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Abstract

Test-Time Personalized Federated Learning (TTPFL) has emerged as a promising approach
for adapting models to distribution shifts in federated learning (FL) environments without
relying on labeled data during testing. However, existing methods often struggle with het-
erogeneous shifts across clients and lack the flexibility to handle diverse distribution changes
effectively. In this paper, we introduce DynFed, a novel algorithm that dynamically opti-
mizes test-time adaptation (TTA) in FL scenarios with heterogeneous distribution shifts.
Our method leverages Adaptive Rate Networks (ARNs) to generate client-specific adapta-
tion rates, enabling more effective handling of diverse shift types, including label skew and
feature shifts. DynFed employs an innovative iterative adaptation process, where ARNs
continuously refine adaptation rates based on the current adaptation state, without direct
access to raw client data. Crucially, we uncover a fundamental dichotomy: optimal adap-
tation strategies for one-type and multi-type distribution shifts are diametrically opposed.
DynFed navigates this challenge by automatically adjusting its approach based on the nature
of the encountered shifts. Extensive experiments and theoretical analysis demonstrate that
DynFed significantly outperforms existing TTPFL and TTA methods across various shift
scenarios. Our method shows particularly robust performance in complex multi-type shift
environments, where previous approaches often struggle. This work opens new avenues for
adaptive and resilient FL in real-world applications where distribution shifts are diverse and
unpredictable.

1 Introduction

Federated Learning (FL) has emerged as a powerful paradigm for distributed machine learning, enabling
models to be trained across multiple decentralized edge devices or servers holding local data samples without
the need to exchange them |[McMahan et al.|(2017));|Zhao et al.| (2018);[Mohri et al.[(2019);|Wang et al.| (2021b;
2023; |2024cjbsa)). This paradigm ensures data privacy and security by keeping data localized. However, the
performance of FL models often degrades when confronted with distribution shifts between training and test
data, a challenge exacerbated by the heterogeneous nature of client data in real-world scenarios.

Test-time Adaptation (TTA) has shown promise in addressing this issue by allowing models to adapt to new
distributions during inference Zhang et al.| (2022)); |[Wang et al.| (2021a; |2022)). TTA methods enable models
to adjust to unseen data distributions, thus enhancing robustness and performance. Recently, Test-time
Personalized Federated Learning (TTPFL) has been proposed to combine the benefits of TTA with FL Bao
et al.| (2024), allowing for unsupervised local adaptation of global models during test time. TTPFL methods
provide a framework for individualized model adjustments based on the local data characteristics of each
client. However, Existing methods for handling distribution heterogeneity in FL face a critical limitation as
depicted as Figure |l (b). These approaches typically operate under the assumption that all clients encounter
data conditions of a consistent type, known as one-type distribution heterogeneity.

This implies that the heterogeneous distributions across clients are uniform, such as all clients experienc-
ing either label skew or all experiencing feature shift. In real-world scenarios, it is impossible to preset
the type of heterogeneous distribution each client may encounter. Multi-type distribution heterogeneity is
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Figure 1: Comparison of TTPFL and DynFed adaptation processes. (a) TTPFL applies uniform adaptation
across all clients, resulting in identical local models after each round. (b) DynFed employs client-specific
adaptation, leading to diverse local models tailored to each client’s distribution. The varying sizes of local
model weights (wq, we, ws) in (b) illustrate the personalized nature of DynFed’s adaptation. (c¢) Legend
explaining the symbols used in the figure, where W represents the global model, and w,, denotes n th client-
specific weights after adaptation.

common in FL settings, where some clients may face label skew while others face feature shift. In response
to this complex heterogeneous environment, current methods employ fixed adaptation rates for all clients
and model components, severely restricting their ability to effectively adapt to heterogeneous distribution
shifts. These fixed rates fail to account for the varying degrees of distribution shifts experienced by different
clients, resulting in suboptimal adaptation and performance. To address this challenge, we introduce Dyn-
Fed, a novel algorithm designed to dynamically optimize test-time adaptation in FL system characterized
by heterogeneous distribution shifts. Our approach leverages Adaptive Rate Networks (ARNS) to generate
client-specific adaptation rates, enabling more effective handling of diverse shift types. The comparison
illustrated in Figure [I] highlights the key advantage of our proposed DynFed framework over traditional
TTPFL. Our method facilitate client-specific, dynamic adaptation of the global model, in contrast to the
uniform adaptation approach employed by conventional TTPFL methods. DynFed employs an innovative
iterative adaptation process, where ARNs continuously refine adaptation rates based on the current adap-
tation state. This process ensures that the adaptation rates are tailored to the specific batch data of each
client, thereby enhancing the overall performance and robustness of the federated system in the presence of
diverse distribution shifts. The main contributions of our work are as follows:

e We propose a new framework for TTPFL that explicitly accounts for multi-type distribution shifts
across clients, including both label skew and feature shifts.

o We introduce Adaptive Rate Networks (ARNs) that incremental generate personalized adaptation
rates for each client and model component, significantly improving upon fixed-rate adaptation meth-
ods.

e We uncover a critical insight: the optimal adaptation strategies for one-type and multi-type distri-
bution shifts are fundamentally opposed. Our method, DynFed, effectively navigates this dichotomy
by automatically adjusting its strategy based on the nature of the distribution shifts encountered.

o Extensive experiments on various FL. benchmarks show that DynFed significantly outperforms tra-
ditional TTA and the state-of-the-art TTPFL methods across different types of distribution shifts.

In general, our work represents a significant step towards making the TTPFL framework more robust and
adaptable in real-world scenarios, where distribution shifts are diverse and unpredictable. By addressing the
limitations of current TTPFL methods, DynFed paves the way for more effective and flexible FL systems
capable of handling the complexities of real-world data distributions. The rest of this paper is organized as
follows: We first review related work in Section 2. Section 3 formally defines the problem setting. We then
detail our proposed method in Section 4. Experimental results are presented in Section 5.
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2 Related Work

2.1 Federated Learning.

Federated Learning (FL) has emerged as a transformative paradigm in distributed machine learning, ad-
dressing critical concerns of privacy and data locality. Introduced by McMahan et al.| (2017), FL enables
model training across decentralized edge devices or servers holding local data samples, without the need for
direct data exchange. The seminal FedAvg algorithm, which aggregates locally computed gradients to update
a global model, laid the foundation for this field. Since its inception, FL. has undergone rapid development
across various aspects, including communication efficiency |Kone¢ny et al.| (2016), privacy preservation |Geyer,
et al.| (2017)).

