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ABSTRACT

In this study, we propose a prompt learning method that adapts large vision-
language models for few-shot pathology classification. Starting with the Prov-
GigaPath foundation model - pre-trained on 1.3 billion pathology image patches
- we extend it into a vision-language model by adding adaptors and aligning it
with medical text encoders via contrastive learning on 923K image-text pairs.
In contrast to previous approaches that combine prompts with frozen features
using prefix embeddings or self-attention, our multi-granular attention mechanism
evaluates interactions between learnable prompts, individual image patches, and
patch groups, capturing both fine details and broader context. We further enhance
accuracy with an unbalanced optimal transport-based visual-text distance that
mitigates pertubations from data augmentation. Experiments on lung and kidney
pathology imaging modalities show that our method outperforms state-of-the-art
competitors and improves performance across various architectures, including
CLIP, PLIP, and the Prov-GigaPath integrated PLIP.

1 INTRODUCTION

Whole slide images (WSIs) provide high-resolution views of tissue samples and are the gold standard
for cancer diagnosis. However, they can contain billions of pixels, making annotation and interpreta-
tion costly. Obtaining sufficiently large, annotated datasets is also challenging, which has spurred
the development of few-shot and weakly supervised methods-especially multiple instance learning
(MIL). Yet, MIL can struggle to capture meaningful regions in complex tissue structures.
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Visual language models (VLMs) Lu et al. (2023); Huang et al. (2023); Ikezogwo et al. (2024) address
this by integrating slide-level features and textual descriptions. Although effective, these approaches
face three issues: (i) frozen features and basic attention overlook multi-granular interactions; (ii)
reliance on architectures like CLIP Radford et al. (2021), which is not trained on pathology data; and
(iii) the typical use of cosine similarity, which can fail with multiple prompts or augmentations.

We introduce MGPath, a VLM tailored for whole-slide pathology classification. First, we extend
Prov-GigaPath—pre-trained on 1.3 billion pathology patches—into a vision-language model via
contrastive learning with the PLIP text encoder Huang et al. (2023), itself trained on 200K pathology
image-text pairs. We strengthen alignment using 923K additional image-text pairs from ARCH,
PatchGastricADC22, and Quilt-1M, training only lightweight adaptors. Next, multi-granular
prompt learning represents multi-scale patches in a spatial graph, and learnable prompts interact
with these hierarchical tokens via a specialized attention mechanism. Finally, optimal transport (OT)
robustly aligns visual embeddings with diverse text prompts, adapting to augmentations and modeling
partial alignments. Experiments on lung and kidney benchmarks confirm consistent improvements
over 14 state-of-the-art MIL and VLM methods. Notably, MGPath surpasses CONCH Lu et al. (2024)
and QUILTNET Oluchi Ikezogwo et al. (2023) by about 6% accuracy on the same dataset.

2 RELATED WORKS

Recent progress in large-scale pre-trained pathology models has split into two main categories. Vision
models (e.g., Virchow Ikezogwo et al. (2024), Hibou Nechaev et al. (2024), UNI Chen et al.
(2024), Prov-GigaPath Xu et al. (2024)) learn robust representations from massive datasets, with
Prov-GigaPath (1.3B patches) leading at high-resolution detail. Vision-language models (VLMs)
(e.g., PLIP Huang et al. (2023), CONCH Lu et al. (2024), QUILTNET Ikezogwo et al. (2024))
integrate textual context for enhanced slide interpretation. In parallel, multiple instance learning
(MIL) treats a WSI as a “bag” of patches, but pooling-based methods (mean/max) can dilute rare
disease signals. Attention-based MIL, GNNs, and Transformer-based approaches Lu et al. (2021); ?);
Ilse et al. (2018); Li et al. (2021); Shao et al. (2021); Zheng et al. (2022) have been explored to better
highlight relevant regions. Meanwhile, VLMs leverage contrastive learning to align images and text,
and some employ multi-magnification images plus multi-scale text prompts Shi et al. (2024); Han
et al. (2024). Building on these ideas, our MGPath leverages a large pre-trained pathology VLM and
introduces parameter-efficient multi-granular prompt learning to adapt to few-shot settings.

