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ABSTRACT

We introduce an extensive new dataset of MIDI files, created by transcribing audio
recordings of piano performances into their constituent notes. The data pipeline
we use is multi-stage, employing a language model to autonomously crawl and
score audio recordings from the internet based on their metadata, followed by a
stage of pruning and segmentation using an audio classifier. The resulting dataset
contains over one million distinct MIDI files, comprising roughly 100,000 hours
of transcribed audio. We provide an in-depth analysis of our techniques, offering
statistical insights, and investigate the content by extracting metadata tags, which
we also provide. Dataset available at https://github.com/loubbrad/aria-midi.

1 INTRODUCTION

Central to the success of deep learning as a paradigm has been the datasets used to train neural
networks. With the rapid technical advancements and ever-increasing availability of computational
power, music has become a popular target for deep learning research, and deep learning in turn has
had a notable impact on the study and creation of musical works (Briot et al., 2019). The progress
of music-oriented deep learning depends heavily on access to diverse, well-structured datasets. Mu-
sic is inherently structured and can be represented computationally in a variety of forms (Wiggins,
2016). In this work, we focus on symbolic representations of music, such as MIDI (Musical Instru-
ment Digital Interface), which are widely used for encoding, analyzing, and facilitating the genera-
tion of musical compositions by both humans and machines (Ji et al., 2023).

In fields outside of computational music, the significance of comprehensive datasets is well estab-
lished. For example, in computer vision, the ImageNet dataset (Deng et al., 2009) catalyzed research
for almost a decade, providing both high-quality training data and robust benchmarks. Similarly,
datasets such as Common Crawl (2024), C4 (Raffel et al., 2020), and the Pile (Gao et al., 2020) have
been instrumental in advancing the field of natural language processing. These resources have en-
abled the study of scaling-based approaches for language modeling, enhanced available techniques,
and provided foundation models for researchers with restricted resources (Zhou et al., 2024).

The situation for music-oriented deep learning research is mixed. While numerous publicly available
audio-based datasets exist (Gemmeke et al., 2017; Hawthorne et al., 2018; Thickstun et al., 2016;
Bertin-Mahieux et al., 2011), symbolic datasets, which represent music in formats such as MIDI,
ABC, or MusicXML, are comparatively lacking in both quality and quantity. The Lakh dataset
(Raffel, 2016), comprising 176,581 MIDI files scraped from the internet, has been widely adopted
in model training (Thickstun et al., 2023; Zeng et al., 2021) due to its scale. However, its files, pre-
dominantly created through software sequencing or digital score conversion, often lack the nuances
of expressive human performances, and vary significantly in quality. In contrast, the MAESTRO
dataset (Hawthorne et al., 2018) offers high-quality Disklavier MIDI recordings from professional
pianists, capturing the subtleties of human interpretation. However, its size and focus on virtuosic
classical piano performances limit its applicability across diverse musical genres and styles.

Underlying this is a common limitation: the manual transcription process creates bottlenecks for
both the scale and quality. In recent years, researchers have turned to Automatic Music Transcription
(AMT) (Benetos et al., 2019) to address these limitations, creating various large-scale symbolic
datasets (Kong et al., 2020; Zhang et al., 2022; Edwards et al., 2023). Leading AMT techniques
leverage neural networks to extract symbolic note-level information from audio (Sigtia et al., 2016;
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Table 1: Comparison of various publicly available datasets of symbolic music.

Dataset # Files # Hours Genre Source Multi-track
MAESTRO 1,276 199 Classical Piano Competitions No
Mutopia1 1,862 69 Mixed Lilypond Yes
PiJAMA 2,777 223 Jazz AMT No
GiantMIDI 10,855 1,237 Classical AMT No
ATEPP 11,742 1,009 Classical AMT No
Lakh2 176,581 9,567 Mixed Web-scrape Yes
Aria-MIDI3 1,186,253 100,629 Mixed AMT No

1 https://www.mutopiaproject.org
2 Full dataset size, including corrupted files. The commonly used matched subset contains 45,129 files.
3 Reduces to 800,973 files and 66,650 hours after compositional deduplication described in Section 4.

Hawthorne et al., 2017; Kong et al., 2021), theoretically enabling symbolic datasets to match the
scale found in other modalities. Nevertheless, several challenges persist:

Transcription Quality. Some musical formats, like solo-piano recordings, translate more accu-
rately to MIDI than others. Additionally, training neural-AMT models relies on a small number of
specific high-quality datasets of aligned audio-MIDI, e.g., MAESTRO for solo-piano. This limita-
tion restricts use cases outside the distribution of the training data, leading to degraded transcriptions
of recordings in different genres or with audio artifacts (Marták et al., 2024; Edwards et al., 2024).

Pre-processing. A dichotomy between quality and scale still presents itself. Current methods em-
ployed for audio curation and pre-processing (e.g., selection, pruning, and segmentation) are insuf-
ficient when applied to noisy and diverse audio corpora without human oversight. This is partially
due to a lack of training data precisely labeled for the nuances of this application. Datasets main-
taining high-quality standards have utilized a stage of machine-guided manual human verification
to remove falsely identified audio (Zhang et al., 2022; Edwards et al., 2023), an approach that does
not scale well.