The core challenge in real-world FL applications is data heterogeneity, commonly referred to as the non-IID
(not independently and identically distributed) problem [Zhao et al.| (2018). This issue arises as clients often
possess diverse label and feature distributions, reflecting their varied behaviors and habits [Tan et al.[(2022b));
Luo et al.| (2021). To address this challenge, several innovative approaches have proposed. Clustering-based
FL methods aim to group clients based on their data similarity |Ghosh et al.[(2019); Ma et al.| (2022), allowing
for more targeted model updates. Concurrently, meta-learning techniques have been leveraged to enhance
the personalization capabilities of local models [Fallah et al| (2020). Additionally, model decoupling schemes
have been introduced to facilitate better personalization while maintaining the benefits of collaborative
learning [Tan et al.| (2023); [Bao et al.| (2023)); |[Baek et al.| (2023)).

2.2 Test-Time Adaption.

Test-Time Adaptation (TTA) has emerged as a crucial method in machine learning for addressing distribu-
tion shifts between training and test data without necessitating model retraining or access to labeled test
samples. The core principle of TTA involves adapting the model during inference using only unlabeled test
data. Various approaches have been developed to tackle this challenge effectively. Entropy minimization,
introduced by Wang et al.| (2021a)), stands as a fundamental TTA technique. This method fine-tunes the
model to generate more confident predictions on test data, thereby aligning the model with the target dis-
tribution. Building upon this concept, self-supervised learning has been integrated into TTA frameworks to
more efficiently utilize unlabeled test data|[Chen et al.|(2022)). This integration allows for the creation of aux-
iliary tasks that guide adaptation without relying on explicit labels. Recent advancements in TTA include
more sophisticated techniques. SAR [Niu et al. (2023)) enhances adaptation by eliminating high-gradient
samples and promoting weights that lead to flat minima, thus improving generalization. In the realm of
pseudo labeling-based methods, PL [Lee et al.| (2013)) refines model parameters using confidently predicted
pseudo labels. SHOT [Liang et al.[(2020) takes a hybrid approach, combining entropy minimization strategies
with pseudo labeling techniques to achieve robust adaptation. These diverse methods collectively represent
the ongoing efforts to develop TTA approaches that are both effective and widely applicable across various
domains and types of distribution shifts.

2.3 Test-Time Adaptation in Federated Learning.

Test-Time Adaptation in Federated Learning ( TTA-FL) presents a more complex scenario compared to tra-
ditional end-to-end TTA, primarily due to the inherent data distribution challenges in FL environments|Jiang
& Lin| (2023); Tan et al.| (2024); Wan et al.| (2024). While conventional TTA methods focus on adapting
models to shifts between a single source and target domain, TTA-FL must contend with multiple, hetero-
geneous client distributions, It can also be called Test-Time Personlized Federated Learning ( TTPFL) Bao
et al.| (2024), this means that the source model is a trained global model, but personalized to the data of in-
dividual clients. Existing methods assume that all clients face consistent data type conditions, referred to as
one-type distribution heterogeneity, where the heterogeneous distributions on each client are the same, such
as either uniformly label skew or uniformly feature shift. However, in real-world scenarios, it is impossible to
preset the type of heterogeneous distribution on each client. Multi-type distribution heterogeneity is quite
common, where in a FL scenario, some clients experience label skew while others experience feature shift.
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Existing TTPFL Bao et al.| (2024)) methods utilize a uniform adaptation rate for all participating clients,
which is evidently inadequate for addressing the needs of multi-type distribution heterogeneity scenarios.

3 Preliminaries

In this section, we first introduced the notion of TTPFL antecedents. Then the limitations of the current
framework for TTPFL are discussed.

3.1 Test-time personalized federated learning
3.1.1 Global and Personalized Federated Learning

Global Federated Learning (GFL) aims to find a single global model that minimizes the expected loss over
the client population:

L(wg) = Ep~qllp(wg)], where Lp(wg) = Eyepl(f(z;we);y) (1)

where wg represents the parameters of the global model, £(w¢g) is the overall loss function for the global
model, P represents the data distribution of an individual client, @ is the distribution of client distributions,
Lp(we) is the loss function for a specific client with distribution P, z and y are input features and labels
respectively, £(-;-) represents the loss function (e.g., cross-entropy), f(-;-) represents the model function
parameterized by wg, and E[] denotes the expectation operator. GFL mandates that each client uses
the same global model for prediction, precluding adaptation to each client’s unique data distribution. In
contrast, personalized federated learning (PFL) customizes the global model w¢ using the client’s labeled
data and employs the personalized model for prediction. However, most PFL algorithms Tan et al.| (2022a);
Deng et al.| (2020); Fallah et al.| (2020) assume that the target client also possesses additional labeled data,
a stronger assumption compared to GFL.

3.1.2 Test-Time Personalized Federated Learning

In the paper [Bao et al.| (2024), they introduced a novel paradigm called test-time personalization federated
learning (aka TTPFL). TTPFL focuses on adapting a trained global model to each target client’s unlabeled
data during test-time, utilizing an adaptation rule A that operates solely on unlabeled data. The objective
function can be formulated as:

L(wg,A) =EpqlLp(wg,A)], where Lp(wg,A)=Eq)epl(f(z;A(Wa, X));y) (2)
which can be unbiasedly estimated by the average loss over M target clients unseen during training:

~

M M
1 A 4 1
E(WG7A) = M Z‘CTJ' (WG7A)7 where ['Tj (WG7A) = mi Zg(f(xgyvA<WG7X§"J))7y§“J) (3)
j=1 J r=1

where ﬁpj (wg, A) denotes the empirical loss on the j-th target client. The adaptation rule A modifies
the global model using unlabeled samples X;j. TTPFL consider two standard settings: Test-Time Batch
Adaptation (TTBA) and Online Test-Time Adaptation (OTTA)Liang et al| (2024). TTBA individually
adapts the global model to each batch of unlabeled samples, where Xﬁ represents the data batch containing
T, - OTTA adapts the global model in an online manner, where X}j encompasses all data batches arriving
before or concurrently with T

3.2 Limitation of TTPFL

Despite the promising advancements in TTPFL, current approaches suffer from several key limitations that
hinder their effectiveness in real-world scenarios. Existing methods often presume a uniform distribution
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shift across all clients, neglecting the reality of heterogeneous shifts in federated environments. This over-
simplification is compounded by the prevalent use of static, predefined adaptation rates for all clients and
model components, significantly limiting the ability to adapt to diverse and dynamic distribution shifts. To
formally express this limitation, we can formulate the TTPFL objective as:

4 . . 1 . A
L(wa,a;j =1M,6;5=1") = i > i=1"Lp (wa, a;,6;) (4)

where wg represents the global model parameters, o;j = 1M denotes the set of adaptation rates for M
clients, §;5 = 1M represents the set of distribution shifts for each client, and L p;(wa, aj,d;) is the empirical
loss on client j using adaptation rate «; under distribution shift ;. This formulation highlights the key
limitation: each client j may require a different adaptation rate «; to handle its specific distribution shift
0, which is challenging to achieve effectively in practice, especially for multi-type distribution shifts and
dynamically changing environments. Furthermore, many TTPFL algorithms lack mechanisms to gradually
adjust adaptation strategies based on evolving client data distributions, potentially leading to suboptimal
performance over time The inefficient use of historical adaptation information also represents
a missed opportunity for more informed and efficient adaptation processes. These interrelated issues col-
lectively impair the effectiveness of TTPFL in complex, real-world federated learning environments
let al.| (2023); |Zhang et al.| (2024), where distribution shifts are often multifaceted, diverse, and continually
evolving.
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Figure 2: Loss landscapes and optimal adaptation directions for different types of distribution shifts. Left:
Feature shift only. Middle: Label shift only. Right: Multi-type distribution shift (combined feature and
label shifts in different clients, And the two-type shifts don’t overlap). White arrows indicate the optimal
adaptation directions. Note that the optimal direction for multi-type shift differs significantly from single-
type shifts in FL, justifying the need for different adaptive scaling in participant clients.

3.3 Challenges

The primary challenge in TTPFL lies in effectively addressing the not only one-type distribution hetero-
geneity prevalent in real-world FL environments. This challenge is significantly more complex than dealing
with one-type distribution heterogeneity, as the optimization directions for different types of shifts can be
inconsistent or even conflicting. Our experiment observations, as illustrated in Figure [2| reveal a critical
insight: Even the direction of the adaption is not consistent across one-type distribution shifts. When multi-
ple distinct distribution shifts occur simultaneously across different clients, the optimal adaptation direction
without server communication can be diametrically opposed to the direction in scenarios with a single, uni-
form shift. This phenomenon underscores the inadequacy of conventional TTPFL methods that assume a
homogeneous distribution shift across all clients.

[Adaptation Strategy Dichotomy] Let Sy,...,Sn denote a set of clients experiencing a one-type distribution
shift (either purely feature or purely label shift), and let My,..., My denote a set of clients experiencing
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multi-type (mixed) distribution shifts. Then, under strong convexity assumptions, the optimal adaptation
rate vectors g for one-type shifts and o, for multi-type shifts satisfy

as - ajy, <0, (5)

where “-” denotes the dot product, indicating that the optimal adaptation directions are negatively corre-
lated.

The core challenge, therefore, is to develop a unified approach that can effectively handle diverse types of
distribution shifts occurring across different clients. This approach must be capable of gradually adjusting
adaptation strategies to accommodate these heterogeneous shifts. Furthermore, this solution must operate
within the constraints of FL, maintaining data privacy and minimizing communication overhead. The ability
to address these multifaceted challenges without compromising the core principles of FL is the cornerstone
of our proposed DynFed method.

4 Method

In this section, we introduce DynFed, a novel framework that gradually generates client-specific adaptation
rates for each module in FL settings. Our approach addresses the challenges of heterogeneous distribution
shifts across clients, offering a more flexible and efficient solution compared to existing methods. We detail
the training and testing phases of DynFed, followed by a discussion of its advantages.

4.1 Training Phase: Learning Adaptation Rates with Source Clients

Following the training stage of Bao et al.|(2024)), our training phase builds upon the TTPFL framework while
introducing key innovations. DynFed employs a communication protocol similar to FedAvg [McMahan et al.
(2017) to initialize and refine adaptation rates. The training process is iterative, with each round consisting
of local unsupervised adaptation, supervised refinement, and server aggregation. Similar to previous works,
we consider the model processes a data batch X’gi = {xSi,k,b}szl at a time where B is the batch size, i is the
client index and k is the batch index. In the following, we omit the superscript Si for clarity, e.g. X%, — X%,
as unsupervised adaptation and supervised refinement operate identically across all source clients.

Unsupervised Adaptation: We consider a neural network model f(-; w¢) with global model parameter wg €
RP. The network comprises d modules, each with parameters w!!, ... w!¥. During unsupervised adaptation,
we allow each module w to have a distinct adaptation rate al!, enabling fine-grained control over the
adaptation process.

Update Trainable Parameters: For each trainable parameter module wl!, we compute the unsupervised
update direction as the negative gradient of the entropy loss:

W =~V (F(Xk: wa)) (6)

where £y (Y) = —% Zszl 25:1 Ub,c log gp . is the entropy loss. This approach allows the model to adapt
without requiring labeled data, making it suitable for real-world scenarios where labels may be scarce or
unavailable.

Update Running Statistics: For batch normalization layers, which play a crucial role in adapting to distri-
bution shifts, we define the update direction as:

A — ol — ! )

where uA),[cl] represents the statistics for the current batch of inputs, and w[cl;] is the running statistics. This
update ensures that the batch normalization layers can effectively adapt to the local data distribution of

each client.

After computing the update directions, each module is updated using its corresponding adaptation rate:
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w,[j] — w[cl;] + amhLl] (8)

Supervised Refinement: Following the unsupervised adaptation, we refine the adaptation rates using gradient
descent on the cross-entropy loss:

a < a—nValep(f( X wr), Yi) 9)

where 7, is the learning rate for adaptation rates, and ¢cg is the cross-entropy loss. This step allows the
model to fine-tune its adaptation strategy based on labeled data, enhancing its performance on the target
task.

Server Aggregation: To leverage the collective knowledge of all clients and improve generalization, we employ
federated aggregation to periodically combine the local adaptation rates. This step is crucial for ensuring
that the learned adaptation strategies are effective across a diverse range of clients and data distributions.

4.2 Testing Phase: Exploiting Dynamic Adaptation on Target Clients

During the testing phase, each target client receives the global model, the Adaptive Rate Network (ARN),
and the initial adaptation rates. We consider two settings, following TTPFL|Bao et al.|(2024): DynFed-batch
for test-time batch adaptation (TTBA) and DynFed-online for online test-time adaptation (OTTA).

