st International Conference on Machine Learning (ICML),
pages 50489–50529, 2024b.

Zhizhi Yu, Bin Feng, Dongxiao He, Zizhen Wang, Yuxiao Huang, and Zhiyong Feng. LG-GNN: Local-Global
Adaptive Graph Neural Network For Modeling Both Homophily And Heterophily. In Proceedings of the
Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI), pages 2515–2523, 2024.

Moonjeong Park, Jaeseung Heo, and Dongwoo Kim. Mitigating Oversmoothing Through Reverse Process Of
GNNs For Heterophilic Graphs. In Proceedings of the 41st International Conference on Machine Learning
(ICML), pages 39667–39681, 2024.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. NodeFormer: A Scalable Graph
Structure Learning Transformer for Node Classification. In Advances in Neural Information Processing
Systems (NeurIPS) 35, pages 27387–27401. Curran Associates, Inc., 2022b.

Ahsan Shehzad, Feng Xia, Shagufta Abid, Ciyuan Peng, Shuo Yu, Dongyu Zhang, and Karin Verspoor.
Graph Transformers: A Survey. arXiv preprint arXiv:2407.09777, 2024.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A Critical
Look At Evaluation Of GNNs Under Heterophily: Are We Really Making Progress? In International
Conference on Learning Representations (ICLR), 2023a.

Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing Graph
Datasets For Node Classification: Homophily-Heterophily Dichotomy And Beyond. In Advances in Neural
Information Processing Systems (NeurIPS), pages 523–548, 2023b.

14



Under review as submission to TMLR

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls Of Graph
Neural Network Evaluation. In Relational Representation Learning Workshop, R2L, 2018.

Péter Mernyei and Cătălina Cangea. Wiki-CS: A Wikipedia-Based Benchmark For Graph Neural Networks.
In Graph Representation Learning and Beyond workshop, 2020.

Guocong Song and Wei Chai. Collaborative Learning For Deep Neural Networks. In Advances in Neural
Information Processing Systems (NeurIPS), pages 1837–1846. Curran Associates, Inc., 2018.

Dayal Singh Kalra and Maissam Barkeshli. Why Warmup the Learning Rate? Underlying Mechanisms And
Improvements. arXiv preprint arXiv:2406.09405, 2024.

Ladislav Rampasek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe For A General, Powerful, Scalable Graph Transformer. In Advances in Neural Information
Processing Systems (NeurIPS) 35, pages 14501–14515. Curran Associates, Inc., 2022b.

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. NAGphormer: A Tokenized Graph Transformer For
Node Classification In Large Graphs. In International Conference on Learning Representations (ICLR),
2023.

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J. Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse Transformers For Graphs. In Proceedings of the 40th International Conference on
Machine Learning (ICML), pages 31613–31632, 2023.

Qitian Wu, Chenxiao Yang, Wentao Zhao, Yixuan He, David Wipf, and Junchi Yan. DIFFormer: Scalable
(Graph) Transformers Induced By Energy Constrained Diffusion. In International Conference on Learning
Representations (ICLR), 2023b.

Mikhail Mironov and Liudmila Prokhorenkova. Revisiting Graph Homophily Measures. In The Third Learn-
ing on Graphs Conference (LoG), 2024.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and
Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on Graphs. In Advances in Neural
Information Processing Systems (NeurIPS) 33, pages 22118–22133. Curran Associates, Inc., 2020.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and Ser Nam Lim.
Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods. In
Advances in Neural Information Processing Systems (NeurIPS) 34, pages 20887–20902. Curran Associates,
Inc., 2021.

Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew McCallum, Tom Mitchell, Kamal Nigam, and Seán
Slattery. Learning To Construct Knowledge Bases From The World Wide Web. Artif. Intell., pages
69–113, 2000.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-{gcn}: Geometric Graph
Convolutional Networks. In International Conference on Learning Representations (ICLR), 2020.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social Influence Analysis In Large-Scale Networks. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), pages 807–816, 2009.

Benedek Rozemberczki, Carl Allen, Rik Sarkar, and xx Thilo Gross. Multi-Scale Attributed Node Embed-
ding. Journal of Complex Networks, pages 1–22, 2021.