Prompt tuning is key to adapting large pre-trained models, as seen in multimodal systems like CLIP.
Instead of handcrafted templates, methods such as CoOp Zhou et al. (2022b), CoCoOp Zhou et al.
(2022a), and MaPLe Khattak et al. (2023) learn prompts for domain generalization Ge et al. (2023);
Yao et al. (2024), knowledge prototypes Zhang et al. (2022b); Li et al. (2024), or diversity Lu
et al. (2022); Shu et al. (2022). However, these focus on natural images rather than the multi-scale,
structurally complex data in WSIs. While some works Shi et al. (2024); Qu et al. (2024) apply
prompts via self-attention to frozen features, they can miss intricate tissue structures. By contrast, our
multi-granular prompt learning framework applies attention to both individual patches and spatial
groups, better aligning with WSIs’ hierarchical complexity.

3 METHOD

3.1 BRIDGING PATHOLOGY VISUAL AND TEXT ENCODERS

To leverage Prov-GigaPath’s pre-trained visual features, we implement lightweight adaptors that
map patch-level image features into the embedding space of the PLIP text encoder. These adaptors
enable joint image-text training with minimal parameter updates, since only the adaptor weights are
fine-tuned.

Given pathology image-text pairs {(Ii,Ti)| i = 1, 2.., N }, let EI(.) be the Prov-GigaPath
vision encoder for patch-level features, and ET (.) the PLIP text encoder. For each batch of size B,
the image and text embeddings are xi = EI(Ii) ∈ Rdv , ti = ET (Ti) ∈ Rdt .

We then design two trainable adaptors, AI(.) and AT (.), to project (xi, ti) into a shared dimension
Rd, optimizing the noise contrastive loss Oord et al. (2018):
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Lcon = EB

[
− log

exp (cos(AI(xi), AT (ti))/τ)∑
j exp (cos(AI(xi), AT (tj))/τ)

]
, (1)

where cos(.) is the cosine similarity, and τ denotes for temperature of the softmax function. Both
the Prov-GigaPath vision encoder and the PLIP text encoder remain frozen, while only AI(.)
and AT (.) are trained. Once Eq. equation 1 is optimized, the adaptor outputs serve as visual and text
embeddings for downstream tasks. We refer to this model as GigaPath-PLIP.

3.2 MULTI-MAGNIFICATION DESCRIPTIVE TEXT PROMPTS

Designing effective text prompts is crucial for enhancing vision-language models (VLMs) in whole-
slide image (WSI) analysis. Pathologists typically assess WSIs by first examining tissue structures at
low magnification, then zooming in to observe finer details such as nuclear shape and size. Recent
works Shi et al. (2024); Han et al. (2024) have harnessed this multi-scale approach by introducing dual-
scale descriptive text prompts, yielding considerable gains in classification performance. Building on
this idea, we further refine and extend the strategy to boost model effectiveness. The prompt template
is described in the appendix section.

At each low/high scale, rather than inserting a single learnable text prompt of length K alongside a
frozen contextual prompt from large language models (LLMs) Shi et al. (2024); Han et al. (2024),
we propose using M learnable prompts. This strategy captures different sub-regions or structural
features within each patch that might be missed by a single prompt. Specifically, we define visual
descriptive text prompts for both low- and high-resolution scales as follows:

T
(l)
i =

{(
[ω

(l)
i ]1 [ω

(l)
i ]2 ...[ω

(l)
i ]K [LLMcontext]

)
|Mi=1

}
T

(h)
i =

{(
[ω

(h)
i ](1) [ω

(h)
i ]2 ...[ω

(h)
i ]K [LLMcontext]

)
|Mi=1

}
,

(2)

where [ωβ
i ]j , j ∈ [1, ...,K], i ∈ [1, ..,M ] are KM trainable textual prompts for each resolution

β ∈ {l, h}.