Adaptive Rate Network (ARN): The cornerstone of our incremental adaptation mechanism is the ARN,
denoted as g(+;0). This neural network is designed to capture and model the complex relationships between
adaptation rates and model performance across various distribution shifts. The ARN takes the current
adaptation rates as input and generates refined, context-aware rates tailored to each client’s specific data
distribution.

We formally define the ARN as a compact neural network with non-linear activations:

9(;0) = 7 - o(fi(f1(2)))) (10)

where f; represents the i-th layer of the network, ¢ is the sigmoid activation function, and 7 is a scaling
factor of hyperparameter that ensures the output adaptation rates fall within an appropriate range. Each
layer f; is defined as:

Here, W, and b; are learnable weight matrices and bias vectors, respectively, and o is the rectified linear unit
activation function. This architecture enables the ARN to learn complex, non-linear mappings from current
adaptation rates to optimized rates, allowing for highly flexible and context-specific adaptation strategies.

Dynamic Adaptation Rate Computation: We introduce a novel mechanism to dynamically compute the
adaptation rates. The process starts with an initial set of adaptation rates, which are then iteratively
updated for each batch of data on each client. Let «; denote the adaptation rates at time step t. We
compute the adaptation rates for the next time step as follows:

app1=B-ar+ (1 - 8) - glag, ) (12)

where (3 is a learnable parameter, g(-, ) is a function implemented by the ARN that generates new adaptation
rates based on the current rates and batch data distribution, and x represents the distribution of the current
batch data. The initial adaptation rates a; are set to predetermined values or can be learned during a
warm-up phase. This formulation allows for a dynamic balance between maintaining the current adaptation
strategy and adjusting to the characteristics of the incoming data batch, enabling the model to continuously
refine its adaptation approach as it processes more data.
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Algorithm 1 FedDyn-Training
G

Input: Global model wg, initial adaptation rates ag
Parameter: Number of communication rounds 7', number of clients per round C'
Output: Final adaptation rates ag

. Broadcast w€ to all source clients

1

2: for communication round ¢t =1 to T do

3: Sy < (random set of C source clients)

4:  for all source client .S; € S; in parallel do
5: at < CLIENTTRAIN(S;, af ;)

6: end for

Toag=¢ Ysies, %

8: end for

9: return o,

ClientTrain(S5;, a):
10: for local epoch e =1 to F do
11:  for all batch k in D% do

12: [7°N] :ﬁ~ak—|—(1—ﬁ)-g(ak,X,fi;)
13: hy' = Vel (f(X7 5 we))

14: wy' - w4+ A) O hY

15: a(—a—nVQECE(f(X,fi;w,fi),YkSi)
16: end for

17: end for

18: return «

DynFed-batch: In the TTBA setting, each target client processes data batches independently. For each batch,
DynFed-batch first generates adaptation rates using the ARN, then conducts unsupervised adaptation, and
finally makes predictions. This approach allows for quick adaptation to batch-specific characteristics while
maintaining consistency with the global model.

DynFed-online: For OTTA, we propose a modified version of the averaged adaptation mechanism to mitigate
batch dependency:

k
1
wi ¢ we + (Ag(ame) © 3 DN (13)
s=1

where g(a, x;0) generates the dynamic adaptation rates. By using the average of previous updates, we
effectively simulate updating with a larger batch size, utilizing historical data while controlling the number
of update steps. This approach allows for more stable adaptation in online scenarios, where data arrives
sequentially and may exhibit temporal dependencies.

Algorithm (1] followed the previous work Bao et al.| (2024) and Algorithm [2f provide a detailed summary of
testing phases of DynFed, respectively.

4.3 Discussion

DynFed offers several key advantages over existing TTPFL methods. Firstly, our approach is inherently more
flexible due to the use of the Adaptive Rate Network, which can gradually adjust adaptation rates based on
the specific characteristics of each client’s data distribution. This flexibility allows DynFed to handle a wider
range of distribution shifts more effectively than static adaptation methods.
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Algorithm 2 FedDyn-Testing
Input: Target client Tj, global model W, adaptation rates o, ARN g(-;0)
Parameter: Adaptation mode (TTBA or OTTA)
Output: Adapted predictions Yf,;
1: Initialize hhistory 0
2: for all batch k in test dataset DjT do
3 g gla,x;0), appr =+ (1= B) - glay, )
h?k — _vwcg(f(D]T;WG))
if TTBA then
ijk <—wG+A®h]Tk
else
hhistory <~ %hhistory + %h;rk
ijk —weg+AO hhistory
10: gnd if
1 Y= f(D];wl)
12: end for
13: return {Yﬁ;

© ® N>R

4.4 Theoretical Properties of DynFed

Our approach not only demonstrates empirical improvements but also possesses strong theoretical guarantees.
We provide the key theoretical results here while full proofs are given in the Appendix.

4.4.1 Convergence Analysis

[Bounded Gradients] The expected squared norms of the stochastic gradients are bounded, i.e.,
2
E HVW(‘EP7 (WG7 aj) - VWGE(WG, {a]}j]vil)H < 0—1203

and
I < o2

o

E ||V(),J£p7 (Wg, Oéj) — Vajﬁ(WG, {O‘J}j\il)

[Convergence of DynFed ] Under Assumptions 1 and 2, with appropriately chosen learning rates 7,, and 7,
for the model parameters and adaptation rates respectively, the expected decrease in the Lyapunov function
after T rounds is bounded by:

T-1 M
Tw YMa
B[Vr) ~ BV < — 3 | 2 Vwe £wh, {al ML) + 122 3 Vo, £l {al LI | +C, (19)
t=0 j=1

where C' is a constant depending on 7y, 14, 3, 02, and 2.

This theorem guarantees that despite the additional complexity of client-specific adaptation rates, DynFed
converges at a rate comparable to standard federated learning methods.

4.4.2 Generalization Guarantees

[Generalization] Let H = {« : ||al|]2 < R} be the hypothesis space of adaptation rates, N be the number of
source clients, and K be the number of data batches per source client. Assuming (1) the model is L-Lipschitz
and (2) the update directions for each module are bounded by H, then for any fixed global model w¢g and
any € > 0, we have

Pr((ilel% le(a) — é(a)| > e) < (12L€HR)d . 46Xp(2(\jVFK—|—621)2)’ (15)
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where &(«) is the average post-adaptation error rate on source clients and &(«) is the expected post-adaptation
error rate over the client population, and d is the dimensionality of the adaptation parameter vector.

