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ABSTRACT

Deep generative models have made tremendous progress in modeling complex
data, often exhibiting generation quality that surpasses a typical human’s ability
to discern the authenticity of samples. Undeniably, a key driver of this success
is enabled by the massive amounts of web-scale data consumed by these models.
Due to these models’ striking performance and ease of availability, the web will
inevitably be increasingly populated with synthetic content. Such a fact directly
implies that future iterations of generative models must contend with the reality that
their training is curated from both clean data and artificially generated data from
past models. In this paper, we develop a framework to rigorously study the impact
of training generative models on mixed datasets (of real and synthetic data) on their
stability. We first prove the stability of iterative training under the condition that the
initial generative models approximate the data distribution well enough and the pro-
portion of clean training data (w.r.t. synthetic data) is large enough. We empirically
validate our theory on both synthetic and natural images by iteratively training
normalizing flows and state-of-the-art diffusion models on CIFAR10 and FFHQ.
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(a) 0 retrain. (b) 5 retrain. (c) 10 retrain. (d) 15 retrain. (e) 20 retrain.

Figure 1: Samples generated from EDM trained on the FFHQ dataset. As observed in Shumailov
et al. (2023); Alemohammad et al. (2023), iteratively retraining the model exclusively on its own
generated data yields degradation of the image (top row). On the other hand, retraining on a mix of
half real and half synthetic data (middle) yields a similar quality as retraining on real data (bottom).
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1 INTRODUCTION

One of the central promises of generative modeling is the ability to generate unlimited synthetic
data indistinguishable from the original data distribution. Access to such high-fidelity synthetic data
has been one of the key ingredients powering numerous machine learning use cases such as data
augmentation in supervised learning (Antreas et al., 2018), de novo protein design (Watson et al.,
2023), and text-generated responses to prompts that enable a suite of natural language processing
applications (Dong et al., 2022). Indeed, the scale and power of these models—in particular
large language models (Brown et al., 2020; OpenAI, 2023; Chowdhery et al., 2022; Anil et al.,
2023)—have even led to significant progress, often exceeding expert expectations (Steinhardt, 2022),
in challenging domains like mathematical reasoning, or code assistance (Bubeck et al., 2023).

In addition to the dramatic increase in computational resources, a key driver of progress has been
the amount and the availability of high-quality training data (Kaplan et al., 2020). As a result,
current LLMs and text-conditioned diffusion models like DALL-E (Ramesh et al., 2021), Stable
Diffusion (Stability AI, 2023), Midjourney (Midjourney, 2023) are trained on web-scale datasets
that already potentially exhaust all the available clean data on the internet. Furthermore, a growing
proportion of synthetic data from existing deep generative models continues to populate the web—to
the point that even existing web-scale datasets are known to contain generated content (Schuhmann
et al., 2022). While detecting generated content in public datasets is a challenging problem in its
own right (Mitchell et al., 2023; Sadasivan et al., 2023), practitioners training future iterations of
deep generative models must first contend with the reality that their training datasets already contain
synthetic data. This raises the following fundamental question:

Does training on mixed datasets of finite real data and self-generated data alter performance?

Our Contributions. We study the iterative retraining of deep generative models on mixed datasets
composed of clean real data and synthetic data generated from the current generative model itself. In
particular, we propose a theoretical framework for iterative retraining of generative models that builds
upon the standard maximum likelihood objective, extending it to retraining on mixed datasets. It
encompasses many generative models of interest such as VAEs (Kingma and Welling, 2019), normal-
izing flows (Rezende and Mohamed, 2015), and state-of-the-art diffusion models (Song et al., 2021).