In this work, we address these challenges, developing techniques for precise curation, pre-
processing, and metadata attribution of publicly available piano recordings. We demonstrate that
with strategic modifications to the data pipeline, AMT-based approaches can be effectively scaled,
resulting in a large, high-quality dataset of piano transcriptions. To this end, we leverage Aria-AMT
(Bradshaw et al.), a piano transcription model designed to handle diverse timbres and recording
qualities. Although this model is important to our process, our primary focus is on the techniques
we develop and the analysis of the resulting dataset’s content and quality.

1.1 CONTRIBUTIONS OF THIS PAPER

More specifically, our contributions are as follows:

1. We introduce a scalable, language model-guided method for crawling and extracting meta-
data from specific categories of videos. We analyze the effectiveness of this approach in
the context of publicly available piano recordings.

2. We outline a process for distilling an audio source-separation model to train a classifier ca-
pable of accurately identifying and segmenting diverse real-world piano recordings, which
we open-source1. This enabled an 8-fold improvement in identification of non-piano audio
without human supervision when compared to previous work.

3. Using an existing piano-transcription model, we provide a new MIDI dataset of piano tran-
scriptions, Aria-MIDI, one of the largest and cleanest to date.

We hope the dataset released alongside this work has a positive impact on the MIR research com-
munity. We foresee several potential areas where it may accelerate research. Firstly, pretrained
generative models have had a large impact on the textual and visual domains (Zhou et al., 2024).

1https://github.com/loubbrad/aria-cl
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These models rely on datasets typically in terabytes. Comprising approximately 20 gigabytes of
MIDI files, Aria-MIDI isn’t on this scale; however, it may still be useful for research into pretrained
music models. Secondly, we are releasing accurate compositional metadata for each file, as well as
piano audio classifier scores, which due to our training methods can act as a proxy for recording
quality. This information is valuable for many MIR tasks (Choi et al., 2017), as well as for making
clean and compositionally deduplicated subsets.

1.2 RELATED WORK

The use of neural networks for automatic music transcription has its roots in the seminal work
of Sigtia et al. (2015; 2016). This was followed by various works experimenting with different
approaches and neural architectures (Hawthorne et al., 2017; 2021; Yan et al., 2021; Toyama et al.,
2023). The high-resolution piano transcription model introduced in Kong et al. (2021), trained using
the MAESTRO (Hawthorne et al., 2018) and MAPS (Emiya et al., 2010) datasets, became the de
facto benchmark for accuracy. More recently, AMT research has extended to other instruments
(Riley et al., 2024) and multi-track transcription (Gardner et al., 2021; Chang et al., 2024), where it
has seen success.

There are three predominant publicly available datasets of piano transcriptions, all of which utilized
the transcription model introduced in Kong et al. (2021). GiantMIDI (Kong et al., 2020) was the
first, comprising transcriptions of piano recordings matching names of musical works taken from
the IMSLP (2006). From 143,701 initial recordings, 10,855 were identified by a model trained to
detect solo-piano recordings. The ATEPP dataset (Zhang et al., 2022) took a different approach than
GiantMIDI, focusing on repeat performances of standard classical piano repertoire, and using text-
based techniques to determine opus and piece numbers. PiJAMA (Edwards et al., 2023), a dataset
of jazz piano transcriptions, spans 120 different pianists across 244 recorded albums. Recordings
were curated by matching tracks from albums performed by a manually curated list of pianists.

All three datasets utilized YouTube to match musical metadata with audio recordings and employed
audio-based classifiers, trained using MAESTRO and AudioSet, to identify piano recordings. For
ATEPP and PiJAMA, these classifiers were also used to remove applause and speech. The level of
human intervention varied across datasets: GiantMIDI relied solely on automated processes, while
ATEPP and PiJAMA incorporated manual checks. Table 1 presents a comparison of these datasets
in context.

2 METHODOLOGY

In this section, we describe the methodology used to compile our dataset of MIDI files. Our approach
consists of three distinct stages. First, we assemble a comparatively large corpus of candidate piano
recordings using low-overhead, text-based methods. Next, we employ audio-based techniques to
refine our initial corpus through pruning and pre-processing. Finally, we conduct a computationally
intensive stage of transcription and metadata extraction. This multi-stage approach allows us to
efficiently process a large volume of data while ensuring high-quality data in our final dataset.

2.1 CRAWLING

A common theme in previous work has been to compile candidate recordings by first obtaining a
corpus of metadata (e.g., composers, performers, album titles) via various means, and then using the
APIs provided by Spotify2 and YouTube3 to match piece titles to corresponding videos on YouTube.
We take a different approach: Our method begins with a small collection of manually curated seed
videos and uses YouTube’s API to crawl related content. The crawling priority is determined by
a language model, which performs two tasks: 1) parsing the title and description of each video,
and 2) scoring the likelihood of the video containing solo-piano content on a scale of 1-5. More
specifically, starting from fifty solo-piano seed videos which span a variety of genres and styles, we
follow a two-step procedure which we cycle through repeatedly:

2https://developer.spotify.com/documentation/web-api
3https://developers.google.com/youtube/v3
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Figure 1: A visual representation of the pseudo-labeling process applied to a five-second excerpt
from a piano concerto. As the non-piano component has a contiguous region above the energy
threshold (dotted red line), the full audio segment is labeled as non-piano.