This theorem demonstrates that DynFed can generalize well to unseen clients despite its enhanced expres-
siveness through client-specific adaptation. The generalization error is controlled by the capacity of the
adaptation parameter space and decreases with more source clients and more batches per client.

4.4.3 Adaptation Mechanisms for Different Distribution Shifts

[Adapting the Last Layer for Label Shift] Consider two distributions p and ¢ with

p(xly) = g(x|y) and p(y) # q(y)- (16)
If a neural network is calibrated on p, i.e., f(x;w) = p(:|x), then it can be calibrated on ¢ by adding log %
to the bias term of the final layer.

[Adapting the BN Layer for Feature Shift] Assume that the feature shift causes differences only in the first and
second order moments of the feature activations z = g(x), and that the activations are independent. Then,
the feature shift can be removed by adapting the running mean and variance of the Batch Normalization
(BN) layer.

These propositions formally justify why different model components require different adaptation strategies
for various types of distribution shifts, which is a core principle behind our DynFed approach.

5 Experiments

5.1 Experiments setting

We evaluate our proposed framework on a variety of models, datasets and distribution shifts. We first
evaluate on CIFAR-10(-C) with a standard three-way split |Yuan et al.| (2021): we randomly split the dataset
to 300 clients: 240 source clients and 60 target clients. Each source client has 160 training samples and 40
validation samples, while each target client has 200 unlabeled testing samples. We simulate four kinds of one-
type distribution shifts: feature shift, label shift, hybrid shift and multi-type distribution shift (MT shift),
there are different shifts within a federated system that operate on different clients. It is worth noting that
unlike the previous hybrid shift, multi-type shifts are not overlapping. For feature shift, we follow
|& Dietterich| (2019)); Jiang & Lin| (2023), randomly apply 15 different kinds of corruptions to the source
clients, and 4 new kinds of corruptions to the target clients to test the generalization of ATP. For label shift,
we use the step partition |Chen & Chao| (2020), where each client has 8 minor classes with 5 images per class,
and 2 major classes with 80 images per class. For the hybrid shift, we apply both step partition and feature
perturbations, it is equals basically two overlapping shifts on each client. We also test ATP with two different
architectures: a five-layer CNN on CIFAR-10(-C) and ResNet-18 on CIFAR-100(-C). Baseline models we
chose several common models: the BN-adapt [Schneider et al.| (2020), Tent Wang et al.| (2021a), T3A [Iwasawa
[& Matsuo| (2021)), MEMO |Zhang et al. (2022) and the current state-of-the-art framework ATP [Bao et al.
(2024) in TTPFL. To simplify the expression, we use DynFed-B as well as DynFed-O to denote the TTBA
and OTTA.

5.2 Experiment results

5.2.1 Performance comparison

We evaluate DynFed against state-of-the-art test-time adaptation techniques on CIFAR-10 and CIFAR-100
datasets under various distribution shifts. The results are shown in Table [ Our method consistently
outperforms all baselines, including the current state-of-the-art ATP, across all shift types. On CIFAR-10,
DynFed-OTTA achieves accuracy improvements of 1.95%, 2.51%, 1.30%, and 1.78% over ATP for feature,
label, hybrid, and multi-type shifts, respectively. The gains are even more significant on CIFAR-100, with
improvements of 1.63%, 2.05%, 1.36%, and 2.86% for the same shift types. Both evaluation variants of our
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CIFAR-10 CIFAR-100
Method Feature Label Hybrid MT Feature Label Hybrid MT

No adapt 64.36+.13 69.42+.24 63.68+.24 57.71+.20 35.12+.22 38.88+£.32 33.68+.30 26.50+.24
BN adapt 65.52£.22  64.544+.10 60.02£.39 54.02+.18 36.52+.27 35.54£.15 32.024+.45 25.80+.22

Tent 65.76+£.09 70.13£.21 63.424+.26 57.62+.24 36.76+.13  39.13+.28 34.05+.33  27.30£.28
T3A 64.53+£.08 71.70£.32  62.174£.17 58.48+.21 35.53£.12 40.704£.38  33.17£.23  28.00£.25
MEMO 62.43+.22 78.45+.15 63.07£.29 55.49+.12 34.43+£.30 44.31+.29 34.07£.37 26.30£.17
ATP 66.54+.12 76.67£.22 68.37£.35 60.69+.19 39.54+£.27 48.97+.30 40.12+.40 31.19£.25

DynFed-B 68.12+.18 78.54+.19 69.56+.31 62.23+.17 40.49+.22 50.19+.25 41.18%+.35 33.72+£.20
DynFed-O 68.49+.25 79.184+.27 69.67+.36 62.47+.19 41.17+.28 51.02+.32 41.48+.38 34.05+.22

Table 1: Accuracy (%) on target clients under various distribution shifts on CIFAR-10 (CNN) and CIFAR-100 (ResNet-18).
Best results in bold.

method consistently outperform other approaches, with the OTTA variant showing slightly better results,
particularly in complex shift scenarios. These results demonstrate DynFed’s effectiveness in handling various
distribution shifts in FL. environments. The substantial improvements over ATP, especially in challenging
scenarios like multi-type shifts and on CIFAR-100, highlight our method’s robustness and flexibility. DynFed
not only advances the state-of-the-art in test-time adaptation for FL but also shows remarkable consistency
across different shift types, underscoring its potential for real-world applications with unknown or mixed
distribution shifts.

5.2.2 Hyperparameter analysis

In the component of ARN, There is a critical hyperparameter 7, because according to our experiments,
we found that 7 takes values in the opposite direction in multi-type distribution shifts versus one-type
distribution shifts. Figure [3| illustrates the crucial role of the 7 parameter in our Adaptive Rate Network
(ARN) across different distribution shift scenarios. For multi-type distribution shifts (red line), we observe
optimal performance at 7 = 0.3, with accuracy peaking at 62.33%. The performance rapidly declines as 7
increases beyond this point, stabilizing at a lower level for 7 >1. Conversely, for one-type distribution shifts,
exemplified by feature shift (blue line), the model’s accuracy improves as 7 increases, reaching its optimal
value of 68.27% at 7 = 1.7. This insightful performance remains stable for higher 7 values. This contrasting
behavior underscores the adaptive capability of our ARN, demonstrating its ability to effectively handle
diverse distribution shift scenarios by appropriately tuning the 7 parameter. The significant performance
differences highlight the importance of dynamic adaptation in TTPFL environments with heterogeneous
distribution shifts.