Using our theoretical framework, we show the stability of iterative retraining of deep generative
models by proving the existence of a fixed point (Theorem 1) under the following conditions: 1.) The
first iteration generative model is sufficiently “well-trained" and 2.) Each retraining iteration keeps
a high enough proportion of the original clean data. Moreover, we provide theoretical (Proposition 1)
and empirical (Figure 1) evidence that failure to satisfy these conditions can lead to model collapse
(i.e., iterative retraining leads the generative model to collapse to outputting a single point). We then
prove in Theorem 2 that, with high probability, iterative retraining remains within a neighborhood
of the optimal generative model in parameter space when working in the stable regime. Finally, we
substantiate our theory on both synthetic datasets and high dimensional natural images on a broad
category of models that include continuous normalizing flows (Chen et al., 2018) constructed using
a conditional flow-matching objective (OTCFM, Tong et al. 2023), Denoising Diffusion Probabilistic
Models (DDPM, Ho et al. 2020) and Elucidating Diffusion Models (EDM, Karras et al. 2022).

We summarize the main contributions of this paper below:

• We provide a theoretical framework to study the stability of the iterative retraining of likelihood-
based generative models on mixed datasets containing self-generated and real data.

• Under mild regularity condition on the density of the considered generative models, we prove
the stability of iterative retraining of generative models under the condition that the initial
generative model is close enough to the real data distribution and that the proportion of real data
is sufficiently large (Theorems 1 and 2) during each iterative retraining procedure.

• We empirically validate our theory through iterative retraining on CIFAR10 and FFHQ using
powerful diffusion models in OTCFM, DDPM, and EDM.

2 ITERATIVE RETRAINING OF GENERATIVE MODELS

Notation and convention. Let pdata ∈ P(Rd) be a probability distribution over Rd. An empirical
distribution sampled from pdata in the form of a training dataset, Dreal = {xi}ni=1, is denoted p̂data.
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Algorithm 1 Iterative Retraining of Generative Models
input : Dreal := {xi}ni=1, A // True data, learning procedure (e.g., Eq. 2)
param : T , λ // Number of retraining iterations, proportion of gen. data
pθθθ0

= A(Dreal) // Learn generative model on true data
for t in 1, . . . , T do

Dsynth = {x̃i}⌊λ·n⌋i=1 , with x̃i ∼ pθθθt−1
// Sample ⌊λ · n⌋ synthetic data points

pθθθt
= A(Dreal∪Dsynth) // Learn generative model on synthetic and true data

return pθθθT

We write pθθθ to indicate a generative model with parameters θθθ while Θ is the entire parameter space. A
synthetic dataset sampled from a generative model is written as Dsynth. The optimal set of parameters
and its associated distribution are denoted as θθθ⋆ and pθθθ⋆ . We use subscripts, e.g., θθθt,Dt, to denote
the number of iterative retraining steps, and superscripts to indicate the number of samples used,
e.g., θθθnt uses n training samples at iteration t. Moreover, we use the convention that θθθ0 is the initial
generative model pθθθ0

trained on p̂data. The asymptotic convergence notation ut = Õ(ρt) where
ρ > 0, refers to ∀ϵ > 0, ∃C > 0 such that ut ≤ C(ρ + ϵ)t, ∀t ≥ 0, i.e., ut almost converges at a
linear rate ρt. The Euclidean norm of vectors and the spectral norm of matrices is denoted ∥∥2. Let
S+ be the set of symmetric positive definite matrices, for S1 and S2 ∈ S+, S1 ⪰ S2 if S1 − S2 ⪰ 0.

2.1 PRELIMINARIES

The goal of generative modeling is to approximate pdata using a parametric model pθθθ. For
likelihood-based models, this corresponds to maximizing the likelihood of p̂data, which is an
empirical sampling of n data points from pdata and leads to the following optimization objective:

Θn
0 := argmax

θθθ′∈Θ
Ex∼p̂data

[log pθθθ′(x)] . (1)

Note that the argmax operator defines a set of equally good solutions to Equation (1). We follow
the convention of selecting θθθn0 = argminθθθ′∈Θ0

∥θθθ′∥ as the canonical choice. After obtaining
the trained generative model pθθθ0

, we are free to sample from it and create a synthetic dataset
Dsynth = {x̃0

i }
⌊λ·n⌋
i=1 , where x̃0

i ∼ pθθθ0
and λ > 0 is a hyperparameter that controls the relative size of

Dsynth with respect to Dreal. We can then update our initial generative model on any combination of
real data p̂data and synthetic data drawn from pθθθ0

to obtain pθθθ1
and repeat this process ad infinitum.