15



Under review as submission to TMLR

A Appendix

A.1 Dataset Details

Table 3 presents the statistics for all 10 datasets utilised in our experiments. The homophily score is
calculated using an existing metric Lim et al. (2021), where a higher score indicates greater homophily.

Train/Valid/Test splits. For the Computer, Photo, CS, and Physics datasets, we follow the standard
practice of randomly splitting the vertices into training (60%), validation (20%), and test (20%) sets Chen
et al. (2023); Shirzad et al. (2023). For the other datasets, we use the official splits provided in previous
studies Platonov et al. (2023a;b).

Table 3: Statistics of datasets used in our experiments.

Dataset Type Homophily Score Nodes Edges Classes Features
Computer Homophily 0.700 13, 752 245, 861 10 767
Photo Homophily 0.772 7, 650 119, 081 8 745
CS Homophily 0.755 18, 333 81, 894 15 6, 805
Physics Homophily 0.847 34, 493 247, 962 5 8, 415
WikiCS Homophily 0.568 11, 701 216, 123 10 300
roman-empire Heterophily 0.023 22, 662 32, 927 18 300
amazon-ratings Heterophily 0.127 24, 492 93, 050 5 300
minesweeper Heterophily 0.009 10, 000 39, 402 2 7
tolokers Heterophily 0.187 11, 758 519, 000 2 10
questions Heterophily 0.072 48, 921 153, 540 2 301

A.2 Hyperparameter Details

For all models, including our proposed model and the baseline models, we tune the hyperparameters using a
grid search approach. The hyperparameter values that yield the best performance on the validation set are
selected.

GraphGPS Rampasek et al. (2022b). We choose GAT as the MPNN layer type and Performer as the
global attention layer type. We set the number of layers to 2, the number of heads to 8, the hidden dimension
to 64, and the number of epochs to 2000. We perform hyperparameter tuning on the learning rate from
{10−4, 5 × 10−4, 10−3}, and the dropout rate from {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.

NAGphormer Chen et al. (2023). We set the hidden dimension to 512, the learning rate to 0.001, the
batch size to 2000, and the number of epochs to 500. We perform hyperparameter tuning on the number of
layers from {1, 2, 3}, the number of heads from {1, 8}, the number of hops from {3, 7, 10}, and the dropout
rate from {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.

Exphormer Shirzad et al. (2023). We choose GAT as the local model and Exphormer as the global
model. We set the number of epochs to 2000 and the number of heads to 8. We perform hyperparameter
tuning on the learning rate from {10−4, 10−3}, the number of layers from {2, 4}, the hidden dimension form
{64, 80, 96}, and the dropout rate from {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.

NodeFormer Wu et al. (2022b). We set the number of epochs to 2000. Additionally, we per-
form hyperparameter tuning on the learning rate from {10−4, 10−3, 10−2}, the number of layers from
{1, 2, 3}, the hidden dimension from {32, 64, 128}, the number of heads from {1, 4}, M from {30, 50},
K from {5, 10}, rb_order from {1, 2}, the dropout rate from {0.0, 0.3}, and the temperature τ from
{0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50}.

DIFFormer Wu et al. (2023b). We use the “simple” kernel type. We perform hyperparameter tuning
on the learning rate from {10−4, 10−3, 10−2}, the number of epochs from {500, 2000}, the number of layers
from {2, 3}, the hidden dimension form {64, 128}, the number of heads from {1, 8}, α from {0.1, 0.2, 0.3},
and the dropout rate from {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.
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Table 4: Hyperparameters of LocalFormer per dataset.

Warm-up Epochs Local-to-Global Epochs Local Layers Global Layers Dropout
Computer 200 1000 5 1 0.7
Photo 100 1000 7 2 0.7
CS 100 1500 5 2 0.3
Physics 100 1500 5 4 0.5
WikiCS 100 1000 7 2 0.5
roman-empire 100 2500 10 2 0.3
amazon-ratings 200 2500 10 1 0.3
minesweeper 100 2000 10 3 0.3
tolokers 100 800 7 2 0.5
questions 200 1500 5 3 0.2

GOAT Kong et al. (2023). We set the “conv_type” to “full”, the number of layers to 1 (fixed by GOAT),
the number of epochs to 200, the number of centroids to 4096, the hidden dimension to 256, the dropout of
feed forward layers to 0.5, and the batch size to 1024. We perform hyperparameter tuning on the learning
rate from {10−4, 10−3, 10−2}, the global dimension from {128, 256}, and the attention dropout rate from
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5}.

