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Abstract

Model Inversion (MI) attacks pose a significant privacy threat by reconstructing private
training data from machine learning models. While existing defenses primarily concentrate
on model-centric approaches, the impact of data on MI robustness remains largely unex-
plored. In this work, we explore Random Erasing (RE)—a technique traditionally used for
improving model generalization under occlusion—and uncover its surprising effectiveness as
a defense against MI attacks.
Specifically, our novel feature space analysis shows that model trained with RE-images intro-
duces a significant discrepancy between the features of MI-reconstructed images and those
of the private data. At the same time, features of private images remain distinct from other
classes and well-separated from different classification regions. These effects collectively de-
grade MI reconstruction quality and attack accuracy while maintaining reasonable natural
accuracy. Furthermore, we explore two critical properties of RE including Partial Erasure
and Random Location. First, Partial Erasure prevents the model from observing entire
objects during training, and we find that this has significant impact on MI, which aims to
reconstruct the entire objects. Second, the Random Location of erasure plays a crucial role
in achieving a strong privacy-utility trade-off. Our findings highlight RE as a simple yet
effective defense mechanism that can be easily integrated with existing privacy-preserving
techniques. Our RE-based defense method is simple to implement and can be combined with
other defenses. Extensive experiments of 37 setups demonstrate that our method achieves
SOTA performance in privacy-utility tradeoff. The results consistently demonstrate the
superiority of our defense over existing defenses across different MI attacks, network ar-
chitectures, and attack configurations. For the first time, we achieve significant degrade in
attack accuracy without decrease in utility for some configurations. Our code and additional
results are included in Supplementary.

1 Introduction

Machine learning and deep neural networks (DNNs) (LeCun et al., 2015) have demonstrated their utility
across numerous domains, including computer vision (Voulodimos et al., 2018; O’Mahony et al., 2020),
natural language processing (Otter et al., 2020), and speech recognition (Deng et al., 2013; Nassif et al.,
2019). DNNs are now applied in critical areas such as medical diagnosis (Azad et al., 2021), medical imaging
(Shen et al., 2017; Lundervold & Lundervold, 2019), facial recognition (Wang & Deng, 2021; Guo & Zhang,
2019; Masi et al., 2018), and surveillance (Zhou et al., 2021; Harikrishnan et al., 2019; Hashmi et al., 2021).
However, the potential risks associated with the widespread deployment of DNNs raise significant concerns.
In many practical applications, privacy violations involving DNNs can result in the leakage of sensitive and
private data, eroding public trust in these applications. Defending against privacy violations of DNNs is of
paramount importance.

One specific type of privacy violation is Model Inversion (MI) attacks on machine learning and DNN models.
MI attacks aim to reconstruct private training data by exploiting access to machine learning models. Recent
advancements in MI attacks including GMI (Zhang et al., 2020), KedMI (Chen et al., 2021), PPA (Struppek
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Figure 1: Our Proposed Model Inversion (MI) Defense via Random Erasing (MIDRE). (a) “No
Defense”: Training a model without MI defense. L(θ) is the standard training loss, e.g., cross-entropy.
Training a model with state-of-the-art MI defense (SOTA) (b) BiDO (Peng et al., 2022), (c) NLS (Struppek
et al., 2024), and (d) TL-DMI (Ho et al., 2024), (e) MI-RAD (Koh et al., 2024) , (f) Our method. Studies
in (Peng et al., 2022; Struppek et al., 2024) focus on adding new loss to the training objective in other
to find the balance between model utility and privacy. Both TL-DMI (Ho et al., 2024) and MI-RAD (Koh
et al., 2024) focus on the model’s parameters to defend against MI. For our proposed method (f), the
training procedure and objective are the same as that in (a) “No Defense”. However, the training samples
presented to the model are partially masked, thus, reducing private training sample’s information encoded
in the model and preventing the model from observing the entire images. Therefore, MIDRE is
different from other approaches and focuses on input data only to defend. We find that this
can significantly degrade MI attacks, which require substantial amount of private training data information
encoded inside the model in order to reconstruct high-dimensional private images.

et al., 2022), MIRROR (An et al., 2022), PLG-MI (Yuan et al., 2023), and LOMMA (Nguyen et al., 2023)
have achieved remarkable progress in attacking important face recognition models. This raises privacy
concerns for models that are trained on sensitive data, such as face recognition, surveillance and medical
diagnosis.

Related works. Existing MI defenses primarily focus on model-centric strategies like model gradients
(Dwork, 2006; 2008), loss functions (Wang et al., 2021; Peng et al., 2022; Struppek et al., 2024), model
features (Ho et al., 2024), and architecture designs (Koh et al., 2024) (see Fig. 1). Earlier works (Dwork,
2006; 2008) demonstrated the ineffectiveness of traditional Differential Privacy (DP) mechanisms against
Model Inversion (MI) attacks. Recent research (Wang et al., 2021; Peng et al., 2022; Struppek et al., 2024)
has explored the impact of loss functions on MI resilience. Wang et al. (2021) restricted the dependency
between model inputs and outputs, while BiDO (Peng et al., 2022) focused on limiting the dependency
between model inputs and latent representations. To partially restore model utility, BiDO maximized the
dependency between latent representations and outputs. Struppek et al. (2024) proposed using negative label
smoothing factors as a defense. However, these loss function-based approaches often introduce conflicting
objectives, leading to significant degradation in model utility. Recently, TL-DMI (Ho et al., 2024) restricted
the number of layers to be encoded by the private training data, while MI-RAD (Koh et al., 2024) found
that removing skip connections in final layers enhances robustness. However, both approaches experience
difficulty in achieving competitive balance between utility and privacy.

