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ABSTRACT

Large language models (LLMs) are expensive to deploy. Parameter sharing offers
a possible path towards reducing their size and cost, but its effectiveness in modern
LLMs remains fairly limited. In this work, we revisit “layer tying” as form of
parameter sharing in Transformers, and introduce novel methods for converting
existing LLMs into smaller “Recursive Transformers” that share parameters across
layers, with minimal loss of performance. Here, our Recursive Transformers are
efficiently initialized from standard pretrained Transformers, but only use a single
block of unique layers that is then repeated multiple times in a loop. We further
improve performance by introducing Relaxed Recursive Transformers that add
flexibility to the layer tying constraint via depth-wise low-rank adaptation (LoRA)
modules, yet still preserve the compactness of the overall model. We show that
our recursive models (e.g., recursive Gemma 1B) outperform both similar-sized
vanilla pretrained models (such as TinyLlama 1.1B and Pythia 1B) and knowledge
distillation baselines—and can even recover most of the performance of the original
“full-size” model (e.g., Gemma 2B with no shared parameters). Finally, we propose
Continuous Depth-wise Batching, a promising new inference paradigm enabled
by the Recursive Transformer when paired with early exiting, which we show to
theoretically lead to significant (2-3×) throughput gains.

1 INTRODUCTION

Efficient deployment of large language models (LLMs) demands a balance between performance
and resources (Raposo et al., 2024; Leviathan et al., 2023; Rivière et al., 2024; Wan et al., 2024;
Zhou et al., 2024). While larger models with more parameters consistently demonstrate superior
performance, their substantial memory and computational demands are expensive. Parameter sharing
approaches (Dehghani et al., 2019; Xia et al., 2019; Lan et al., 2020; Takase & Kiyono, 2023),
wherein weights are reused across model layers, can lower these costs to a degree by reducing memory
footprint, and thereby allow for the use of fewer (or lower-grade) accelerators, or larger batch sizes for
better throughput. While parameter sharing has shown promising results in previous work (Dehghani
et al., 2019; Lan et al., 2020), its application to modern LLMs has yielded limited reported success.

In this work, we revisit parameter sharing for LLMs, and propose novel methodologies to convert
existing, unshared models into smaller, and more efficient, Recursive Transformers. These models
use a single block of unique layers that are recursively reused across multiple loops, yet still achieve
impressive performance relative to their reduced size. To mitigate the potential performance degrada-
tion associated with parameter sharing, we first initialize the shared block of layers from a subset
of the original model’s pre-trained parameters, and then finetune the resulting recursive model for a
limited number of “uptraining” steps. Importantly, we show that our initialization strategies allow us
to achieve a strong level of performance with minimal training time. This is aligned with observations
that model compression techniques such as layer skipping (Zhang et al., 2024a; Zeng et al., 2023; Fan
et al., 2020; Elhoushi et al., 2024) or pruning (Frankle & Carbin, 2019; Ramanujan et al., 2020) can
preserve surprisingly high performance—suggesting that our compact models (lower-rank networks
with repeated layer parameters) may also recover much of the performance of larger models.

As depicted in Figure 1, we further propose the Relaxed Recursive Transformer, an extension of the
Recursive Transformer in which the weight tying across repeated layer blocks is slightly relaxed
through the incorporation of multiple layer-specific, low-rank adaptation (LoRA) modules (Hu
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Figure 1: Overview of the conversion from a vanilla N-layer Transformer to a Recursive Transformer
with N/K blocks of K shared layers. The Recursive Transformer is obtained by repeating a single
block of K layers multiple times, resulting in a looped architecture. The Recursive Transformer can
then also be converted into a Relaxed Recursive Transformer by adding layer-specific LoRA modules.
This preserves many of the advantages of weight sharing, but also allows for better performance.

et al., 2022a). Despite its simplicity, this strategy offers several non-trivial advantages. First, it
allows for low-rank deltas between shared layers, while only adding minimal overhead. Second,
the rank of the LoRA matrices can be adjusted to control the degree of relaxation, which directly
influences model capacity. Furthermore, since the relaxed model has the same overall shape as
the original Transformer, we can efficiently initialize LoRA modules via truncated Singular Value
Decomposition (Hansen, 1987) on the residual matrices between the original layer weights and the
shared layer weights. Hence, the rank values serve as a pivotal hyperparameter, enabling the Relaxed
Recursive Transformer to seamlessly transition between the two extremes of the vanilla and Recursive
Transformer architectures.

While the primary focus of this paper lies in how to formulate and train Recursive Transformers,
we also highlight their potential to achieve significant throughput gains via a new batched inference
paradigm that their recursive nature enables. Prior work introduced continuous sequence-wise
batching (Yu et al., 2022; Kwon et al., 2023), which exploits the fact that the computation performed
to compute a new token is functionally the same and use the same model parameters, regardless of
the token position within the sequence. This allows new requests to be continuously scheduled when
slots within a batch become available. For example, when one response is completed, the start of
the next response to be formed can immediately take the finished response’s place in the batch. In
our Recursive Transformer, parameter sharing occurs not only across different sequences, but also
across different depths (loop iterations). This allows for an extra dimension of batching that allows
for computing different iterations of the looped layer blocks for different examples at the same time.

Our key contributions are as follows:

• We demonstrate that our framework for training Relaxed Recursive Transformers results in strong
performance when compared to non-recursive models of comparable size. For example, when we
uptrained a recursive Gemma 1B model converted from a pretrained Gemma 2B, we observed
up to a 13.5 point improvement in absolute accuracy on few-shot tasks when compared to a non-
recursive Gemma 1B model. Furthermore, we show that by incorporating knowledge distillation,
our recursive Gemma model, uptrained on 60 billion tokens, achieves performance on par with the
full-size Gemma model trained on a massive 3 trillion token corpus.

• Based on the Relaxed Recursive Transformer, we also evaluate a key use case for continuous
depth-wise batching with early-exiting (Bae et al., 2023; Schuster et al., 2022; Elbayad et al., 2020),
which opportunistically makes predictions for samples with high confidence at earlier stages. From
our simulation, the early-exit reveal a substantial throughput improvement of up to 2-3× compared
to a vanilla Transformer with the same architecture. Notably, the recursive Gemma model, which
outperforms the vanilla Pythia model, theoretically achieves a nearly 4× increase in throughput.

2 EFFECTIVE MODEL COMPRESSION WITH RECURSIVE PATTERNS

In this section, we present the main details of our method for converting a vanilla Transformer model
into a parameter-shared model that outperforms models of equivalent size. We first provide a short
overview of the Transformer architecture (§2.1). Then, we introduce the Recursive Transformer
and present effective techniques to initialize its looped layers by leveraging the weights of original
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Figure 2: Left: An example of unshared, full-size model with 6 layers. Middle: Three proposed
methodologies for initializing looped layers in a Recursive Transformer. Each layer number indicates
the source layer in the full-size model used for initialization. Right: Example of a Relaxed Recursive
Transformer initialized by SVD method. Here, looped layers are initialized using the Average method.

pretrained model (§2.2). In §2.3, we relax the parameter-sharing constraint in the model design, and
add a limited set of layer-specific parameters to further improve the model’s accuracy while keeping
compact representations. Finally, we show how, beyond reduced memory, Recursive Transformers
readily support further throughput optimizations via a novel inference paradigm (§2.4).

2.1 BASIC TRANSFORMER ARCHITECTURE

Large language models (Rivière et al., 2024; Reid et al., 2024; OpenAI, 2023; Dubey et al., 2024)
typically leverage the Transformer architecture (Vaswani et al., 2017). A Transformer consists of L
layers, where the hidden states at each time step t are computed by running through the series of layers:

hℓ
t = f(hℓ−1

t ; Φℓ), ℓ ∈ [1, L], (1)

with h0
t representing the embedding of the token yt−1 from the previous time step, and Φℓ denoting

the trainable parameters of the ℓ-th layer. Each layer has two core components: a multi-head attention
(MHA) mechanism and a feed-forward network (FFN). MHA employs multiple attention heads
to capture diverse relationships within the input sequence via linear attention weights and scaled
dot-product attention mechanisms. The FFN structure typically consists of two linear transformations,
but different models exhibits distinct structural variations. See Appendix C for further details.

2.2 RECURSIVE TRANSFORMER: LOOPED LAYER TYING

In this work, we revisit parameter sharing in the context of LLMs and propose the Recursive
Transformer architecture. Among various looping strategies (refer to Appendix D), we specifically
adopt the CYCLE strategy (Takase & Kiyono, 2023) for Recursive Transformers, wherein a single
block of unique layers is recursively reused. This inherent design aligns seamlessly with early-exiting
mechanisms, potentially offering substantial speedup. The model’s hidden states are computed as:

hℓ
t = f(hℓ−1

t ; Φ′
((ℓ−1) mod L/B)+1), ℓ ∈ [1, L], (2)

where the parameter-shared model is parameterized by Φ′, and B denotes the number of looping
blocks (we restrict B to be a factor of L). For example, Gemma 2B with 18 layers can be converted to
a recursive variant with 2 blocks by learning weights for only the first 9 layers. The forward pass will
loop twice through these 9 layers. We tie all trainable parameters, including the weights of the linear
layers in the Transformer blocks and the weights of the RMSNorm (Zhang & Sennrich, 2019).

Initialization techniques for looped layers To mitigate the potential performance drop associated
with reduced capacity in parameter-shared models, we propose several novel initialization method-
ologies to facilitate effective knowledge transfer from unshared, pretrained models to Recursive
Transformers. Figure 2 illustrates three such techniques. The Stepwise method selects intermediate
layers at specific intervals while keeping the first and last layer fixed. This is motivated by prior
work (Liu et al., 2023; Zhang et al., 2024a; Zeng et al., 2023; Fan et al., 2020) showing minimal
impact on generation quality when skipping a few layers in LLMs. The Average method initializes
the shared weights among tied layers by averaging their weight matrices, whereas the Lower method
directly uses weights from the first K layers of the unshared model. We conducted a brief uptraining
on 15 billion tokens to investigate the extent of performance recovery in these initialized models.
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2.3 RELAXED RECURSIVE TRANSFORMER: MULTI-LORA LAYERS

While full layer-tying is effective for compressing the model’s size while maintaining strong capa-
bilities, it has two noticeable limitations: (1) the set of possible model sizes is limited to scaling
the number of layers, and (2) each model layer ends up having to serve multiple roles associated
with different depths of the model. To address this, we introduce Relaxed Recursive Transformers in
which we incorporate independent adapter modules (Hu et al., 2022a; Houlsby et al., 2019) for each
layer, relaxing the strict parameter sharing. To capture the subtle variations between shared layers
efficiently, we augment Eq. 2 with multiple low-rank adaptation (LoRA) modules (Hu et al., 2022a):

hℓ
t = f(hℓ−1

t ; Φ′
((ℓ−1) mod L/B)+1,∆Φ′

ℓ), ℓ ∈ [1, L], (3)

where ∆Φ′ is the (small) set of parameters for the LoRA modules.

In this relaxed model, each looped layer is augmented with multiple LoRA modules. For example,
a recursive model with two loop iterations has a single block of shared layers, and two different
LoRA modules are attached to each layer within this block. The first and second LoRA modules
are used during the first and second loop iterations, respectively. Functionally, these LoRA modules
introduce low-rank deltas to all of the shared, linear weight matrices. More concretely, for a base
transformation h = W ′x, our modified forward pass yields h = W ′x + ∆W ′x = W ′x + BAx,
where A ∈ R(r×k) and B ∈ R(d×r) denote the weight matrices of LoRA with rank r.

LoRA initialization via truncated SVD Unlike typical LoRA finetuning setups that train only
the LoRA parameters, here we train all model parameters to let the shared parameters learn an
optimal centroid for all of the layer depths that they support. Therefore, instead of following standard
zero initialization for adaptation to the frozen base model, we propose novel initialization methods,
especially designed for Relaxed Recursive Transformers. To effectively match the performance of
the original full-size model after initializing the tied weights as described in §2.2, we aim for the sum
of the tied weights (Φ′) and LoRA weights (∆Φ′) to approximately recover the full-size model’s
weights (Φ). We exploit truncated Singular Value Decomposition (SVD) (Hansen, 1987) on residual
matrices between original weights and tied weights:

Uℓ
r,Σ

ℓ
r,V

ℓ
r = Truncated SVD(Wℓ −W′

((ℓ−1) mod L/B)+1; r), ℓ ∈ [1, L], (4)

where outputs retain the first r columns corresponding to the r largest singular values. W denotes
the weight matrices of the full-size model, and W′ denotes those of the Recursive Transformer. We
initialize the LoRA’s weights with principal components in Eq. 4: B as the product of Ur and Σr,
and A as the transpose of the right singular vectors Vr (see Figure 2). With sufficiently large ranks,
our Relaxed Recursive Transformer (Eq. 3) approximates the full-size vanilla model (Eq. 1):

Wx ≈ W′x+ (UrΣr)(V
⊤
r )x = W′x+BAx = W′x+∆W′x, (5)

Meanwhile, setting the rank to zero reduces the model to a Recursive Transformer, as the LoRA
modules contribute no additional parameters, highlighting the flexibility of this relaxation approach.

2.4 CONTINUOUS DEPTH-WISE BATCHING AND EARLY-EXITING

In real-world deployments, user requests arrive sequentially and asynchronously. Recent research
has introduced continuous sequence-wise batching (Yu et al., 2022; Kwon et al., 2023), a serving
strategy that allows new requests to immediately replace completed (terminated) sequence within a
batch. This approach exploits the fact that the computation performed for a new token is functionally
the same and utilize the same model parameters. By continuously scheduling requests in this manner,
models can operate at their maximum batch capacity, thereby enhancing serving efficiency.

The repetitive structure of Recursive Transformers allows for the same function to be applied not
just across sequences, but also across depths (loop iterations). This introduces a new dimension for
continuous batching, which we call Continuous Depth-wise Batching. This technique enables the
simultaneous computation of different iterations of the looped layer block for different samples (See
Figure 3 for an example with a single forward pass; this easily extends to multiple decode iterations
per request.) With a maximum batch size of 32, a standard Transformer must wait for all model
stages to complete before processing new requests. In contrast, our Recursive Transformer, because it
shares layer functions across all stages, can immediately schedule new incoming requests at timestep
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Figure 3: An illustrative example of a continuous depth-wise batching strategy together with
early-exiting. We assume a maximum batch size of 32, three model “stages” (e.g., layer blocks), and a
stream of batched inputs that arrive sequentially in time. In (a), all three model stages must complete
for the first (non-maximal) batch of 16 before the second batch of 32 examples that arrives next can
be started. In (b), however, half of second batch of 32 examples can share computation with the first
batch of 16 that is still finishing. Finally, (c) demonstrates a situation where some examples within
each batch can early-exit after stage 2; their vacant slots in the batch are then immediately filled.

2, maximizing batch size utilization. This strategy can yield a substantial speedup in generation and
significantly reduce the time to first token (Fu et al., 2024; Miao et al., 2023) through faster scheduling.

Throughput improvements from depth-wise batching are further amplified when combined with early-
exiting (Bae et al., 2023; Schuster et al., 2022; Elbayad et al., 2020). As depicted in Figure 3c, once
some samples exit after certain looping iterations, queued requests can then be immediately scheduled.
While Recursive Transformers leverage the speedup from early-exiting, they also inherently address
a key limitation of batched inference in early-exiting approaches: the synchronization issue when
serving large batches, as early-exited tokens must wait for others to complete processing through
the entire model. We demonstrate that Recursive Transformers, equipped with this dynamic sample
scheduling at various depths, can theoretically allow up to 2-3× speedup on our evaluated LLMs.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We evaluate our method on three popular pretrained LLMs: Gemma 2B (Team et al., 2024), TinyL-
lama 1.1B (Zhang et al., 2024b), and Pythia 1B (Biderman et al., 2023). Table 2 summarizes each
model’s architecture and pretraining recipes, and their few-shot performance is summarized in Ap-
pendix F. After converting to Recursive Transformers, we uptrained models on the SlimPajama
dataset (Soboleva et al., 2023). We used the Language Model Evaluation Harness framework (Gao
et al., 2023) to evaluate accuracy on seven few-shot tasks, and averaged them for performance
comparison. Detailed experimental setup for uptraining or evaluation can be found in Appendix G.

3.2 NON-RECURSIVE MODEL BASELINES

Given that we leveraged pretrained model weights for initialization and subsequently uptrained the
models, it becomes crucial to define clear performance targets for our parameter-shared models.

Full-size model Our ultimate goal is for the Recursive Transformer to achieve performance
comparable to the original, full-size pretrained model, without much uptraining. However, we
observed that the distribution divergence between the pretraining and uptraining datasets can hinder
achieving the desired performance. In particular, uptraining on new datasets, particularly those
of comparatively lower quality, sometimes led to performance degradation on certain benchmarks.
Table 4 summarizes the evaluation results of full-size models based on the number of uptraining
tokens. For instance, in the case of Gemma, where the pretraining dataset is unreleased but potentially
well-curated (Team et al., 2024), all few-shot performance metrics gradually decreased after uptraining
on the SlimPajama dataset. This suggests that the achievable upper bound performance with the
SlimPajama dataset might be considerably lower than the original model performance. Therefore, we
set the target performance for Gemma and Pythia models as the performance achieved by uptraining
a full-size pretrained model with an equivalent number of tokens. Since TinyLlama was already
pretrained on SlimPajama, we use the performance of the original checkpoint as reference.
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Figure 4: Recursive and Relaxed Recursive Transformers achieve comparable performance to
full-size models, and significantly outperform reduced-size models. Recursive models were initialized
using the Stepwise method, while relaxed models utilized Average and SVD methods for looped
layers and LoRA modules. We show the performance of four different rank values: 64, 128, 256,
and 512. Recursive and reduced-size models were either uptrained (recursive model) and pretrained
from scratch (reduced-size model) on 60 billion tokens using a knowledge distillation objective.

Reduced-size model To demonstrate the performance advantages of Recursive Transformers
compared to models with an equivalent number of parameters, we introduce another baseline:
reduced-size models. These models have either half or one-third the parameters of their full-sized
counterparts, matching the parameter count of our recursive models. However, these reduced models
are pretrained from scratch on the same training recipe (number of training tokens and distillation
from full-size model), but without the benefits of the pretrained weights and the looping mechanism.
This comparison serves to highlight the efficacy of our initialization techniques and the recursive
function itself in attaining strong performance, even with a constrained model size.

3.3 MAIN RESULTS

Figure 4 presents the few-shot performance of Recursive Transformers with two blocks and their
relaxed variants. Recursive Transformers, even without relaxation, demonstrate remarkably high
performance despite having only half the parameters of the full-size model. The Gemma model
achieved a 10 percentage points performance gain compared to the reduced-size model, which was
also trained on 60 billion tokens using distillation loss. Remarkably, the recursive TinyLlama model
even surpassed the vanilla model’s performance, even though the latter was pretrained on a larger
corpus of 105 billion tokens. Our initialization techniques proved highly effective in achieving this
superior result, along with the benefit of the uptraining dataset (SlimPajama) being the same as its
pretraining dataset.

The relaxed models effectively interpolate between the full-size model and the Recursive Transformer,
depending on the LoRA rank. As the model size increases with heavier LoRA modules, SVD
initialization methods allow for a more precise approximation of full-rank matrices, resulting in
improved performance. Notably, the relaxed Gemma model with a rank of 512 achieves performance
on par with the original model pretrained on 3 trillion tokens (58.4% vs. 58.6%), despite using fewer
parameters and uptraining on only 60 billion tokens. This trade-off provides flexibility in selecting
the best configuration for various deployment scenarios. We believe that with additional uptraining
and higher-quality datasets could yield better performance with even more streamlined models.

In the subsequent sections, we provide a comprehensive overview of extensive ablation studies
conducted prior to achieving this final performance. In §3.4, we delve into the analysis of various
initialization methodologies for Recursive Transformers. Insights into the relaxation model are
detailed in §3.5. Finally, we explore enhanced training strategies like knowledge distillation (§3.6).

3.4 INITIALIZATION TECHNIQUES FOR LOOPED LAYERS

Stepwise initialization serves as the best initial point for all examined architectures We present
the training loss of Gemma models initialized using three different methods in Figure 5a, and their
few-shot performance in Figure 5b. Our proposed methods significantly outperformed random initial-
ization, which simply adds recursion to a reduced-size model, suggesting that leveraging pretrained
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Figure 5: (a) Among the proposed methods, the Stepwise method obtains the lowest training loss
on the SlimPajama dataset. (b) The Stepwise method consistently demonstrate the highest average
few-shot accuracy across three architectures. (c) Recursive Transformers initialized with the Stepwise
method demonstrated significant performance gains compared to non-recursive model baselines.

weights in any manner is beneficial for performance boost. Moreover, the Stepwise methodology
consistently demonstrated best performance, aligning with insights that LLMs can preserve per-
formance even with a few layers skipped (Liu et al., 2023; Zhang et al., 2024a). Interestingly, as
summarized in Table 5, the recursive TinyLlama model, uptrained on only 15 billion tokens, yields
few-shot performance comparable to the original model pretrained on 105 billion tokens. This
suggests that with sufficient training, even a recursive architecture can match the performance of a
full-size pretrained model (Dehghani et al., 2019; Takase & Kiyono, 2023).