Impact of tau on Different Distribution Shift Scenarios
T

62.0

o)
=
o

[ 67.0

o
o

@
o
[

Multi-type Distribution Shift Accuracy

One-type (Feature) Distribution Shift Accuracy

60.0 Les.s

Figure 3: Impact of 7 on model performance under different distribution shift scenarios. The red line repre-
sents accuracy for multi-type distribution shift, while the blue line shows accuracy for one-type distribution
shift (feature shift).
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adaptation rounds for label shift scenarios. ture shift scenarios.

Figure 4: Effect of shard size and batch size.

5.2.3 Effect of batch size and shard size

Figure [] illustrates the impact of batch size and shard size on our method’s performance under different
distribution shift scenarios. As shown in Figure [da] larger batch sizes consistently yield higher accuracy in
label shift conditions, with batch size 256 achieving the best performance. The performance gap between
batch sizes narrows over time, suggesting diminishing returns for larger batches in later adaptation rounds.
Figure [db] demonstrates that both DynFed variants significantly outperform the no-adaptation baseline
across all shard sizes in feature shift scenarios, with DynFed-online showing superior performance, especially
as shard size increases. These results highlight our method’s adaptability and efficiency across various
operational conditions, showcasing its robustness in diverse federated learning environments and its ability
to effectively leverage larger data shards for improved adaptation.

Round t Round t+n using TTPFL Round t+n using DynFed

A Global Model A Global Model A Global Model
@ Adapted Model @ Adapted Model
1

60
50

40
20 A /

0 1o 20 30 40 50 60 70 0 10 20 Dimgensiom 1l  so 60 70 0 10 20 30 40 50 60 70

Dimension 2

Figure 5: Optimization trajectories of TTPFL and DynFed in FL, projected onto two principal dimensions
of adaptation rate changes. DynFed demonstrates superior convergence towards the optimal region (darker
area) compared to TTPFL, illustrating its more effective adaptation to client-specific data distributions.

5.2.4 Optimization trajectories

Figure [f] illustrates the superiority of our proposed method over TTPFL in the context of FL. The figure
shows the optimization trajectories in dimension space, the dimension capture the main directions of variation
in the model parameters during the adaptation process. As observed, both methods start from the same
initial global model position (round t). However, after n rounds of adaptation (comparison experiments
conducted with our selected n = 50) , DynFed achieves a position closer to the optimal region (darker area)
compared to TTPFL. This visual representation demonstrates DynFed’s ability to more effectively navigate
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the loss landscape, resulting in a better-adapted model that more closely aligns with the client’s specific data
distribution.

TTPFL DynFed

. I IM

. -0.0

Clientd  Client3  Client2  Client1,
Clientd  Client3  Client2  Client

Clients.
Clients

Clients
Client6
I
&

Clients  Client7
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Clientl  Clientz ~ Client3  Clienta  Clients  Client6  Client7 ~ Client8  Cliento Clientl ~ Clientz  Client3  Clientd  ClientS  Client6  Client7 ~ Client8  Client9

Figure 6: Heatmap comparison of adaptation rates between clients for TTPFL (left) and our proposed
method (right).

Table 2: Accuracy (mean =+ s.d. %) on target clients under hybrid shift on Digits-5 and PACS

Method Digits-5 PACS
MNIST SVHN USPS SynthD MNIST-M Art Cartoon Photo Sketch

No adapt 95.54+0.2 52.3+1.5 89.6+0.4 79.8+£0.7 55.6£0.8 71.6%£1.2 74.7+0.7 90.3+0.8 74.2+0.7
BN-Adapt 94.9£0.3 57.6+£0.5 89.5+0.4 75.3+0.5 59.74+0.4 73.6+£0.5 71.5+0.6 92.1+0.3 70.94+0.5
SHOT 94.7£0.3 57.9£0.2 89.6+£0.7 76.4+0.3 60.2£0.7 69.3+£0.7 67.8+0.4 87.0£0.6 59.4£0.9

Tent 95.5+0.3 60.7+£0.5 91.7£0.6 78.6+0.5 62.5+0.7 71.6+0.7 71.0+£1.0 88.1+£0.2 63.2%1.1
T3A 94.6£0.6 49.9£1.1 88.5+£0.8 75.5+1.1 51.3£1.6 72.2+0.7 75.0+0.8 91.5£0.6 70.1£1.2
MEMO 95.94+0.2 52.9+1.1 89.8£0.4 80.1£0.9 55.5+1.1 71.5+1.3 75.6+£1.0 90.7£0.9 76.3£0.7
EM 96.6+0.3 57.2+1.7 92.3£0.3 85.7£0.5 62.1£0.6 74.0£1.9 78.9+0.9 92.3£0.9 80.8%£1.5
BBSE 94.5+0.6 57.3+1.5 91.3£0.4 85.5+0.5 61.6+0.9 74.3+1.8 78.7+1.0 91.8+0.7 80.2+1.4
Surgical 97.4+0.1 59.9+£2.0 94.2+£0.4 86.1£0.4 65.9£0.8 74.6+2.7 77.5+£0.6 92.3£0.8 80.9£3.4
ATP 97.84+0.3 62.2+1.7 95.4+0.3 87.94+0.5 70.0+2.0 82.9+1.0 79.6+0.8 95.4+0.4 82.3%1.6

DynFed-B 97.7£0.2 61.94+1.7 95.6£0.3 87.8+£0.5 68.9£1.8 81.9£1.1 80.1%£0.7 94.9+0.4 82.0£1.6
DynFed-O 97.94+0.2 61.74+1.8 95.4+0.3 86.4+0.5 71.142.1 82.8+0.9 79.840.7 95.7+0.4 82.6+1.5

5.2.5 Performance on Domain Generalization Benchmarks

Table [2] presents evaluation results on two challenging domain generalization datasets with hybrid shifts.
Digits-5 comprises five domains (MNIST, SVHN, USPS, SynthDigits, MNIST-M), while PACS includes
four domains (Art, Cartoon, Photo, Sketch). Following standard protocol, we use leave-one-domain-out
evaluation, where one domain serves as the testing target while the remaining form the source domains.
Our DynFed method demonstrates strong performance across all domains, with DynFed-B achieving the best
accuracy on USPS and Cartoon domains, while DynFed-O excels on MNIST, MNIST-M, Photo, and Sketch
domains. These results highlight DynFed’s effectiveness in adapting to complex real-world domain shifts,
where it either matches or outperforms state-of-the-art methods. The consistent improvement of DynFed-O
over DynFed-B across multiple domains validates the efficacy of our proposed cumulative averaged adaptation
mechanism for online test-time adaptation in challenging federated scenarios.