Data augmentation, a technique that creates new, synthetic samples from existing data points, offers a
promising avenue for enhancing model robustness. In this paper, we pioneer the investigation of Random
Erasing (RE) (Zhong et al., 2020) for MI defense. RE, traditionally used to improve model generalization for
detecting occluded objects by removing randomly a region in training samples, demonstrates its effectiveness
as a powerful defense against MI attacks. In MI attacks, adversaries optimize reconstructed images to align
with the target model’s feature space representation of training samples. As will be shown in our novel
analysis, thanks to RE, the target model’s feature representations are inherently biased towards the RE-
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private images, the training data, rather than the private data. Consequently, RE creates a discrepancy
between the features of MI-reconstructed images and that of private images, resulting in degraded
MI attacks. Meanwhile, features of private images remain distinct from other classes, maintaining reasonable
natural accuracy. Furthermore, we highlight two crucial properties of RE that serve as an effective
MI defense: Partial Erasure and Random Location. On the one hand, Partial Erasure significantly
reduces the amount of private information embedded in the training data, preventing the model from observing
the entire image, and consequently degrades the MI attacks. On the other hand, Random Location improves
the diversity of training data, thereby, enhances the model utility. Our proposed method leads to substantial
degradation in MI reconstruction quality and attack accuracy (See Sec. 3 for our comprehensive analysis and
validation). Meanwhile, natural accuracy of the model is only moderately affected. Overall, we can achieve
state-of-the-art performance in privacy-utility trade-offs as demonstrated in our extensive experiments of
37 setups – 9 SOTA MI attacks including both white-box, black-box, and label-only MI attacks, 11 model
architectures (including vision transformer), 6 datasets and different resolution including 64× 64, 160× 160,
and 224× 224 resolution – and user study (in Supp.). Our contributions are:

• Our novel defense method, Model Inversion Defense via Random Erasing (MIDRE), is the first work
to consider the well-known RE technique as a privacy protection mechanism, leveraging its powerful
ability to reduce MI attack accuracy while maintaining model utility. All results support the SOTA
effectiveness of a simple technique in addressing a critical security concern.

• We provide a deep understanding on feature space analysis of Random Erasing’s defense effectiveness
which leads to reduce of MI attacks in MIDRE model.

• Our analysis investigates two crucial properties of RE that serve as an effective MI defense: Partial
Erasure and Random Location. With these two properties, our defense method degrades the attack
accuracy while the impact on model utility is small.

• We conduct extensive experiments (Sec. 4, Supp.) and user study (Supp.) to demonstrate that our
MIDRE can achieve SOTA privacy-utility trade-offs. Notably, in the high-resolution setting, our
MIDRE is the first to achieve competitive MI robustness without sacrificing natural accuracy. Note
that our method is very simple to implement and is complementary to existing MI defense methods.

2 Our Approach: Model Inversion Defense via Random Erasing (MIDRE)

2.1 Model inversion

A model inversion (MI) attack aims to reconstruct private training data from a trained machine learning
model. The model under attack is called a target model, Tθ. The target model Tθ is trained on a private
dataset Dpriv = {(xi, yi)}N

i=1, where xi represents the private, sensitive data and yi represents the corre-
sponding ground truth label. For example, Tθ could be a face recognition model, and xi is a face image of
an identity. The model is trained with standard loss function ℓ that penalizes the difference between model
output Tθ(x) and y.

MI attacks. The underlying idea of MI attacks is to seek a reconstruction x that achieves maximum
likelihood for a label y under Tθ:

max
x
P(y; x, Tθ) (1)

In addition, some prior to improve reconstructed image quality can be included (Zhang et al., 2020; Chen
et al., 2021). SOTA MI attacks (Zhang et al., 2020; Chen et al., 2021; Nguyen et al., 2023; Struppek et al.,
2022) also apply GAN trained on a public dataset Dpub to limit the search space for x. Dpub has no identity
intersection with Dpriv, assuming attackers can not access to any private samples.

2.2 Random Erasing (RE) as a defense

Random Erasing (RE) (Zhong et al., 2020) involves employing a random selection process to identify an
region inside an image. Subsequently, this region is altered through the application of designated pixel
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values, such as zero or the mean value obtained from the dataset, resulting in partial masking of the image.
Traditionally, RE is applied as a data augmentation technique to improve robustness of machine learning
models in the presence of object occlusion (Zhong et al., 2020).