1. For each unscored video, we provide a system prompt to a language model along with the
video’s YouTube title and description. The model is tasked with assigning a score from one
to five, indicating the likelihood that the video contains a solo-piano performance.

2. In order of priority determined by the score, we use the YouTube API to fetch related video
URLs, titles, and descriptions.

By taking advantage of the related videos endpoint of the YouTube API, we outsource the majority
of the crawling process to YouTube’s own recommendation algorithm. We used the 70B parameter
version of Llama 3.1 (Dubey et al., 2024) for the language model, observing that smaller models
made obvious mistakes more frequently. The system prompt we used can be found in Appendix
A.1. Overall, we found this process to be effective. Although initially this procedure tended to
overrepresent recordings of well-known classical pieces, as these became less available later in the
process, piano recordings representing a diverse set of musical styles and genres were crawled.

2.2 AUDIO CLASSIFICATION AND SEGMENTATION

As we analyze in-depth in Section 3, relying solely on the score attributed to each recording during
the crawling process results in an unacceptably high rate of misclassifications. Following other
work (Kong et al., 2020; Zhang et al., 2022), we address this by using an audio classification model
(Dieleman and Schrauwen, 2014) in the next stage of our pipeline. We identified the following
problematic situations which we aimed to mitigate with an audio classifier:

• Misclassifications due to logical mistakes by the language model or misleading/ambiguous
YouTube data: The classifier identifies and removes such recordings while allowing us to
retain those with some ambiguity, which would otherwise have to be pruned.

• Undesirable acoustic qualities in positively classified recordings: Despite positive classifi-
cation by the language model, recordings can be inappropriate for transcription for a vari-
ety of reasons including incorrect instrumentation (e.g., harpsichord, organ, electric piano),
low audio quality, or the presence of additional instruments. To mitigate this, we include
representative examples from these categories in the training data for our classifier.

• Non-piano content in high-quality piano recordings: Many otherwise high-quality piano
recordings contain segments of non-piano content, such as applause, commentary, or ex-
tended periods of silence. Using the algorithm we describe in Section 2.2.2, we adapt the
audio classifier to segment recordings into contiguous regions of solo-piano performance,
removing unwanted content.

A primary concern when building an audio classifier is the quality, diversity, and accuracy of the
labels used for training. Initial investigations revealed that relying on well-known datasets such as
MAESTRO (Hawthorne et al., 2018) and AudioSet (Gemmeke et al., 2017) was insufficient, as we
display in Table 4. In an effort to achieve classification accuracy approximating human labels, we
curated a mixed training dataset, representative of our corpus of crawled recordings. We used a
novel approach, leveraging an audio source-separation model to accurately generate pseudo-labels
for the unlabeled parts of the training corpus.
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Table 2: Overview of the supervised and pseudo-labeled audio corpora used to train the piano audio
classifier. Prop. denotes the proportion of audio in each component labeled as solo piano. Notably,
when pseudo-labeled using source separation, the raw audio from which the GiantMIDI dataset was
transcribed contains 87.35% solo piano labels.

Component Length (h) Weight (%) Pseudo lab. Prop. (%) dBmin lmin (s)
GiantMIDI 1040 43.24 True 87.35 -25dB 1.5
Score-4 676 28.11 True 44.81 -22dB 1.5
MAESTRO 198 8.23 False 99.62 N/A N/A
Synthetic Data 143 5.95 False 98.34 N/A N/A
Jazz Trio Database 139 5.78 True 3.61 -28dB 1.0
Piano Other 75 3.12 False 99.22 N/A N/A
Non-Piano Other 71 2.95 False 0.00 N/A N/A
Symphonies 40 1.66 False 0.00 N/A N/A
Piano Concertos 23 0.96 True 14.98 -28dB 1.0

Total 2405 100.0

Given an audio file, we apply the MVSep Piano source-separation model (Uhlich et al., 2024; Fab-
bro, 2024; Solovyev et al., 2023) to decompose it into its constituent parts, isolating the piano
component from the remaining audio (other). For each five-second clip, we compute separate
spectrograms for both the piano and other components after resampling them to 22,050 Hz. Each
spectrogram is computed with 2048 frequency bins, a frame length of 2048, and a hop length of 512.
The RMS energy is then computed for each frame and converted to the dBFS scale (Zölzer, 2022).
Given parameters dBmin and lmin, we label a five-second clip as non-piano if the other component
contains a contiguous region longer than lmin at an energy level exceeding dBmin. We also label a clip
as non-piano if the piano component has a contiguous silent region (below -20 dB) lasting more
than four seconds. In all other cases, the clip is labeled as piano. Figure 1 illustrates this process.