Recursive Gemma 1B outperforms both pretrained TinyLlama 1.1B and Pythia 1B The looped
Gemma 1B model, utilizing our proposed Stepwise method, outperformed reduced-size baselines
with equivalent parameter counts by up to 13.5 percentage points (51.7% vs. 38.2%). Furthermore,
it even outperformed the full-size TinyLlama 1.1B and Pythia 1B models (see Figure 5c). This is a
noteworthy achievement given that Pythia was pretrained on 300 billion tokens, whereas the recursive
Gemma was uptrained on only 15 billion tokens. Consequently, high-performing LLMs serve as a
promising starting point, as their recursive counterparts readily outperform other ordinary vanilla
models of similar size.

Takeaways for the Recursive Transformer

We find that converting well-pretrained models into Recursive Transformers leads to high-
performing models with minimal uptraining. Notably, initializing looped layers via the
Stepwise method yields the best results. With just 15 billion tokens of uptraining, a recursive
Gemma 1B model outperforms even the full-size pretrained TinyLlama and Pythia models.

3.5 RELAXATION OF STRICT PARAMETER SHARING VIA LORA MODULES

Average initialization method is most compatible with Relaxed Recursive Transformer Fig-
ures 6a and 6b illustrate the effect of relaxing parameter sharing via layer-wise LoRA modules. No-
tably, initializing tied layers in relaxed models with Average method yielded substantial performance
improvements, even outperforming the non-relaxed model initialized with Stepwise. Approximating
residual matrices between averaged weights and their individual weights appears readily achievable
using truncated SVD with low ranks. In contrast, we observed an intriguing phenomenon where our
models initialized with Stepwise occasionally showed performance degradation after relaxation. This
is likely because capturing the nuances between entirely distinct layer weights is challenging with an
insufficient rank, leading to a suboptimal solution. Further details are provided in Appendix J.

SVD initialization to approximate pretrained weights outperforms zero initialization LoRA
modules initialized with zero values guarantee that the model begins training from the same point as
the non-relaxed model. Conversely, SVD initialization positions the model closer to either the full-size
model (with full-rank) or the non-relaxed model (with small rank). To emphasize the effectiveness of
initializing near full-size model weights, we compared these two methods at a moderately large rank
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Figure 6: The Relaxed Recursive Transformer, with its looped layer initialized using Average method,
achieved the best performance in terms of both (a) training loss and (b) few-shot accuracy. The
models utilize two blocks, with the LoRA modules initialized using the SVD method at a rank of 512.
(c) SVD initialization method significantly enhanced performance compared to zero initialization.

of 512, as shown in Figure 6c. Our proposed SVD strategy demonstrated an impressive performance
boost of up to 6.5 points, facilitating faster convergence by updating the principal low-rank matrices
(aligned with findings in Meng et al. (2024)). For results across other architectures, refer to Figure 15.

Higher rank enhances recovery of original pretrained weights At full rank, relaxed models can
perfectly match full-size pretrained models. Consequently, as illustrated in Figure 7a, performance
generally improves with increasing rank, resulting in a clear Pareto frontier between model size and
performance. However, only Stepwise initialization showed a U-shaped performance trend: a middle-
range rank resulted in poor approximation, whereas very low ranks (akin to random initialization for
LoRA modules) yielded better performance. The overall results are summarized in Table 7.

Takeaways for the Relaxed Recursive Transformer

Adjusting the LoRA rank in the Relaxed Recursive Transformer, together with our SVD-based
initialization technique, allows for a smoother trade-off between a fully weight-tied recursive
model and a vanilla model. Furthermore, we find that initializing the shared weights in the
looped layers with the Average method leads to the best performance in this setting.

3.6 EXTENDED UPTRAINING AND KNOWLEDGE DISTILLATION

We further enhanced the performance of our low-rank models by introducing two techniques: up-
training on an extended corpus and knowledge distillation from the full-sized model. Specifically, we
increased the number of uptraining tokens from 0.5% to 2% of the total 3 trillion tokens used for
pretraining Gemma models, resulting in a total of 60 billion tokens. Additionally, we regularized
the losses using a forward Kullback-Leibler divergence (Hinton et al., 2015; Kim & Rush, 2016),
which exhibited the best performance gains among the four distillation losses. Table 9 summarizes
the results of various ablation studies conducted to investigate the impact of these two techniques.

The combined effect of these techniques is presented in Figure 7b, demonstrating an improvement of
up to 4.1 percentage points in few-shot accuracy compared to the previous 15 billion token uptraining
results. Notably, the relaxed Gemma model with a rank of 512 nearly matched the performance of
the full-size model. We also expect that further performance gains can be achieved with a much
lighter recursive model by utilizing a superior teacher model or conducting more extensive training
on high-quality data. Figure 7c illustrates the Pareto frontier achieved by the final models. All models
exhibit competitive performance compared to the full-size model. Moreover, the superior performance
of the recursive Gemma model strongly highlights the advantages of converting high-performing
LLMs to a recursive architecture. Additional details and results can be found in Appendix L.

3.7 EARLY-EXITING AND RECURSIVE TRANSFORMER

The throughput of Recursive Transformers can be amplified by an early-exiting framework. Hence,
we further train intermediate representations from fewer looping iterations to enable token prediction.
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Figure 7: (a) Increasing the LoRA rank typically leads to improved performance in relaxed Gemma
models, attributed to the use of SVD initialization. (b) Extended uptraining and knowledge distillation
yielded substantial accuracy improvements for Gemma models. Note that the full-size model is a
pretrained model that is further uptrained on 60 billion tokens. (c) Recursive and Relaxed Recursive
Transformers achieve a compelling Pareto frontier with respect to model size and performance. Recur-
sive and relaxed models used Stepwise and Average method to initialize looped layers, respectively.

Table 1: A small loss coefficient to the first loop output (intermediate output) can significantly improve
intermediate performance without compromising the final performance. Performance was evaluated
under a static-exiting scenario (Schuster et al., 2022), where all tokens exit at either first or second
loop. We further trained the previously uptrained Gemma models on 15 billion tokens (post-training).
Delta (∆) denotes the performance changes in the final outputs after early-exit training.

Uptrain Looping Early-Exit Train Few-shot Accuracy ↑
N-emb PT Ntok Block Init Ntok CE KD LD HS PQ WG ARC-e ARC-c OB Avg ∆

0.99B ✓ 15B 2 Step - - - 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 -

0.99B ✓ 15B 2 Step 15B Weighted ✗
48.9 55.5 72.7 55.3 54.9 30.1 36.0 50.5 – 1.2
49.5 54.8 72.0 53.4 54.1 29.1 35.6 49.8 -
53.0 59.1 73.9 55.4 57.4 30.6 37.8 52.5 +0.80.99B ✓ 15B 2 Step 15B Agg (0.1) ✗ 45.9 51.2 71.4 54.5 48.1 26.8 32.0 47.1 -

0.99B ✓ 15B 2 Step 15B Weighted ✓
47.7 55.1 73.2 55.6 54.5 29.1 37.2 50.4 – 1.3
48.3 54.9 72.1 55.9 54.3 28.4 35.4 49.9 -
52.9 58.9 73.7 55.7 57.5 31.1 38.2 52.6 +0.90.99B ✓ 15B 2 Step 15B Agg (0.1) ✓ 46.3 52.1 71.6 55.3 49.2 28.5 32.6 48.0 -

Aggressive coefficient strategy maintains final output performance while enabling early-exit We
conducted an ablation study on various strategies, as summarized in Table 1. Directly applying the
weighted CE loss (L =

∑B
i=1 αiLi where αi = i/

∑
i i) commonly used in prior works (Schuster

et al., 2022; Bae et al., 2023) led to an overemphasis on the training of intermediate representations. To
address this, we employ an aggressive coefficient strategy that aggressively reduces the loss coefficient
for intermediate outputs while maintaining a coefficient of 1 for the final output. Our experiments
demonstrated that an aggressive coefficient of 0.1, utilizing KD from the detached final outputs,
effectively preserves final performance while enhancing intermediate performance. Notably, the first
loop output yielded only a difference of 4.6 percentage points in accuracy compared to the final output.
This underscores the potential to maximize the benefits of early-exiting in parameter-shared LLMs.

Relaxation enhances the final loop performance at the cost of early-exit benefits We applied a
post-training strategy for early-exiting to our final models (shown in §3.3), and all experimental results
are presented in Appendix M. Consistent with previous findings, the aggressive coefficient strategy
yielded the best performance across both intermediate and final outputs. However, we find that
intermediate loop outputs in LoRA-relaxed models underperformed their non-relaxed counterparts
(recursive models). This could potentially reduce throughput gain, as early loop performance directly
influences the number of tokens eligible for early-exit. In perfectly tied looping blocks, intermediate
outputs seem to be distilled from the last, as all gradients are backpropagated to the same parameters.
Conversely, since LoRA modules allow each layer to specialize based on its depth, intermediate
representations appear to be optimized to facilitate performance of the final output, not for their own
sake. Hence, relaxation introduces a trade-off between final performance and early-exiting benefits.
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0.99B 2 - ✓ ✓ 54.0 2877 ×2.66 ×1.88
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Figure 8: Continuous depth-wise batching (CDB) with early exiting enables Recursive Transformers
to theoretically achieve significant throughput improvements. Throughput was averaged across
SlimPajama, RedPajama, and PG19, and then normalized to the throughput of the vanilla Pythia
model. The accompanying table gives detailed throughout and performance measurements for
Gemma. ∆V measures throughput relative to the vanilla Gemma model, while ∆Seq measures
throughput relative to the vanilla Gemma model with continuous sequence-wise batching (CSB).

3.8 HYPOTHETICAL GENERATION SPEEDUP VIA CONTINUOUS DEPTH-WISE BATCHING

How we theoretically approximate actual throughput As developing practical early-exiting
algorithms is beyond the scope of this work, we present hypothetical throughput improvements based
on an oracle-exiting approach (Schuster et al., 2022; Bae et al., 2023). This assumes that tokens
exit at the earliest looping block where their prediction aligns with the final loop’s prediction. We
simulated the generation of language modeling datasets as if they were generated by our models, to
obtain the exit trajectory for each token. Then, we measured the average per-token generation time
under specific constraints, such as different memory limit or context lengths, using dummy weights
and inputs. Using these measurements and the exit trajectory data, we conducted simulations to
estimate theoretical throughput. Detailed explanations and limitations are discussed in Appendix N.

Continuous depth-wise batching paired with early-exiting Figure 8 illustrates the throughput of
our proposed models and the vanilla Transformer across three architectures. We consistently achieve
higher speeds than the vanilla models by combining continuous depth-wise batching with early-
exiting, even surpassing those with continuous sequence-wise batching (Yu et al., 2022; Kwon et al.,
2023). In particular, Recursive models demonstrate up to a 2.66× speedup in generation compared to
vanilla counterparts. Additionally, the recursive Gemma model significantly outperforms the vanilla
pretrained Pythia model, with a nearly 4× improvement in throughput. Relaxed recursive models
show a clear trade-off between achievable few-shot performance and throughput, modulated by the
degree of relaxation through the LoRA ranks. This characteristic enables flexible model selection
tailored to specific deployment scenarios. Comprehensive results are presented in Tables 15 and 17.

Takeaways for Continuous Depth-wise Batching

We analyze the potential for throughput improvement in the Recursive Transformer via contin-
uous depth-wise batching, a novel inference paradigm. In theory, we find that we can achieve
up to 2-3× speedup compared to a vanilla Transformer. This even outperforms the throughput
gain achieved by existing continuous sequence-wise batching methods in vanilla models.

4 CONCLUSION

In this work, we introduced Recursive Transformers, in which we compress LLMs via parameter
sharing across recursively looped blocks of layers. Additionally, we presented a novel relaxation
strategy that allows for low-rank deltas between shared layers by integrating layer-specific LoRA
modules into the fully-tied structure. Through new initialization techniques for looped layers and
LoRA modules, we achieved significant performance improvements that closely approximate the
original pretrained model. Finally, by exploiting the recursive patterns and an early-exiting approach,
we propose a continuous depth-wise batching paradigm tailored for efficient serving systems of
Recursive Transformers. We theoretically demonstrated substantial throughput gains using an oracle-
exiting strategy. The discussion of limitation and future work is included in Appendix A.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide a comprehensive description of our model
architectures in Appendix F, and details of experimental settings can be found in Appendix G. We
utilized the open-source HuggingFace framework and followed established open-source frameworks
for evaluation, further enhancing reproducibility. We plan to release the source codes upon publication
to facilitate future research.

REFERENCES

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
generated mistakes. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=3zKtaqxLhW.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and
Sumit Sanghai. GQA: training generalized multi-query transformer models from multi-head
checkpoints. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,
December 6-10, 2023, pp. 4895–4901. Association for Computational Linguistics, 2023. doi:
10.18653/V1/2023.EMNLP-MAIN.298. URL https://doi.org/10.18653/v1/2023.
emnlp-main.298.

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting frame-
work for autoregressive language models with synchronized parallel decoding. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023, pp. 5910–5924.
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.EMNLP-MAIN.362.
URL https://doi.org/10.18653/v1/2023.emnlp-main.362.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 688–699, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/01386bd6d8e091c2ab4c7c7de644d37b-Abstract.html.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 2397–2430. PMLR, 2023. URL https://proceedings.
mlr.press/v202/biderman23a.html.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan-
Kelley. Reducing transformer key-value cache size with cross-layer attention. CoRR,
abs/2405.12981, 2024. doi: 10.48550/ARXIV.2405.12981. URL https://doi.org/10.
48550/arXiv.2405.12981.

Lequn Chen, Zihao Ye, Yongji Wu, Danyang Zhuo, Luis Ceze, and Arvind Krishnamurthy. Punica:
Multi-tenant lora serving. Proceedings of Machine Learning and Systems, 6:1–13, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

11

https://openreview.net/forum?id=3zKtaqxLhW
https://openreview.net/forum?id=3zKtaqxLhW
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.298
https://doi.org/10.18653/v1/2023.emnlp-main.362
https://proceedings.neurips.cc/paper/2019/hash/01386bd6d8e091c2ab4c7c7de644d37b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/01386bd6d8e091c2ab4c7c7de644d37b-Abstract.html
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://doi.org/10.48550/arXiv.2405.12981
https://doi.org/10.48550/arXiv.2405.12981


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Together Computer. Redpajama: An open source recipe to reproduce llama training dataset, 2023.
URL https://github.com/togethercomputer/RedPajama-Data.

Raj Dabre and Atsushi Fujita. Recurrent stacking of layers for compact neural machine translation
models. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-
First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii,
USA, January 27 - February 1, 2019, pp. 6292–6299. AAAI Press, 2019. doi: 10.1609/AAAI.
V33I01.33016292. URL https://doi.org/10.1609/aaai.v33i01.33016292.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention:
Fast and memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=HyzdRiR9Y7.

Mostafa Dehghani, Yi Tay, Anurag Arnab, Lucas Beyer, and Ashish Vaswani. The efficiency
misnomer. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/
forum?id=iulEMLYh1uR.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan
Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet
Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng
Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya
Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd
of models. CoRR, abs/2407.21783, 2024. doi: 10.48550/ARXIV.2407.21783. URL https:
//doi.org/10.48550/arXiv.2407.21783.

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. In
8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
SJg7KhVKPH.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich, Basil Hosmer, Bram Wasti, Liangzhen
Lai, Anas Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed Roman, Ahmed A Aly, Beidi Chen,
and Carole-Jean Wu. Layerskip: Enabling early exit inference and self-speculative decoding. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
Thailand, August 11-16, 2024, pp. 12622–12642. Association for Computational Linguistics, 2024.
URL https://aclanthology.org/2024.acl-long.681.

12

https://github.com/togethercomputer/RedPajama-Data
https://doi.org/10.1609/aaai.v33i01.33016292
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=iulEMLYh1uR
https://openreview.net/forum?id=iulEMLYh1uR
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=SJg7KhVKPH
https://aclanthology.org/2024.acl-long.681


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with
structured dropout. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.
net/forum?id=SylO2yStDr.

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for length
generalization. arXiv preprint arXiv:2409.15647, 2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach. Learn. Res., 23:120:1–120:39, 2022. URL
https://jmlr.org/papers/v23/21-0998.html.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han, and Hao Wang. Mixture-of-loras: An
efficient multitask tuning method for large language models. In Nicoletta Calzolari, Min-Yen
Kan, Véronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue (eds.), Proceedings of
the 2024 Joint International Conference on Computational Linguistics, Language Resources and
Evaluation, LREC/COLING 2024, 20-25 May, 2024, Torino, Italy, pp. 11371–11380. ELRA and
ICCL, 2024. URL https://aclanthology.org/2024.lrec-main.994.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=rJl-b3RcF7.

Qichen Fu, Minsik Cho, Thomas Merth, Sachin Mehta, Mohammad Rastegari, and Mahyar Najibi.
Lazyllm: Dynamic token pruning for efficient long context LLM inference. CoRR, abs/2407.14057,
2024. doi: 10.48550/ARXIV.2407.14057. URL https://doi.org/10.48550/arXiv.
2407.14057.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse
training with mixture-of-experts. Proceedings of Machine Learning and Systems, 5:288–304, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Tao Ge, Si-Qing Chen, and Furu Wei. Edgeformer: A parameter-efficient transformer for on-device
seq2seq generation. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings
of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022,
Abu Dhabi, United Arab Emirates, December 7-11, 2022, pp. 10786–10798. Association for
Computational Linguistics, 2022. doi: 10.18653/V1/2022.EMNLP-MAIN.741. URL https:
//doi.org/10.18653/v1/2022.emnlp-main.741.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D. Lee, and Dimitris
Papailiopoulos. Looped transformers as programmable computers. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learning Research, pp. 11398–11442. PMLR, 2023.
URL https://proceedings.mlr.press/v202/giannou23a.html.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov, James Whittington, Jonathan Pilault, Adam
Ibrahim, and Beren Millidge. Zamba: A compact 7b SSM hybrid model. CoRR, abs/2405.16712,
2024. doi: 10.48550/ARXIV.2405.16712. URL https://doi.org/10.48550/arXiv.
2405.16712.

13

https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://jmlr.org/papers/v23/21-0998.html
https://aclanthology.org/2024.lrec-main.994
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://doi.org/10.48550/arXiv.2407.14057
https://doi.org/10.48550/arXiv.2407.14057
https://zenodo.org/records/10256836
https://doi.org/10.18653/v1/2022.emnlp-main.741
https://doi.org/10.18653/v1/2022.emnlp-main.741
https://proceedings.mlr.press/v202/giannou23a.html
https://doi.org/10.48550/arXiv.2405.16712
https://doi.org/10.48550/arXiv.2405.16712


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
ph04CRkPdC.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large
language models. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=5h0qf7IBZZ.

Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for
efficient neural networks. CoRR, abs/1506.02626, 2015. URL http://arxiv.org/abs/
1506.02626.

Per Christian Hansen. The truncated svd as a method for regularization. BIT Numerical Mathematics,
27:534–553, 1987.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
CoRR, abs/1503.02531, 2015. URL http://arxiv.org/abs/1503.02531.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin de Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for NLP.
In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pp. 2790–2799. PMLR, 2019. URL
http://proceedings.mlr.press/v97/houlsby19a.html.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Interna-
tional Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022a. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022b. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 2704–
2713. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00286. URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Jacob_Quantization_and_Training_CVPR_2018_paper.html.

Sanghoon Kim, Dahyun Kim, Chanjun Park, Wonsung Lee, Wonho Song, Yunsu Kim, Hyeonwoo
Kim, Yungi Kim, Hyeonju Lee, Jihoo Kim, Changbae Ahn, Seonghoon Yang, Sukyung Lee,
Hyunbyung Park, Gyoungjin Gim, Mikyoung Cha, Hwalsuk Lee, and Sunghun Kim. SOLAR
10.7b: Scaling large language models with simple yet effective depth up-scaling. In Yi Yang,
Aida Davani, Avi Sil, and Anoop Kumar (eds.), Proceedings of the 2024 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies: Industry Track, NAACL 2024, Mexico City, Mexico, June 16-21, 2024, pp. 23–35.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.NAACL-INDUSTRY.3.
URL https://doi.org/10.18653/v1/2024.naacl-industry.3.

Yoon Kim and Alexander M. Rush. Sequence-level knowledge distillation. In Jian Su, Xavier
Carreras, and Kevin Duh (eds.), Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November 1-4, 2016, pp. 1317–
1327. The Association for Computational Linguistics, 2016. doi: 10.18653/V1/D16-1139. URL
https://doi.org/10.18653/v1/d16-1139.

14

https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=5h0qf7IBZZ
https://openreview.net/forum?id=5h0qf7IBZZ
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1503.02531
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://doi.org/10.18653/v1/2024.naacl-industry.3
https://doi.org/10.18653/v1/d16-1139


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Jason Flinn, Margo I. Seltzer, Peter Druschel, Antoine Kaufmann,
and Jonathan Mace (eds.), Proceedings of the 29th Symposium on Operating Systems Principles,
SOSP 2023, Koblenz, Germany, October 23-26, 2023, pp. 611–626. ACM, 2023. doi: 10.1145/
3600006.3613165. URL https://doi.org/10.1145/3600006.3613165.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
ALBERT: A lite BERT for self-supervised learning of language representations. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net, 2020. URL https://openreview.net/forum?id=H1eA7AEtvS.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), International Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of Machine Learning
Research, pp. 19274–19286. PMLR, 2023. URL https://proceedings.mlr.press/
v202/leviathan23a.html.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
0cde695b83bd186c1fd456302888454c-Abstract-Conference.html.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-tuning v2: Prompt
tuning can be comparable to fine-tuning universally across scales and tasks. CoRR, abs/2110.07602,
2021. URL https://arxiv.org/abs/2110.07602.