We propose a simple configuration of RE as a MI defense, requiring only one hyper-parameter. Given a
training sample x with dimensions W ×H, we propose a square region erasing strategy to restrict private
information leakage from x. We initiate by randomly selecting a starting point, denoted as (xe, ye), within
the bounds of x. Next, we randomly select the erased area portion ae within the specified range of [0.1, ah],
guaranteeing at least 10% of x is erased during training, while ah is the only hyper-parameter of our defense.
The size of the erased region is √sRE ×

√
sRE where sRE = W × H × ae is the erased region. With

the designated region, we determine the coordinates of the erased region (xe, ye, xe + √sRE , ye + √sRE).
However, we need to ensure this selected region stays entirely within the boundaries of x, i.e. xe+√sRE ≤W ,
ye+√sRE ≤ H. If the erased region extends beyond the image width or height, we simply repeat the selection
process until we find a suitable square erased region that fits perfectly within x. We fill the erased regions
with ImageNet mean pixel value (See Supp for a detailed discussion on the impact of the erased value) to
obtain the RE-image. Note that RE is applied to all private training samples and the size and position vary
each training iteration. We depict our method in Algorithm 1 (Supp.)

3 Analysis of privacy effect of MIDRE

In this section, we analyze the privacy impact of RE within our proposed MIDRE framework. We conduct
a thorough analysis and demonstrate that RE can achieve a surprisingly state-of-the-art balance between
utility and privacy. Specifically, when employed as a defense against MI attacks, RE is the first method
to significantly reduce attack accuracy without compromising utility in certain configurations, whereas all
prior MI defenses exhibit noticeable degradation in utility to achieve similar reductions in attack success.
Experimental results in Sec. 4 further validate this finding.

We delve deeper into the mechanisms that underpin the effectiveness of RE. Importantly, we conduct a
feature space analysis to explain RE’s defense effectiveness, showing that model trained with MIDRE leads
to a discrepancy between the features of MI-reconstructed images and that of private images, resulting in
degrading of attack accuracy. At the same time, private images remain distinct from other classes and
well-separated from different classification regions, maintaining reasonable natural accuracy. Furthermore,
our analysis reveals that partial erasure, as implemented in RE, is a highly effective method for mitigating
MI attacks. Particularly, to present the model with less private pixels during training, our approach of
applying partial erasure while maintaining the original number of training epochs proves to be more effective
than the alternative approach of reducing the number of epochs without using partial erasure. We attribute
this to the fact that MI attacks rely on the target model to reconstruct the entire image, and RE’s partial
erasure prevents the target model from ever fully observing the entire image throughout the training process.
Additionally, we show that applying partial erasure at random locations, as is done in RE, is more effective
than erasure at fixed locations.

3.1 RE degrades MI significantly, achieving SOTA privacy-utility trade-off

In the analysis, we study attack accuracy and natural accuracy of a target model Tθ under different erased
region portions ae. Recall ae = sRE/(W × H), and √sRE ×

√
sRE is the dimension of the erased region.

For the target model, which is a face recognition model, in each setup, we employ the same architecture and
hyper-parameters, while modifying the erased region portions ae. Specifically, we fix the values of ae for this
analysis, to study the effect of ae to model utility (accuracy) and model privacy (attack accuracy). We vary
ae from 0.0 (indicating no random erasing and the same as No Defense) to 0.5 (erasing 50% of each input
image). After the training of Tθ, we proceed to evaluate its top 1 attack accuracy using SOTA MI attacks.
This evaluation is conducted for all target models trained with different ae. In order to ensure diversity
in our study, we employ six distinct setups for model inversion attacks, target model architecture, private
dataset, and public dataset, and both low- and high-resolution datasets.
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Setup 3: LOMMA+KedMI/FaceNet64
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Setup 5: PPA/ResNet18
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Setup 6: PPA/ResNeSt101
Stanford Dogs/AFHQ/224x224

Figure 2: Our analysis shows that Random Erasing (RE) can lead to substantial degradation
in MI reconstruction quality and attack accuracy, while natural accuracy of the model is only
moderately affected. In this analysis, we conduct 6 experimental setups with different MI attacks/target
models architecture/private/public datasets/image resolution. We analyze the attack (green line) and natural
accuracy (orange line) of the target models under different extents of random erasing applied in the training
stage, using random erasing ratio ae = sRE/(W×H) as discussed in Sec. 2.2. To properly reconstruct private
high-dimensional facial images of individuals, MI attacks require significant amount of private training data
information encoded inside the model. We find that the model using RE by small percentages can significantly
degrade MI attacks, with MI attack accuracy decreasing, for example, from 15.47% to 39.93%. However,
the natural accuracy of the model only decreases slightly, less than 4%, as sufficient information remained
in the RE-images for the model to learn to discriminate between individuals (Setup 1-3). We also observe a
high degradation in MI attack accuracy while the model accuracy increases. For instance, model accuracy
increases by 0.37%, while attack accuracy decreases by 69.39% (Setup 4). Overall, our defense demonstrates
state-of-the-art privacy-utility trade-offs and can improve model utility in certain setups