We applied this labeling procedure to various collections of publicly available audio files, displayed
in Table 2, the main constituent being 10,000 YouTube videos from our corpus which were assigned
a score of four by the language model. We also used the GiantMIDI audio files, the Jazz Trio
Database (Cheston et al., 2024), and smaller collections of piano and non-piano recordings which
we curated manually. Including the pseudo-labeled audio allows us to distill (Hinton et al., 2015)
the source-separation model, bypassing the high computational cost associated with applying source
separation to our entire inference corpus, which we estimate at about 5,000 A100 hours4.

2.2.1 TRAINING

For our solo-piano classifier, we chose a CNN-based architecture (LeCun et al., 2015) with five con-
volutional layers followed by two dense layers and a single output neuron. The input to the classifier
consists of mel-spectrograms calculated from five-second audio clips. We used a sample rate of
22,050 Hz, 2048 spectrogram frequency bins, 256 mel bins, and a hop length of 220 (corresponding
to 10ms hops). We trained the model for ten epochs using the AdamW optimizer (Loshchilov and
Hutter, 2019) with β1, β2 = 0.9, 0.95, ϵ = 1e-6 and an L2 weight decay of 0.01. A linear learning
rate scheduler was used, decaying to 10% of the initial learning rate after a warmup over the first
500 optimizer steps.

One consequence of training with pseudo-labels obtained using source separation was having to
use relatively sensitive energy thresholds in order to correctly label training examples with a quiet
but notable non-piano component. These thresholds occasionally result in incorrect training la-
bels for solo-piano recordings with significant but acceptable background audio artifacts like noise,
distortion, and reverb. To mitigate this, we trained with the corresponding audio augmentation in
approximately 10% of batches, as well as randomly applying pitch shifting and bandpass filters. We
also included labeled examples, representative of such piano recordings, as part of our training data.

4In comparison, classification of 100,000 hours of audio using our model only took 20 A100 hours, I/O
being the main bottle-neck.
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2.2.2 INFERENCE

As well as per-file classification, we also use our classification model to segment audio recordings
into their standalone components of contiguous piano performance. To do this, we employ a sliding-
window based technique adapted from standard approaches (Keogh et al., 2004), aimed at accurately
removing non-piano content whilst being robust to short-lived classification mistakes.

Given an audio recording, we score each five-second interval, sampled with a one-second stride,
by passing the inputs through our model. We classify a region (n, m + 5), m ≥ n + d, as non-
piano if and only if all segments starting between n and m are scored below λ. The parameters d
and λ control the sensitivity and minimum length of non-piano segments, which we set to 3 and
0.5 respectively. After excluding all non-piano segments, we classify the remaining contiguous
segments as piano if they are longer than 45 seconds. Finally, we discard piano segments with an
average score lower than 0.7. Our choice of algorithm and hyperparameters was motivated to reduce
the chance of a solo-piano segment being prematurely interrupted due to instability in scoring. Since
our classifier designates intervals that are mostly silent as non-piano, this approach also separates
segments of piano performances that are separated by at least d+5 seconds of silence. In Section 3,
we investigate the accuracy of both classification and segmentation of our proposed approach.

2.3 TRANSCRIPTION

We used a Whisper-based model, Aria-AMT5 (Bradshaw et al.), to transcribe the segmented audio
recordings into MIDI files. This choice was informed by the model’s robustness in transcribing
audio from a diverse set of recording environments, compared to models used in previous work
(Kong et al., 2020; Zhang et al., 2022) (See Appendix A.3). Transcription of the 100,629 hours
of audio took 765 hours using an NVIDIA H100 GPU with a batch size of 128, representing an
inference speed of roughly 131x real-time, transcribing approximately 2327 notes per second.

2.4 METADATA EXTRACTION

Access to per-file metadata labels enables flexible dataset splits for generative and MIR tasks. A
central concern of ours was entity resolution (ER) (Christen, 2011), i.e., identifying the composi-
tional source of each recording and using this information to mitigate overrepresentation of popular
pieces6.

Inspired by our crawling methodology, we applied a similar approach to metadata extraction. Using
Llama 3.1 (70B), we processed YouTube titles and descriptions for files that passed language model
and audio detection filters. The prompt (see Appendix A.2) extracted composer, opus numbers (e.g.,
Op., BWV, K., D.), piece identifiers, performer, genre, and form labels when such information was
present in the text.. These metadata labels facilitate control over compositional duplication and
provide supervised labels for MIR. We analyze their accuracy and distribution in Sections 3 and 4.

3 METHODOLOGICAL ANALYSIS

In this section, we evaluate the effectiveness of the components in our data pipeline. Where applica-
ble, we compare our methods to those used in previous work, in particular the GiantMIDI, ATEPP,
and PiJAMA datasets. For baselines and to determine ground truth, we relied on human labels
obtained from two musically trained pianists familiar with popular classical and jazz repertoire.