Zechun Liu, Changsheng Zhao, Forrest N. Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and Vikas
Chandra. Mobilellm: Optimizing sub-billion parameter language models for on-device use
cases. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=
EIGbXbxcUQ.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Ré, and Beidi Chen. Deja vu: Contextual sparsity for
efficient llms at inference time. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 22137–22176. PMLR, 2023. URL https://proceedings.
mlr.press/v202/liu23am.html.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=Skq89Scxx.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Sean Michael McLeish and Long Tran-Thanh. [re] end-to-end algorithm synthesis with recurrent
networks: Logical extrapolation without overthinking. In ML Reproducibility Challenge 2022,
2022.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. CoRR, abs/2404.02948, 2024. doi: 10.48550/ARXIV.2404.
02948. URL https://doi.org/10.48550/arXiv.2404.02948.

15

https://doi.org/10.1145/3600006.3613165
https://openreview.net/forum?id=H1eA7AEtvS
https://proceedings.mlr.press/v202/leviathan23a.html
https://proceedings.mlr.press/v202/leviathan23a.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/0cde695b83bd186c1fd456302888454c-Abstract-Conference.html
https://arxiv.org/abs/2110.07602
https://openreview.net/forum?id=EIGbXbxcUQ
https://openreview.net/forum?id=EIGbXbxcUQ
https://proceedings.mlr.press/v202/liu23am.html
https://proceedings.mlr.press/v202/liu23am.html
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/arXiv.2404.02948


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Hongyi Jin, Tianqi Chen, and Zhihao
Jia. Towards efficient generative large language model serving: A survey from algorithms to
systems. CoRR, abs/2312.15234, 2023. doi: 10.48550/ARXIV.2312.15234. URL https:
//doi.org/10.48550/arXiv.2312.15234.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. In Ellen Riloff, David Chiang,
Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels, Belgium, October 31 - November 4, 2018, pp.
2381–2391. Association for Computational Linguistics, 2018. doi: 10.18653/V1/D18-1260. URL
https://doi.org/10.18653/v1/d18-1260.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, and Timothy P Lillicrap. Compressive
transformers for long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Rastegari.
What’s hidden in a randomly weighted neural network? In 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp. 11890–
11899. Computer Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.01191. URL
https://openaccess.thecvf.com/content_CVPR_2020/html/Ramanujan_
Whats_Hidden_in_a_Randomly_Weighted_Neural_Network_CVPR_2020_
paper.html.

David Raposo, Samuel Ritter, Blake A. Richards, Timothy P. Lillicrap, Peter Conway Humphreys,
and Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based
language models. CoRR, abs/2404.02258, 2024. doi: 10.48550/ARXIV.2404.02258. URL
https://doi.org/10.48550/arXiv.2404.02258.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System optimiza-
tions enable training deep learning models with over 100 billion parameters. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp.
3505–3506, 2020.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap, Jean-
Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis
Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie Millican, Ethan Dyer,
Mia Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu,
James Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy, Melvin
Johnson, Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha
Goel, Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas,
Nathan Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal,
Siamak Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren
Sezener, and et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens
of context. CoRR, abs/2403.05530, 2024. doi: 10.48550/ARXIV.2403.05530. URL https:
//doi.org/10.48550/arXiv.2403.05530.

Morgane Rivière, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju, Léonard
Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, Johan Ferret, Peter Liu, Pouya
Tafti, Abe Friesen, Michelle Casbon, Sabela Ramos, Ravin Kumar, Charline Le Lan, Sammy
Jerome, Anton Tsitsulin, Nino Vieillard, Piotr Stanczyk, Sertan Girgin, Nikola Momchev, Matt
Hoffman, Shantanu Thakoor, Jean-Bastien Grill, Behnam Neyshabur, Olivier Bachem, Alanna

16

https://doi.org/10.48550/arXiv.2312.15234
https://doi.org/10.48550/arXiv.2312.15234
https://doi.org/10.18653/v1/d18-1260
https://doi.org/10.48550/arXiv.2303.08774
https://openaccess.thecvf.com/content_CVPR_2020/html/Ramanujan_Whats_Hidden_in_a_Randomly_Weighted_Neural_Network_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Ramanujan_Whats_Hidden_in_a_Randomly_Weighted_Neural_Network_CVPR_2020_paper.html
https://openaccess.thecvf.com/content_CVPR_2020/html/Ramanujan_Whats_Hidden_in_a_Randomly_Weighted_Neural_Network_CVPR_2020_paper.html
https://doi.org/10.48550/arXiv.2404.02258
https://doi.org/10.48550/arXiv.2403.05530
https://doi.org/10.48550/arXiv.2403.05530


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Walton, Aliaksei Severyn, Alicia Parrish, Aliya Ahmad, Allen Hutchison, Alvin Abdagic, Amanda
Carl, Amy Shen, Andy Brock, Andy Coenen, Anthony Laforge, Antonia Paterson, Ben Bastian,
Bilal Piot, Bo Wu, Brandon Royal, Charlie Chen, Chintu Kumar, Chris Perry, Chris Welty,
Christopher A. Choquette-Choo, Danila Sinopalnikov, David Weinberger, Dimple Vijaykumar,
Dominika Rogozinska, Dustin Herbison, Elisa Bandy, Emma Wang, Eric Noland, Erica Moreira,
Evan Senter, Evgenii Eltyshev, Francesco Visin, Gabriel Rasskin, Gary Wei, Glenn Cameron, Gus
Martins, Hadi Hashemi, Hanna Klimczak-Plucinska, Harleen Batra, Harsh Dhand, Ivan Nardini,
Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha Chan, Jin Peng Zhou, Joana
Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van Amersfoort, Josh Gordon,
Josh Lipschultz, Josh Newlan, Ju-yeong Ji, Kareem Mohamed, Kartikeya Badola, Kat Black, Katie
Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia, Kish Greene, Lars Lowe Sjösund,
Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago, and Lilly McNealus. Gemma 2:
Improving open language models at a practical size. CoRR, abs/2408.00118, 2024. doi: 10.48550/
ARXIV.2408.00118. URL https://doi.org/10.48550/arXiv.2408.00118.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 8732–8740. AAAI Press, 2020. doi:
10.1609/AAAI.V34I05.6399. URL https://doi.org/10.1609/aaai.v34i05.6399.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay,
and Donald Metzler. Confident adaptive language modeling. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.html.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin, Micah Goldblum,
and Tom Goldstein. Can you learn an algorithm? generalizing from easy to hard problems with
recurrent networks. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang,
and Jennifer Wortman Vaughan (eds.), Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pp. 6695–6706, 2021. URL https://proceedings.neurips.cc/
paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. CoRR, abs/1911.02150,
2019. URL http://arxiv.org/abs/1911.02150.

Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020. URL https:
//arxiv.org/abs/2002.05202.

Ying Sheng, Shiyi Cao, Dacheng Li, Coleman Hooper, Nicholas Lee, Shuo Yang, Christopher Chou,
Banghua Zhu, Lianmin Zheng, Kurt Keutzer, Joseph E. Gonzalez, and Ion Stoica. S-lora: Serving
thousands of concurrent lora adapters. CoRR, abs/2311.03285, 2023. doi: 10.48550/ARXIV.2311.
03285. URL https://doi.org/10.48550/arXiv.2311.03285.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hes-
tness, and Nolan Dey. SlimPajama: A 627B token cleaned and dedu-
plicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
CoRR, abs/2405.05254, 2024. doi: 10.48550/ARXIV.2405.05254. URL https://doi.org/
10.48550/arXiv.2405.05254.

Sho Takase and Shun Kiyono. Lessons on parameter sharing across layers in transformers. In
Nafise Sadat Moosavi, Iryna Gurevych, Yufang Hou, Gyuwan Kim, Young Jin Kim, Tal Schuster,

17

https://doi.org/10.48550/arXiv.2408.00118
https://doi.org/10.1609/aaai.v34i05.6399
http://papers.nips.cc/paper_files/paper/2022/hash/6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/3501672ebc68a5524629080e3ef60aef-Abstract.html
http://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://doi.org/10.48550/arXiv.2311.03285
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://doi.org/10.48550/arXiv.2405.05254
https://doi.org/10.48550/arXiv.2405.05254


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

and Ameeta Agrawal (eds.), Proceedings of The Fourth Workshop on Simple and Efficient Natural
Language Processing, SustaiNLP 2023, Toronto, Canada (Hybrid), July 13, 2023, pp. 78–90.
Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.SUSTAINLP-1.5. URL
https://doi.org/10.18653/v1/2023.sustainlp-1.5.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Zhongwei Wan, Xin Wang, Che Liu, Samiul Alam, Yu Zheng, Jiachen Liu, Zhongnan Qu, Shen Yan,
Yi Zhu, Quanlu Zhang, Mosharaf Chowdhury, and Mi Zhang. Efficient large language models: A
survey. Trans. Mach. Learn. Res., 2024, 2024. URL https://openreview.net/forum?
id=bsCCJHbO8A.

Haowen Wang, Tao Sun, Congyun Jin, Yingbo Wang, Yibo Fan, Yunqi Xu, Yuliang Du, and Cong
Fan. Customizable combination of parameter-efficient modules for multi-task learning. In The
Twelfth International Conference on Learning Representations, 2023.

Yuqiao Wen, Zichao Li, Wenyu Du, and Lili Mou. f-divergence minimization for sequence-level
knowledge distillation. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Pro-
ceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 10817–10834, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.605. URL https://aclanthology.org/
2023.acl-long.605.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 conference on empirical methods in
natural language processing: system demonstrations, pp. 38–45, 2020.

Yingce Xia, Tianyu He, Xu Tan, Fei Tian, Di He, and Tao Qin. Tied transformers: Neu-
ral machine translation with shared encoder and decoder. In The Thirty-Third AAAI Confer-
ence on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Arti-
ficial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February
1, 2019, pp. 5466–5473. AAAI Press, 2019. doi: 10.1609/AAAI.V33I01.33015466. URL
https://doi.org/10.1609/aaai.v33i01.33015466.

Liu Yang, Kangwook Lee, Robert D. Nowak, and Dimitris Papailiopoulos. Looped transformers
are better at learning learning algorithms. In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=HHbRxoDTxE.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soojeong Kim, and Byung-Gon Chun. Orca: A
distributed serving system for transformer-based generative models. In Marcos K. Aguilera and
Hakim Weatherspoon (eds.), 16th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2022, Carlsbad, CA, USA, July 11-13, 2022, pp. 521–538. USENIX Association,
2022. URL https://www.usenix.org/conference/osdi22/presentation/yu.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Dewen Zeng, Nan Du, Tao Wang, Yuanzhong Xu, Tao Lei, Zhifeng Chen, and Claire Cui. Learning
to skip for language modeling. CoRR, abs/2311.15436, 2023. doi: 10.48550/ARXIV.2311.15436.
URL https://doi.org/10.48550/arXiv.2311.15436.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),

18

https://doi.org/10.18653/v1/2023.sustainlp-1.5
https://openreview.net/forum?id=bsCCJHbO8A
https://openreview.net/forum?id=bsCCJHbO8A
https://aclanthology.org/2023.acl-long.605
https://aclanthology.org/2023.acl-long.605
https://doi.org/10.1609/aaai.v33i01.33015466
https://openreview.net/forum?id=HHbRxoDTxE
https://www.usenix.org/conference/osdi22/presentation/yu
https://doi.org/10.48550/arXiv.2311.15436


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
12360–12371, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
1e8a19426224ca89e83cef47f1e7f53b-Abstract.html.

Jun Zhang, Jue Wang, Huan Li, Lidan Shou, Ke Chen, Gang Chen, and Sharad Mehrotra. Draft&
verify: Lossless large language model acceleration via self-speculative decoding. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pp. 11263–11282. Association for Computational Linguistics, 2024a. URL
https://aclanthology.org/2024.acl-long.607.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model, 2024b.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong, and
Yu Wang. A survey on efficient inference for large language models. CoRR, abs/2404.14294, 2024.
doi: 10.48550/ARXIV.2404.14294. URL https://doi.org/10.48550/arXiv.2404.
14294.

19

https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://aclanthology.org/2024.acl-long.607
https://doi.org/10.48550/arXiv.2404.14294
https://doi.org/10.48550/arXiv.2404.14294


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A LIMITATION AND FUTURE WORK

Efficient serving of multi-LoRA layers Relaxed models necessitate the computation of distinct
LoRA modules for each sample within a batch, similar to multi-task learning (Feng et al., 2024; Wang
et al., 2023). However, it incurs computational overhead due to challenging parallel computation.
Thus, we naively concatenate multiple LoRA weights into a single large weight. This improves
efficiency compared to sequential computation, yet still involves redundant computations. To alleviate
this, we can leverage techniques for efficient LoRA serving with optimized CUDA kernels (Sheng
et al., 2023; Chen et al., 2024). Moreover, inspired by distributed training for Mixture of Experts (Fe-
dus et al., 2022; Gale et al., 2023), we can parallelize LoRA module computations across multiple
accelerators.

Further relaxation techniques as alternatives In this work, we opted for LoRA modules (Hu
et al., 2022b) due to their efficiency in relaxation and compatibility with batched inference. Notably,
unlike Adapters (Houlsby et al., 2019) and IA3 (Liu et al., 2022), LoRA’s parallel attachment
structure facilitates efficient serving, as previously discussed. Despite the limited number of trainable
parameters in the prefix tuning approach (Liu et al., 2021), its superior compatibility with batched
inference beyond LoRA motivated its exploration. Further investigation into layer-specific bias (Ge
et al., 2022) or various adapter and prefix tuning variants would be a valuable avenue for future work.

Comparison with sparse designs Sparsity-based approaches, such as pruning (Han et al., 2015),
quantization (Jacob et al., 2018), or layer-skipping mechanisms (Raposo et al., 2024), recently also
give good model compression results. In fact, many of these techniques are complementary to our
approach: for example, we can seamlessly have a recursive, sparse architecture. In this work, we
rather choose to focus on recursive dense designs (a domain that remains relatively unexplored)
that also have very promising, practical performance traits (i.e., allowing for continuous depth-wise
batching for faster throughput). That said, while in this work we take the first step at studying Relaxed
Recursive Transformer with dense Transformer layers, we do believe that incorporating Mixture-of-
expert (Fedus et al., 2022), activation-skipping (Liu et al., 2023) and SSM components (Glorioso
et al., 2024) within the looped blocks are promising directions for future research.

Beyond hypothetical generation speedup We adopted an oracle-exiting approach, which assumes
all intermediate predictions aligned with the final predictions can be exited. However, accurate
throughput evaluation requires a confidence-based early-exiting algorithm (Schuster et al., 2022;
Bae et al., 2023), which would require an efficient confidence estimation approach to prevent
further bottlenecks. Moreover, practical early-exiting deployment necessitates addressing decoding
bottlenecks like key-value cache computation for exited tokens in remaining loops. Nevertheless,
there are potential solutions: for example, the missing KV cache computations can be addressed by
leveraging continuous depth-wise batching, allowing the KV cache for exited positions in subsequent
loops to be performed in parallel with the computations for the next sequence sample. Moreover,
we can explore key-value cache sharing strategies (Sun et al., 2024; Brandon et al., 2024) for future
work.

Scaling up Recursive Transformers Extending our work to convert larger LLMs (7B and beyond)
into Recursive Transformers represents a promising avenue for future research. We believe our
methodology will remain effective, though closely matching the original performance may necessitate
significantly higher uptraining costs. Nevertheless, the potential for compression increases due
to the larger fraction of non-embedding parameters in deeper models. For example, converting a
model like Gemma-2 27B (Rivière et al., 2024) to a recursive architecture with two blocks would
reduce memory usage by approximately 27GB (13.5B parameters * 2 bytes). While this reduction
presents an opportunity to exploit the benefits of a reduced memory footprint, it is unclear whether the
available batch size can be dramatically increased given the larger hidden dimensions. Nonetheless,
we expect that our proposed methodology will still yield significantly higher performance compared
to models with the same number of parameters and substantially enhance serving efficiency through
the continuous depth-wise batching paradigm.
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B RELATED WORK

Parameter sharing has proven to be an effective method for achieving parameter efficiency in Trans-
former models. The Universal Transformer (Dehghani et al., 2019), a recurrent self-attentive model,
demonstrated superior performance to non-recursive counterparts with significantly fewer parame-
ters. This cross-layer parameter sharing approach has subsequently been explored in various tasks,
including language understanding (Lan et al., 2020), language modeling (Bai et al., 2019; Liu et al.,
2024; Glorioso et al., 2024), and machine translation, through stacking a single layer (Dabre & Fujita,
2019), tying encoder and decoder components (Xia et al., 2019), or partially tying layers (Takase
& Kiyono, 2023). These methods often claim to achieve comparable performance with increased
computational speed.

Concurrently, there has been growing interest in exploiting recurrent architectures for algorithmic or
logical reasoning tasks. Prior research (Schwarzschild et al., 2021; McLeish & Tran-Thanh, 2022)
has shown that recurrent networks can extrapolate reasoning strategies learned on simple problems to
harder, larger problems through additional recurrences during inference. The looped Transformer
structure has also been employed to emulate basic computing blocks for program simulation (Giannou
et al., 2023), to learn iterative algorithms for data-fitting problems (Yang et al., 2024), and to achieve
length generalization in algorithmic tasks (Fan et al., 2024).

However, previous work has predominantly focused on small Transformer models (under 100M pa-
rameters), trained from scratch without leveraging pretrained model weights. Our work distinguishes
itself by investigating parameter sharing in the context of LLMs and proposing effective initialization
strategies that leverage the knowledge embedded within existing LLMs. To the best of our knowledge,
we are the first to propose a generalized framework for parameter-shared models, enabling relaxation
in weight tying constraints through layer-specific modules. Moreover, we introduce a novel serving
paradigm, specifically tailored to recurrent architectures to maximize throughput gains.

C COMPONENTS IN TRANSFORMER ARCHITECTURE

The Transformer block consists of two core components: a multi-head attention (MHA) mecha-
nism and a feed-forward network (FFN). MHA utilizes multiple attention heads to capture diverse
relationships within the input sequence. The computation within each attention head is formulated as:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V,

where Q, K, and V are linear projections of the input, parameterized by learned weight matrices
WQ

ℓ , WK
ℓ , and WV

ℓ , respectively. The outputs from each head of the multi-head attention are
concatenated and then projected back to the original hidden size using a learned weight matrix Wout

ℓ .

While the FFN structure typically consists of two linear transformations, in the Gemma model, it
deviates from this standard architecture as follows:

FFN(x) = Wdown
ℓ (GELU(xWgate

ℓ ) ∗ xWup
ℓ )

with three learned linear weight matrices and a GeGLU activation (Shazeer, 2020).
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D PARAMETER SHARING STRATEGY

Takase & Kiyono (2023) introduced three strategies for partial layer tying in Transformer models,
as depicted in Figure 9. The SEQUENE strategy is the simplest, assigning the same parameters to
consecutive layers. The CYCLE strategy repeatedly stacks a single block of unique layers to achieve
the desired depth. Meanwhile, the CYCLE (REV) strategy stacks the lower layers in reverse order for
the remaining layers. We specifically utilized the CYCLE strategy due to its superior compatibility
with early-exiting, which can amplify the throughput of Recursive Transformers through continuous
depth-wise batching.

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

(a) SEQUENCE

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

(b) CYCLE

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

(c) CYCLE (REV)

Figure 9: Three strategies for parameter sharing (Takase & Kiyono, 2023). The examples utilize
models with six layers, where identical colors represent shared weights.

E ILLUSTRATIVE EXAMPLES OF SVD INITIALIZATION IN RELAXED
RECURSIVE TRANSFORMER

We propose an SVD initialization approach for LoRA modules within a Relaxed Recursive Trans-
former, effectively steering the summation of base and LoRA weights towards the pretrained weights
of their corresponding depth. Figure 10 illustrates an overview of how the LoRA module is initialized
under three different initialization techniques (Stepwise, Average, and Lower) for looped layers. One
crucial point is that if the initialized looped layer’s weights match those of the original pretrained
model, its corresponding LoRA module undergoes standard zero initialization: random Gaussian
for matrix A and zero for B. For example, with the Stepwise method, the first loop’s LoRA module
receives standard zero initialization, while the second loop’s LoRA is initialized using our proposed
initialization.

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

Layer 6

Layer 1, 4

Layer 2, 5

Layer 3, 6

× 2

Layer 1

Layer 3

Layer 6

× 2

Layer 1

Layer 2

Layer 3

× 2

Stepwise-based Average-based Lower-based

Figure 10: Overview of the proposed SVD initialization method for the Relaxed Recursive Trans-
former. We visualize how LoRA modules are initialized under three different looping initialization
methods, assuming a full-size model with six layers and two looping blocks. A matrices are colored
according to the corresponding full-size model weights, while B matrices are colored based on the
looped layer weights. White B matrices indicate cases where the full-size model and recursive model
weights are identical, resulting in standard zero initialization.
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F OVERVIEW OF THREE PRETRAINED LLMS

We utilized three pretrained models—Gemma 2B (Team et al., 2024), TinyLlama 1.1B (Zhang et al.,
2024b), and Pythia 1B (Biderman et al., 2023)—and converted them into Recursive Transformers. De-
tailed model configurations are summarized in Table 2, and their corresponding few-shot performance
results are presented in Table 3.

Table 2: Key parameters and pretraining details of three models. The sizes of each model refer to
the number of embedding parameters (embedding matrices and classifier heads), and all other non-
embedding parameters. Gemma and TinyLlama utilize Multi-Query (Shazeer, 2019) and Grouped-
Query (Ainslie et al., 2023) attention mechanisms, which leads to a reduced number of key-value
heads. ∗ Especially, we take an early TinyLlama checkpoint to study an under-trained model.