RE has small impact on model utility while degrading MI attacks significantly. Fig. 2 summa-
rizes the impact of erased portions on model performance and model inversion attacks. In all setups, we
demonstrably improve robustness against MI attacks with small sacrifice to natural accuracy. For instance,
introducing erased portions ae at a ratio of 0.2 in Setup 1 caused a small 2.76% decrease in natural accuracy
while the attack accuracy plummeted by 29.2%. This trend continues in Setup 2 – a 0.2 ratio of ae led to a
modest 3.92% decrease in natural accuracy, but a substantial 15.47% drop in attack accuracy. We note that
in Setup 3, LOMMA+KedMI attack accuracy degrades by 39.93%. For high resolution images (Setup 4, 5),
we observe an increase in model accuracy when using RE. In Setup 4, there is a significant 69.39% drop in
attack accuracy while natural accuracy slightly increase (0.37%) when ae = 0.5. Similar trend for Setup 5,
attack accuracy drops from 88.67% to 27.75% when ae = 0.4 while natural accuracy increases 1.83%. In con-
clusion, using RE-images during training significantly degrades MI attack while impact on natural accuracy
is small.

3.2 Feature space analysis of Random Erasing’s defense effectiveness

In this section, we present a novel observation that explains RE’s defense effectiveness. We observe Property
P3: Model trained with RE-private images following our MIDRE leads to a discrepancy be-
tween the features of MI-reconstructed images and that of private images, resulting in degrading
of attack accuracy.

The following analysis explains why MIDRE has Property P2. We use the following notation: ftrain,
fpriv , fRE , and frecon represent the features of training images, private images , RE-private images ,
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(a) NoDef, AttAcc = 88.67%, fNoDef
train = fNoDef

priv

(b) MIDRE, ae = 0.4, AttAcc = 27.75%, fMIDRE
train = fMIDRE

RE

Figure 3: Feature space analysis to show that, under MIDRE, fMIDRE
recon and fMIDRE

priv has a
discrepancy, degrading MI attack. We visualize penultimate layer activations of private images (⋆
fpriv), RE-private images (▼ fRE), and MI-reconstructed images (× frecon) generated by both (a) NoDef
and (b) our MIDRE model. We also visualize the convex hull for private images , RE-private images ,

and MI-reconstructed images . In (a), fNoDef
recon closely resemble fNoDef

priv , consistent with high attack

accuracy. In (b), private images and RE-private images share some similarity but they are not identical,
with partial overlap between fMIDRE

priv and fMIDRE
RE . Importantly, fMIDRE

recon closely resembles fMIDRE
RE

as RE-private is the training data for MIDRE. This results in a reduced overlap between fMIDRE
recon and

fMIDRE
priv , explaining that MI does not accurately capture the private image features under

MIDRE. More visualization can be found in Supp.

and MI-reconstructed images , respectively. To extract these features, we first train the target model without
any defense (NoDef) and another target model with our MIDRE. Then, we pass images into these models
to obtain the penultimate layer activations. Specifically, we input private images into the models to obtain
fpriv. Next, we apply RE to private images, pass these RE-private images into the models to obtain fRE .
We also perform MI attacks to obtain reconstructed images from NoDef model (resp. MIDRE model), and
then feed them into the NoDef model (resp. MIDRE model) to obtain frecon. We use the same experimental
setting as in Sec. 3.3. Then, we visualize penultimate layer activations fpriv, fRE , frecon by both NoDef and
our MIDRE model. We use ae = 0.4 to train MIDRE and to generate RE-private images. Additionally, we
visualize the convex hull of these features.

Features of MI-reconstructed images tend to match features of training data. SOTA MI attacks
aim to reconstruct images that maximize the likelihood under the target model (Eq. 1) in order to extract
training data (which possess a high likelihood under the target model). Under attacks of high accuracy,
frecon tends to match the features of training data ftrain (Nguyen et al., 2023).

Evidence. In Fig. 3 (a), as the training data of NoDef is private images fNoDef
train = fNoDef

priv , we observe that
in NoDef model, fNoDef

recon overlaps fNoDef
priv , i.e. there is significant overlap between the pink and blue polygons.

In Fig. 3 (b), the MIDRE model is trained with RE-private images fMIDRE
train = fMIDRE

RE , and as a result,
pink polygon fMIDRE

recon and green polygon fMIDRE
RE overlap. This confirms features of reconstructed

images tend to match the features of training data, i.e. fNoDef
priv in NoDef and fMIDRE

RE in MIDRE.

Mismatch in feature space of MIDRE. MIDRE is trained using RE-private images and is generalizable
to images without RE as shown in (Zhong et al., 2020). Under MIDRE target model, fMIDRE

RE and fMIDRE
priv

have partial overlaps, but they are not identical. Meanwhile, fMIDRE
recon tend to match with fMIDRE

RE (RE-
private images are training data for MIDRE, and follows the discussion above). Therefore, fMIDRE

recon do not
replicate fMIDRE

priv , significantly degrading the MI attack.
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Figure 4: MIDRE target model achieves high ac-
curacy despite partial overlap of fMIDRE

RE and

fMIDRE
priv . We visualize the penultimate layer activa-

tions of RE-private images and private images for
three identities. While fMIDRE

RE and fMIDRE
priv do not

completely overlap, the model can still classify private
images with high accuracy. This is because the pri-
vate images remain distinct from other classes and dis-
tant from other classification regions, even when their
representations are partially shared with RE-private
images (the training data). We remark that RE ran-
domly erases different regions from the images in dif-
ferent iterations, preventing the model to learn short-
cut features and forcing the model to learn intrinsic
features and become more generalizable beyond train-
ing data. More visualization can be found in Supp.