We term this procedure iterative retraining of a generative model (Algorithm 1). In the context of
maximum likelihood, the iterative retraining update can be formally written as:

Θn
t+1 := local-argmax

θθθ′∈Θ

[
Ex̃∼p̂data

[log pθθθ′(x̃)] + λEx∼p̂θθθt
[log pθθθ′(x)]

]
. (2)

The notation local-argmax corresponds to any local maximizer of the loss considered.1 The
formulation Equation (2) precisely corresponds to training a model on the empirical dataset
Dreal

⋃Dsynth of size ⌊n+λ ·n⌋. Note that Θn
t+1 may be a set; we thus need to provide a tie-breaking

rule to pick θθθnt+1 ∈ Θn
t+1. Since most training methods are local search method, we will select the

closest solution to the previous iterate θθθnt ,2

θθθnt+1 = Gn
λ (θθθ

n
t ) := argmin

θθθ′∈Θn
t+1

∥θθθ′ − θθθnt ∥ . (3)

Setting λ = 0 corresponds to only sampling from p̂data and is thus equivalent to training pθθθ0
for more

iterations. The main focus of this work is studying the setting where λ > 0 and, more specifically,
analyzing the discrete sequence of learned parameters θθθn0 → θθθn1 → · · · → θθθnT and thus their induced
distributions and characterize the behavior of the generative model in reference to pdata. As a result,
this means that iterative retraining at timestep t+ 1—i.e., θθθnt+1—resumes from the previous iterate
θθθnt . In practice, this amounts to finetuning the model rather than retraining from scratch.

1Given a function f continuously twice differentiable, a sufficient condition for θθθ to locally maximize f is
∇f(θθθ) = 0 and ∇2f(θθθ) ≺ 0.

2For simplicity of presentation, we assume that such a θθθnt+1 is uniquely defined which will be the case under
the assumptions of Theorems 1 and 2.
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2.2 WARM-UP WITH MULTIVARIATE GAUSSIAN

As a warm-up, we consider a multivariate Gaussian with parameters Nµµµ,Σ obtained from being fit on
p̂data ∼ Nµµµ0,Σ0

. This example corresponds to a special case of Equation (2) where λ → ∞ (i.e., we
do not reuse any training data). We analyze the evolution of the model parameters when iteratively
retraining on its own samples. For each retraining, a multivariate Gaussian model is learned from
finite samples. In the case of a single multivariate Gaussian, the update of the mean and covariance
parameters has a closed-form formula. For all t ≥ 0:

Sampling step:
{
xj
t = µµµt +

√
Σtz

j
t , with zjt

i.i.d.∼ N0,I, 1 ≤ j ≤ n , (4)

Learning step:
{
µµµt+1 = 1

n

∑
j

xj
t , Σt+1 = 1

n−1

∑
j

(
xj
t −µµµt+1

)(
xj
t −µµµt+1

)⊤
. (5)

Proposition 1 states that retraining a multivariate Gaussian only on its generated data leads to its col-
lapse: its covariance matrix vanishes to 0 linearly as a function of the number of retraining.