3.3 GRANULARITY-AWARE VISUAL PROMPT LEARNING

3.3.1 PATCHES-BASED PROMPTING

A frozen image encoder EI(.) (or AI(EI(.)) for GigaPath-PLIP) maps each patch I into feature
vectors H = {H(l) ∈ RNl×d, H(h) ∈ RNh×d} where d is the feature dimension. To consolidate the
large set of patch features into a final slide-level representation, we introduce a set of learnable visual
prompts pv ∈ RNp×d, which progressively merge patch features in H(l). Concretely, we treat pv as
the Query and all features in H(l) as the Keys K(l)

p and Values V (l)
p in a self-attention mechanism

Vaswani (2017). We then associate pv with the patch features as:

p(l)
v,p = Normalize

(
SoftMax

(
pvK

(l)T

p√
d

)
V (l)
p

)
+ pv, (3)

3.3.2 SPATIAL PATCH GROUP-BASED PROMPTING

To quantify spatial correlations across multiple instances of I , we extract the coordinates for all its
patches. Let I(l) =

{
I
(l)
1 , I

(l)
2 , ..., I

(l)
Nl

}
denote the patches and H(l) =

{
H

(l)
1 , H

(l)
2 , ...,H

(l)
Nl

}
their

corresponding features. We construct a graph G(l) = (V (l), E(l)) to capture regional tissue structure,
where V (l) = I(l), and E(l) ∈ {0, 1}Nl×Nl . Edges in E(l) are defined by linking each path to its K−
nearest neighbors in the coordinate space. We set the node feature embedding X(l) = H(l) ∈ RNl×d,
so each vertex v

(l)
i is associated with a feature x

(l)
i = H

(l)
i .
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We design a trainable message-passing network gϵ(.) using the graph attention layer (GAT) ? to
capture the feature representation of each node and its local neighbors. The GAT layer performs
message passing as follows:

αi,j =
exp

(
σ(aT

s Θs x
(l)
i + aT

t Θt x
(l)
j )
)

∑
k∈N (i)∪{i} exp(σ(a

T
s Θs x

(l)
i + aT

t Θt x
(l)
k ))

x
(l)′

i = αi,iΘs x
(l)
i +

∑
j∈N (i)

αi,jΘt x
(l)
j ,

(4)

where x(l)′

i is aggregated features of x(l)
i with its local region after GAT layer, σ(.) is the LeakyReLU

activation function, N (i) denote the neighboring nodes of the i-th node, αi,j are the attention
coefficients and as, at,Θs,Θt are weight parameters of gϵ(.).

After performing message passing with gϵ(.), we obtain an updated graph G(l)′ , where each node
encapsulates its respective local feature region. We then aggregate all the feature nodes in G(l)′ into a
single vector H(l)

gr , which acts as another set of Keys K(l)
gr and Values V (l)

gr for region-level features.
Following the same approach as equation 3, we associate the prompt pv with these group-level
features:

pl
v,gr = Normalize

(
SoftMax

(
pvK

(l)T

gr√
d

)
V (l)
gr

)
+ pv. (5)

The final output of our multi-granular is computed as:

p(l)
v = (1− α) · p(l)

v,p + α · p(l)
v,gr, (6)

3.4 OPTIMAL TRANSPORT FOR VISUAL-TEXT ALIGNMENT

In this study, we employ optimal transport (OT) to measure the alignment between visual prompt-
guided slide features p(l)

v and p
(h)
v , and descriptive text prompts T(l) and T(h). According to our

best knowledge, we are the first to adapt OT for WSIs.

Given the visual prompt-guided slide features p(l)
v ∈ RNp×d in equation 6 and the text prompts T(l)

in equation 2, we obtain the textual embedding p
(l)
t by applying ET to T(l), i.e., p(l)

t = ET (T
(l)).