Evidence. In Fig. 3 (b), fMIDRE
RE and fMIDRE

priv are
partial overlap. Importantly, fMIDRE

recon , which over-
laps with fMIDRE

RE as explained above, only partially
overlaps with fMIDRE

priv , suggesting MI attacks fail
to guide the reconstructed features to replicate pri-
vate features. Consequently, MIDRE introduces
a discrepancy between MI-reconstructed and
private images in feature space of the target
model, degrading the attack accuracy.

Remark. Note that the mismatch between
fMIDRE

RE and fMIDRE
priv does not cause the reduction

of model utility (see Fig. 4). This is because the pri-
vate images remain distinct from other classes and
distant from other classification regions, even when
their representations are partially overlapped with
RE-private images (the training data).

3.3 Importance of partial erasure
and random location for privacy-utility trade-off

In addition to two properties discussed in Sec. 3.2
which contribute to outstanding effectiveness of ap-
plying RE to degrade MI, we analyse in this section
two properties of Random Erasing that are: Prop-
erty P2: Partial Erasure, and Property P3:
Random Location. To investigate the effect of
each property, we conduct the experiment using the
following setup: We use T = ResNet-18 (Simonyan
& Zisserman, 2014), Dpriv = Facecrub (Ng & Win-
kler, 2014), Dpub = FFHQ (Karras et al., 2019),
attack method = PPA (Struppek et al., 2022). To evaluate the effectiveness of Partial Erasure and Ran-
dom Location, we conduct experiments on three schemes: Entire Erasing (EE), Fixed Erasing (FE),
and Random Erasing (RE). These schemes are compared against a No Defense baseline, which is trained
for 100 epochs without any defense. In the Entire Erasing (EE) scheme, we randomly reduce the number
of erased samples per ID in each training epoch to simulate varying pixel concealment levels. Specifically,
we train the model for 100 epochs, and for each epoch, we erase randomly 50%, 40%, 30%, 20%, 10%, and
0% of images per ID. For Fixed Erasing (FE), a fixed location within each image is erased throughout the
entire training process. However, the erased location varied across different images. For Random Erasing
(RE), the location of erased areas is randomly selected for each image and training iteration. We train the
RE model for 100 epochs with different values of the erasure ratio, ae = 0.5, 0.4, 0.3, 0.2, 0.1 corresponding
to 50%, 40%, 30 %, 20%, and 10% pixel concealment, respectively.

Property P2 brings the privacy effect to defend against MI attacks. By erasing portions of training
images, it reduces the amount of private information exposed to the model during training. By erasing more
information, we can effectively degrade the accuracy of privacy attacks. Importantly, partial erasures prevent
the model from seeing entire images. Consequently, RE-images provide less information about the entirety
of the face, such as inter-pupillary distance, relative distances between the eyes, nose, and mouth, the position
of the cheekbones, etc. Note that, features need to be presented to the model many times during training in
order for the model to learn the features, as suggested by the common practice of using multiple epochs to
train a robust model. Property P2 reduces the frequency of presenting the features to the model during
training. Such reduced frequency using partial erasure makes it more difficult for the model to memorize
the identity features.
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Table 1: We compare three different techniques for pixel concealment, to reduce the amount of private
information presented to the model during training. The results show that simply reducing epochs as in
“Entire Erasure” is insufficient for degrading attack performance. Meanwhile, RE improves model utility
while degrading attack accuracy effectively.

Concealment
Partial Erasure Entire Erasing

Random Erasing Fixed Erasing
ae Acc (↑) AttAcc (↓) Acc (↑) AttAcc (↓) Acc (↑) AttAcc (↓)

0% 0 97.69 87.12 97.69 87.12 97.69 87.12
10% 0.1 97.91 79.76 96.13 85.26 97.33 87.83
20% 0.2 97.64 66.32 96.79 69.81 97.52 87.03
30% 0.3 97.14 46.30 96.13 50.71 97.53 89.15
40% 0.4 96.05 27.75 93.10 28.49 97.30 89.03
50% 0.5 93.77 15.98 86.69 14.86 97.21 87.59

Evidence. In Tab. 1, in terms of degrading the attack, partial erase (fixed or random) is more effective than
entire erase (reduce numbers of sample per ID) although the percentages of pixel concealment are the same.
Specifically, EE (reduce 50% images per ID) is significantly more vulnerable to attacks than RE and FE
(50% image areas are erased, trained in 100 epochs), suffering approximately 71% higher in attack accuracy.