Model Architecture Pretraining

Models N-emb Emb NL dmodel Nhead NKV dhead Vocab Dataset Ntok Lctx

Gemma 2B 1.98B 0.52B 18 2048 8 1 256 256K Unreleased 3T 8K

TinyLlama 1.1B 0.97B 0.13B 22 2048 32 4 64 32K SlimPajama + 73B∗
2KStarcoderdata 32B

Pythia 1B 0.81B 0.21B 16 2048 8 8 256 50K Pile 300B 2K

Table 3: Few-shot performance of pretrained models. Few-shot accuracy is measured on the LAM-
BADA, HellaSwag, PIQA, WinoGrande, ARC-easy, ARC-challenge, and OpenBookQA benchmarks.
We evaluated intermediate checkpoints up to the fully trained checkpoint for TinyLlama 1.1B. Among
these, we utilized the 105B intermediate checkpoint to study an under-trained model.

Few-shot Accuracy ↑
Models N-emb Dataset Ntoken LD HS PQ WG ARC-e ARC-c OB Avg

Gemma 2B 1.99B Unreleased 3T 63.13 71.38 78.13 65.04 72.26 41.89 40.20 61.72

TinyLlama 1.1B 0.97B SlimPajama +

105B 43.26 42.23 66.81 53.35 44.74 23.21 29.20 43.26

Starcoderdata

503B 48.92 49.56 69.42 55.80 48.32 26.54 31.40 47.14
1T 53.00 52.52 69.91 55.96 52.36 27.82 33.40 49.28
2T 53.33 54.63 70.67 56.83 54.67 28.07 33.40 50.23
3T 58.82 59.20 73.29 59.12 55.35 30.12 36.00 53.13

Pythia 1B 0.81B Pile 300B 57.52 49.10 70.40 52.80 51.89 26.71 33.40 48.83

This diversity offers several benefits. First, with three versions of recursive models, we can compare
their performance based on the number of trainable parameters. Notably, the comparison between
the recursive Gemma and the pretrained TinyLlama and Pythia models highlights that leveraging
well-trained model weights can lead to a superior Recursive Transformer of equivalent size, even
with substantially lower uptraining costs. Second, by utilizing models ranging from under-trained
(e.g., TinyLlama) to significantly over-trained (e.g., Gemma), we can gain insights into the uptraining
costs required for Recursive Transformers to closely match the performance of pretrained models.
Finally, the diversity in pretraining datasets allows us to observe how Recursive Transformers perform
when faced with distribution shifts in the uptraining dataset. Table 4 in Section 3.2 presents the
evaluation results obtained after uptraining each of the pretrained models. While TinyLlama readily
improves its performance due to uptraining on the same dataset, Gemma and Pythia show a decline
in few-shot performance with SlimPajama uptraining, which can be attributed to the differences in
data distribution and the lower quality of the uptraining dataset.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

G EXPERIMENTAL SETUP

Uptraining setting To convert vanilla Transformers into Recursive Transformers, we conducted
further uptraining on either 15 billion or 60 billion tokens from the SlimPajama dataset (Soboleva
et al., 2023). SlimPajama is an open-source dataset designed for training large language models,
which is created by cleaning and deduplicating the RedPajama dataset (Computer, 2023). The source
data primarily consists of web-crawled data, along with data from Github, books, Arxiv, Wikipedia,
and StackExchange. We employed the HuggingFace training framework (Wolf et al., 2020) and
enhanced memory efficiency through the Zero Redundancy Optimizer (ZeRO) (Rajbhandari et al.,
2020) from the DeepSpeed library (Rasley et al., 2020), along with mixed precision training. The
context length was set to 2048, and the batch size was approximately 2 million tokens. We used
the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 2e-4, utilizing a cosine
annealing learning rate scheduler (Loshchilov & Hutter, 2017). Additionally, we set warmup steps to
200 for 15 billion token training and 800 for 60 billion token training. Eight H100 GPUs were used
for the training.

Early-exit training setting Similar to the uptraining process, we used the SlimPajama dataset
to enable models to predict next tokens at intermediate loops. Models with two looping blocks
underwent additional training on a total of two exit points, whereas models with three blocks were
trained on three exit points. We explored various strategies, but by default, we continued training on
an additional 15 billion tokens, starting from the uptrained Recursive Transformers. We also utilized
eight H100 GPUs and maintained consistent configurations with the uptraining settings, including
batch size, context length, and learning rates.

Evaluation setting We evaluated perplexity on test sets from three language modeling datasets:
SlimPajama, RedPajama, and PG19 (Rae et al., 2019). Additionally, we used the Language Model
Evaluation Harness framework (Gao et al., 2023) to evaluate accuracy on seven few-shot tasks:
LAMBADA (Paperno et al., 2016), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), Wino-
Grande (Sakaguchi et al., 2020), ARC-easy and ARC-challenge (Clark et al., 2018), and Open-
BookQA (Mihaylov et al., 2018). We adhered to the standard number of shots specified by the
evaluation framework for each dataset. For few-shot datasets, excluding LAMBADA and Wino-
Grande, we normalized accuracy by the byte length of the target string. All evaluation performance
measurements were conducted using a single H100 GPU.

Throughput measurement settings To present the hypothetical generation speeds of our Recursive
Transformers, we prepared two key elements: per-token generation time and exit trajectory datasets.
Firstly, we measured the generation time under various model configurations using dummy weights
and inputs. We measured the time for each component, such as embedding matrices, Transformer
blocks, and the classifier head. Note that, for simplicity, throughput comparisons were based solely
on the time spent within the Transformer block components. We tested two settings of prefix and
decoding lengths (512 / 2048 and 64 / 256), calculating the per-token time by dividing the total elapsed
time by the decoding length. Using a single A100 40GiB GPU, we measured these decoding times
across different batch sizes, until an out-of-memory error occurred or under a specific memory
constraint was reached. To obtain exit trajectory data, we assumed an oracle-exiting approach,
where all tokens could exit at intermediate loops if intermediate predictions matched the final loop’s
prediction. Since our models are not finetuned on any specific downstream tasks, we simulated the
generation of language modeling datasets as if they were generated by our models. For simplicity, we
assumed a queue of 20K samples with varying context lengths, rather than considering their arrival in
static or dynamic time intervals. With these two datasets, we present the hypothetical throughput of
Recursive Transformers under various simulation scenarios.
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H PERFORMANCE OF FULL-SIZE MODEL BASELINES

Our ultimate goal is for the Recursive Transformer to achieve performance comparable to the
original, full-size pretrained model, but using the least amount of uptraining tokens possible. This is
challenging because our recursive models have substantially fewer parameters, and model capacity is
primarily determined by model size. However, prior works have suggested that FLOPs also play a role
in influencing model performance (Dehghani et al., 2019; 2022; Goyal et al., 2024). Consequently,
by recursively applying the function, we anticipate that with effective initialization techniques or
training strategies, it might be possible to attain performance that closely approaches that of the
full-size model.

However, the uptraining dataset itself can hinder this goal. Specifically, poor quality of the uptraining
dataset or a significant distribution shift from the pretraining dataset can negatively impact perfor-
mance. Indeed, as shown in Table 4, the Gemma model exhibited a performance decrease across all
few-shot benchmarks after uptraining on SlimPajama. Conversely, TinyLlama, where the uptraining
and pretraining datasets are both SlimPajama, consistently showed performance improvements.

Considering these results and our original goal, we adopted the following full-size model baselines:
the original pretrained model for TinyLlama, and vanilla models uptrained with the same cost as their
recursive counterparts for Gemma and Pythia.

Table 4: Uptraining pretrained models on datasets that differ significantly in quality or distribution
from their pretraining data can lead to decreased performance. We evaluated models after uptraining
on the SlimPajama dataset. We measured perplexity on test sets of SlimPajama, RedPajama, and
PG19, and few-shot accuracy on LAMBADA, HellaSwag, PIQA, WinoGrande, ARC-easy, ARC-
challenge, and OpenBookQA benchmarks.

Uptrain Perplexity ↓ Few-shot Accuracy ↑
Models N-emb PT Ntok SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg

Gemma
1.99B ✓ - 11.46 8.18 13.52 63.1 71.4 78.1 65.0 72.3 41.9 40.2 61.7
1.99B ✓ 15B 10.76 8.47 13.08 63.5 68.5 77.0 63.5 67.6 38.1 42.6 60.1
1.99B ✓ 60B 10.58 8.44 12.71 60.3 67.9 76.9 63.5 64.9 37.2 39.6 58.6

TinyLlama
0.97B ✓ - 12.26 9.37 11.94 43.3 42.2 66.8 53.4 44.7 23.2 29.2 43.3
0.97B ✓ 15B 9.87 8.24 10.73 49.2 46.3 68.8 54.0 48.2 26.0 32.2 46.4
0.97B ✓ 60B 9.59 8.12 10.42 51.6 48.8 68.6 54.1 49.9 26.2 32.8 47.4

Pythia
0.81B ✓ - 15.68 9.90 12.05 57.5 49.1 70.4 52.8 51.9 26.7 33.4 48.8
0.81B ✓ 15B 13.46 9.95 13.38 55.0 49.0 71.0 53.6 51.8 28.2 32.8 48.8
0.81B ✓ 60B 12.83 9.76 13.57 53.0 50.2 71.1 54.8 51.9 27.7 31.6 48.6

I EXPANDED RESULTS OF INITIALIZATION METHODS FOR LOOPED LAYERS

Ablation study of Stepwise method We initially hypothesized that the Stepwise method’s per-
formance could be significantly influenced by the specific rule used for layer selection from the
pretrained model. To investigate this, we conducted a controlled experiment (illustrated in Figure 11a),
where layers were selected at certain intervals starting from the first layer. We then varied whether
the final layer of the pretrained model was included in the initialization or not. While a Pythia
model showed no discernible differences in training loss or few-shot performance, other models like
Gemma exhibited markedly superior results when both the first and last layers were preserved. This
observation aligns well with prior work suggesting that maintaining the weights of the first and last
layers during depth up-scaling for LLMs can yield performance benefits (Kim et al., 2024).
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Ablation study of Average method The Average initialization method exhibited notably poor
performance, particularly when applied to the Gemma model. We hypothesized that this could be
attributed to instability in the model’s learned distribution, potentially arising from averaging of
normalization layer weights. To investigate this further, we experimented with three different methods
for merging normalization weights, as outlined in Figure 11b: averaging weights, selecting weights
from a single layer, and zero initialization. The performance trend observed among these methods
varied across different model architectures. However, zero initialization of normalization layers
resulted in a huge performance drop in certain architectures. Conversely, we observed no significant
difference between averaging and single-layer selection, suggesting that any form of distillation of
the normalization weights appears to be sufficient for maintaining performance.
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Figure 11: Training loss curves of stepwise and average initialization variants across three models
with two blocks. (a) “Fixed-start” indicates that the first layer of the pretrained model is selected
initially, and subsequent layers are repeatedly chosen at a fixed interval. “Fixed-ends” means that
the first and last layers are included, and intermediate layers are selected at specific step intervals.
(b) When tying LayerNorm weights, we consider whether to average the weights (LN-avg), select a
single weight (LN-choice), or use zero initialization (LN-zero).

Overall comparison of training perplexity Figure 12 presents a comparative analysis of training
loss across three model architectures and varying looping blocks, incorporating our proposed initial-
ization methodologies. To set an upper bound on performance, we utilized a full-size model further
uptrained on SlimPajama, accounting for the distribution shift between uptraining and pretraining
data. Additionally, we trained a Recursive Transformer from a random initialization, ensuring its
exclusive reliance on the recursive architecture without leveraging any pretrained weights. While
some variance was observed across architectures, all proposed methods utilizing pretrained model
weights demonstrated significantly superior performance compared to random initialization. Notably,
the Stepwise method consistently achieved the best performance across diverse settings. Although
the full-size model’s performance was considerably higher, bridging this gap with only 15 billion
tokens of uptraining represents a remarkable achievement.
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Figure 12: Training loss for Recursive Transformers using various initialization. We omitted a
separate curve for the full-size TinyLlama model, as we used the original pretrained model as the
full-size model since both pretraining and uptraining datasets are same as the SlimPajama dataset.
Refer to Section 3.2 for more details.
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Overall comparison of few-shot performance Few-shot performance exhibited a consistent trend
with training perplexity. Table 5 provides a comparative summary of the proposed looping initializa-
tion methods against the full-size model, the reduced-size model, and Recursive Transformers utilizing
random initialization. Moreover, Figure 13 visually illustrates the performance differences across
different datasets. Notably, the Stepwise method consistently demonstrated the best performance,
showing a performance improvement of up to 14.1%p compared to random initialization.

Table 5: Evaluation results of various initialization methods for looped layers. We indicate whether
pretrained weights are used and the number of uptraining tokens. Perplexity is evaluated on test
sets of three language modeling datasets, and accuracy is evaluated on seven few-shot benchmarks.
Delta values (∆) show improvements over random initialization. We highlight the configurations that
demonstrate the best performance.

Uptrain Looping Perplexity ↓ Few-shot Accuracy ↑
Models N-emb PT Ntok Block Init SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

Gemma

1.99B ✓ 15B - - 10.76 8.47 13.08 63.5 68.5 77.0 63.5 67.6 38.1 42.6 60.1 -
0.99B ✗ 15B - - 22.63 20.03 32.60 28.9 31.6 63.1 52.3 41.2 22.5 27.8 38.2 -
0.66B ✗ 15B - - 24.44 21.69 36.03 27.2 30.6 63.8 50.5 40.6 22.0 27.0 37.4 -

0.99B ✓ 15B 2 Step 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 +14.1
0.99B ✓ 15B 2 Avg 15.15 12.57 19.86 43.6 47.4 70.4 52.6 50.5 27.8 34.4 46.7 +9.1
0.99B ✓ 15B 2 Lower 15.03 12.46 19.63 42.5 48.0 71.0 54.6 52.2 27.7 33.8 47.1 +9.5
0.99B ✗ 15B 2 Rand 22.66 20.06 32.86 27.4 31.6 63.4 50.5 39.7 21.9 28.8 37.6 -

0.66B ✓ 15B 3 Step 14.75 12.10 19.32 45.0 49.9 69.8 55.8 52.7 27.9 33.6 47.8 +9.9
0.66B ✓ 15B 3 Avg 17.45 14.65 23.63 39.4 39.0 66.6 48.7 46.5 24.7 31.8 42.4 +4.5
0.66B ✓ 15B 3 Lower 15.96 13.24 20.90 41.9 43.2 70.0 52.6 49.5 26.6 31.6 45.0 +7.1
0.66B ✗ 15B 3 Rand 22.67 20.09 32.77 28.1 31.4 63.8 51.1 41.0 23.0 26.6 37.9 -

0.97B ✓ - - - 12.26 9.37 11.94 43.3 42.2 66.8 53.4 44.7 23.2 29.2 43.3 -
0.48B ✗ 15B - - 16.61 15.66 20.27 22.3 30.0 60.9 50.6 37.0 23.0 28.0 36.0 -

TinyLlama 0.48B ✓ 15B 2 Step 11.61 9.89 13.00 39.6 39.8 66.5 52.9 44.3 24.9 30.6 42.7 +6.2
0.48B ✓ 15B 2 Avg 11.86 10.29 13.42 38.6 39.4 66.1 52.8 42.7 25.4 30.6 42.2 +5.7
0.48B ✓ 15B 2 Lower 14.67 12.67 16.68 31.9 32.3 62.6 52.0 39.1 22.1 27.8 38.3 +1.8
0.48B ✗ 15B 2 Rand 16.14 15.11 19.55 24.7 30.7 61.2 50.6 36.4 22.6 29.2 36.5 -

0.81B ✓ 15B - - 13.46 9.95 13.38 55.0 49.0 71.0 53.6 51.8 28.2 32.8 48.8 -
0.40B ✗ 15B - - 25.69 20.00 32.08 24.3 30.0 61.9 50.7 38.3 22.3 26.0 36.2 -

Pythia 0.40B ✓ 15B 2 Step 16.38 12.37 17.74 43.4 40.5 67.4 50.8 46.3 25.7 30.0 43.5 +7.3
0.40B ✓ 15B 2 Avg 16.76 12.76 18.63 43.6 39.1 68.2 51.9 45.4 25.1 29.8 43.3 +7.1
0.40B ✓ 15B 2 Lower 17.04 12.62 18.44 43.9 39.2 66.3 53.4 45.4 25.8 31.2 43.6 +7.4
0.40B ✗ 15B 2 Rand 24.45 18.93 29.63 25.2 30.2 62.1 51.1 39.2 22.4 23.6 36.2 -
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(d) Recursive Pythia with 2 blocks

Figure 13: Few-shot performance on seven benchmarks and their average accuracy based on four
looping initialization methods. Full-size model performance is represented by a gray dotted line.
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J EXPANDED RESULTS OF RELAXED RECURSIVE TRANSFORMERS

Training perplexity changes with LoRA modules Figure 14 illustrates the changes in training loss
after incorporating the layer-wise LoRA modules. The Average and Lower initialization methods,
when coupled with our proposed SVD-based initialization of the LoRA modules, demonstrated
significantly enhanced benefits. In particular, the Relaxed Recursive Transformer employing the
Average method consistently outperformed the others. This suggests that it is considerably easier to
learn the difference between the original pretrained weights and the averaged looped weights using
low-rank matrices.
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Figure 14: Comparison of training loss for recursive and relaxed recursive models. All recursive
models utilize two looping blocks, and the LoRA rank is set to 512. The SVD initialization method is
used for LoRA modules.

Comparison between SVD and zero initialization The utilization of layer-wise LoRA modules
enhances model capacity by introducing additional parameters and relaxation, thereby potentially
improving performance. As depicted in Figure 15, SVD initialization significantly amplified these
performance gains compared to standard zero initialization. However, an interesting exception was
observed with the Stepwise method, where the SVD initialized LoRA module surprisingly led to
a performance degradation in Gemma and TinyLlama. This appears to be attributed to the LoRA
rank being insufficient to adequately approximate the low-rank deltas across layers, resulting in
initialization at a sub-optimal point.
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Figure 15: Comparison of average few-shot accuracy between zero and SVD initialization methods
for layer-wise LoRA across three models. Performance gains due to LoRA relaxation are indicated
by hatched bars, while cases where performance is lower than the recursive model without LoRAs
are represented by dotted lines.
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Ablation study on the LoRA rank values Our proposed SVD initialization ensures that the Relaxed
Recursive Transformer can function as an interpolation between vanilla and Recursive Transformers.
The approximation accuracy of SVD is directly influenced by the LoRA rank value; a higher rank
leads to improved restoration of the pretrained model weights. In Figure 16, we present a summary of
the performance changes observed in the relaxed models by varying the LoRA ranks. As expected,
for the Average and Lower looping initialization methods, a larger rank value results in enhanced
performance. The Stepwise method, consistent with previous experimental findings, exhibited a
U-shaped trend: with a lower rank, it behaves similarly to random initialization, resulting in a slight
performance increase. However, with a higher, the approximation becomes more accurate, leading to
a further increase in performance.
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Figure 16: Performance comparison with varying LoRA ranks under different initialization methods
for looped layers. All LoRA weights are initialized using our proposed SVD initialization method.

We further experimented with assigning different ranks to LoRA modules associated with each linear
layer. Given the computational overhead inherent to LoRA modules, allocating varying ranks to
each module can offer an optimal balance between performance and computational efficiency. The
experimental results in Table 6 reveal a strong correlation between performance and overall model
sizes. Due to the substantial hidden dimension of the linear weight within the FFN layer, reducing its
rank led to the most significant performance drop. Conversely, the relatively smaller size of other
attention weights resulted in less performance drops. An intriguing observation is the comparable
performance maintained even with minimal relaxation of key-value weights (achieved through
small ranks), despite the inherent strong sharing of key-value caches in the Multi-Query attention
structure (Ainslie et al., 2023). This potential for even stronger tying of key-value weights suggests
the possibility of key-value cache sharing between tied layers within the Recursive Transformer
architecture.

Table 6: Evaluation results of relaxed recursive Gemma models with varying LoRA ranks applied
to Transformer components. We adjusted the LoRA ranks attached to query, key-value, out, and
FFN linear weights. Non-embedding parameter sizes include both the base layer parameters and the
attached LoRA weights.