SGFormer Wu et al. (2023a). We perform tuning on the learning rate in {0.001, 0.005, 0.01, 0.05, 0.1},
weight decay from {10−5, 10−4, 5 × 10−4, 10−3, 10−2}, hidden size within {32, 64, 128, 256}, dropout within
{0, 0.2, 0.3, 0.5}, and the number of layers from {1, 2, 3}.

CoBFormer Xing et al. (2024). We perform hyperparameter tuning on the learning rate from the set
{5 × 10−4, 10−3, 5 × 10−3, 10−2, 5 × 10−2}, weight decay of the GCN module from {10−4, 5 × 10−4, 10−3, 5 ×
10−3, 10−2}, weight decay of the BGA module from {10−5, 5 × 10−5, 10−4, 5 × 10−4, 10−3}, number of clus-
ters within {80, 96, 112, 128, 144, 160, 192, 224, 256}, the loss balancing parameter α in {0.9, 0.8, 0.7} and the
temperature τ from {0.9, 0.7, 0.5, 0.3}.

CLF. The hyperparameters are the same as the CoBFormer model. The main difference is that the local
module fθ is a 10-layer GAT model with 8 attention heads.

WLF. The local module fθ contains GAT layers Veličković et al. (2018) with 8 attention heads. The other
hyperparameters are shown in Table 4 .

Justification of the Choices of the Modules. GAT Veličković et al. (2018) is employed as the lo-
cal module due to its reliability, while BilevelGlobalAttention (BGA) Xing et al. (2024) is an advanced
mechanism designed to extract global information.

These choices are supported by comprehensive real-world experiments and ablation studies in the paper.
In particular, Figure 4 explores the effects of training GAT and BGA individually. The results highlight
that the novel WarmLocalFormer (WLF) outperforms the use of GAT and BGA trained independently as
standalone models. In WLF, a "warm-up" phase is incorporated that focuses exclusively on GAT followed
by a sequential phase of refining GAT embeddings with BGA.

Figure 7 shows that CollaborativeLocalFormer (CLF) performs more effectively than GAT and BGA trained
independently of each other. CLF also outperforms the CoBFormer baseline [3], which combines GCN and
BGA with a collaborative loss function. Experiments on heterophilic (Table 1) and homophilic datasets
(Table 2) confirm that both WLF and CLF are more effective than CoBFormer, justifying the choice of
using GAT and BGA in LocalFormer.

A.3 Computational Complexity Analysis.

Given a graph with n vertices and m edges, suppose the hidden dimension is d ≪ n.
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Complexity of the Local Module The local attention module fθ, which is responsible for local infor-
mation aggregation, has a complexity of O(md + nd2). This breakdown can be understood as:

• O(md): This term arises from the need to process each edge in the graph, considering the hidden
dimensions. Every edge contributes d-dimensional information during aggregation. We assume that
the number of hidden layers is a constant (i.e. independent of other variables such as d, n).

• O(nd2): This term is introduced by the feed-forward transformations applied to each vertex in the
graph. We assume that the number of input dimensions and the number of output dimensions of
the feed-forward layer is at most d.

Complexity of the Global Module Without any modifications, a standard transformer’s global atten-
tion mechanism has a complexity of O(n2d), which is quadratic in the number of vertices. This scaling
can become prohibitive for large graphs, especially when n is very large. To address the scalability issues,
LocalFormer leverages the kernel trick (as used in NodeFormer Wu et al. (2022b)) to linearise the global
attention computation. This reduces the global attention complexity to O(nd2), avoiding the quadratic
term with respect to n.