Language Model Classification. We first analyze the ability of a language model to correctly clas-
sify a video as solo-piano according to its YouTube title and description. In our experiment we
chose a random sample of 250 videos from those crawled, and calculated the accuracy of the labels
provided by different language models, judged relative to the ground truth in the audio content. We
also asked human participants to label the videos according to the same prompt given to the lan-
guage models. Classification precision, recall, and F1 scores can be seen in Table 3. In comparison
to human-derived labels, language models perform well at this text-based classification task. We
attribute this to the depth of knowledge of different composers, performances, and pieces, which the

5https://github.com/eleutherai/aria-amt
6For example, moonlight appears in 6,819 titles, likely referring to Beethoven’s Moonlight Sonata.
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Table 3: Classification precision, recall, and F1-scores for different models in the Llama 3.1 family,
as well as human labels, across various score classification thresholds. Results suggest that Llama
3.1 70B with a score threshold of 4 provides a good balance between inference cost and accuracy.

Score ≥ 3 Score ≥ 4 Score ≥ 5

Model P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Llama 3.1 8B 73.08 81.43 77.03 82.26 72.86 77.27 86.36 27.14 41.30
Llama 3.1 70B 64.76 97.14 77.71 70.83 97.14 81.93 84.51 85.71 85.11
Llama 3.1 405B 77.01 95.71 85.35 80.49 94.29 86.84 94.44 72.86 82.26

Human labels 73.63 95.71 83.23 83.56 87.14 85.31 85.71 25.71 39.56

language models have access to. Despite this, there remains a clear discrepancy between the audio
ground truth and the labels obtained from YouTube titles and descriptions alone.

Audio Segmentation. We evaluate the performance of our audio classification model in identifying
and segmenting solo-piano content within audio recordings. For comparison, we used MVSep di-
rectly to obtain binary labels, applying the same inference procedure as described in Section 2.2.2.
For ablation, we trained a model without the pseudo-labeled training data listed in Table 2. To mimic
classifiers used for segmentation in other work, notably for the GiantMIDI, ATEPP, and PiJAMA
datasets, we include various noise, applause, and speech from AudioSet (Gemmeke et al., 2017) as
negative training examples for our ablation model.

For this analysis, a random sample of 250 audio recordings assigned language model scores greater
than or equal to 3 was selected, excluding those used during training. To establish ground truth, our
two participants were tasked with segmenting recordings into regions of solo-piano content and as-
signing files into one of three categories: Not solo-piano, solo-piano with significant audio artifacts,
or solo-piano with good to pristine recording quality. Human-labeled segments were post-processed
in accordance with our inference algorithm: Non-piano segments shorter than eight seconds were
ignored, and a minimum length of 45 seconds was imposed on piano segments. Segmentation ac-
curacy results can be seen in Table 4. While the ablation model achieves accurate segmentation
accuracy, being less likely to interrupt piano segments by misclassifying occasional noisy periods of
extreme piano audio as non-piano content, it mislabels non-piano audio as piano eight times more
frequently than the proposed approach in absolute terms.

We next evaluated our model’s classification performance. To assess this on a per-file basis, we
imposed minimum thresholds on the average audio score for predicted piano segments, negatively
classifying files with no predicted piano segments after filtering. Table 5 reports the accuracy of this
approach in identifying non-piano recordings as well as solo-piano recordings with significant audio
artifacts in our evaluation dataset. Additionally, we analyzed the audio files that constitute Giant-
MIDI, ATEPP, and PiJAMA. Our human participants manually categorized files in these datasets that
fell below an empirically determined average score threshold of 0.7, indicating issues with recording
quality or content. The resulting distributions of these categorizations are shown in Figure 2.

In both tasks, our approach performs well. For segmentation with λ=0.5, we achieve a 96.38%
overlap with the ground truth for high-quality piano recordings, while removing 98.83% of non-
piano audio across the evaluation corpus. When applying a segment average-score threshold of
T=0.7, we remove 100% of non-piano files on a per-file basis while retaining 95.28% of high-quality
piano files. Furthermore, increasing T to 0.9 removes most low-quality piano audio files, enabling
us to curate a clean dataset split which we also provide.

Metadata extraction. To evaluate our approach to metadata extraction, we selected a random sam-
ple of 200 files and cross-referenced the metadata labels assigned by the language model with the
corresponding YouTube titles and descriptions. For each file and metadata category, we manually
checked for incorrect labels (e.g., misattributions) and missing labels where relevant information
was present in the raw text. This process provides accuracy estimates for the metadata labels in
the final dataset. Notably, the language model sometimes generated accurate labels that were not
present in the raw text. The results of this evaluation are shown in Table 6.
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Table 4: Segmentation accuracy and overlap ratios for different techniques and hyperparameters. We
consider a predicted segment correct if its beginning and end match the reference within tolerances
of ±2 seconds and ±5 seconds, respectively. Each reference segment is matched to at most one
predicted segment. Overlap ratios are calculated separately for piano and non-piano audio, each as
the ratio of the duration of correctly identified audio to the total duration of the respective ground
truth audio type. dBmin and λ denote the sensitivity to non-piano content as described in Section 2.2.