Uptrain Looping LoRA Perplexity ↓ Few-shot Accuracy ↑
N-emb PT Ntok Block Init Q KV Out FFN Init SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg

1.99B ✓ 15B - - - - - - - 10.76 8.47 13.08 63.5 68.5 77.0 63.5 67.6 38.1 42.6 60.1
0.99B ✗ 15B - - - - - - - 22.63 20.03 32.60 28.9 31.6 63.1 52.3 41.2 22.5 27.8 38.2

1.30B ✓ 15B 2 Avg 256 256 256 256 SVD 12.10 9.71 14.89 58.2 60.7 73.7 59.0 57.6 32.1 38.0 54.2
1.28B ✓ 15B 2 Avg 128 256 128 256 SVD 12.27 9.81 15.10 57.4 60.2 72.5 58.9 58.1 32.6 37.8 53.9
1.29B ✓ 15B 2 Avg 256 128 256 256 SVD 12.33 9.90 15.25 58.5 59.7 73.3 58.3 56.6 32.0 40.0 54.1
1.18B ✓ 15B 2 Avg 256 256 256 128 SVD 12.56 10.12 15.59 57.0 58.7 73.0 57.4 57.0 31.6 38.2 53.3
1.27B ✓ 15B 2 Avg 128 128 128 256 SVD 12.36 9.92 15.31 57.2 59.2 73.1 57.3 58.0 32.2 38.6 53.7

1.15B ✓ 15B 2 Avg 128 128 128 128 SVD 12.52 10.07 15.51 56.1 58.2 72.3 55.8 57.1 30.7 37.2 52.5
1.14B ✓ 15B 2 Avg 64 128 64 128 SVD 12.61 10.14 15.69 55.0 57.8 73.0 57.5 56.7 30.9 38.8 52.8
1.14B ✓ 15B 2 Avg 128 64 128 128 SVD 12.72 10.18 15.76 55.5 57.7 72.7 57.0 56.9 30.1 38.2 52.6
1.08B ✓ 15B 2 Avg 128 128 128 64 SVD 12.80 10.33 15.97 55.3 56.7 72.9 57.7 55.0 29.6 36.0 51.9
1.13B ✓ 15B 2 Avg 64 64 64 128 SVD 12.77 10.29 15.95 55.2 57.4 73.0 56.7 56.5 30.5 37.2 52.3

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Overall performance comparison of Relaxed Recursive Transformers A comprehensive per-
formance comparison is presented in Table 7. This encompasses an evaluation of the performance
across three models and various looping initialization methods, considering the degree of relaxation
induced by the layer-wise LoRA module. The configuration utilizing the Average method for looped
layer initialization, paired with SVD initialization for the LoRA module, consistently outperformed
all other baselines. Furthermore, performance clearly improved with increasing rank.

Table 7: Evaluation results of relaxed recursive models varying LoRA ranks. Delta (∆) represent the
accuracy differences between relaxed and non-relaxed models using the same looping initialization.

Uptrain Looping LoRA Perplexity ↓ Few-shot Accuracy ↑
Models N-emb PT Ntok Block Init Rank Init SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

1.99B ✓ 15B - - - - 10.76 8.47 13.08 63.5 68.5 77.0 63.5 67.6 38.1 42.6 60.1 -
0.99B ✗ 15B - - - - 22.63 20.03 32.60 28.9 31.6 63.1 52.3 41.2 22.5 27.8 38.2 -
0.99B ✗ 15B 2 Rand - - 22.66 20.06 32.86 27.4 31.6 63.4 50.5 39.7 21.9 28.8 37.6 -

0.99B ✓ 15B 2 Step - - 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 -
1.07B ✓ 15B 2 Step 64 SVD 12.76 10.21 15.99 52.1 57.2 73.0 57.8 56.9 28.9 36.8 51.8 +0.1
1.15B ✓ 15B 2 Step 128 SVD 13.44 10.80 16.98 50.5 53.0 71.5 54.4 55.9 29.3 34.8 49.9 – 1.8
1.30B ✓ 15B 2 Step 256 SVD 14.02 11.44 18.09 46.1 49.1 71.8 53.2 52.8 27.8 33.4 47.8 – 3.9
1.60B ✓ 15B 2 Step 512 SVD 13.13 10.66 16.63 53.0 54.3 72.1 54.9 54.8 28.8 35.4 50.5 – 1.2
1.60B ✓ 15B 2 Step 512 Zero 12.46 9.97 15.58 54.9 58.8 74.0 58.1 58.8 30.6 36.6 53.1 +1.4

Gemma 0.99B ✓ 15B 2 Avg - - 15.15 12.57 19.86 43.6 47.4 70.4 52.6 50.5 27.8 34.4 46.7 -
1.07B ✓ 15B 2 Avg 64 SVD 12.83 10.35 16.02 55.9 56.8 72.5 56.8 55.7 30.6 36.2 52.1 +5.4
1.15B ✓ 15B 2 Avg 128 SVD 12.52 10.07 15.51 56.1 58.2 72.3 55.8 57.1 30.7 37.2 52.5 +5.8
1.30B ✓ 15B 2 Avg 256 SVD 12.10 9.71 14.89 58.2 60.7 73.7 59.0 57.6 32.1 38.0 54.2 +7.5
1.60B ✓ 15B 2 Avg 512 SVD 11.83 9.46 14.57 59.3 62.8 74.0 61.6 60.1 32.9 37.6 55.5 +8.8
1.60B ✓ 15B 2 Avg 512 Zero 13.78 11.31 17.71 49.8 52.4 71.7 53.3 51.2 29.4 35.0 49.0 +2.3

0.99B ✓ 15B 2 Lower - - 15.03 12.46 19.63 42.5 48.0 71.0 54.6 52.2 27.7 33.8 47.1 -
1.07B ✓ 15B 2 Lower 64 SVD 14.21 11.77 18.40 47.5 50.5 70.9 54.2 54.1 29.2 36.0 48.9 +1.8
1.15B ✓ 15B 2 Lower 128 SVD 14.23 11.83 18.49 48.0 50.5 72.0 56.8 54.4 27.5 33.4 48.9 +1.8
1.30B ✓ 15B 2 Lower 256 SVD 13.51 11.06 17.30 53.1 53.7 71.8 57.4 52.5 28.7 35.2 50.3 +3.2
1.60B ✓ 15B 2 Lower 512 SVD 12.54 10.22 15.90 57.1 58.2 73.7 58.6 57.6 31.5 35.6 53.2 +6.1
1.60B ✓ 15B 2 Lower 512 Zero 13.95 11.59 18.02 48.4 52.1 71.9 55.7 54.9 28.8 34.6 49.5 +2.4

0.97B ✓ - - - - - 12.26 9.37 11.94 43.3 42.2 66.8 53.4 44.7 23.2 29.2 43.3 -
0.48B ✗ 15B - - - - 16.61 15.66 20.27 22.3 30.0 60.9 50.6 37.0 23.0 28.0 36.0 -
0.48B ✗ 15B 2 Rand - - 16.14 15.11 19.55 24.7 30.7 61.2 50.6 36.4 22.6 29.2 36.5 -

0.48B ✓ 15B 2 Step - - 11.61 9.89 13.00 39.6 39.8 66.5 52.9 44.3 24.9 30.6 42.7 -
0.53B ✓ 15B 2 Step 64 SVD 12.10 10.40 13.75 38.9 38.3 65.2 51.5 42.0 26.0 31.0 41.9 – 0.8
0.58B ✓ 15B 2 Step 128 SVD 12.41 10.72 14.10 36.8 37.4 64.7 53.4 42.2 24.7 30.4 41.4 – 1.3
0.68B ✓ 15B 2 Step 256 SVD 11.96 10.35 13.48 38.9 38.3 65.8 51.9 43.1 25.4 29.8 41.9 – 0.8
0.86B ✓ 15B 2 Step 512 SVD 11.33 9.79 12.61 42.2 40.9 67.7 51.1 45.0 25.3 30.2 43.2 +0.5
0.86B ✓ 15B 2 Step 512 Zero 11.24 9.60 12.56 42.0 41.0 67.4 52.2 44.5 25.9 31.2 43.4 +0.7

TinyLlama 0.48B ✓ 15B 2 Avg - - 11.86 10.29 13.42 38.6 39.4 66.1 52.8 42.7 25.4 30.6 42.2 -
0.53B ✓ 15B 2 Avg 64 SVD 11.22 9.66 12.51 41.8 41.6 67.0 53.3 43.9 24.7 31.2 43.4 +1.2
0.58B ✓ 15B 2 Avg 128 SVD 10.99 9.45 12.21 43.2 42.1 68.3 53.2 44.8 25.9 30.4 44.0 +1.8
0.68B ✓ 15B 2 Avg 256 SVD 10.71 9.18 11.82 44.1 43.2 68.1 53.5 44.4 25.7 30.4 44.2 +2.0
0.86B ✓ 15B 2 Avg 512 SVD 10.46 8.92 11.50 46.0 44.1 68.2 53.0 45.8 25.1 31.2 44.8 +2.6
0.86B ✓ 15B 2 Avg 512 Zero 11.28 9.75 12.69 41.5 41.0 66.8 53.2 44.8 25.5 31.2 43.4 +1.2

0.48B ✓ 15B 2 Lower - - 14.67 12.67 16.68 31.9 32.3 62.6 52.0 39.1 22.1 27.8 38.3 -
0.53B ✓ 15B 2 Lower 64 SVD 13.68 11.77 15.48 35.5 34.0 63.8 51.0 40.0 24.6 28.0 39.5 +1.2
0.58B ✓ 15B 2 Lower 128 SVD 13.00 11.14 14.61 37.6 35.4 65.3 51.5 40.4 24.5 27.6 40.3 +2.0
0.68B ✓ 15B 2 Lower 256 SVD 12.14 10.39 13.59 40.0 37.7 66.1 52.6 42.5 24.8 30.0 42.0 +3.7
0.86B ✓ 15B 2 Lower 512 SVD 11.31 9.61 12.49 43.2 40.5 66.0 50.8 43.9 24.8 30.0 42.8 +4.5
0.86B ✓ 15B 2 Lower 512 Zero 14.56 12.69 16.57 21.2 32.9 63.9 52.6 39.5 22.9 27.8 37.3 – 1.0

0.81B ✓ 15B - - - - 13.46 9.95 13.38 55.0 49.0 71.0 53.6 51.8 28.2 32.8 48.8 -
0.40B ✗ 15B - - - - 25.69 20.00 32.08 24.3 30.0 61.9 50.7 38.3 22.3 26.0 36.2 -
0.40B ✗ 15B 2 Rand - - 24.45 18.93 29.63 25.2 30.2 62.1 51.1 39.2 22.4 23.6 36.2 -

0.40B ✓ 15B 2 Step - - 16.38 12.37 17.74 43.4 40.5 67.4 50.8 46.3 25.7 30.0 43.5 -
0.44B ✓ 15B 2 Step 64 SVD 16.44 12.44 17.89 43.7 40.4 66.5 52.9 46.5 26.2 28.8 43.6 +0.1
0.48B ✓ 15B 2 Step 128 SVD 16.63 12.61 18.35 42.4 39.3 68.0 51.5 46.3 26.7 30.6 43.5 +0.0
0.55B ✓ 15B 2 Step 256 SVD 16.54 12.61 18.39 42.8 39.1 67.2 53.7 46.4 25.9 27.8 43.3 – 0.2
0.70B ✓ 15B 2 Step 512 SVD 15.68 11.88 17.25 45.4 41.3 68.5 52.6 46.7 25.4 31.2 44.4 +0.9
0.70B ✓ 15B 2 Step 512 Zero 15.88 12.01 17.16 45.5 41.8 68.0 52.6 46.6 26.3 30.0 44.4 +0.9

Pythia 0.40B ✓ 15B 2 Avg - - 16.76 12.76 18.63 43.6 39.1 68.2 51.9 45.4 25.1 29.8 43.3 -
0.44B ✓ 15B 2 Avg 64 SVD 16.03 12.19 17.59 45.8 40.9 67.3 50.0 45.8 25.5 31.8 43.9 +0.6
0.48B ✓ 15B 2 Avg 128 SVD 15.67 11.93 17.10 46.9 41.9 67.4 51.2 45.4 24.8 31.2 44.1 +0.8
0.55B ✓ 15B 2 Avg 256 SVD 15.22 11.54 16.47 48.5 43.3 67.2 51.4 46.7 25.5 32.0 44.9 +1.6
0.70B ✓ 15B 2 Avg 512 SVD 14.70 11.07 15.71 50.2 44.7 68.2 51.6 47.6 25.4 31.2 45.6 +2.3
0.70B ✓ 15B 2 Avg 512 Zero 15.97 12.14 17.65 45.7 41.5 68.1 51.7 46.5 25.7 30.0 44.2 +0.9

0.40B ✓ 15B 2 Lower - - 17.04 12.62 18.44 43.9 39.2 66.3 53.4 45.4 25.8 31.2 43.6 -
0.44B ✓ 15B 2 Lower 64 SVD 17.03 12.78 18.73 44.1 38.3 66.9 51.9 45.4 24.7 30.8 43.2 – 0.4
0.48B ✓ 15B 2 Lower 128 SVD 16.63 12.49 18.17 45.2 39.2 66.8 51.0 45.6 24.9 29.6 43.2 – 0.4
0.55B ✓ 15B 2 Lower 256 SVD 15.93 11.99 17.30 47.6 41.4 68.3 53.2 46.0 25.8 31.0 44.8 +1.2
0.70B ✓ 15B 2 Lower 512 SVD 15.11 11.34 16.07 50.2 43.5 67.8 51.8 47.2 25.2 32.0 45.4 +1.8
0.70B ✓ 15B 2 Lower 512 Zero 16.45 12.25 17.76 45.2 40.4 66.4 54.5 45.8 25.9 32.6 44.4 +0.8
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K RELAXATION OF PARAMETER SHARING WITH PREFIX TUNING

To relax parameter sharing, we employed LoRA modules considering the parametric overhead.
However, sequential computation of base layers and LoRA modules is necessary due to hardware
limitations, incurring additional computational costs. Consequently, we explored replacing layer-
specific prompts (Liu et al., 2021) as an alternative. In this approach, prompts specific to each
layer are integrated as prefix tokens, generating layer-wise key and value states for Self Attention
computation. This approach is significantly more amenable to parallel computation, leading to
reduced computational overhead.

Table 8 summarizes performance of the prefix tuning method. Due to the reliance on small learnable
prompts, performance gains were limited. Additionally, without a mechanism to leverage the original
pretrained weights, the performance of prefix tuning was significantly lower (52.1% vs. 47.6% with
the Average Method in the 1.07B model size). While offering parallel computation advantages,
further research is needed to enhance its effectiveness.

Table 8: Evaluation results of relaxation through prefix tuning methods. Prefix length denotes the
sequence length of trainable vectors used to generate key-value prompts in each self-attention layer.
Non-embedding parameter sizes include the sizes of these trainable prefixes. Delta (∆) represent the
accuracy differences between non-relaxed models and their corresponding prefix-tuned models using
the same looping initialization.

Uptrain Looping Prefix Perplexity ↓ Few-shot Accuracy ↑
Models N-emb PT Ntok Block Init Len Size SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

1.99B ✓ 15B - - - - 10.76 8.47 13.08 63.5 68.5 77.0 63.5 67.6 38.1 42.6 60.1 -
0.99B ✗ 15B - - - - 22.63 20.03 32.60 28.9 31.6 63.1 52.3 41.2 22.5 27.8 38.2 -

0.99B ✓ 15B 2 Step - - 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 -
1.00B ✓ 15B 2 Step 256 9.4M 12.62 10.06 15.80 53.5 58.3 73.9 57.6 57.5 29.3 35.6 52.2 +0.5
1.01B ✓ 15B 2 Step 512 18.9M 12.67 10.10 15.85 54.1 57.8 73.8 58.4 57.2 28.7 35.8 52.3 +0.6
1.03B ✓ 15B 2 Step 1024 37.7M 12.89 10.34 16.22 53.5 57.1 72.4 57.2 56.9 28.6 36.8 51.8 +0.1
1.07B ✓ 15B 2 Step 2048 75.5M 12.75 10.21 16.09 55.0 57.3 73.3 58.2 56.8 29.2 37.8 52.5 +0.8

Gemma 0.99B ✓ 15B 2 Avg - - 15.15 12.57 19.86 43.6 47.4 70.4 52.6 50.5 27.8 34.4 46.7 -
1.00B ✓ 15B 2 Avg 256 9.4M 14.85 12.31 19.41 46.9 48.3 70.4 52.7 51.4 27.2 34.0 47.3 +0.6
1.01B ✓ 15B 2 Avg 512 18.9M 15.23 12.64 19.98 44.5 47.2 70.7 54.5 49.5 28.0 33.2 46.8 +0.1
1.03B ✓ 15B 2 Avg 1024 37.7M 14.60 12.02 18.89 46.9 49.7 71.1 52.3 51.0 28.6 34.2 47.7 +1.0
1.07B ✓ 15B 2 Avg 2048 75.5M 14.63 12.07 19.03 47.3 49.5 70.8 53.1 50.7 28.2 33.4 47.6 +0.9

0.99B ✓ 15B 2 Lower - - 15.03 12.46 19.63 42.5 48.0 71.0 54.6 52.2 27.7 33.8 47.1 -
1.00B ✓ 15B 2 Lower 256 9.4M 14.59 12.12 19.02 46.3 49.7 71.5 55.1 52.9 29.0 34.0 48.4 +1.3
1.01B ✓ 15B 2 Lower 512 18.9M 14.53 12.03 18.88 45.7 49.8 71.9 56.4 53.6 29.4 33.2 48.6 +1.5
1.03B ✓ 15B 2 Lower 1024 37.7M 14.43 11.98 18.74 46.3 50.0 71.9 55.1 54.3 29.7 33.8 48.7 +1.6
1.07B ✓ 15B 2 Lower 2048 75.5M 14.79 12.26 19.23 46.1 48.7 71.4 55.4 51.3 28.2 34.0 47.9 +0.8

0.97B ✓ - - - - - 12.26 9.37 11.94 43.3 42.2 66.8 53.4 44.7 23.2 29.2 43.3 -
0.48B ✗ 15B - - - - 16.61 15.66 20.27 22.3 30.0 60.9 50.6 37.0 23.0 28.0 36.0 -

0.48B ✓ 15B 2 Step - - 11.61 9.89 13.00 39.6 39.8 66.5 52.9 44.3 24.9 30.6 42.7 -
0.49B ✓ 15B 2 Step 256 11.5M 11.61 9.89 13.00 39.6 39.9 66.5 53.9 44.4 25.3 30.6 42.9 +0.2
0.50B ✓ 15B 2 Step 512 23.1M 11.61 9.89 13.01 39.5 39.9 66.7 53.4 44.1 25.3 29.8 42.7 +0.0
0.53B ✓ 15B 2 Step 1024 46.1M 11.60 9.88 13.00 39.7 39.9 66.7 53.0 44.3 25.1 30.6 42.8 +0.1
0.57B ✓ 15B 2 Step 2048 92.3M 11.58 9.87 13.01 40.1 39.9 66.8 53.4 44.4 24.9 30.0 42.8 +0.1

TinyLlama 0.48B ✓ 15B 2 Avg - - 11.86 10.29 13.42 38.6 39.4 66.1 52.8 42.7 25.4 30.6 42.2 -
0.49B ✓ 15B 2 Avg 256 11.5M 11.86 10.28 13.41 38.5 39.4 66.2 52.5 42.8 25.9 30.8 42.3 +0.1
0.50B ✓ 15B 2 Avg 512 23.1M 11.86 10.28 13.41 38.1 39.3 66.3 52.2 42.6 25.6 30.8 42.1 – 0.1
0.53B ✓ 15B 2 Avg 1024 46.1M 11.86 10.28 13.42 38.4 39.2 65.7 52.7 42.5 25.5 31.0 42.1 – 0.1
0.57B ✓ 15B 2 Avg 2048 92.3M 11.86 10.28 13.42 38.5 39.5 65.9 52.7 42.4 25.7 31.0 42.2 +0.0

0.48B ✓ 15B 2 Lower - - 14.67 12.67 16.68 31.9 32.3 62.6 52.0 39.1 22.1 27.8 38.3 -
0.49B ✓ 15B 2 Lower 256 11.5M 14.67 12.67 16.69 31.9 32.4 62.7 51.5 38.9 22.3 27.8 38.2 – 0.1
0.50B ✓ 15B 2 Lower 512 23.1M 14.67 12.67 16.69 31.9 32.3 62.8 51.7 38.9 22.2 27.8 38.2 – 0.1
0.53B ✓ 15B 2 Lower 1024 46.1M 14.67 12.67 16.68 31.6 32.3 63.0 51.9 38.9 22.1 28.0 38.3 +0.0
0.57B ✓ 15B 2 Lower 2048 92.3M 14.67 12.67 16.67 34.1 32.5 62.8 52.4 38.5 23.0 27.6 38.7 +0.4
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L EXPANDED RESULTS OF EXTENDED UPTRAINING AND DISTILLATION

Ablation study on individual techniques To further enhance performance through uptraining, we
increased the number of uptraining tokens and employed knowledge distillation loss (Hinton et al.,
2015; Kim & Rush, 2016). Specifically, we expanded the token number from 15 billion to 60 billion.
Furthermore, we designated the teacher model as the full-size model for each architecture, uptrained
on 15 billion tokens from the SlimPajama dataset. Given the huge number of uptraining tokens, we
adopted an online approach to extract logits from the teacher model. Four loss functions were utilized:
forward KL (FKL; Kim & Rush (2016)), reverse KL (RKL; Gu et al. (2024)), Jensen–Shannon
divergence (JSD; Agarwal et al. (2024)), and total variation distance (TVD; Wen et al. (2023)).
Table 9 summarizes the controlled experimental results for each method. We observed a performance
improvement of 1.7% attributed to the extended uptraining and up to 1.7% from the KD loss. We
finally selected forward KL as the loss function due to its simplicity and superior performance. These
significant gains suggest that combining both techniques could yield even greater gains.

Table 9: Evaluation results of ablation studies related to longer uptraining and knowledge distillation
loss. Performance improvements, represented by Delta, were measured for each technique. For the
knowledge distillation loss function, we experimented with four options: FKL, RKL, JSD, and TVD.
Forward KL was selected as the final configuration due to its simplicity and superior performance.