Proposition 1. (Gaussian Collapse) For all initializations of the mean µ0 and the covariance
Σ0, iteratively learning a single multivariate Gaussian solely on its generated data yields model
collapse. More precisely, if µt and Σt follows Equations (4) and (5), then, there exists α < 1,

E(
√

Σt) ⪯ αt
√

Σ0 −→
t→+∞

0 . (6)

The proof of Proposition 1 is provided in Appendix A. Interestingly, the convergence rate αn

goes to 1 as the number of samples n goes to infinity. In other words, the larger the number of
samples, the slower the model collapses. Proposition 1 is a generalization of Shumailov et al. (2023);
Alemohammad et al. (2023), who respectively proved convergence to 0 of the standard deviation
of a one-dimensional Gaussian model, and the covariance of a single multivariate Gaussian, without
rates of convergence. While Proposition 1 states that learning a simple generative model retrained
only on its own output yields model collapse, in Section 3, we show that if a sufficient proportion
of real data is used for retraining the generative models, then Algorithm 1 is stable.

3 STABILITY OF ITERATIVE RETRAINING

We seek to characterize the stability behavior of iterative retraining of generative models on datasets
that contain a mixture of original clean data as well as self-generated synthetic samples. As deep
generative models are parametric models, their performance is primarily affected by two sources of
error: 1.) statistical approximation error and 2.) function approximation error. The first source of error
occurs due to the sampling bias of using p̂data rather than pdata. For instance, due to finite sampling,
p̂data might not contain all modes of the true distribution pdata, leading to an imperfect generative
model irrespective of its expressive power. The function approximation error chiefly arises due to a
mismatch of the model class achievable by θθθ, and consequently the induced distribution pθθθ and pdata.

Recent advances in generative modeling theory have proven the universal approximation abilities of
popular model classes, e.g., normalizing flows (Teshima et al., 2020) and diffusion models (Oko et al.,
2023). In practice, state-of-the-art generative models such as StableDiffusion (Stability AI, 2023)
and MidJourney (Midjourney, 2023) exhibit impressive qualitative generative ability which dampens
the practical concern of the magnitude of the function approximation error in generative models.
Consequently, we structure our investigation by first examining the stability of iterative training in the
absence of statistical error in Section 3.1, which is an idealized setting. In Section 3.2, we study the
stability of iterative retraining of practical generative models where the statistical error is non-zero,
which is reflective of the setting and use cases of actual SOTA generative models in the wild.

3.1 ITERATIVE RETRAINING UNDER NO STATISTICAL ERROR

We first study the behavior of iterative retraining under the setting of no statistical error. As the
primary source of statistical error comes from using p̂data we may simply assume full access to pdata
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instead and an infinite sampling budget. In this setting, we define the optimal generative model pθθθ⋆

with parameters θθθ⋆ as the solution to the following optimization problem,

θθθ⋆ ∈ argmax
θθθ′∈θθθ

Ex∼pdata
[log pθθθ′(x)] . (7)

Compared to Equation (1), infinitely many samples are drawn from pdata in Equation (7); hence,
there is no statistical error due to finite sampling of the dataset. As the capacity of the model class
(pθθθ)θθθ∈θθθ is limited, the maximum likelihood estimator pθθθ⋆ does not exactly correspond to the data
distribution pdata. We note ε is the Wasserstein distance (Villani et al., 2009) between pθθθ⋆ and pdata,

ε = dW (pθθθ⋆ , pdata) := sup
f∈{Lip(f)≤1}

Ex∼pθθθ⋆ [f(x)]− Ex̃∼pdata
[f(x̃)] , (8)

where {Lip(f) ≤ 1} is the set of 1-Lipschitz functions. We assume the Hessian of the maximum
log-likelihood from Equation (7) has some regularity and θθθ⋆ is a strict local maximum.

Assumption 1. For θθθ close enough to θθθ⋆, the mapping x 7→ ∇2
θθθ log pθθθ(x) is L-Lipschitz.

We use this assumption to show that if pθθθ⋆ is close to pdata (i.e., ε small), then the Hessians of the
maximum likelihood with respectively real and synthetic data are close to each other.