Property P3 recovers the model utility. While information reduction can improve privacy, it may
also negatively impact model utility if too much information is erased. Fixing the erasing location for an
image means some identity feature of this image will never be presented to the model, model may not have
adequate information to learn effectively. RE avoids this issue. As the location of erased area is changed
in each training iteration, RE improves the diversity of the training data and ensures that the model still
observes a significant portion of the image.

Evidence. In Tab. 1, RE improves the model accuracy while maintains the same attack accuracy as FE
in different erased portion ratio ae. For instance, RE has higher model accuracy than FE by 7.08% with ae

= 0.5. With ae = 0.3 and 0.4, RE has higher accuracy and lower attack accuracy than EE model, showing
that privacy effect of RE.

4 Experiments

4.1 Experimental Setting

To demonstrate the generalisation of our proposed MI defense, we carry out multiple experiments using
different SOTA MI attacks on various architectures. In addition, we also use different setups for public
and private data. The summary of all experiment setups is shown in Tab. 2. In total, we conducted 37
experiment setups to demonstrate the effectiveness of our proposed defense MIDRE.

Dataset: We follow the same setups as SOTA attacks (Zhang et al., 2020; Nguyen et al., 2023; Struppek
et al., 2022) and defense (Peng et al., 2022; Struppek et al., 2024; Ho et al., 2024) to conduct the experiments
on four datasets including: CelebA (Liu et al., 2015), FaceScrub (Ng & Winkler, 2014), VGGFace2 (Cao
et al., 2018), and Stanford Dogs (Dataset, 2011). We use FFHQ (Karras et al., 2019) and AFHQ Dogs (Choi
et al., 2020) for the public dataset. We strictly follow (Zhang et al., 2020; Nguyen et al., 2023; Struppek
et al., 2022; An et al., 2022; Peng et al., 2022; Struppek et al., 2024; Ho et al., 2024; Koh et al., 2024) to
divide the datasets into public and private set. See Supp for the details of datasets.

Model Inversion Attacks. To evaluate the effectiveness of our proposed defense MIDRE, we employ a
comprehensive suite of state-of-the-art MI attacks. This includes various attack categories: white-box and
label-only, one type of black-box attack. To assess robustness at high resolutions, we employ PPA (Struppek
et al., 2022) and IF-GMI (Qiu et al., 2024) against attacks targeting 224×224 pixels and MIRROR (An et al.,
2022) against attacks targeting 224×224 and 160×160 pixels. For low resolution 64×64 pixels, we leverage
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Table 2: Details of our experiments. In total, we conduct 37 experiment setups to demonstrate the effec-
tiveness of MIDRE.

Attack T Dpriv Dpub Resolution
GMI (Zhang et al., 2020)

VGG16 (Simonyan & Zisserman, 2014)
IR152 (He et al., 2016)
FaceNet64 (Cheng et al., 2017)

CelebA CelebA/FFHQ 64×64

KedMI (Chen et al., 2021)
LOMMA (Nguyen et al., 2023)
PLGMI (Yuan et al., 2023)
RLBMI (Han et al., 2023)
BREPMI (Kahla et al., 2022)

PPA (Struppek et al., 2022)

ResNet18 (He et al., 2016)

Facescrub FFHQ
224×224

ResNet101 (He et al., 2016)
ResNet152 (He et al., 2016)

DenseNet121 (Huang et al., 2017)
DenseNet169 (Huang et al., 2017)

MaxVIT (Tu et al., 2022)
ResneSt101 Stanford Dogs AFHQ Dogs

MIRROR (An et al., 2022) Inception-V1 (Inc) VGGFace2 FFHQ 160×160
ResNet50 (He et al., 2016) 224×224

IF-GMI (Qiu et al., 2024) ResNet18 Facescrub FFHQ 224×224ResNet152

four SOTA white-box attacks: GMI (Zhang et al., 2020), KedMI (Chen et al., 2021), PLG-MI (Yuan et al.,
2023), and LOMMA (Nguyen et al., 2023) (including LOMMA+GMI and LOMMA+KedMI). Additionally,
we incorporate RLBMI (Han et al., 2023) for black-box attack and BREPMI (Kahla et al., 2022) for label-
only attack. We strictly replicate the experimental setups in (Zhang et al., 2020; Chen et al., 2021; Yuan
et al., 2023; Nguyen et al., 2023; Struppek et al., 2022; Peng et al., 2022; Han et al., 2023; An et al., 2022)
to ensure a fair comparison between NoDef (the baseline model without defense), existing state-of-the-art
defenses, and our proposed method, MIDRE.

Target Models. We follow other MI research (Zhang et al., 2020; Nguyen et al., 2023; Struppek et al.,
2022; Peng et al., 2022) to train defense models. We use 11 architectures for the target model to assess its
resistance to MI attacks using various experimental configurations. The details are summarized in Tab. 2.
We train target models with the same hyper-parameter (ah) for all low-resolution data set-ups. In addition,
for high-resolution data, we use two value for hyper-parameter ah = 0.4 and ah = 0.8 across all setups.
This allows us to demonstrate MIDRE’s effectiveness in achieving the optimal trade-off between utility and
privacy with consistent hyper-parameter.