• Kernel Trick: This trick approximates the softmax attention, which usually requires computing pair-
wise attention scores between all nodes, resulting in O(n2) operations. By applying kernel methods,
LocalFormer can bypass the need for pairwise comparisons, achieving a linear approximation of the
attention mechanism.

Complexity of Baselines All baseline transformers considered in this work use linear attention mecha-
nisms. Consequently, the complexity is O(nd2) and hence is not quadratic in n.

A.4 Ablation on CollaborativeLocalFormer (CLF)
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Figure 7: (Best seen in colour) Ablation study comparing the performance of state-of-the-art (SOTA) base-
line, Local Module (fθ), Global Module (gΘ), and CLF. The local and global modules are trained indepen-
dently. CLF is trained collaboratively, and we report the better-performing result.

Figure 7 illustrates the ablation study on the local and global modules in CLF. The Local Module achieves
high accuracy on homophilic datasets like amazon-photo and wikics, where local information is critical. How-
ever, on heterophilic datasets like roman-empire and minesweeper, the Global Module is more competitive,
emphasizing the importance of global context. The CLF model outperforms both individual modules across
all datasets, highlighting the advantage of combining local and global insights for better overall accuracy.
This demonstrates the model’s flexibility and robustness in handling diverse data characteristics. Moreover,
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the integration of both modules allows the CLF model to adapt dynamically to varying dataset properties,
which can be advantageous in real-world applications where dataset homophily and heterophily can fluctuate.
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Figure 8: (Best seen in colour) Impact, on test accuracy, of varying the balancing parameter α in {0.7, 0.8}
on CLF-f (i.e., local information from fθ) and CLF-g (global information from gΘ). Note that when two
models share the same α, they were trained collaboratively.

Figure 8 shows the effect of α for the performance of CLF. For heterophilic datasets like roman-empire and
minesweeper, using α = 0.8 leads to slightly better performance, suggesting that emphasising the global
module is beneficial for these datasets. For homophilic datasets like amazon-photo and wikics, both α
values yield similar results. These findings indicate that the parameter α is crucial in tuning the balance
between local and global information, helping to optimize the model for specific dataset characteristics. This
adaptability underscores the utility of CLF in various contexts, as it can be finely adjusted to leverage the
most relevant information type for improved accuracy and performance on a case-by-case basis.

A.5 Experiments on More Non-Homophilic Datasets

A.5.1 Experiments on WebKB Datasets
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Figure 9: (Best seen in colour) The k-hop ho-
mophily metric for WebKB datasets exhibits
fluctuating trends.

Texas Cornell Wisconsin
Exphormer 77.78 ± 2.45 76.06 ± 3.83 77.77 ± 2.62
SGFormer 76.15 ± 1.99 74.97 ± 4.31 78.79 ± 2.89
CoBFormer 76.92 ± 2.51 76.02 ± 4.43 77.69 ± 1.93
CLF (Ours) 77.32 ± 2.53 76.31 ± 3.84 78.01 ± 2.03
WLF (Ours) 77.86 ± 2.48 76.27 ± 3.91 78.62 ± 1.97

Table 5: Averaged vertex classification accuracy over 10
runs on WebKB datasets. We highlight the first and
second best results on each dataset.

In this section, we report experimental results on more datasets.

WebKB A dataset of web pages gathered by Carnegie Mellon University Craven et al. (2000) from the
computer science departments of various universities. We focus on three subsets: Cornell, Texas, and
Wisconsin. In these subsets, each vertex represents a web page and edges represent hyperlinks between
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them. The features of each vertex are represented using the bag-of-words model of the web pages’ content.
These web pages are manually classified into five categories: student, project, course, staff, and faculty.

Analysis of k-hop Homophily Figure 9 shows k-hop homophily values across varying k on the three
WebKB datasets. The k-hop homophily trends for the WebKB datasets (Texas, Cornell, Wisconsin) reveal a
complex structural composition, diverging from traditional homophilic and strongly heterophilic behaviours.

Unlike homophilic graphs, where label similarity steadily decreases as neighborhood size expands, these
datasets exhibit a more erratic pattern. Specifically, k-hop homophily does not show a monotonic decline
but rather fluctuates across different hop distances. This suggests that local label similarity may be preserved
within small substructures while connectivity beyond these regions introduces greater label diversity.