Segmentation Accuracy Segment Overlap
Technique P (%) R (%) F1 (%) Piano (%) Non-Piano (%)
Full corpus
MVSep, dBmin=-22dB 65.62 70.47 67.96 91.96 97.22
MVSep, dBmin=-25dB 58.28 63.76 60.90 88.74 98.18
MVSep, dBmin=-28dB 49.38 53.69 51.45 82.23 98.66
Proposed, λ=0.5 71.97 75.84 73.86 94.22 98.83
Proposed, λ=0.6 70.70 74.50 72.55 92.67 98.89
Proposed, λ=0.7 68.39 71.14 69.74 91.04 99.10
Ablation, λ=0.5 71.18 81.21 75.86 97.05 91.10

All solo-piano recordings
MVSep, dBmin=-22dB 68.18 70.47 69.31 91.96 89.50
MVSep, dBmin=-25dB 59.75 63.76 61.69 88.74 93.43
MVSep, dBmin=-28dB 50.00 53.69 51.78 82.23 94.12
Proposed, λ=0.5 72.44 75.84 74.10 94.22 92.73
Proposed, λ=0.6 71.15 74.50 72.79 92.67 93.18
Proposed, λ=0.7 68.83 71.14 69.97 91.04 94.66
Ablation, λ=0.5 77.56 81.21 79.34 97.05 73.33

Quality solo-piano recordings
MVSep, dBmin=-22dB 70.00 75.97 72.86 94.71 85.13
MVSep, dBmin=-25dB 61.64 69.77 65.45 92.06 87.04
MVSep, dBmin=-28dB 50.33 58.91 54.29 87.41 88.22
Proposed, λ=0.5 75.36 80.62 77.90 96.38 84.80
Proposed, λ=0.6 73.91 79.07 76.40 95.33 86.13
Proposed, λ=0.7 71.53 75.97 73.68 93.92 88.29
Ablation, λ=0.5 82.09 85.27 83.65 97.15 83.13

Table 5: Classification performance for different segment average score thresholds, evaluated on
our human-labeled dataset. Segments were calculated using λ=0.5. All solo-piano refers to the
classification performance for identifying files containing solo piano segments, regardless of audio
artifacts. Quality solo-piano refers to identifying only recordings with good to pristine audio quality.
FP = False Positives.

All solo-piano Quality solo-piano
Threshold P (%) R (%) F1 (%) FP P (%) R (%) F1 (%) FP
T ≥0.50 99.28 93.24 96.17 1 88.49 96.85 92.48 16
T ≥0.60 99.27 91.89 95.44 1 89.05 96.06 92.42 15
T ≥0.70 100.00 89.86 94.66 0 90.98 95.28 93.08 12
T ≥0.80 100.00 85.14 91.97 0 90.48 89.76 90.12 12
T ≥0.90 100.00 75.68 86.15 0 95.54 84.25 89.54 5
T ≥0.95 100.00 61.49 76.15 0 97.80 70.08 81.65 2
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Figure 2: Distribution of files with average audio classifier scores ≤ 0.7 across datasets. Files were
manually categorized. The differences in distribution between datasets may be attributed to human-
in-the-loop pruning in ATEPP and PiJAMA, which is absent in GiantMIDI..

Table 6: Analysis of metadata presence and accuracy across different attributes. For each attribute,
presence indicates the percentage of files with assigned metadata, accuracy shows the percentage of
correct labels among present metadata, and missed labels represents the percentage of files where
metadata was omitted despite being inferrable from YouTube titles and descriptions. Accuracy was
verified following the criteria specified in the system prompt (see Appendix A.2).

Attribute Presence (%) Accuracy (%) Missed Labels (%)
Composer 71.0 99.3 2.7
Performer 62.0 99.2 0.8
Opus Number 32.0 100.0 1.5
Piece Number 22.0 93.2 4.3
Key Signature 23.0 97.8 0.0
Genre 86.5 94.2 0.6
Music Period 63.0 92.9 12.5

4 DATASET STATISTICS

In this section, we present statistics on our methodology and the resulting dataset of MIDI files.
Overall, when executing our data pipeline, we collected YouTube data for 3,290,453 videos, from
which we further processed 1,713,650 using our audio classifier. We then transcribed over 1 million
audio segments into approximately 100,000 hours of transcribed solo-piano music. We present a
breakdown of scores ascribed during each stage of processing in Figure 3. Taken together with the
experiments in Section 3, we conclude that the techniques we have developed work well at scale.
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Figure 3: Score breakdowns for different components of our data pipeline. Figure (a) shows the dis-
tribution of language model scores during crawling. Figure (b) illustrates the cumulative distribution
of audio classifier scores for recordings with a language model score of at least three.
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Figure 4: Number of transcriptions in Aria-MIDI attributed to the top 50 composers (log scale).
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Figure 5: Relative frequency distribution of metadata across categories, normalized to the most
frequent one. Common surnames in the performer category (e.g., Lee, Kim) are not displayed.

Moreover, extrapolating from the results in Table 5, we observe that the top-scoring 35,000 hours of
MIDI files likely contain few transcriptions of non-solo-piano content.