Uptrain Looping LoRA Perplexity ↓ Few-shot Accuracy ↑
N-emb PT Ntok KD Func Block Init Rank Init SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

0.99B ✓ 15B ✗ - 2 Step - - 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 -
0.99B ✓ 60B ✗ - 2 Step - - 12.00 9.70 14.84 52.5 59.9 74.7 58.5 58.0 30.3 40.2 53.4 +1.7

0.99B ✓ 15B ✗ - 2 Step - - 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 -
0.99B ✓ 15B ✓ FKL 2 Step - - 12.36 9.85 15.45 56.8 58.6 74.8 58.6 59.1 29.2 36.6 53.4 +1.7
0.99B ✓ 15B ✓ RKL 2 Step - - 12.56 10.09 15.80 55.6 58.3 74.3 58.6 58.3 30.4 37.4 53.3 +1.6
0.99B ✓ 15B ✓ JSD 2 Step - - 12.60 10.06 15.77 56.1 58.4 73.4 57.0 58.4 29.8 37.2 52.9 +1.2
0.99B ✓ 15B ✓ TVD 2 Step - - 12.47 9.92 15.52 55.1 58.5 74.0 58.2 58.9 29.5 36.8 53.0 +1.3

1.30B ✓ 15B ✗ - 2 Avg 256 SVD 12.10 9.71 14.89 58.2 60.7 73.7 59.0 57.6 32.1 38.0 54.2 -
1.30B ✓ 15B ✓ FKL 2 Avg 256 SVD 11.90 9.52 14.63 59.9 62.0 74.1 60.0 58.6 33.2 38.0 55.1 +0.9
1.30B ✓ 15B ✓ RKL 2 Avg 256 SVD 11.95 9.62 14.79 60.0 61.6 74.5 60.0 58.1 32.9 37.8 55.0 +0.8
1.30B ✓ 15B ✓ JSD 2 Avg 256 SVD 12.09 9.65 14.81 58.1 61.1 73.1 60.8 59.0 33.2 38.6 54.8 +0.6
1.30B ✓ 15B ✓ TVD 2 Avg 256 SVD 12.05 9.62 14.78 59.3 61.5 73.9 60.5 59.0 33.0 38.2 55.1 +0.9

Overall performance after longer training with distillation loss Figure 17 and Table 10 summarize
the performance gains achieved by incorporating advanced training techniques: extended uptraining
and knowledge distillation loss. We consistently observed substantial improvements in few-shot
performance across all architectures and with varying numbers of looping blocks. We anticipate
that further performance enhancements can be achieved by utilizing a superior teacher model and
increasing the uptraining cost.

Ntok = 15B Ntok = 60B + KD Loss
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Figure 17: Few-shot performance of three models with extended uptraining and knowledge distillation.
Optimal configurations are used for each model size. The full-size model is the pretrained model itself
for Tinyllama, but for other models, it is further uptrained on 60 billion tokens. Reduced-size models
are non-recursive and pretrained from scratch at their corresponding sizes. Dotted lines represent the
Pareto frontier, showing the optimal trade-offs between model size and performance for each setting.
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Table 10: Evaluation results of our Recursive Transformers with 60 billion token uptraining and
knowledge distillation loss. We utilized the forward KL loss as the knowledge distillation loss
function. Full-size model baselines for Gemma and Pythia are the pretrained models further uptrained
on 60 billion tokens, accounting for distribution shifts between Slimapajama and their pretraining
datasets. Delta (∆) represents the accuracy differences between the longer uptrained models with KD
and their 15 billion uptrained counterparts. We omit the Delta values for relaxed recursive Gemma
models with three blocks as they lack 15 billion uptrained counterparts. Results with extended
uptraining and knowledge distillation are highlighted.

Uptrain Looping LoRA Perplexity ↓ Few-shot Accuracy ↑
Models N-emb PT Ntok KD Block Init Rank Init SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

1.99B ✓ 60B ✗ - - - - 10.58 8.44 12.71 60.3 67.9 76.9 63.5 64.9 37.2 39.6 58.6 -
0.99B ✗ 60B ✓ - - - - 15.33 13.04 20.37 42.3 43.0 68.8 53.4 49.4 26.3 31.0 44.9 -
0.99B ✗ 15B ✗ - - - - 22.63 20.03 32.60 28.9 31.6 63.1 52.3 41.2 22.5 27.8 38.2 -
0.66B ✗ 60B ✓ - - - - 16.79 14.39 22.85 37.5 38.4 68.7 50.4 46.5 24.6 31.6 42.5 -
0.66B ✗ 15B ✗ - - - - 24.44 21.69 36.03 27.2 30.6 63.8 50.5 40.6 22.0 27.0 37.4 -

0.99B ✓ 15B ✗ 2 Step - - 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 -
0.66B ✓ 15B ✗ 3 Step - - 14.75 12.10 19.32 45.0 49.9 69.8 55.8 52.7 27.9 33.6 47.8 -
1.07B ✓ 15B ✗ 2 Avg 64 SVD 12.83 10.35 16.02 55.9 56.8 72.5 56.8 55.7 30.6 36.2 52.1 -
1.15B ✓ 15B ✗ 2 Avg 128 SVD 12.52 10.07 15.51 56.1 58.2 72.3 55.8 57.1 30.7 37.2 52.5 -
1.30B ✓ 15B ✗ 2 Avg 256 SVD 12.10 9.71 14.89 58.2 60.7 73.7 59.0 57.6 32.1 38.0 54.2 -

Gemma 1.60B ✓ 15B ✗ 2 Avg 512 SVD 11.83 9.46 14.57 59.3 62.8 74.0 61.6 60.1 32.9 37.6 55.5 -

0.99B ✓ 60B ✓ 2 Step - - 11.44 9.14 13.98 56.5 62.1 75.2 59.4 59.8 32.5 38.6 54.9 +3.2
1.07B ✓ 60B ✓ 2 Avg 64 SVD 11.36 9.14 13.82 58.9 62.8 75.1 61.5 61.2 33.7 37.6 55.8 +3.7
1.15B ✓ 60B ✓ 2 Avg 128 SVD 11.25 9.04 13.64 58.7 63.6 76.5 61.2 62.6 34.6 39.0 56.6 +4.1
1.30B ✓ 60B ✓ 2 Avg 256 SVD 11.05 8.88 13.35 60.6 64.7 75.3 62.5 61.6 35.3 38.8 57.0 +2.8
1.60B ✓ 60B ✓ 2 Avg 512 SVD 10.81 8.63 12.94 61.4 65.8 76.3 63.5 65.1 37.1 39.4 58.4 +2.9

0.66B ✓ 60B ✓ 3 Step - - 12.27 9.90 15.24 55.6 58.1 73.1 60.2 58.8 30.2 37.2 53.3 +5.5
0.74B ✓ 60B ✓ 3 Avg 64 SVD 12.13 9.80 14.95 55.5 58.3 73.5 60.1 58.0 31.1 36.8 53.3 -
0.82B ✓ 60B ✓ 3 Avg 128 SVD 11.83 9.53 14.51 56.7 60.2 74.2 59.8 59.1 33.0 35.4 54.1 -
0.97B ✓ 60B ✓ 3 Avg 256 SVD 11.43 9.17 13.87 59.3 62.6 74.7 61.2 61.6 32.9 40.2 56.1 -
1.27B ✓ 60B ✓ 3 Avg 512 SVD 11.01 8.80 13.25 61.5 64.9 76.2 62.0 64.3 35.6 39.2 57.7 -

0.97B ✓ - - - - - - 12.26 9.37 11.94 43.3 42.2 66.8 53.4 44.7 23.2 29.2 43.3 -
0.48B ✗ 60B ✓ - - - - 11.93 10.86 13.93 33.3 37.3 66.8 50.1 41.7 23.9 30.2 40.5 -
0.48B ✗ 15B ✗ - - - - 16.61 15.66 20.27 22.3 30.0 60.9 50.6 37.0 23.0 28.0 36.0 -

0.48B ✓ 15B ✗ 2 Step - - 11.61 9.89 13.00 39.6 39.8 66.5 52.9 44.3 24.9 30.6 42.7 -
0.53B ✓ 15B ✗ 2 Avg 64 SVD 11.22 9.66 12.51 41.8 41.6 67.0 53.3 43.9 24.7 31.2 43.4 -
0.58B ✓ 15B ✗ 2 Avg 128 SVD 10.99 9.45 12.21 43.2 42.1 68.3 53.2 44.8 25.9 30.4 44.0 -

TinyLlama 0.68B ✓ 15B ✗ 2 Avg 256 SVD 10.71 9.18 11.82 44.1 43.2 68.1 53.5 44.4 25.7 30.4 44.2 -
0.86B ✓ 15B ✗ 2 Avg 512 SVD 10.46 8.92 11.50 46.0 44.1 68.2 53.0 45.8 25.1 31.2 44.8 -

0.48B ✓ 60B ✓ 2 Step - - 10.51 9.01 11.60 44.2 43.1 68.2 52.4 44.7 25.3 32.2 44.3 +1.6
0.53B ✓ 60B ✓ 2 Avg 64 SVD 10.14 8.77 11.19 44.3 44.9 69.5 52.5 46.5 26.1 31.6 45.1 +1.6
0.58B ✓ 60B ✓ 2 Avg 128 SVD 10.07 8.68 11.07 45.9 45.1 69.4 50.5 46.8 25.4 31.6 45.0 +1.0
0.68B ✓ 60B ✓ 2 Avg 256 SVD 9.96 8.56 10.93 46.2 45.7 69.0 53.2 47.9 25.9 31.6 45.6 +1.4
0.86B ✓ 60B ✓ 2 Avg 512 SVD 9.85 8.44 10.76 47.4 46.3 69.7 52.8 47.5 26.3 31.4 45.9 +1.1

0.81B ✓ 60B ✗ - - - - 12.83 9.76 13.57 53.0 50.2 71.1 54.8 51.9 27.7 31.6 48.6 -
0.40B ✗ 60B ✓ - - - - 18.27 14.39 21.93 32.1 35.0 66.1 49.6 42.9 24.2 27.0 39.5 -
0.40B ✗ 15B ✗ - - - - 25.69 20.00 32.08 24.3 30.0 61.9 50.7 38.3 22.3 26.0 36.2 -

0.40B ✓ 15B ✗ 2 Step - - 16.38 12.37 17.74 43.4 40.5 67.4 50.8 46.3 25.7 30.0 43.5 -
0.44B ✓ 15B ✗ 2 Avg 64 SVD 16.03 12.19 17.59 45.8 40.9 67.3 50.0 45.8 25.5 31.8 43.9 -
0.48B ✓ 15B ✗ 2 Avg 128 SVD 15.67 11.93 17.10 46.9 41.9 67.4 51.2 45.4 24.8 31.2 44.1 -

Pythia 0.55B ✓ 15B ✗ 2 Avg 256 SVD 15.22 11.54 16.47 48.5 43.3 67.2 51.4 46.7 25.5 32.0 44.9 -
0.70B ✓ 15B ✗ 2 Avg 512 SVD 14.70 11.07 15.71 50.2 44.7 68.2 51.6 47.6 25.4 31.2 45.6 -

0.40B ✓ 60B ✓ 2 Step - - 14.59 11.13 15.79 47.8 43.8 69.3 52.0 48.1 25.4 30.4 45.2 +1.7
0.44B ✓ 60B ✓ 2 Avg 64 SVD 14.24 10.89 15.52 50.0 44.5 68.9 54.1 48.0 26.5 31.2 46.2 +2.3
0.48B ✓ 60B ✓ 2 Avg 128 SVD 14.10 10.79 15.27 50.1 45.5 69.0 52.6 48.3 25.8 32.0 46.2 +2.1
0.55B ✓ 60B ✓ 2 Avg 256 SVD 13.91 10.61 14.91 50.5 45.6 68.7 51.2 48.4 25.7 32.8 46.1 +1.2
0.70B ✓ 60B ✓ 2 Avg 512 SVD 13.59 10.38 14.43 52.0 47.0 69.6 53.4 48.9 26.9 31.2 47.0 +1.4

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

M EARLY-EXIT TRAINING

Ablation study on early-exit training strategy To enable early-exiting capabilities, all models
require additional training to align intermediate representations with classifier heads. In this study,
we conduct ablation studies on various strategies, demonstrating Recursive Transformers can be trans-
formed into early-exiting models without compromising final loop output’s performance. Table 11
presents a comprehensive summary of our findings across various categories, including training
procedures, loss functions, and early-exit training data. Our key findings are as follows:

• Post-training after uptraining is essential for preserving final loop performance. Jointly training
intermediate loop output during the uptraining phase, even with an aggressive loss coefficient
strategy, significantly degraded the final output performance.

• Training solely the early loops with learnable LoRA modules, while freezing other parameters,
hindered effective intermediate representation learning. We attempted to fine-tune intermediate
outputs by attaching LoRA modules to classifier heads, but this proved ineffective.

• The aggressive coefficient strategy successfully maintained final loop output performance while
enhancing intermediate layer performance. Moreover, incorporating knowledge distillation from
detached final outputs further enhanced intermediate layer performance.

• No significant performance differences were observed when using the same uptraining data versus
new SlimPajama tokens for post-training.

Finally, we opted to utilize the uptrained model and perform post-training with new tokens sourced
from the same SlimPajama dataset. Moreover, we incorporated a distillation loss from the final loop
output, while using a strategy that aggressively reduces the loss coefficients of intermediate outputs.

Table 11: Ablation studies on early-exit training for recursive Gemma models. We evaluated
performance in a static-exiting scenario (Schuster et al., 2022; Bae et al., 2023), where all tokens
exit at either 9th or 18th layers. We explored post-training (after uptraining) and co-training (during
uptraining) approaches. We experimented with freezing uptrained weights and adding LoRA with
the rank of 128 to the classifier head, and we used weighted CE and aggressive CE loss functions.
Early-exit training utilized 15 billion tokens, either overlapping with uptraining data or entirely new.
Delta (∆) indicates the performance changes of the final layer. We highlight the final configuration:
post-training with aggressive CE and KD loss on 15 billion new tokens.

Uptrain Looping Early-Exit Train Perplexity ↓ Few-shot Accuracy ↑
N-emb PT Ntok Block Init Train Freeze Ntok CE KD Data SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

1.99B ✓ 15B - - - - - - - - 10.76 8.47 13.08 63.5 68.5 77.0 63.5 67.6 38.1 42.6 60.1 -
0.99B ✗ 15B - - - - - - - - 22.63 20.03 32.60 28.9 31.6 63.1 52.3 41.2 22.5 27.8 38.2 -
0.99B ✓ 15B 2 Step - - - - - - 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 -

0.99B ✓ 15B 2 Step Post- ✗ 15B Weighted ✗ Ovlp 12.97 10.51 16.55 48.9 55.5 72.7 55.3 54.9 30.1 36.0 50.5 – 1.2
13.11 10.59 16.71 49.5 54.8 72.0 53.4 54.1 29.1 35.6 49.8 -

0.99B ✓ 15B 2 Step Post- ✗ 15B Agg (0.3) ✗ Ovlp 12.60 10.21 15.75 51.8 58.2 73.7 56.8 57.0 29.9 37.8 52.2 +0.5
13.63 11.02 17.55 47.5 53.0 71.2 54.9 50.2 28.2 34.8 48.5 -
12.37 9.94 15.37 53.0 59.1 73.9 55.4 57.4 30.6 37.8 52.5 +0.80.99B ✓ 15B 2 Step Post- ✗ 15B Agg (0.1) ✗ Ovlp 14.55 11.87 19.00 45.9 51.2 71.4 54.5 48.1 26.8 32.0 47.1 -

0.99B ✓ 15B 2 Step Post- ✗ 15B Agg (0.05) ✗ Ovlp 12.33 9.90 15.31 52.8 59.2 73.6 57.5 57.7 30.5 37.2 52.6 +0.9
15.70 12.93 20.69 43.1 49.8 69.8 55.2 46.0 26.9 31.2 46.0 -
12.28 9.80 15.23 52.9 59.5 73.3 56.5 57.2 30.1 37.2 52.4 +0.70.99B ✓ 15B 2 Step Post- ✗ 15B Agg (0.01) ✗ Ovlp 22.76 20.37 30.39 32.2 45.2 67.5 53.9 40.3 26.3 29.2 42.1 -

0.99B ✓ 15B 2 Step Post- ✗ 15B Weighted ✓ Ovlp 13.04 10.57 16.66 47.7 55.1 73.2 55.6 54.5 29.1 37.2 50.4 – 1.3
13.04 10.54 16.66 48.3 54.9 72.1 55.9 54.3 28.4 35.4 49.9 -
12.40 9.97 15.42 52.9 58.9 73.7 55.7 57.5 31.1 38.2 52.6 +0.90.99B ✓ 15B 2 Step Post- ✗ 15B Agg (0.1) ✓ Ovlp 14.11 11.47 18.32 46.3 52.1 71.6 55.3 49.2 28.5 32.6 48.0 -

0.99B ✓ 15B 2 Step Post- ✓ 15B Standard ✗ Ovlp 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 +0.0
43.74 41.63 56.78 5.3 37.9 61.4 52.6 35.3 24.0 29.0 35.0 -

0.99B ✓ 15B 2 Step Post- ✓ 15B Standard ✓ Ovlp 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 +0.0
43.09 39.97 55.37 5.6 37.7 62.5 52.7 34.5 24.7 29.2 35.3 -

0.99B ✓ 15B 2 Step Co- ✗ 15B Agg (0.1) ✗ Ovlp 13.24 10.67 16.98 50.1 54.2 72.2 53.7 54.7 28.9 37.4 50.2 – 1.5
13.59 10.89 17.42 50.6 52.7 71.2 54.4 53.0 27.5 35.0 49.2 -

12.34 9.92 15.31 52.3 59.0 73.8 57.6 55.5 30.4 37.2 52.3 +0.60.99B ✓ 15B 2 Step Post- ✗ 15B Agg (0.1) ✗ New 14.49 11.86 18.89 43.9 51.3 71.0 54.9 48.1 27.5 31.4 46.9 -
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Early-exit training results on final models We applied the aggressive coefficient strategy with
distillation loss to the models uptrained on 60 billion tokens. Tables 12 and 13 summarize the
performance of intermediate loops and the final loop across three models. For fair comparison, the
full-size models (Gemma and Pythia) were also uptrained with 60 billion tokens and then post-trained
with 15 billion tokens. As the optimal strategy derived from the non-relaxed models was directly
applied to the relaxed models, further exploration of optimal strategies specifically for rleaxed models
is left for future work.

Table 12: Evaluation results of Gemma models after early-exit training. For relaxed models, we
also experimented with increasing the coefficient to 0.3 because of the lower performance of the
intermediate layer. The relaxed model with three blocks shows a more significant performance drop
because KD loss could not be utilized due to out-of-memory issues. Delta (∆) represent the accuracy
changes of the original last layer after early-exit post-training. These changes should be compared in
reference to the performance drops observed in 75B and 60B uptraining for the full-size model.