5.2.6 Adaptive flexibility in client-specific batch data handling

In order to verify that our method can be efficiently processed for different types of data, we conducted
experiments in multi-type shift distributions. The front 9 clients were selected for experiment. Our exper-
imental results, as illustrated in Figure [6] demonstrate the superior adaptability of our proposed method
compared to the traditional TTPFL approach. The heatmaps depict the adaptation rates between different
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clients. The TTPFL method (left) shows minimal variation in adaptation rates across clients, indicated by
the predominantly uniform coloration. This uniformity suggests a lack of client-specific customization, po-
tentially limiting its effectiveness in heterogeneous federated learning environments. In contrast, our method
(right) exhibits a more diverse range of adaptation rates, as evidenced by the varied color intensities across
the heatmap. This diversity indicates a higher degree of flexibility in adjusting to each client’s unique batch
data characteristics. The increased number of non-zero elements in our method’s heatmap further under-
scores its enhanced capability to capture and respond to inter-client differences. Such adaptive behavior is
crucial for effectively handling the diverse data distributions commonly encountered in real-world federated
learning scenarios, enabling our method to achieve more personalized and efficient learning across varied
client datasets. To further validate our method’s effectiveness across different clients, we conducted an ac-
curacy comparison using the random sampling 10 clients from cifarl0 on the multi-type shift distribution.
Figure [7] illustrates the performance of our framework compared to TTPFL for each of these clients. As
shown in the bar chart, DynFed consistently outperforms TTPFL across all individual clients. The blue bars,
representing DynFed, are consistently higher than the orange bars of TTPFL for each client. Moreover, the
average accuracy of DynFed, indicated by the blue dashed line, is notably higher than that of TTPFL, repre-
sented by the orange dashed line. This comprehensive superiority, both in individual client performance and
overall average accuracy, underscores the adaptability of our method in diverse federated learning scenarios.

Accuracy Comparison: DynFed vs TTPFL across Clients
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Figure 7: Accuracy comparison between clients for TTPFL and DynFed.

Method Feature Hybrid MT

No adapt 64.36+0.13 63.68+0.24 57.71£0.20
DynFed w/o ARN  66.71+0.27  68.31+0.36  60.62+0.19
DynFed w/o opt. 7 65.23+£0.23  65.69+0.37  57.751+0.21
DynFed-B 68.124+0.18 69.56+0.31 62.23+0.17

Table 3: Ablation study: accuracy (%) on target clients under various distribution shifts.

5.2.7 Ablation study

Ablation studies were conducted to evaluate the contribution of key components in our method, as shown in
Table [3] Removing the ARN leads to a noticeable performance drop across all shift types, highlighting its
importance in our approach. More strikingly, using ARN without the optimal 7 value results in even lower

14



Under review as submission to TMLR

performance than the variant without ARN, particularly in the multi-type distribution shift scenario where
accuracy drops to 57.75%, barely surpassing the no-adaptation baseline. This underscores the critical role
of 7 in effectively leveraging ARN’s capabilities. The full DynFed-B method, incorporating both ARN and
optimal 7, consistently outperforms all variants, demonstrating the synergistic effect of these components in
handling various unseen distribution shifts, with the most significant improvements observed in hybrid and
multi-type distribution shift scenarios.

5.3 Limitations and Potential Failure Cases

While DynFed demonstrates superior performance across various distribution shift scenarios, it is important
to acknowledge its limitations and potential failure cases:

5.3.1 Extreme Heterogeneity

In scenarios with extremely high degrees of heterogeneity where each client experiences a unique combination
of multiple distribution shift types, the ARN may struggle to generate optimal adaptation rates. The
adaptation strategy dichotomy we identified (Theorem [3.3) suggests that when faced with highly diverse
shift combinations, the ARN might converge to compromise solutions that are suboptimal for individual
clients.

5.3.2 Computational Overhead

DynFed introduces additional computational complexity through the ARN component. For resource-
constrained edge devices with limited computational capabilities, the overhead of running the ARN might
outweigh the benefits in adaptation quality. This limitation is particularly relevant for IoT applications
where energy efficiency is paramount.

5.4 Conclusion

In this paper, we introduced DynFed, a novel approach for test-time adaptation in federated learning that
effectively addresses the challenges of heterogeneous distribution shifts across clients. Our method leverages
an ARN with an optimized T parameter to generate client-specific adaptation rates, significantly outperform-
ing existing methods across various shift scenarios, including one-type shift and multi-type shifts. Through
extensive experiments and ablation studies, we demonstrated the crucial role of both ARN and the optimal
7 in achieving superior performance, particularly in complex multi-type shift environments. Our work offers
a robust and adaptive federated learning in real-world applications where distribution shifts are diverse and
unpredictable.
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Appendix: Theoretical Analysis

In this section, we provide theoretical justification for DynFed by analyzing its convergence properties and
generalization guarantees. We show that despite having client-specific adaptation mechanisms, DynFed
maintains both convergence and generalization capabilities comparable to traditional federated learning
methods. Moreover, we demonstrate why different adaptation strategies are necessary for different types of
distribution shifts.

Convergence Analysis

We first analyze the convergence properties of DynFed to demonstrate that our dynamic adaptation approach
converges despite the additional complexity of client-specific, adaptive rates. Similar to previous work in
federated learning McMahan et al.| (2017)), we establish convergence guarantees under standard assumptions.
In particular, we consider the objective function of DynFed as minimizing the expected loss over the client
population after adaptation:

M
Llwa o))l = 57 3 £ay (was ), (17)

where w¢ represents the global model parameters and {c; }]1‘11 denotes the set of adaptation rates for M
clients. Here, Lp,(Wg, ;) is the loss for client j after adaptation.

To analyze convergence, we define the following Lyapunov function that tracks the distance from the current
parameters to the optimal ones:

M

Ve = lwe = will? +7 ) llaf — oI, (18)
j=1

where w¢; and o] are the optimal parameters, and v > 0 is a constant balancing the two terms.