To address compositional duplicates, we analyze metadata tags in three categories: composer, opus
number, and piece number. To obtain a dataset split minimizing compositional duplicates within
the text-based metadata constraints, we remove files that either match on all three tags (composer,
opus number, and piece number) or match on both composer and opus number in cases where piece
number tags are absent. For composers who appear more than 250 times across the dataset, we also
prune all additional files that lack opus number and piece number tags. Overall, we identified 23,283
unique metadata triples, and after removing compositional duplicates using this procedure, 800,973
files remained. Figure 4 shows the frequency of performances of works by different composers in
the complete dataset, illustrating their relative popularity.

Lastly, Figure 5 shows the distribution of metadata for other categories over the entire collection of
MIDI files, without deduplication. Overwhelmingly, transcriptions of classical piano performances
dominate; however, when accounting for the total size, many other genres are well represented.

5 CONCLUSION

We have introduced a new dataset of MIDI files, created by transcribing piano performances pub-
licly accessible on the internet. In this paper, we provide an analysis of the components in our data
pipeline and find them to be well-suited for our purposes. Going forward, we see several areas
for future work: Primarily, extending our approach to other instruments such as guitar, as well as
the multi-instrument case, could be approachable via variations of the source-separation-based ap-
proaches to audio pre-processing we have outlined. Secondly, further study into metadata attribution
using language models, especially targeting improvements in compositional entity recognition.
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A APPENDIX

A.1 CRAWLING SYSTEM PROMPT

1

2 Analyze the YouTube video title and description to determine if it ’s
likely a solo piano performance . Consider the following :

3

4 1. Is the content music - related ?
5 2. Are there explicit mentions of solo piano or pianist names?
6 3. Does it mention other instruments , vocalists , or non - musical

elements ?
7 4. Is it an educational video (tutorial , lesson ) rather than a

performance ?
8 5. If a piece name is provided , is it typically for solo piano?
9

10 Pay special attention to these factors , which suggest the content is
NOT a pure solo piano performance :

11

12 - Presence of other instruments or vocalists
13 - Educational content (lessons , tutorials )
14 - Non -piano keyboard instruments (e.g., organ , harpsichord )
15 - Significant narration or spoken content
16 - Orchestral accompaniment (e.g., piano concertos )
17 - Audio content beyond solo piano
18 - Repetitive tracks (e.g., loop videos )
19

20 The presence of any of these elements should generally result in a
lower rating .

21

22 Assign a score from 0-5 where:
23

24 5 = Certainly a solo piano performance only
25 - Clear indication of a solo pianist performing
26 - No signs of additional instruments , vocals , or non - performance

elements
27

28 4 = Very likely a solo piano performance , but not entirely certain
29 - Strong indications of solo piano , but some minor ambiguity
30 - No clear signs of additional elements , but not explicitly ruled out
31

32 3 = Possibly a solo piano performance , but with significant
uncertainty

33 - Some indications of solo piano , but also hints of potential
additional elements

34 - Could be a piano - focused piece with minimal additional content
35

36 2 = Likely includes elements other than solo piano
37 - Clear indications of additional instruments , educational content ,

or non - performance elements
38 - Still primarily piano -focused , but definitely not a pure solo

performance
39

40 1 = Mostly not a solo piano performance
41 - Significant presence of other instruments , vocals , or non - musical

content
42 - Piano may be present but is not the sole or main focus
43

44 0 = Definitely not a solo piano performance or not piano - related at
all

45 - No indication of solo piano content
46 - Completely unrelated to piano performances
47

48 Examples :
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49 " Chopin Nocturne Op. 9 No. 2 - Arthur Rubinstein " => 5
50 "The Art of Fugue - Glenn Gould (Piano)" => 5
51 " Bohemian Rhapsody - Piano Cover with Sheet Music" => 4
52 " Beethoven - Ode To Joy | VERY EASY Piano Tutorial " => 3
53 " Mozart Piano Concerto No. 21 - London Symphony Orchestra " => 1
54 "Top 10 Guitar Solos of All Time" => 0
55

56 Think step by step concisely , and then provide your score as a JSON
string : {" score ": X}

A.2 METADATA EXTRACTION SYSTEM PROMPT

1 Analyze the YouTube video title and description provided within XML
tags. If it contains information about a solo -piano performance ,
extract the following metadata and provide it as a JSON string :

2

3 - composer : Last name of the composer , if applicable (string , omit if
not present or uncertain )

4 - opus: Opus number (e.g., Op., BWV , K., D.), if applicable (integer ,
omit if not present or uncertain )

5 - piece_number : Number or identifier within the opus , if applicable (
integer , omit if not present or uncertain )

6 - genre: Primary genre of the piece ( string : " classical ", "jazz", "
pop", "blues", " ragtime ", " atonal ", "rock", " soundtrack ", "
ambient ", "folk", omit if uncertain )

7 - form: Musical form (e.g., " sonata ", "etude", " improvisation ", "
fantasy ", etc .) (string , omit if unknown or not applicable )

8 - performer : Last name of the pianist or performer , if known (string ,
omit if unknown or uncertain )

9 - key_signature : Key signature of the piece (string , omit if not
mentioned or uncertain )