Uptrain Looping LoRA Early-Exit Train Perplexity ↓ Few-shot Accuracy ↑
N-emb PT Ntok KD Block Init Rank Init Ntok CE KD SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

1.99B ✓ 60B ✗ - - - - - - - 10.58 8.44 12.71 60.3 67.9 76.9 63.5 64.9 37.2 39.6 58.6 -
1.99B ✓ 75B ✗ - - - - - - - 11.03 8.88 13.33 57.0 65.9 76.2 63.9 63.0 35.9 38.8 57.3 – 1.3

0.99B ✓ 60B ✓ 2 Step - - - - - 11.44 9.14 13.98 56.5 62.1 75.2 59.4 59.8 32.5 38.6 54.9 -
1.07B ✓ 60B ✓ 2 Avg 64 SVD - - - 11.36 9.14 13.82 58.9 62.8 75.1 61.5 61.2 33.7 37.6 55.8 -
1.15B ✓ 60B ✓ 2 Avg 128 SVD - - - 11.25 9.04 13.64 58.7 63.6 76.5 61.2 62.6 34.6 39.0 56.6 -
1.30B ✓ 60B ✓ 2 Avg 256 SVD - - - 11.05 8.88 13.35 60.6 64.7 75.3 62.5 61.6 35.3 38.8 57.0 -
1.60B ✓ 60B ✓ 2 Avg 512 SVD - - - 10.81 8.63 12.94 61.4 65.8 76.3 63.5 65.1 37.1 39.4 58.4 -

11.71 9.56 14.46 54.0 61.7 75.1 58.9 58.6 31.9 37.6 54.0 – 0.90.99B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ 13.68 11.39 17.60 45.0 54.1 71.9 58.5 49.8 28.8 33.4 48.8 -
11.79 9.70 14.52 53.7 60.8 73.6 61.1 58.7 32.9 37.2 54.0 – 1.81.07B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ 19.45 16.46 26.10 30.7 37.9 66.5 55.3 42.2 25.3 27.6 40.8 -
11.66 9.59 14.32 53.3 62.1 74.9 60.0 59.9 33.4 38.8 54.6 – 2.01.15B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ 19.65 16.77 26.44 29.7 37.7 66.8 52.6 41.4 25.3 28.0 40.2 -
11.47 9.39 14.03 54.9 63.0 74.5 61.7 60.5 33.1 38.4 55.2 – 1.81.30B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ 19.67 16.82 26.40 29.7 38.3 66.4 53.1 43.8 24.7 27.6 40.5 -
11.20 9.14 13.58 57.2 64.1 75.2 61.7 62.1 34.6 38.2 56.2 – 2.21.60B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ 19.29 16.47 25.73 32.0 39.6 67.6 53.3 43.2 25.8 30.2 41.7 -

12.11 9.98 14.97 52.6 59.8 74.4 59.4 57.6 31.1 37.0 53.1 – 2.71.07B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ 16.09 13.54 21.19 35.4 42.8 69.8 52.8 45.8 25.8 31.0 43.3 -
11.96 9.87 14.76 52.3 60.5 74.2 59.1 58.9 33.0 37.2 53.6 – 3.01.15B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ 16.28 13.77 21.45 35.2 42.1 69.8 53.5 46.5 25.8 31.2 43.4 -
11.73 9.63 14.43 54.3 61.4 75.0 60.7 58.8 33.1 38.6 54.6 – 2.41.30B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ 16.41 13.89 21.68 35.6 42.3 69.0 52.7 46.8 26.4 29.8 43.2 -
11.47 9.36 13.93 56.2 62.7 75.4 60.9 60.4 34.0 37.0 55.2 – 3.21.60B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ 16.24 13.72 21.42 37.8 43.6 69.0 54.4 45.5 26.4 31.2 44.0 -

0.66B ✓ 60B ✓ 3 Step - - - - - 12.27 9.90 15.24 55.6 58.1 73.1 60.2 58.8 30.2 37.2 53.3 -
0.74B ✓ 60B ✓ 3 Avg 64 SVD - - - 12.13 9.80 14.95 55.5 58.3 73.5 60.1 58.0 31.1 36.8 53.3 -
0.82B ✓ 60B ✓ 3 Avg 128 SVD - - - 11.83 9.53 14.51 56.7 60.2 74.2 59.8 59.1 33.0 35.4 54.1 -
0.97B ✓ 60B ✓ 3 Avg 256 SVD - - - 11.43 9.17 13.87 59.3 62.6 74.7 61.2 61.6 32.9 40.2 56.1 -
1.27B ✓ 60B ✓ 3 Avg 512 SVD - - - 11.01 8.80 13.25 61.5 64.9 76.2 62.0 64.3 35.6 39.2 57.7 -

12.75 10.48 16.01 50.2 57.0 72.7 58.6 56.7 30.0 38.2 51.9 – 1.4
13.81 11.47 17.80 48.4 53.0 72.4 55.6 51.6 27.2 35.2 49.0 -0.66B ✓ 60B ✓ 3 Step - - 15B Agg (0.1) ✓
16.72 14.23 22.97 37.7 44.2 69.8 53.6 44.2 24.6 30.2 43.5 -
12.64 10.43 15.81 51.4 56.3 72.2 57.9 56.7 30.4 35.0 51.4 – 1.9
19.90 16.88 26.26 30.4 39.3 66.3 54.1 41.2 24.8 29.2 40.8 -0.74B ✓ 60B ✓ 3 Avg 64 SVD 15B Agg (0.1) ✗
26.31 22.49 36.10 20.9 31.2 62.6 50.8 37.2 22.0 28.0 36.1 -
12.37 10.21 15.38 52.0 58.0 72.0 56.5 58.4 30.0 35.2 51.7 – 2.4
20.07 17.09 26.47 30.9 40.5 66.3 55.4 40.8 24.4 29.6 41.1 -0.82B ✓ 60B ✓ 3 Avg 128 SVD 15B Agg (0.1) ✗
26.15 22.46 35.98 21.3 31.2 62.7 51.8 36.4 22.9 26.2 36.1 -
11.92 9.78 14.71 54.8 60.6 74.6 60.1 60.1 31.8 36.6 54.1 – 2.0
19.29 16.49 25.51 35.2 42.5 65.8 55.6 41.5 25.6 29.4 42.2 -0.97B ✓ 60B ✓ 3 Avg 256 SVD 15B Agg (0.1) ✗
25.12 21.53 34.53 23.1 32.0 63.2 49.7 36.1 23.0 25.2 36.1 -
11.49 9.38 14.00 56.1 62.7 74.4 60.5 62.1 34.9 38.8 55.7 – 3.0
18.52 15.79 24.34 36.7 44.9 67.2 55.3 43.8 26.0 30.4 43.5 -1.27B ✓ 60B ✓ 3 Avg 512 SVD 15B Agg (0.1) ✗
24.19 20.70 33.20 24.4 32.4 63.9 50.8 37.9 21.9 27.4 37.0 -

13.07 10.84 16.49 47.7 54.4 71.7 56.1 55.9 29.4 35.2 50.1 – 3.2
16.68 14.08 21.86 35.4 42.4 68.2 53.8 44.6 26.3 29.4 42.9 -0.74B ✓ 60B ✓ 3 Avg 64 SVD 15B Agg (0.3) ✗
21.43 18.26 29.12 24.4 34.1 64.3 50.5 40.7 22.3 27.8 37.7 -
12.71 10.54 15.92 50.4 55.9 73.1 57.5 56.8 30.1 34.8 51.2 – 2.9
16.90 14.32 22.18 37.6 43.5 67.6 54.5 45.0 25.3 29.0 43.2 -0.82B ✓ 60B ✓ 3 Avg 128 SVD 15B Agg (0.3) ✗
21.23 18.13 28.88 25.3 34.0 64.6 51.7 40.7 23.0 26.4 38.0 -
12.26 10.15 15.23 53.5 58.5 73.5 58.8 58.3 30.6 37.6 53.0 – 3.1
16.56 14.09 21.68 42.6 45.1 68.2 57.7 45.7 25.9 28.8 44.8 -0.97B ✓ 60B ✓ 3 Avg 256 SVD 15B Agg (0.3) ✗
20.78 17.72 28.29 27.9 34.3 66.3 52.2 39.7 23.6 26.8 38.7 -
11.80 9.68 14.45 54.1 61.2 74.0 59.0 59.9 32.9 38.0 54.1 – 3.6
16.02 13.53 20.86 43.5 47.5 68.3 56.2 47.1 27.0 30.4 45.7 -1.27B ✓ 60B ✓ 3 Avg 512 SVD 15B Agg (0.3) ✗
20.20 17.21 27.50 28.9 35.2 65.6 52.9 41.9 23.2 26.6 39.2 -
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Table 13: Evaluation results of TinyLlama and Pythia models after early-exit training. Delta (∆)
represents the accuracy change in the original last layer following early-exit post-training. In case of
Pythia, these changes should be compared in reference to the performance drops observed in 75B
and 60B uptraining for the full-size model.

Uptrain Looping LoRA Early-Exit Train Perplexity ↓ Few-shot Accuracy ↑
Models N-emb PT Ntok KD Block Init Rank Init Ntok CE KD SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

0.97B ✓ - ✗ - - - - - - - 12.26 9.37 11.94 43.3 42.2 66.8 53.4 44.7 23.2 29.2 43.3 -

0.48B ✓ 60B ✓ 2 Step - - - - - 10.51 9.01 11.60 44.2 43.1 68.2 52.4 44.7 25.3 32.2 44.3 -
0.53B ✓ 60B ✓ 2 Avg 64 SVD - - - 10.14 8.77 11.19 44.3 44.9 69.5 52.5 46.5 26.1 31.6 45.0 -
0.58B ✓ 60B ✓ 2 Avg 128 SVD - - - 10.07 8.68 11.07 45.9 45.1 69.4 50.5 46.8 25.4 31.6 45.0 -
0.68B ✓ 60B ✓ 2 Avg 256 SVD - - - 9.96 8.56 10.93 46.2 45.7 69.0 53.2 47.9 25.9 31.6 45.6 -
0.86B ✓ 60B ✓ 2 Avg 512 SVD - - - 9.85 8.44 10.76 47.4 46.3 69.7 52.8 47.5 26.3 31.4 45.9 -

10.55 9.16 11.68 45.0 43.7 68.9 53.4 44.8 25.3 32.2 44.8 + 0.50.48B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ 12.28 10.62 13.83 38.2 39.4 65.8 52.3 41.5 24.7 30.6 41.8 -
10.34 9.08 11.50 43.4 44.8 69.5 53.4 46.9 25.6 32.0 45.1 + 0.10.53B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ 21.23 18.63 24.85 16.8 29.0 57.6 48.9 33.2 23.1 27.0 33.7 -
10.25 8.97 11.36 45.2 45.5 68.8 54.0 46.5 25.0 31.6 45.2 + 0.20.58B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ 21.30 18.56 24.75 18.5 28.9 58.4 48.0 34.1 21.8 27.4 33.9 -

TinyLlama 10.13 8.84 11.23 45.2 45.9 69.6 53.6 46.9 25.9 32.0 45.6 + 0.00.68B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ 20.95 18.16 24.22 20.1 28.8 57.8 48.9 33.8 22.5 25.0 33.9 -
10.02 8.74 11.04 46.6 46.5 68.6 54.5 47.9 26.3 32.2 46.1 + 0.20.86B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ 20.38 17.70 23.57 19.9 28.8 58.2 49.0 34.7 22.8 25.8 34.2 -

10.61 9.36 11.87 42.1 43.7 68.6 54.1 46.1 26.0 31.2 44.6 – 0.40.53B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ 16.83 14.88 19.77 22.0 30.3 60.7 50.7 36.9 24.1 27.8 36.1 -
10.50 9.22 11.71 44.2 44.2 69.2 53.0 46.0 25.5 31.2 44.8 – 0.20.58B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ 17.10 15.03 19.99 23.5 30.1 60.8 51.3 36.5 23.8 26.4 36.0 -
10.34 9.07 11.51 44.0 45.0 68.4 53.0 45.8 26.0 31.2 44.8 – 0.80.68B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ 17.06 14.92 19.82 24.2 30.4 59.9 51.7 36.2 23.9 27.2 36.2 -
10.21 8.94 11.28 45.1 45.8 69.3 54.5 46.7 25.9 33.4 45.8 – 0.10.86B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ 16.76 14.68 19.43 24.4 30.0 61.1 51.9 37.1 22.9 28.2 36.5 -

0.81B ✓ 60B ✗ - - - - - - - 12.83 9.76 13.57 53.0 50.2 71.1 54.8 51.9 27.7 31.6 48.6 -
0.81B ✓ 75B ✗ - - - - - - - 12.86 9.86 13.74 54.8 50.3 70.5 55.3 52.2 28.8 33.0 49.3 + 0.7

0.40B ✓ 60B ✓ 2 Step - - - - - 14.59 11.13 15.79 47.8 43.8 69.3 52.0 48.1 25.4 30.4 45.2 -
0.44B ✓ 60B ✓ 2 Avg 64 SVD - - - 14.24 10.89 15.52 50.0 44.5 68.9 54.1 48.0 26.5 31.2 46.2 -
0.48B ✓ 60B ✓ 2 Avg 128 SVD - - - 14.10 10.79 15.27 50.1 45.5 69.0 52.6 48.3 25.8 32.0 46.2 -
0.55B ✓ 60B ✓ 2 Avg 256 SVD - - - 13.91 10.61 14.91 50.5 45.6 68.7 51.2 48.4 25.7 32.8 46.1 -
0.70B ✓ 60B ✓ 2 Avg 512 SVD - - - 13.59 10.38 14.43 52.0 47.0 69.6 53.4 48.9 26.9 31.2 47.0 -

14.72 11.38 16.31 47.0 44.2 69.2 53.4 48.6 24.7 30.4 45.4 + 0.20.40B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ 18.61 14.11 20.96 38.4 38.1 67.0 53.7 43.3 24.4 29.0 42.0 -
14.49 11.22 16.12 49.1 43.9 69.8 53.8 48.6 26.1 31.2 46.1 – 0.10.44B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ 24.43 18.19 27.89 26.7 31.6 61.6 50.8 38.2 22.9 27.6 37.1 -
14.35 11.17 15.93 50.1 44.7 69.0 52.1 49.9 25.3 32.6 46.2 + 0.00.48B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ 24.33 18.09 27.96 28.2 32.3 61.1 53.0 38.8 23.7 27.4 37.8 -

Pythia 14.14 10.96 15.54 50.8 45.5 68.2 53.9 48.8 25.3 32.8 46.5 + 0.40.55B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ 24.18 17.87 27.48 28.1 32.3 61.9 54.1 38.1 22.9 28.6 38.0 -
13.81 10.72 15.11 52.4 47.0 69.3 52.7 50.1 26.9 32.0 47.2 + 0.20.70B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ 23.50 17.49 26.72 29.5 32.8 63.2 52.3 38.8 22.8 27.8 38.2 -

14.87 11.53 16.61 47.0 43.1 68.7 53.0 47.4 25.7 31.0 45.1 – 0.90.44B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ 20.62 15.60 23.57 32.6 33.6 63.4 51.2 40.7 23.3 28.0 39.0 -
14.69 11.46 16.36 48.9 43.8 68.4 53.0 49.1 26.2 31.6 45.9 – 0.30.48B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ 20.60 15.56 23.63 33.2 33.6 62.7 51.1 41.3 23.6 27.8 39.0 -
14.44 11.20 15.94 50.0 44.7 69.2 52.3 48.1 25.4 32.2 46.0 – 0.10.55B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ 20.61 15.48 23.45 33.3 34.2 63.4 52.2 40.8 23.0 28.8 39.4 -
14.08 10.94 15.44 51.1 46.4 68.7 52.2 50.0 26.9 31.6 46.7 – 0.30.70B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ 20.20 15.25 22.98 34.6 34.1 63.5 53.0 41.5 23.6 27.6 39.7 -
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N HYPOTHETICAL GENERATION SPEEDUP

Measuring the average generation time per token First, we measured the generation time with
various model configurations using dummy weights and inputs. We measured the elapsed time for
each components, such as embedding matrices, Transformer blocks, and the classifier head. We
measured decoding speed using FlashDecoding (Dao et al., 2022), a technique that has recently
become standard in serving LLMs. Especially, we calculated the time per token by dividing the total
time by the decoding length. Default prefix and decoding lengths are set to 512 and 2048, but we also
used shorter context lengths, like 64 and 256 to simulate scenarios where parameter memory sizes
become limiting. Using a single A100 40GiB GPU, we measured generation times by increasing
batch sizes until an out-of-memory error occurred or memory usuage reached the predefined limit.
We recorded these decoding times across different batch sizes.

In Table 14, generation time was measured up to the maximum batch size that a single A100 GPU
could accommodate before encountering out-of-memory errors, with prefix and decoding lengths set
to 512 and 2048, respectively. Meanwhile, Table 16 presents generation times measured in a more
memory-constrained deployment scenario, where the prefix and decoding lengths were reduced to 64
and 256, and the memory limit was set to 16GB. As anticipated, under severe memory constraints, the
reduced parameter memory footprint of Recursive Transformers enabled substantially larger batch
sizes. This observation indicates that Recursive Transformers, even without continuous batching
techniques, can achieve higher throughput than vanilla Transformers due to their inherent memory
efficiency.

When comparing the speed of the three models, Gemma 2B was the fastest, followed by TinyLlama
1.1B and then Pythia 1B. This order is the exact inverse of their non-embedding parameter sizes. This
speed difference is attributed to the Grouped-Query and Multi-Query attention mechanisms (Ainslie
et al., 2023). The main decoding bottleneck in Transformers is memory access to the key-value
cache. Hence, Gemma that effectively reduces the key-value cache size through the MQA mechanism,
achieves fastest speeds. Despite using GQA, TinyLlama 1.1B has a similar speed to Gemma 2B
due to its shallow and deep architecture (22 layers compared to Gemma’s 18 layers). This deeper
architecture likely offsets the speed gains from the attention mechanism.

Comparison of hypothetical generation throughput We conducted early-exiting simulations using
language modeling datasets (SlimPajama, RedPajama, and PG19), assuming our models generated
the tokens. For each dataset’s test set, we employed an oracle-exiting algorithm to determine the
earliest possible exit point for each token. We used 20K samples to obtain their exit trajectories. By
combining this trajectory data with previously measured per-token processing time (considering only
Transformer block computations), we estimated the hypothetical throughput across various settings
and datasets. The results are detailed in Tables 15 and 17.

Our analysis reveals that Recursive Transformers achieve a 2-3× throughput gain over vanilla
Transformers. Relaxed models also demonstrate significant speedup despite unoptimized LoRA
computations. Currently, we merge multiple LoRAs into a single, larger LoRA to enable parallel
computation of samples across different looping iterations. However, this incurs extra overhead due
to redundant computations. Therefore, we observed reduced throughput gains in memory-constrained
scenarios (shorter context lengths and lower memory limits). This degradation stems from the
increased proportion of LoRA computation time relative to overall processing time. Because attention
computation has quadratic complexity with respec to lengths, it becomes less expensive at shorter
context lengths, while the complexity of LoRA computation remains constant. This highlights the
impact of unoptimized LoRA computations, leading to substantial throughput reduction. However,
these findings suggest that relaxed models will yield even greater performance and throughput
improvements in scenarios with longer contexts where attention computation dominates. Optimizing
LoRA computation represents a promising avenue for future work.
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Approximation errors in our hypothetical throughput Since our throughput estimations are
based on theoretical estimation, they may introduce certain approximation errors as follows:

• Because our models are not fine-tuned for any downstream task, we simulated the exit trajectory
using language modeling datasets, assuming that they are generated by our models. While we
expect this approach to closely approximate actual generation, empirical validation is necessary.

• Throughput gains should be measured using realistic early-exiting algorithms rather than relying
on the oracle-exiting algorithm. Early-exiting algorithms can introduce performance degradation
due to their inherent errors. Moreover, confidence-based algorithms add additional computational
costs for estimating prediction confidence, necessitating further efficiency improvements.

• Our analysis solely considers speed improvements within Transformer blocks. However, upon
early exiting, the exited tokens require separate processing through the embedding layer or the
classifier head for subsequent sequence generation. This necessitates waiting for non-exited tokens
and potentially reduces efficiency, as the embedding layer computation may not fully utilize the
maximum batch size.

• Existing early-exiting research often computes key-value caches in remaining layers even for exited
tokens to prevent performance degradation. While this introduces no overhead in memory-bound
scenarios, it inevitably incurs overhead in compute-bound scenarios where the maximum batch size
is utilized. However, our throughput estimation excludes this key-value cache computation time in
upper loops. Incorporating these considerations into a more realistic generation with early-exiting
analysis is left for future work.
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Table 14: Measurements of generation time across three models using a single A100 40GB GPU. We
measured time per token for both a batch size of 1 and the maximum batch size achievable by each
model. The prefix length was set to 512 tokens, and the decoded output length to 2048 tokens. We
then averaged the total elapsed time by the output length of 2048. Dummy input and dummy tensors
were used for measurement. Both Gemma, employing multi-query attention, and TinyLlama, utilizing
grouped-query attention, demonstrated fast generation speeds and large maximum batch sizes relative
to their model sizes. TinyLlama’s deep and narrow architecture allowed for a significantly large
maximum batch size, although its generation speed was slower due to the increased number of layers.

Model Architecture Recursive Time (ms) per token

Models NL dmodel Nhead NKV Vocab N-emb Block Rank Batch Total Emb Transformer Head

1 22.994 0.087 21.344 0.80318 2048 8 1 256K 1.98B - - 43 0.657 0.002 0.616 0.023
1 13.918 0.088 11.059 0.82718 2048 8 1 256K 0.99B 2 - 43 0.336 0.002 0.265 0.023
1 15.858 0.080 13.096 0.82518 2048 8 1 256K 1.07B 2 64 41 0.398 0.002 0.323 0.024
1 15.708 0.080 12.969 0.82218 2048 8 1 256K 1.15B 2 128 41 0.398 0.002 0.324 0.024
1 15.456 0.083 12.721 0.81818 2048 8 1 256K 1.30B 2 256 39 0.450 0.002 0.372 0.025

Gemma 2B 1 15.489 0.078 12.775 0.81718 2048 8 1 256K 1.60B 2 512 39 0.499 0.002 0.422 0.025
1 10.546 0.081 7.394 0.82718 2048 8 1 256K 0.66B 3 - 43 0.263 0.002 0.182 0.023
1 11.871 0.080 8.724 0.82718 2048 8 1 256K 0.74B 3 64 43 0.306 0.002 0.182 0.023
1 11.768 0.080 8.649 0.82518 2048 8 1 256K 0.82B 3 128 43 0.294 0.002 0.221 0.023
1 12.018 0.081 8.848 0.82318 2048 8 1 256K 0.97B 3 256 41 0.311 0.002 0.226 0.024
1 12.087 0.082 8.932 0.82218 2048 8 1 256K 1.27B 3 512 39 0.325 0.002 0.237 0.025

1 22.016 0.082 21.010 0.18822 2048 32 4 32K 0.97B - - 329 0.819 0.000 0.815 0.001
1 12.657 0.077 10.370 0.20922 2048 32 4 32K 0.48B 2 - 233 0.446 0.000 0.413 0.001
1 15.243 0.079 12.908 0.211

TinyLlama 1.1B 22 2048 32 4 32K 0.53B 2 64 211 0.454 0.000 0.421 0.002
1 15.456 0.082 13.118 0.21322 2048 32 4 32K 0.58B 2 128 209 0.454 0.000 0.421 0.002
1 15.223 0.081 12.908 0.20822 2048 32 4 32K 0.68B 2 256 209 0.457 0.000 0.423 0.002
1 15.383 0.080 13.062 0.21122 2048 32 4 32K 0.86B 2 512 209 0.461 0.000 0.428 0.002

1 13.280 0.080 12.286 0.23516 2048 8 8 50K 0.81B - - 53 1.227 0.002 1.206 0.005
1 8.423 0.081 6.378 0.26216 2048 8 8 50K 0.40B 2 - 61 0.856 0.001 0.606 0.005
1 10.554 0.082 8.519 0.260

Pythia 1B 16 2048 8 8 50K 0.44B 2 64 63 0.875 0.001 0.626 0.005
1 10.167 0.076 8.196 0.25616 2048 8 8 50K 0.48B 2 128 59 0.892 0.001 0.642 0.005
1 10.410 0.079 8.402 0.25816 2048 8 8 50K 0.55B 2 256 59 0.913 0.001 0.662 0.005
1 12.609 0.091 10.311 0.26716 2048 8 8 50K 0.70B 2 512 53 0.956 0.002 0.702 0.006
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Table 15: Hypothetical generation speedup of Recursive Transformers across three models. We
utilized the measurements of tokens per second calculated in Table 14. We only considered the time
spent within Transformer blocks, simulating generation on the SlimPajama, RedPajama, and PG19
test sets. We used a vanilla transformer model, both with and without continuous sequence-wise
batching, as our baselines. Our Recursive models further enhance throughput by applying continuous
depth-wise batching, leveraging looping and early-exiting techniques. The throughput improvements
over the vanilla Transformer and sequence-wise batching are denoted as ∆V and ∆Seq , respectively.
To aid in understanding the speedup, we also provide the performance of intermediate layers and the
maximum batch size.