Let T(l)
c denote the input text prompts for class c,

(
p
(l)
t

)
c

be the corresponding textual embedding,

and
(
p
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v

)
c

be the visual prompt-guided slide features associated with the same class c. We apply

OT to minimize the distance between T
(l)
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(
p
(l)
v

)
c
, denoted by dOT

(
T
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p
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)
. Then, the

cost matrix C is computed as C =
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)
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. We can produce dOT
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T
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)
by using the same procedure at

high-resolution image patches. Then, the prediction probability is written as:
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k∈{l,h} dOT

(
T
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p
(k)
v
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c

)
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(
p
(k)
v

)
c

)
)
, (7)

where λk controls contribution of each-resolution. Finally, we can train the model with the cross-
entropy as:

Lclass = Cross(P,GT), (8)

with Cross(.) be the cross-entropy and GT denotes slide-level ground-truth.
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4 EXPERIMENTS

Datasets for contrastive learning. PatchGastricADC22 Tsuneki & Kanavati (2022) contains
about 262K patch-level images from H&E-stained gastric adenocarcinoma specimens, each paired
with diagnostic captions from Mita Hospital, Japan. QUILT-1M Ikezogwo et al. (2024) comprises
approximately 653K images and one million pathology image-text pairs obtained from 1,087 hours of
educational histopathology videos on YouTube. ARCH Gamper & Rajpoot (2021) provides a multiple-
instance captioning dataset featuring bag- and tile-level pathology images. For our contrastive
training, we focus on tile-level samples from these datasets, yielding roughly 923K total images.

Downstream tasks. We evaluated our method on two TCGA datasets: TCGA-NSCLC and
TCGA-RCC obtained from the Cancer Genome Atlas Data Portal The Cancer Genome Atlas (TCGA).
We follow the data splitting settings of ViLa-MIL Shi et al. (2024) for dividing TCGA-NSCLC and
TCGA-RCC into training, validation, and test sets.

4.1 RESULTS

Table 1: Comparison of methods on TCGA-NSCLC, and
TCGA-RCC datasets with few-shot settings. Results are shown
for AUC, F1, and Accuracy (ACC).
Methods # Param. TCGA-NSCLC TCGA-RCC

AUC F1 ACC AUC F1 ACC

Max-pooling 197K 53.0±6.0 45.8±8.9 53.3±3.4 67.4±4.9 46.7±11.6 54.1±4.8
Mean-pooling 197K 67.4±7.2 61.1±5.5 61.9±5.5 83.3±6.0 60.9±8.5 62.3±7.4
ABMIL Ilse et al. (2018) 461K 60.5±15.9 56.8±11.8 61.2±6.1 83.6±3.1 64.4±4.2 65.7±4.7
CLAM-SB Lu et al. (2021) 660K 66.7±13.6 59.9±13.8 64.0±7.7 90.1±2.2 75.3±7.4 77.6±7.0
CLAM-MB Lu et al. (2021) 660K 68.8±12.5 60.3±11.1 63.0±9.3 90.9±4.1 76.2±4.4 78.6±4.9
TransMIL Shao et al. (2021) 2.54M 64.2±8.5 57.5±6.4 59.7±5.4 89.4±5.6 73.0±7.8 75.3±7.2
DSMIL Li et al. (2021) 462K 67.9±8.0 61.0±7.0 61.3±7.0 87.6±4.5 71.5±6.6 72.8±6.4
GTMIL Zheng et al. (2022) N/A 66.0±15.3 61.1±12.3 63.8±9.9 81.1±13.3 71.1±15.7 76.1±12.9
DTMIL Zhang et al. (2022a) 986.7K 67.5±10.3 57.3±11.3 66.6±7.5 90.0±4.6 74.4±5.3 76.8±5.2
IBMIL Lin et al. (2023) N/A 69.2±7.4 57.4±8.3 66.9±6.5 90.5±4.1 75.1±5.2 77.2±4.2
ViLa-MIL Shi et al. (2024) 8.8M/47M 74.7±3.5 67.0±4.9 67.7±4.4 92.6±3.0 78.3±6.9 80.3±6.2
CONCH (Lu et al. (2024)) 110M 89.46±10.2 78.5±9.31 78.78±9.1 88.08±4.59 78.21±4.2 71.67±19.4
QUILT Ikezogwo et al. (2024) 63M 79.66±13.19 72.30±13.35 72.42±13.24 96.92±1.6 78.46±5.55 86.34±1.56
MGPATH (CLIP) 1.6M/39M 77.2±1.3 70.9±2.0 71.0±2.1 92.1 ± 2.8 76.5 ± 5.2 81.7 ± 2.9
MGPATH (PLIP) 592K 83.6 ± 4.5 76.41 ± 4.8 76.5 ± 4.8 94.7 ± 1.6 78.6 ± 4.9 83.6 ± 3.5
MGPATH (PLIP-G) 5.35M 93.02±2.99 84.64±4.75 84.77±4.67 98.2±0.31 88.33±3.41 91.72±1.74