Compared to strongly heterophilic graphs, which typically display an initial increase in k-hop homophily
followed by a subsequent decline, the WebKB datasets do not consistently follow this pattern. The three
WebKB datasets do not exhibit strong homophily, but their label similarity dynamics suggest a mixed or
weakly heterophilic structure.

Experimental Results We closely follow the experimental setup of a prior work Pei et al. (2020) for
training-validation-test split ratios. The classification performance of our proposed methods, CLF and
WLF, is evaluated against the three best tranasformer baselines (Exphormer, SGFormer, and CoBFormer)
on the WebKB datasets (Texas, Cornell, and Wisconsin). The results, presented in Table 5, show that
our approaches consistently achieve competitive or superior accuracy across all datasets. The experimental
results indicate that WLF is the strongest-performing method across all three WebKB datasets, followed
closely by CLF. These results highlight the efficacy of our proposed approaches in handling weak label
correlations and complex structural patterns in WebKB graphs.

A.5.2 Experiments on Wikipedia Datasets
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Figure 10: (Best seen in colour) The k-hop ho-
mophily metric for Wikipedia datasets fluctu-
ates near zero.

Squirrel Chameleon Actor
Exphormer 65.08 ± 1.68 66.71 ± 1.48 36.58 ± 1.39
SGFormer 65.69 ± 1.87 66.82 ± 1.41 37.05 ± 1.54
CobFormer 64.12 ± 1.39 66.94 ± 1.96 36.52 ± 1.42
CLF (Ours) 64.18 ± 1.47 68.06 ± 1.29 36.97 ± 1.38
WLF (Ours) 65.84 ± 1.93 68.92 ± 1.38 36.92 ± 1.46

Table 6: Averaged vertex classification accuracy over 10
runs on Wikipedia datasets. We highlight the first and
the second best results on each dataset.

We also conduct experiments on the following datasets:

Actor This dataset represents an actor co-occurrence network. It is derived as the actor-only subgraph
from the film-director-actor-writer network Tang et al. (2009). Each vertex represents an actor, and an edge
between two vertices indicates that the actors co-appear on the same Wikipedia page. Vertex features are
extracted based on certain keywords from these Wikipedia pages. The actors (nodes) are classified into five
categories based on the terms found in their Wikipedia entries.

Squirrel and Chameleon These datasets are two page-to-page networks focused on specific Wikipedia
topics Rozemberczki et al. (2021). In these datasets, vertices represent individual web pages, while edges
represent mutual links between them. The features of each verttex are based on several informative nouns
found within the Wikipedia pages. The vertices are categorised into five groups based on the average monthly
traffic each page receives.
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Analysis of k-hop Homophily The k-hop homophily metric for Wikipedia datasets (squirrel, chameleon,
actor) fluctuates near zero, indicating a lack of strong homophilic or heterophilic patterns. Unlike homophilic
graphs, the metric does not show a consistent downward trend, nor does it exhibit the expected increase in
early hops characteristic of the three heterophilic graphs in Figure 1. These datasets likely contain mixed
label interactions with no dominant structural bias.

This behavior indicates that vertices in these graphs do not predominantly connect to either similar or
dissimilar labeled vertices, but rather exhibit a more mixed structure. Possible explanations for these trends
include high structural diversity, the presence of both homophilic and heterophilic subregions, or degree
heterogeneity leading to variations in neighborhood composition. The results suggest that defining these
datasets purely as heterophilic may be an oversimplification, and further analysis of their structural properties
could provide a clearer understanding of their label connectivity dynamics.

Experimental Results We closely follow the experimental setup of a prior work Pei et al. (2020) for
these datasets too. Table 6 illustrates that our methods consistently deliver competitive performance, with
WLF achieving the best results across all datasets. These findings highlight the efficacy of our proposed ap-
proaches in capturing structural properties, leveraging weak label dependencies, and improving classification
performance in non-homophilic graphs. The consistent gains over transformer-based baselines validate the
robustness and generalisability of our methods for Wikipedia datasets.
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