10 - difficulty : Estimated difficulty level ( string : " beginner ", "
intermediate ", " advanced ", " virtuoso ", omit if uncertain )

11 - music_period : Primary musical period ( string : " classical ", "
romantic ", " baroque ", " impressionist ", " contemporary ", " modern ",
omit if uncertain )

12

13 Rules:
14 1. Omit keys and values entirely for fields not present , unknown , or

uncertain . Do not include empty strings or placeholder values .
15 2. Be cautious not to include fields unless you are reasonably

certain they are correct .
16 3. Provide opus and piece_number as integers only (e.g. don ’t include

BWV , K., S., or Op.). Omit if not clearly a number or if zero.
17 4. In the case of well -known pieces (e.g., Moonlight Sonata ,

Fantaisie -Impromptu , etc .), add the opus and piece_number if you
are certain , even if it is not in the raw text.

18 5. Provide form as a single word each , using very general and well -
known terms.

19 6. Infer difficulty and period from context when possible , but omit
if uncertain .

20 7. For all strings only provide a single word in lowercase ASCII.
21 8. For composer and performer , use only the last name. If unsure

which name is the last name , omit the field.
22 9. Provide key_signatures using standard ASCII musical notation : Use

’b’ for flat , ’#’ for sharp , and ’m’ for minor. Major keys should
not have a suffix . Examples : ’c’, ’f#m’, ’bb ’.

23 10. Only include opus and piece_number if the video is a complete
performance of a single traditional opus number (Op., BWV , K., D
.) and its movements / variations . Omit both fields for
compilations , multiple works , ambiguous titles , or when using non
- traditional / modern catalog numbers .

24 11. D o n t confuse piece_number with other identifiers like sonata
numbers (e.g., " Sonata No. 14") or separate opus numbers (e.g.,
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in "Op. 37 -38" , neither 37 nor 38 is a piece_number ). Only use
piece_number when i t s part of an opus and subordinate to it.

25

26 Examples :
27

28 1. Input:
29 <title > Chopin - Nocturne in E-flat major , Op. 9 No. 2 | Rousseau </

title >
30 <description > F r d r i c Chopin ’s Nocturne in E-flat major , Op. 9, No.

2. One of the most famous classical piano pieces from the
Romantic era. Performed by Rousseau .

31 # chopin # nocturne # classical #piano </ description >
32

33 Output :
34 {
35 " composer ": " chopin ",
36 "opus ": 9,
37 " piece_number ": 2,
38 "genre ": " classical ",
39 "form ": " nocturne ",
40 " performer ": " rousseau ",
41 " key_signature ": "eb",
42 " difficulty ": " advanced ",
43 " music_period ": " romantic "
44 }
45

46 2. Input:
47 <title >Glenn Gould plays Bach Partita No.2 in C-minor (FULL) </title >
48 <description >1959 Studio recording DISCLAIMER : I do not own any

material shown in this video. This is for entertainment purposes
ONLY. Unlawful distribution of this material can result in bad
stuff , apparently , SO DON ’T DO IT!</ description >

49

50 Output :
51 {
52 " composer ": "bach",
53 "genre ": " classical ",
54 "form ": " partita ",
55 " performer ": "gould",
56 " key_signature ": "cm",
57 " difficulty ": " advanced ",
58 " music_period ": " baroque "
59 }
60

61 3. Input:
62 <title >Jazz Piano - Bill Evans - The Solo Sessions , Vol1 [ Full Album

]</title >
63 <description ></ description >
64

65 Output :
66 {
67 " performer ": "evans",
68 "genre ": "jazz",
69 " music_period ": " modern "
70 }
71

72 4. Input:
73 <title > Martha Argerich plays Beethoven Sonata No. 31, Op. 110 </ title >
74 <description >00:00 1. Moderato cantabile molto espressivo
75 06:12 2. Allegro molto
76 08:18 3. Adagio ma non troppo - Allegro ma non troppo
77 </ description >
78

79 Output :
80 {
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81 " composer ": " beethoven ",
82 "opus ": "110" ,
83 "genre ": " classical ",
84 "form ": " sonata ",
85 " performer ": " argerich ",
86 " difficulty ": " advanced ",
87 " music_period ": " classical "
88 }
89

90 Think step by step concisely , and then provide the metadata as a JSON
string .

A.3 TRANSCRIPTION ACCURACY

Table 7: Piano transcription note accuracy of the transcription model used for Aria-MIDI, evaluated
on the MAESTRO (v3) and MAPS test sets. Results are calculated using the mir eval library (Raffel
et al., 2014) with default settings. We compare to the model introduced in Kong et al. (2021), which
was used for GiantMIDI, ATEPP, and PiJAMA.

Note Note /w offset Note /w offset & vel

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

Chosen model
MAESTRO 98.86 96.45 97.63 91.63 89.42 90.50 90.56 88.39 89.45
MAPS 91.78 89.47 90.58 - - - - - -

Kong et al. (2021)
MAESTRO 98.82 95.53 96.82 86.51 84.21 85.33 84.97 82.72 83.82
MAPS 79.37 87.43 83.10 - - - - - -
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