Table 2: Ablation studies on
multi-granular (M-Gran), ratio
combines two attention levels
(α), and message passing net-
work types.
Configurations TCGA-NSCLC

AUC F1 ACC
MGPATH (CLIP) 76.2±2.2 69.0±3.5 69.3±2.8
- w/o M-Gran (CLIP) 74.6±2.2 67.8±2.4 67.8±2.5
MGPATH (PLIP-G) 91.7±3.6 84.2±4.6 84.4±4.5
- w/o M-Gran (PLIP-G) 90.6±4.5 82.4±5.7 82.5±5.7
MGPATH, α = 0.2 76.2±2.2 69.0±3.5 69.3±2.8
- α = 0.5 73.7±3.1 67.4±2.6 67.8±2.7
- α = 0.8 72.2±5.2 66.4±5.5 66.8±5.2

TCGA-RCC
MGPATH (CLIP) 92.1±2.8 76.5±5.2 81.7±2.9
- w/o M-Gran (CLIP) 91.6±3.5 72.3±6.4 80.2±4.4
MGPATH (PLIP-G) 98.1±0.6 85.7±1.1 89.9±2.0
- w/o M-Gran (PLIP-G) 98.1±0.6 85.0±4.0 89.3±3.0

As shown in Table 1, MGPATH, based on CLIP50, achieves top recording performances and pro-
viding significant improvements over other VLMs with similar architectures such as ViLa-MIL.
Furthermore, PLIP backbone particularly improved MGPATH. For instance, on TCGA-NSCLC using
backbone CLIP50, MGPATH achieves an acuracy of 71.0%, compared to 67.0% of ViLa-MIL.
Moreover, using the PLIP backbone provides an additional 6% improvement on TCGA-NSCLC,
demonstrating MGPATH’s adaptability and effectiveness across different backbones.

By incorporating distilled pathology features from Prov-GigaPath Xu et al. (2024)—pre-trained
on 1.3 billion pathology images—MGPATH(PLIP-G) achieves new state-of-the-art accuracies of
84.77% on TCGA-NSCLC and 91.72% on TCGA-RCC.

Our MGPATH also sets new state-of-the-art performance in zero-shot tasks. As shown in Table 4, it
achieves the highest average performance across two datasets, surpassing both CONCH and PLIP.

4.2 ABLATION STUDIES

Multi-Granular Prompt Learning. In Table 2, MGPATH with multi-granular (M-Gran) outperforms
the variant without it (rows 1–2 for CLIP and 3–4 for PLIP-G) on TCGA-NSCLC, with a similar
trend observed on TCGA-RCC. The table also indicates that a 0.2/0.8 ratio of graph-based to
prototype-guided attention yields the best performances.

OT as Alignment between Contextual Prompts. Table 3 confirms the benefits of incorporating
optimal transport (OT) into MGPath on the TCGA-NSCLC and TCGA-RCC datasets. Notably, using
OT (rows 1 and 2) boosts performance compared to cosine similarity (rows 3 and 4). Moreover, the
results indicate that the optimal number of prompt vectors can vary by dataset.
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Table 3: Contribution of OT and multiple descrip-
tive text prompts
Methods TCGA-NSCLC

AUC F1 ACC
MGPATH (OT, 4 text prompts) 76.2±2.2 69.0±3.5 69.3±2.8
MGPATH (OT, 2 text prompts) 77.2±1.3 70.9±2.0 71.0±2.1
MGPATH (Cosine, 2 text prompts) 75.8±3.7 68.3±4.5 68.4±4.5