Uptrain Looping LoRA Early-Exit Train Batching Few-shot Accuracy Throughput ↑
Models N-emb PT Ntok KD Block Init Rank Init Ntok CE KD Seq Depth Last Mid 1 Mid 2 Batch SlimP RedP PG19 ∆V ∆Seq

1.99B ✓ 75B ✗ - - - - - - - ✗ ✗ 57.3 - - 43 655 1228 1357 ×1.00 ×0.71
1.99B ✓ 75B ✗ - - - - - - - ✓ ✗ 57.3 - - 43 1622 1604 1357 ×1.41 ×1.00

0.99B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ ✓ ✓ 54.0 48.8 - 43 3159 3050 2421 ×2.66 ×1.88
1.07B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ ✓ ✓ 54.0 40.8 - 41 2357 2255 1858 ×2.00 ×1.41
1.15B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ ✓ ✓ 54.6 40.2 - 41 2355 2250 1844 ×1.99 ×1.41
1.30B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ ✓ ✓ 55.2 40.5 - 39 2047 1976 1740 ×1.78 ×1.26
1.60B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ ✓ ✓ 56.2 41.7 - 39 1806 1754 1598 ×1.59 ×1.13

1.07B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ ✓ ✓ 53.1 43.3 - 41 2454 2357 1929 ×2.08 ×1.47
1.15B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ ✓ ✓ 53.6 43.4 - 41 2445 2346 1926 ×2.07 ×1.47
1.30B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ ✓ ✓ 54.6 43.2 - 39 2123 2056 1804 ×1.85 ×1.31

Gemma 1.60B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ ✓ ✓ 55.2 44.0 - 39 1870 1819 1655 ×1.65 ×1.17

0.66B ✓ 60B ✓ 3 Step - - 15B Agg (0.1) ✓ ✓ ✓ 51.9 49.0 43.5 43 3120 3041 2729 ×2.74 ×1.94
0.74B ✓ 60B ✓ 3 Avg 64 SVD 15B Agg (0.1) ✗ ✓ ✓ 51.4 40.8 36.1 43 2334 2274 2059 ×2.06 ×1.45
0.82B ✓ 60B ✓ 3 Avg 128 SVD 15B Agg (0.1) ✗ ✓ ✓ 51.7 41.1 36.1 43 2290 2230 2007 ×2.02 ×1.42
0.97B ✓ 60B ✓ 3 Avg 256 SVD 15B Agg (0.1) ✗ ✓ ✓ 54.1 42.2 36.1 41 2281 2219 1984 ×2.00 ×1.41
1.27B ✓ 60B ✓ 3 Avg 512 SVD 15B Agg (0.1) ✗ ✓ ✓ 55.7 43.5 37.0 39 2181 2122 1900 ×1.91 ×1.35

0.74B ✓ 60B ✓ 3 Avg 64 SVD 15B Agg (0.3) ✗ ✓ ✓ 50.1 42.9 37.7 43 2427 2372 2143 ×2.14 ×1.51
0.82B ✓ 60B ✓ 3 Avg 128 SVD 15B Agg (0.3) ✗ ✓ ✓ 51.2 43.2 38.0 43 2376 2321 2084 ×2.09 ×1.48
0.97B ✓ 60B ✓ 3 Avg 256 SVD 15B Agg (0.3) ✗ ✓ ✓ 53.0 44.8 38.7 41 2359 2300 2039 ×2.07 ×1.46
1.27B ✓ 60B ✓ 3 Avg 512 SVD 15B Agg (0.3) ✗ ✓ ✓ 54.1 45.7 39.2 39 2251 2191 1975 ×1.98 ×1.40

0.97B ✓ - - - - - - - - - ✗ ✗ 43.3 - - 329 1205 1220 1194 ×1.00 ×0.99
0.97B ✓ - - - - - - - - - ✓ ✗ 43.3 - - 329 1227 1225 1194 ×1.01 ×1.00

0.48B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ ✓ ✓ 44.8 41.8 - 233 2038 2023 1933 ×1.66 ×1.64
0.53B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ ✓ ✓ 45.1 33.7 - 211 1733 1719 1617 ×1.40 ×1.39
0.58B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ ✓ ✓ 45.2 33.9 - 209 1733 1717 1609 ×1.40 ×1.39

TinyLlama 0.68B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ ✓ ✓ 45.6 33.9 - 209 1728 1714 1606 ×1.39 ×1.38
0.86B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ ✓ ✓ 46.1 34.2 - 209 1716 1702 1581 ×1.38 ×1.37

0.53B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ ✓ ✓ 44.6 36.1 - 211 1810 1796 1688 ×1.46 ×1.45
0.58B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ ✓ ✓ 44.8 36.0 - 209 1802 1787 1668 ×1.45 ×1.44
0.68B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ ✓ ✓ 44.8 36.2 - 209 1793 1779 1668 ×1.45 ×1.44
0.86B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ ✓ ✓ 45.8 36.5 - 209 1778 1763 1637 ×1.43 ×1.42

0.81B ✓ 75B ✗ - - - - - - - ✗ ✗ 49.3 - - 53 702 785 822 ×1.00 ×0.93
0.81B ✓ 75B ✗ - - - - - - - ✓ ✗ 49.3 - - 53 829 827 822 ×1.07 ×1.00

0.40B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ ✓ ✓ 45.4 42.0 - 61 1339 1333 1281 ×1.71 ×1.60
0.44B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ ✓ ✓ 46.1 37.1 - 63 1205 1203 1140 ×1.54 ×1.43
0.48B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ ✓ ✓ 46.2 37.8 - 59 1156 1180 1108 ×1.49 ×1.39

Pythia 0.55B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ ✓ ✓ 46.5 38.0 - 59 1138 1139 1071 ×1.45 ×1.35
0.70B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ ✓ ✓ 47.2 38.2 - 53 1051 1077 1021 ×1.36 ×1.27

0.44B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ ✓ ✓ 45.1 39.0 - 63 1254 1252 1190 ×1.60 ×1.49
0.48B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ ✓ ✓ 45.9 39.0 - 59 1200 1226 1153 ×1.55 ×1.45
0.55B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ ✓ ✓ 46.0 39.4 - 59 1180 1180 1112 ×1.50 ×1.40
0.70B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ ✓ ✓ 46.7 39.7 - 53 1088 1114 1058 ×1.41 ×1.32
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Table 16: Generation time measurements of Gemma models on a single A100 GPU with 16GB
memory constraint. We measured time per token for both a batch size of 1 and the maximum batch
size achievable by each model. The prefix length was set to 64 tokens, and the decoded output length
to 256 tokens. We then averaged the total elapsed time by the output length of 256. Dummy input
and dummy tensors were used for measurement.

Model Architecture Recursive Time (ms) per token

Models NL dmodel Nhead NKV Vocab N-emb Block Rank Batch Total Emb Transformer Head

1 22.577 0.084 20.937 0.80118 2048 8 1 256K 1.98B - - 111 0.207 0.001 0.188 0.010
1 13.576 0.079 10.819 0.81518 2048 8 1 256K 0.99B 2 - 123 0.118 0.001 0.091 0.009
1 15.372 0.080 12.675 0.81318 2048 8 1 256K 1.07B 2 64 117 0.140 0.001 0.112 0.009
1 15.631 0.082 12.899 0.81618 2048 8 1 256K 1.15B 2 128 115 0.141 0.001 0.113 0.010
1 15.317 0.079 12.639 0.81118 2048 8 1 256K 1.30B 2 256 111 0.143 0.001 0.115 0.010

Gemma 2B 1 15.379 0.080 12.692 0.80718 2048 8 1 256K 1.60B 2 512 103 0.158 0.001 0.127 0.011
1 10.528 0.080 7.411 0.81718 2048 8 1 256K 0.66B 3 - 131 0.087 0.001 0.058 0.010
1 11.957 0.081 8.855 0.81518 2048 8 1 256K 0.74B 3 64 123 0.105 0.001 0.075 0.009
1 11.898 0.080 8.787 0.81618 2048 8 1 256K 0.82B 3 128 121 0.103 0.001 0.074 0.009
1 11.734 0.079 8.654 0.81318 2048 8 1 256K 0.97B 3 256 117 0.106 0.001 0.076 0.009
1 11.986 0.080 8.856 0.80918 2048 8 1 256K 1.27B 3 512 107 0.125 0.001 0.090 0.010

1 23.898 0.080 22.909 0.18922 2048 32 4 32K 0.97B - - 1049 0.131 0.000 0.129 0.001
1 14.129 0.080 11.846 0.20222 2048 32 4 32K 0.48B 2 - 1121 0.070 0.000 0.064 0.001
1 14.897 0.080 12.627 0.202

TinyLlama 1.1B 22 2048 32 4 32K 0.53B 2 64 1105 0.073 0.000 0.068 0.001
1 15.090 0.081 12.778 0.20522 2048 32 4 32K 0.58B 2 128 1089 0.074 0.000 0.069 0.001
1 14.962 0.081 12.659 0.20122 2048 32 4 32K 0.68B 2 256 1065 0.076 0.000 0.071 0.001
1 15.284 0.083 12.950 0.20622 2048 32 4 32K 0.86B 2 512 1017 0.080 0.000 0.075 0.001

1 13.341 0.081 12.326 0.23916 2048 8 8 50K 0.81B - - 229 0.176 0.000 0.171 0.002
1 8.336 0.079 6.303 0.26116 2048 8 8 50K 0.40B 2 - 241 0.121 0.000 0.086 0.002
1 10.408 0.081 8.353 0.262

Pythia 1B 16 2048 8 8 50K 0.44B 2 64 233 0.133 0.000 0.097 0.002
1 10.426 0.082 8.378 0.25916 2048 8 8 50K 0.48B 2 128 221 0.137 0.000 0.101 0.002
1 10.509 0.080 8.471 0.25616 2048 8 8 50K 0.55B 2 256 205 0.151 0.000 0.115 0.002
1 11.254 0.080 9.241 0.25716 2048 8 8 50K 0.70B 2 512 165 0.177 0.001 0.139 0.002
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Table 17: Hypothetical generation speedup of Recursive Transformers across three models. We
utilized the measurements of tokens per second calculated in Table 16. We only considered the time
spent within Transformer blocks, simulating generation on the SlimPajama, RedPajama, and PG19
test sets. We used a vanilla transformer model, both with and without continuous sequence-wise
batching, as our baselines. Our Recursive models further enhance throughput by applying continuous
depth-wise batching, leveraging looping and early-exiting techniques. The throughput improvements
over the vanilla Transformer and sequence-wise batching are denoted as ∆V and ∆Seq , respectively.
To aid in understanding the speedup, we also provide the performance of intermediate layers and the
maximum batch size.

Uptrain Looping LoRA Early-Exit Train Batching Few-shot Accuracy Throughput ↑
Models N-emb PT Ntok KD Block Init Rank Init Ntok CE KD Seq Depth Last Mid 1 Mid 2 Batch SlimP RedP PG19 ∆V ∆Seq

1.99B ✓ 75B ✗ - - - - - - - ✗ ✗ 57.3 - - 111 1740 3059 4796 ×1.00 ×0.63
1.99B ✓ 75B ✗ - - - - - - - ✓ ✗ 57.3 - - 111 5287 5060 4796 ×1.58 ×1.00

0.99B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ ✓ ✓ 54.0 48.8 - 43 3159 3050 2421 ×2.50 ×1.59
1.07B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ ✓ ✓ 54.0 40.8 - 41 2357 2255 1858 ×1.87 ×1.19
1.15B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ ✓ ✓ 54.6 40.2 - 41 2355 2250 1844 ×1.87 ×1.19
1.30B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ ✓ ✓ 55.2 40.5 - 39 2047 1976 1740 ×1.86 ×1.18
1.60B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ ✓ ✓ 56.2 41.7 - 39 1806 1754 1598 ×1.73 ×1.10

1.07B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ ✓ ✓ 53.1 43.3 - 41 2454 2357 1929 ×1.95 ×1.24
1.15B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ ✓ ✓ 53.6 43.4 - 41 2445 2346 1926 ×1.95 ×1.24
1.30B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ ✓ ✓ 54.6 43.2 - 39 2123 2056 1804 ×1.93 ×1.22

Gemma 1.60B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ ✓ ✓ 55.2 44.0 - 39 1870 1819 1655 ×1.79 ×1.14

0.66B ✓ 60B ✓ 3 Step - - 15B Agg (0.1) ✓ ✓ ✓ 51.9 49.0 43.5 43 3120 3041 2729 ×2.62 ×1.66
0.74B ✓ 60B ✓ 3 Avg 64 SVD 15B Agg (0.1) ✗ ✓ ✓ 51.4 40.8 36.1 43 2334 2274 2059 ×1.87 ×1.19
0.82B ✓ 60B ✓ 3 Avg 128 SVD 15B Agg (0.1) ✗ ✓ ✓ 51.7 41.1 36.1 43 2290 2230 2007 ×1.90 ×1.20
0.97B ✓ 60B ✓ 3 Avg 256 SVD 15B Agg (0.1) ✗ ✓ ✓ 54.1 42.2 36.1 41 2281 2219 1984 ×1.86 ×1.18
1.27B ✓ 60B ✓ 3 Avg 512 SVD 15B Agg (0.1) ✗ ✓ ✓ 55.7 43.5 37.0 39 2181 2122 1900 ×1.62 ×1.03

0.74B ✓ 60B ✓ 3 Avg 64 SVD 15B Agg (0.3) ✗ ✓ ✓ 50.1 42.9 37.7 43 2427 2372 2143 ×1.94 ×1.23
0.82B ✓ 60B ✓ 3 Avg 128 SVD 15B Agg (0.3) ✗ ✓ ✓ 51.2 43.2 38.0 43 2376 2321 2084 ×1.97 ×1.25
0.97B ✓ 60B ✓ 3 Avg 256 SVD 15B Agg (0.3) ✗ ✓ ✓ 53.0 44.8 38.7 41 2359 2300 2039 ×1.92 ×1.22
1.27B ✓ 60B ✓ 3 Avg 512 SVD 15B Agg (0.3) ✗ ✓ ✓ 54.1 45.7 39.2 39 2251 2191 1975 ×1.67 ×1.06

0.97B ✓ - - - - - - - - - ✗ ✗ 43.3 - - 1049 6856 7481 4090 ×1.00 ×0.96
0.97B ✓ - - - - - - - - - ✓ ✗ 43.3 - - 1049 7709 7481 4090 ×1.05 ×1.00

0.48B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ ✓ ✓ 44.8 41.8 - 233 2038 2023 1933 ×1.70 ×1.62
0.53B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ ✓ ✓ 45.1 33.7 - 211 1733 1719 1617 ×1.38 ×1.32
0.58B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ ✓ ✓ 45.2 33.9 - 209 1733 1717 1609 ×1.36 ×1.30

TinyLlama 0.68B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ ✓ ✓ 45.6 33.9 - 209 1728 1714 1606 ×1.34 ×1.28
0.86B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ ✓ ✓ 46.1 34.2 - 209 1716 1702 1581 ×1.28 ×1.23

0.53B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ ✓ ✓ 44.6 36.1 - 211 1810 1796 1688 ×1.45 ×1.38
0.58B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ ✓ ✓ 44.8 36.0 - 209 1802 1787 1668 ×1.41 ×1.35
0.68B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ ✓ ✓ 44.8 36.2 - 209 1793 1779 1668 ×1.39 ×1.33
0.86B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ ✓ ✓ 45.8 36.5 - 209 1778 1763 1637 ×1.33 ×1.27

0.81B ✓ 75B ✗ - - - - - - - ✗ ✗ 49.3 - - 229 4273 5346 5149 ×1.00 ×0.89
0.81B ✓ 75B ✗ - - - - - - - ✓ ✗ 49.3 - - 229 5813 5724 5149 ×1.13 ×1.00

0.40B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ ✓ ✓ 45.4 42.0 - 61 1339 1333 1281 ×1.77 ×1.57
0.44B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ ✓ ✓ 46.1 37.1 - 63 1205 1203 1140 ×1.44 ×1.28
0.48B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ ✓ ✓ 46.2 37.8 - 59 1156 1180 1108 ×1.32 ×1.17

Pythia 0.55B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ ✓ ✓ 46.5 38.0 - 59 1138 1139 1071 ×1.22 ×1.08
0.70B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ ✓ ✓ 47.2 38.2 - 53 1051 1077 1021 ×0.98 ×0.87

0.44B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ ✓ ✓ 45.1 39.0 - 63 1254 1252 1190 ×1.50 ×1.33
0.48B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ ✓ ✓ 45.9 39.0 - 59 1200 1226 1153 ×1.37 ×1.22
0.55B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ ✓ ✓ 46.0 39.4 - 59 1180 1180 1112 ×1.27 ×1.12
0.70B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ ✓ ✓ 46.7 39.7 - 53 1088 1114 1058 ×1.02 ×0.90
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O INDIVIDUAL EFFECTS FROM LEVERAGING PRETRAINED LAYERS AND
RECURSIVE PATTERNS

To understand the performance of our Recursive Transformer, we established two non-recursive
baselines: full-size models and reduced-size models. The reduced size model performance is meant
to serve as a lower bound which we can use to better judge the efficacy of (1) unique looping and
parameter sharing techniques that are made possible by our approach and (2) leveraging pretrained
layers. To further ablate the effect of each of two components, we conducted experiments using the
Pythia 410M model presented in Table 18. Intuitively, we observed significant performance gains
by leveraging pretrained layers, with further improvement achieved through recursion. We believe
this additional experiment provides valuable insight into the performance contributions of the two
approaches proposed for constructing Recursive Transformers.

Table 18: Performance of recursive and baseline models with Pythia 410M to investigate the individual
contributions of pretraining layers and looping strategy. Uptraining was performed using the Pile
dataset (Gao et al., 2020), which was also used for pretraining the original Pythia model.

Uptrain Looping Loss ↓ Few-shot Accuracy ↑
N-emb PT Ntok Block Init Pile LD HS PQ WG ARC-e ARC-c OB Avg

300M ✓ - - - - 44.96 40.97 66.97 53.28 44.40 25.51 30.20 43.76

150M ✗ 15B - - 2.6468 31.48 29.53 61.37 52.49 39.14 22.44 27.00 37.63
150M ✗ 15B 2 Random 2.6252 31.55 29.94 62.30 50.88 40.28 23.98 28.20 38.02

150M ✓ 15B - - 2.4405 40.48 34.19 63.42 50.99 41.84 23.12 28.40 40.35
150M ✓ 15B 2 Stepwise 2.4006 43.41 35.59 64.58 53.04 41.58 23.81 28.80 41.54

P INITIALIZATION METHODS IN DIFFERENT BASE MODEL SIZES

In this work, we observed a consistent superiority in initialization strategies (Stepwise for recursive
conversion, and Average for relaxed recursive conversion) across both 1B and 2B model scales.
To further evaluate recursive initialization techniques on a wide range of base model sizes, we
additionally experimented with two smaller model sizes, Pythia 410M and 160M.

Our supplementary experiments in Table 19, which conducted on models with smaller sizes and
different layer numbers (24 layers for Pythia 410M and 12 layers for Pythia 160M), further validate
the superior performance of the Stepwise method for looped layer initialization (in light of the
inherent randomness in few-shot accuracy, a comparison based on the loss value would provide a
more stable measure of performance.) These findings reinforce the robustness of our key observations
regarding initialization methods for recursive conversion, complementing our original extensive
experiments.

Table 19: Comparison between initialization methods for looped layers on Pythia 410M and 160M.
Uptraining was performed using the Pile dataset, which was also used for pretraining the original
Pythia model.

Uptrain Looping Loss ↓ Few-shot Accuracy ↑
N-emb PT Ntok Block Init Pile LD HS PQ WG ARC-e ARC-c OB Avg

300M ✓ - - - - 44.96 40.97 66.97 53.28 44.40 25.51 30.20 43.76
150M ✓ 15B 2 Stepwise 2.4006 43.41 35.59 64.58 53.04 41.58 23.81 28.80 41.54
150M ✓ 15B 2 Lower 2.4393 42.98 34.32 63.93 52.41 42.34 24.15 25.00 40.73
150M ✓ 15B 2 Average 2.4471 39.84 34.17 64.31 52.25 41.04 24.66 26.60 40.41

85M ✓ - - - - 13.53 30.67 58.22 48.62 36.62 25.00 28.60 34.47
43M ✓ 15B 2 Stepwise 2.7684 21.02 29.28 60.01 48.93 37.92 23.98 28.00 35.59
43M ✓ 15B 2 Lower 2.7846 21.46 29.61 59.90 50.67 38.52 22.95 28.00 35.87
43M ✓ 15B 2 Average 2.7800 22.36 29.07 60.17 49.96 37.24 23.29 26.60 35.53
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