[Proof of Theorem [4.4.1] By the smoothness assumption, we have

ELL(wE ol I0)] < BIL(wh, {f )] — B[ Vg £, (o110 ) (19)
T S [, (w2 + Ea ot + o2 2
2 aj G» jJi=1 277w0w + 27’&004 ( 0)
j=1

Using this inequality and the definition of the Lyapunov function, we can show that

E[Vi1] — EVi] < —nuE[(Vwe LW, {af}L)), wg — w§)] (21)
M
— Vo > _E[(Va, L(wh, {af}L)), ol = a7)] (22)
=1
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By convexity, we have

1
(Vf(z),x —y) = f(z) = fy) = 5V f(2)]? (24)
for any convex function f. Applying this to our case, we get
nw 2 ’Yna 2
E[Vii] - E[Vi] < = [ Vwe LW, {aj 120 — ZHV%L (we {aj L) (25)
2 2
w2 | Va2
+ 5 Tw + 5 Oa (26)

Summing up from t =0 to T — 1, we get

T-1

Nw 777
E[vr] - E[Wo] < - 3 ||VWGE(W07 {5 LDIP + =7 Z IVa, LW, {af} 50012 (27)
=0
Tn? Tn?
+ ;7 oo+ 72"" o (28)
Setting C = a + TW’” o2 completes the proof.

Generalization Guarantees

Next, we analyze the generalization properties of DynFed. Unlike standard federated learning, our method in-
troduces dynamically generated adaptation rates. However, we show that DynFed enjoys good generalization
guarantees due to the controlled dimensionality of the adaptation parameters.

[Proof of Theorem [4.4.2] We use covering number techniques from learning theory. For any fixed global
model wg, the generalization error of adaptation rates can be bounded using uniform convergence bounds.
Let Br = {a: ||a|l2 < R} be the ball of radius R in the adaptation rate space.

The covering number of Br with balls of radius ¢/4LH is bounded by (12LH B)d where d is the dimension
of a.
Let ag,...,any be the centers of these covering balls. For any a € Bg, there exists an «; such that

|l — |l < ¢/4LH. By Lipschitz continuity of the model and bounded update directions, this implies
le(a) — ()| < €/4 and |&(a) — &(ay)| < €/4.

By Hoeffding’s inequality and the fact that we have NK samples (across N clients, each with K batches),
for any fixed «;,

NKé? >

Pr(le(a;) — é(a;)| > €/2) < 2exp (2(()—a)2 (29)

where b — a is the range of the loss function, which we can bound by VK + 1 due to the averaging of K
batches.

Applying the union bound over all «;, we get

Pr (max[e(as) — 2(a)| > /2) <2 (”LfR)dexp (—2(%11)) (30)

For any o € Bg, using the triangle inequality,

|e(e) — é(a)] < |e(a) — e(ai)| + |e(ai) — &(u)| + |E(cu) — &) (31)
<e/d+e/24+¢€/d=¢ (32)

9 (12LEHR)d NKe2 )

with probability at least 1 — exp (—m

Simplifying, we get the desired bound.
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Adaptive Mechanisms for Different Distribution Shifts

Here, we theoretically explain why different types of distribution shifts require different adaptation strategies,
which forms the foundation for our dynamic adaptation approach. In federated learning, two common types
of shifts are:

o Covariate (Feature) Shift: Clients have different input distributions P(X) while the conditional
distribution P(Y|X) remains unchanged.

o Label Shift: Clients have different label distributions P(Y") while the feature distribution given a
label P(X|Y') remains the same.

For covariate shift, the main challenge is adapting the feature extractor to the new input distribution.
The optimal strategy is to modify the early layers (or Batch Normalization statistics) to realign the feature
representations. Conversely, under label shift, the feature extractor remains valid, and only the final classifier
requires adjustment (typically by calibrating the output layer bias). Hence, the optimal adaptation rates for
these two scenarios differ significantly.

[Proof of Proposition [4.4.3] Assume without loss of generality that the last layer is linear. Let g(x;wy)
denote the features extracted by the network, and let wq, ..., wx be the weights with biases by,...,bx for
K classes. Then,
o exp(w] g(x; W) +be)
f(X’ W)C - K T .
D=1 XP(Wog(X;wy) + be)

Since the network is calibrated on p, we have f(x;w). = p(y = e.|x). By Bayes’ theorem, for distribution ¢,

Py - 55

WX = =———.
>y p(ylx) - 45

Thus, adding log % to each bias term effectively calibrates the network on ¢.

[Proof of Proposition 4.4.3] Let the source and target feature distributions be p(x) and ¢(x), respectively.
Since the shift alters only the mean and variance, there exist constants A and r > 0 such that for any

threshold z;,
- A
Pr(z>zt):Pr<z>zt )
r

Thus, updating the BN layer’s running mean and variance as
g =T pp+ A, 0qg=1"0p,
aligns the target feature distribution with the source distribution, effectively removing the shift.

Next, we analyze the theoretical foundation for our core insight: that optimal adaptation strategies for
one-type and multi-type distribution shifts are fundamentally different.

[Proof of Theorem Consider the loss landscapes corresponding to the two scenarios. For one-type shifts,
since all clients experience the same type of bias, the gradients with respect to the adaptation rates,

N
1
Vaﬁs(a) = N Z Vaﬁgi (a),
i=1

tend to align, leading to an optimal adaptation rate o in a common direction. For multi-type shifts, the
clients experience conflicting adaptation needs; for instance, some require increasing the learning rate for
early layers (to adjust feature extractors) while others require a decrease (to recalibrate the output layer).
Thus, the aggregated gradient

N
1
Valm(a) = > Vol (a)
i=1
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points in a direction nearly opposite to V,Ls(«). Consequently, by strong convexity of the loss functions,
the optimal solutions satisfy
s - ajy < 0.

This negative correlation confirms that different types of distribution shifts necessitate fundamentally differ-
ent adaptation strategies.

This theorem underpins the design of our dynamic adaptation mechanism: the self-adaptive rate network
(ARN) must generate different learning rate values (and even opposite adjustment directions) depending on
whether the encountered shift is one-type or multi-type. Empirically, we observe that the optimal scaling
factor 7 for one-type shifts is typically higher than that for multi-type shifts, validating this theoretical
insight.

Finally, we extend our discussion on the effect of learning rate selection on generalization. The choice of
learning rates not only impacts convergence but also plays a critical role in the stability and generalization
of the model. In classical optimization, a larger learning rate can speed up convergence but may harm
stability, whereas a small learning rate tends to improve stability and thus generalization Hardt et al.| (2016).
In DynFed, the ARN dynamically adjusts the learning rate based on the observed gradient information,
achieving an automatic balance between exploration (rapid adaptation) and convergence (stability in later
iterations). Such dynamic scheduling effectively reduces the sensitivity of the final model to variations in the
training data, thereby improving generalization performance. This insight is supported by theoretical results
on algorithmic stability which show that a controlled update step leads to lower generalization error Hardt
et al.| (2016)); Belkin et al.| (2018)).
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