Assumption 2. The mapping θθθ 7→ Ex∼pdata
[log pθθθ(x)] is continuously twice differentiable

locally around θθθ⋆ and Ex∼pdata
[∇2

θθθ log pθθθ⋆(x)] ⪯ −αId ≺ 0.

Assumption 2 supposes local strong convexity around the local minimum θθθ⋆, and Assumption 1
implies Hessian Lipschitzness when close to θθθ⋆. For example, Assumptions 1 and 2 are valid for
the Gaussian generative model described in Section 2.2.

Proposition 2. Let pθθθ : x 7→ Nµµµ,Σ(x) = e−
1
2 (x−µµµ)⊤Σ−1(x−µµµ)/

√
(2π)d|Σ|, with µµµ ∈ Rd,

Σ ≻ 0, θθθ = (µµµ,Σ−1), then Ex∼pθθθ(x)[∇2
θθθ log pθθθ(x)] ≺ 0 and x 7→ ∇2

θθθ log pθθθ(x) is 1-Lipschitz.

A direct consequence of the proposition is that the class of generative models (Nµµµ,Σ) follows As-
sumptions 1 and 2. Thus, it proves that under these assumptions, a finite λ is necessary for the stability
of iterative retraining. Now, we study what conditions are sufficient for the stability of iterative
retraining with λ > 0, i.e., training by sampling from 1

1+λpdata +
λ

1+λpθθθ⋆ , which corresponds to,

G∞
λ (θθθ) ∈ local-argmax

θθθ′∈θθθ
(Ex̃∼pdata

[log pθθθ′(x̃)]︸ ︷︷ ︸
:=H1(θθθ′)

+λEx∼pθθθ [log pθθθ′(x)]︸ ︷︷ ︸
:=H2(θθθ,θθθ′)

) . (9)

If ties between the maximizers are broken as in Equation (3),3 we can show that the solution
of Equation (9) is locally unique, ensuring that G∞

λ (θθθ) is well defined and differentiable.

Proposition 3. (The Local Maximum Likelihood Solution is Unique) Let θθθ⋆ be a solution
of Equation (7) that satisfies Assumptions 1 and 2. If ϵL < α, then for all λ > 0 and θθθ in a
small enough neighborhood U around θθθ⋆, there exists a unique local maximizer G∞

λ (θθθ) in U .

The proof of Proposition 3 is provided in Appendix C. Interestingly, θθθ⋆ is a fixed point of the infinite
sample iterative retraining procedure via maximum likelihood in Equation (9).

3Formally, G∞
λ (θθθ)=argminθθθ′∈θ̄θθ ∥θθθ′ − θθθ∥, θ̄θθ=local-argmaxθθθ′∈θθθ Hλ(θθθ,θθθ

′).

5



Published as a conference paper at ICLR 2024

Proposition 4. (The Optimal Parametric Generative Model is a Fixed Point) For a given data
distribution pdata, any θθθ⋆ solution of Equation (7), and for all λ > 0 we have,

θθθ⋆ = G∞
λ (θθθ⋆) . (10)

The proof of Proposition 4 can be found in Appendix D. In the zero statistical error case, θθθ⋆
corresponds to the perfectly trained generative model obtained after the first iteration of training exclu-
sively on real data (see Equation (1)). The main question is the stability of iterative retraining around
θθθ⋆. Even with pdata, one can consider small sources of error such as optimization error or numerical
error in floating point precision leading to an initial θθθ0 ≈ θθθ⋆ only approximately solving Equation (7).

For our stability analysis, given θθθ, we decompose the maximum likelihood loss as
Hλ(θθθ,θθθ

′) := H1(θθθ
′) + λH2(θθθ,θθθ

′) := Ex̃∼pdata
[log pθθθ′(x̃)] + λEx∼pθθθ [log pθθθ′(x)]. With this decou-

pling, we can view H2 as a regularizer injecting synthetic data and λ as the amount of regularization.
Our first main result states that iterative retraining of generative models is asymptotically stable if
the amount of real data is “large enough" with respect to the amount of synthetic data.