TCGA-RCC
MGPATH (OT, 4 text prompts) 92.1±2.8 76.5±5.2 81.7±2.9
MGPATH (OT, 2 text prompts) 92.1±2.6 75.6±3.9 80.4±2.4
MGPATH (Cosine, 4 text prompts) 91.8±2.8 75.9±4.3 80.5±2.6

Table 4: Zero-shot classification performance on
TCGA-Lung, and TCGA-RCC. Metrics include
balanced accuracy (B-Acc) and weighted F1-score
(W-F1).

Zero-shot TCGA-NSCLC TCGA-RCC Average
B-Acc W-F1 B-Acc W-F1 B-Acc W-F1

QuiltNet 61.3 56.1 59.1 51.8 57.23 49.33
CONCH 80.0 79.8 72.9 69.1 72.3 70.03
PLIP 70.0 68.5 50.7 46.0 61.8 59.43

PLIP-G (Our) 72.7 72.6 81.3 81.4 74.67 74.63

4.3 DISCUSSION

In this study, we propose MGPATH, which achieves significant improvements in few-shot and
zero-shot WSI classification across multiple datasets. However, we do not explore other potential
challenges, leaving room for further investigation in future work. For instance, integrating VLMs
models with other pathology foundation models such as CONCH, or extending the approach to
segmentation tasks.

5 CONCLUSION

Whole slide images (WSIs) have become indispensable in clinical practice—particularly for cancer
diagnosis—analyzing their complex, hierarchical, high-resolution structures remains a significant
challenge for automated methods. Although recent VLM (vision-language model) research leveraging
few-shot and weakly supervised learning has achieved promising results with limited annotations,
these approaches often overlook the hierarchical relationships among the learnable prompts, individ-
ual patches, and patch groups. Furthermore, they lack the precision needed to capture fine-grained
alignments between image-text pairs. In this study, we propose MGPATH, a VLM which integrates
Prov-GigaPath with PLIP, to overcome these limitations. Our granular prompt learning ap-
proach effectively captures hierarchical tissue interactions, resulting in significant improvements in
WSIs classification. Experimental results demonstrate that our MGPATH achieves state-of-the-art
results in WSIs classification. We expect that this work will inspire future research that integrates
vision-language models with multi-granular prompt learning - enabling the capture local, global,
and spatial information in WSI complex structure - alongside optimal transport methods, ultimately
advancing few-shot learning in pathology.
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A APPENDIX

A.1 MULTI-MAGNIFICATION DESCRIPTIVE TEXT PROMPTS

To maintain robust prompt generation across varying WSI magnifications, we design shared prompts
that integrate both high- and low-scale descriptive elements as contextual embeddings. In particular,
we utilize the API of a frozen language model (GPT-4) and provide the query shown in Figure A.1.

LLM Prompt

What visually descriptive features characterize {class name} at
both low and high resolutions within the whole-slide image? Please
summarize into a single paragraph.

Figure 1: LLM template prompt.
A.2 IMPLEMENTATION DETAILS

We used the ViLa-MIL preprocessing pipeline for tissue region selection and patch cropping. For
CLIP50 and PLIP, we extracted tile-level embeddings from their frozen vision encoders—1024-
dimensional for CLIP50 and 512-dimensional for PLIP—and used Prov-GigaPath to generate
1536-dimensional embeddings. To align these embeddings with PLIP’s frozen text encoder, we
introduced two MLP-based adaptors that project both encoders into a shared feature space via
contrastive learning on the datasets described in Section 4.

We employ a Graph Attention Network (GAT) to capture local spatial relationships between WSI
patches, treating each tile-level embedding as a node connected to its left, right, top, and bottom
neighbors. We then merge the patch group-based spatial attention term pv,gr with the patch-based
attention pv,p using Equation 6. A hyper-parameter α ∈ [0, 1] regulates the balance between spatial
context and prototype-based guidance.
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