Comparison Methods. We compare the performance of our model against no defending method (NoDef)
and five defense methods, including NLS (Negative Label Smoothing)(Struppek et al., 2024), TL-DMI (Ho
et al., 2024), MI-RAD (MI-resilient architecture designs) (Koh et al., 2024), BiDO (Peng et al., 2022), and
MID (Wang et al., 2021). As for MI-RAD (Koh et al., 2024), we compare our results to Removal of Last
Stage Skip-Connection (RoLSS), Skip-Connection Scaling Factor (SSF), Two-Stage Training Scheme (TTS).

We establish a baseline (NoDef) by training the target model from scratch without incorporating any MI
defense strategy. According to NLS, TL-DMI, MI-RAD, we follow their setup and evaluation to compare
with MIDRE. We then carefully tune the hyper-parameters of each method to achieve optimal performance.

Evaluation Metrics. MI defenses typically involve a trade-off between the model’s utility and its resistance
to model inversion attacks. In this section, we evaluate these defenses using two key metrics: Natural
Accuracy (Acc ↑) to evaluate the model utility and Attack accuracy (AttAcc ↓) and to evaluate the model
privacy. We further show other evaluation metrics, including K-Nearest Neighbor Distance, δeval, δface

(Struppek et al., 2022), complement these results with qualitative results and a user study in Supp.

4.2 Comparison against SOTA MI Defenses

We compare the model accuracy and attack accuracy of defense models in 6 architectures using attack method
PPA (Struppek et al., 2022) in Fig. 5. All the target models are trained on Facescrub dataset. Interestingly,
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Figure 5: We evaluate PPA attack (Struppek et al., 2022) on our proposed method, NoDef, MID (Wang
et al., 2021), BiDO (Peng et al., 2022), NLS (Struppek et al., 2024), and TL-DMI (Ho et al., 2024). Target
models are trained on Dpriv = Facescrub with 6 architectures. The results show that our method archives
the best trade-of between utility and privacy among state-of-the-art defenses.
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Figure 6: We evaluate MIRROR attack (An et al., 2022) on VGGFace2 dataset. The results show that our
method archives the best trade-of between utility and privacy than NoDef model.
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Figure 7: Results of IF-GMI (Qiu et al., 2024) attack on Facescrub dataset. Here, we use T = ResNet18/
ResNet152, Dpriv = Facescrub, Dpub = FFHQ, image resolution = 224×224 images.

we are the first to observe that our defense models achieve higher natural accuracy but lower attack acuracy
than no defense model for larger image sizes (224×224). With small masking areas (Ours(0.1,0.4)), our
proposed method consistently achieves the lowest attack accuracy among all defense models while its natural
accuracy is higher than NoDef, BiDO, MID, and DP models. For example, using ResNet101, our model
reduces attack accuracy by 39.42% compared to NoDef while achieving the model accuracy is higher than
NoDef model 3.16%. MaxVIT, a recent advanced architecture, has very high attack accuracy (80.66%).
Our defense mechanism significantly enhances its robustness, lowering attack accuracy to 42.5% without
compromising model performance. By increasing the masking areas (Ours(0.1,0.8)), they achieve a significant
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Table 3: We report the MI attacks under multiple SOTA MI attacks on images with resolution 64×64. We
compare the performance of these attacks against existing defenses including NoDef, NLS, and our MIDRE.
T = VGG16, Dpriv = CelebA, Dpub = CelebA.

Attack Defense Acc ↑ AttAcc ↓ ∆ ↑

LOMMA + GMI
NoDef 85.74 53.64 ± 4.64 -
NLS 80.02 39.16 ± 4.25 2.53
MIDRE 79.85 26.62 ± 1.93 4.59

LOMMA + KedMI
NoDef 85.74 72.96 ± 1.92 -
NLS 80.02 63.60 ± 1.37 1.64
MIDRE 79.85 41.82 ± 1.24 5.29

PLGMI
NoDef 85.74 71.00 ± 3.31 -
NLS 80.02 72.00 ± 2.50 -0.17
MIDRE 79.85 66.60 ± 2.94 0.75

reduction in attack accuracy while maintaining high natural accuracy, outperforming other strong defense
methods like NLS and TL-DMI. Specially, our attack accuracies are below 20% for all architectures. This
represents the best utility-privacy trade-off among all evaluated defense models, demonstrating our method’s
effectiveness in mitigating model inversion attacks.

We further show the effectiveness of our proposed method using two attacks MIRROR An et al. (2022) and
IF-GMI (Qiu et al., 2024). Regarding the MIRROR attack, we compare the results of our proposed method
and the NoDef model using Dpriv = VGGFace2 (see Fig. 6). Our defense reduces the attack accuracy by
22% and 70% without harming model utility, where the target model T = ResNet50/InceptionV1. Results
of IF-GMI attack are shown in Fig. 7. The results show that our MIDRE reduce the attack accuracy by
more than 22%.

For low resolution attacks, we evaluate against four MI attacks, including GMI (Zhang et al., 2020),
KedMI (Chen et al., 2021), LOMMA (Nguyen et al., 2023) with two variances (LOMMA+GMI and
LOMMA+KedMI), and PLGMI (Yuan et al., 2023) We follow the same setup and compare with NLS
in Tab. 3. In addition, we also use NoDef baseline in NLS paper to compare and estimate ∆ in Tab. 3.
Overall, our proposed method, MIDRE, achieves significant improvements in security for 64×64 setups com-
pared to SOTA MI defenses. MIDRE achieves this by demonstrably reducing top-1 attack accuracy while
maintaining natural accuracy on par with other leading MI defenses. More results of other attacks can be
found in Supp.

The experiment results demonstrate that our defense model has a small impact on model utility while
significantly enhancing the model’s robustness against state-of-the-art MI attacks. Moreover, we are the first
to report a substantial improvement in model utility among all existing defenses.

4.3 Ablation study on data augmentation type.

To evaluate the effectiveness of our method compared to other data augmentation-based defenses, we compare
MIDRE with models trained using CutMix, random cropping, and Gaussian blur. These augmentations are
commonly employed to enhance model generalization. Here, we use the setup: attack method = PPA, T =
ResNet18, Dpriv = Facescrub, Dpub = FFHQ, image resolution =224×224.

The results, summarized in Table 4, indicate that while alternative augmentations provide some level of
protection, MIDRE consistently achieves the best balance between utility and privacy, significantly degrading
MI attack performance while maintaining competitive natural accuracy.

4.4 Combination with Existing Defenses

Since MIDRE improves defense effectiveness from the training data perspective, our proposed method can be
combined with other defense mechanism from the training objective perspective such as BiDO (Peng et al.,
2022) and NLS (Struppek et al., 2024). We use 2 setups: Setup 1: T = ResNet152, Dpriv = Facescrub, Dpub
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Table 4: We report the PPA attack on images with resolution 224×224. T = ResNet18, Dpriv = Facescrub,
Dpub = FFHQ to target models trained with different data augmentation. MIDRE consistently achieves the
best balance between utility and privacy, significantly degrading MI attack performance while maintaining
competitive natural accuracy.

Attack Defense Acc ↑ AttAcc ↓

PPA

NoDef 94.22 88.67
MIDRE 97.28 48.16
CutMix 98.74 67.12

Random Cropping 92.24 74.22
Gaussian Blur 97.57 87.12

Table 5: The combination MIDRE with existing defense BiDO and NLS. The combine models significantly
reduces attack accuracy compared to individual defenses. We denote “OP" for ∆ if the accuracy of the
defense model outperforms that of the NoDef model.

Setup Defense Acc (↑) AttAcc (↓) ∆(↑)

Setup 1

NoDef 95.43 86.51 -
NLS 91.50 13.94 18.47
MIDRE 95.47 15.97 OP
MIDRE + NLS 93.69 3.75 47.65

Setup 2

NoDef 86.90 81.80 ± 1.44 -
BiDO 79.85 63.00 ± 2.08 2.67
MIDRE 79.85 43.07 ± 1.99 5.49
MIDRE + BiDO 82.15 39.00 ± 1.30 9.01

= FFHQ, Attack method = PPA, image size = 224 × 224. Setup 2: T = VGG16, Dpriv/Dpub = CelebA,
Attack method = LOMMA + KedMI, image size = 64 × 64. We use ae = [0.1,0.8] and ae = [0.1,0.4] for
setup 1 and setup 2 to train MIDRE and during attack.

The results (see Tab. 5) demonstrate the effectiveness of combining MIDRE with either NLS or BiDO for
enhancing defense against MI attacks, as our MIDRE takes a data-centric perspective for defense, comple-
mentary to existing defenses. In both experimental setups, the combination models demonstrate a substantial
reduction in attack accuracy compared to using MIDRE or the other defenses independently. In particular,
in setup 1, the combination of MIDRE and Negative LS achieves a remarkable 3.75% attack accuracy when
using the state-of-the-art PPA attack while preserving model utility. For Setup 2, MIDRE + BiDO improves
the natural accuracy of the model by 2.3% while reducing the attack accuracy by 4.07% and 24% compared
to MIDRE and BiDO, respectively. This shows our effectiveness of combining MIDRE and existing
defense for a better defense. The combination ability of MIDRE supports that it examines a distinct
aspect of the system by focusing on data input, setting it apart from other existing approaches to defend
against model inversion attacks.

5 Conclusion

We propose a novel approach to MI Defense via Random Erasing (MIDRE). We conduct an analysis to
demonstrate that RE possess two crucial properties to degrade MI attack while the impact on model utility
is small. Furthermore, our features space analysis shows that model trained with RE-private images following
MIDRE leads to a discrepancy between the features of MI-reconstructed images and that of private images,
resulting in reducing of attack accuracy. Experiments validate that our approach achieves outstanding
performance in balancing model privacy and utility. The results consistently demonstrate the superiority of
our method over existing defenses across various MI attacks, network architectures, and attack configurations.
The code and additional results can be found in the Supplementary section.
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