Theorem 1. (Stability of Iterative Retraining) Given θθθ⋆ as defined in Equation (7) that
follows Assumptions 1 and 2, we have that, if λ(1 + Lε

α ) < 1/2, then the operator norm of the
Jacobian is strictly bounded by 1, more precisely,

∥JθθθG∞
λ (θθθ⋆)∥2 ≤ λ(α+ εL)

α− λ(α+ εL)
< 1 . (11)

Consequently, there exists a δ > 0 such that for all θθθ0 ∈ θθθ that satisfy ∥θθθ0 − θθθ⋆∥ ≤ δ then
starting at θθθ0 and having θθθt+1 = G∞

λ (θθθt) we have that θθθt −→
t→+∞

θθθ⋆ and

∥θθθt − θθθ⋆∥ = Õ

((
λ(α+ εL)

α− λ(α+ εL)

)t

∥θθθ0 − θθθ⋆∥
)

. (12)

Proof of Theorem 1 can be found in Appendix E. Theorem 1 establishes the stability property of
generative models’ iterative retraining and quantifies the convergence rate to the fixed point θθθ⋆.
Interestingly, setting λ small enough is always sufficient to get ∥JθθθG∞

λ (θθθ⋆)∥ < 1. However, it is
important to notice that, to prove that the local maximizer of θθθ′ 7→ H(θθθ,θθθ′) is unique, we needed to
assume that εL < α. Similarly, we speculate that with additional assumptions on the regularity of H,
the neighborhood size δ for the local convergence result of Theorem 1 could be controlled with ε.

The limitation of Theorem 1 is that it is based on using infinite samples from pdata and only provides
a sufficient condition for stability. Informally, we show that if dW (pθθθ⋆ , pdata) and λ are small
enough–i.e., our class of generative model can approximate well enough the data distribution and
we re-use enough real data–, then, the procedure of iterative training is stable. On the one hand, It
remains an open question to show that similar conditions as the ones of Theorem 1 are necessary
for stability. On the other hand, Proposition 2 implies that in the general case under Assumptions 1
and 2, a finite value for λ is necessary since for a multivariate Gaussian, regardless of the value of
dW (pθθθ⋆ , pdata), if λ is infinite (i.e., we only use generated data) then we do not have stability and
collapse to a generative model with a vanishing variance.

Our theoretical results point to a different conclusion than the one experimentally obtained
by Alemohammad et al. (2023, Fig.3). In particular, stability may be ensured without injecting more
“fresh data”. Instead, a sufficient condition for stability is to have a good enough initial model (ε
small) and a sufficient fraction of “fixed real data” (λ small enough) for each iterative training step.

3.2 ITERATIVE RETRAINING UNDER STATISTICAL APPROXIMATION ERROR

We now turn our attention to iterative retraining for generative models under finite sampling. Mo-
tivated by generalization bounds in deep generative models (Yang and E, 2021a;b; Ji et al., 2021;
Jakubovitz et al., 2019), we make the following additional assumption on the approximation capability
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of generative models as a function of dataset size: we suppose we have a generalization bound for
our class of models with a vanishing term as the sample size increases.

Assumption 3. There exists a, b, εOPT ≥ 0 and a neighborhood U of θθθ⋆ such that with
probability 1− δ over the samplings, we havea

∀θθθ ∈ U,∀n ∈ N, ∥Gn
λ (θθθ)− G∞

λ (θθθ)∥ ≤ εOPT +
a√
n

√
log

b

δ
. (13)

aWe could have kept a more general bound as C(n, δ), and this choice comes without loss of generality.

The constant εOPT is usually negligible and mainly depends on the (controllable) optimization error.
As for the term a/

√
n ·
√
log b/δ, it vanishes to 0 when increasing n. Intuitively, this assumption

means that, in the neighborhood of θθθ⋆, the practical iterate Gn
λ (θθθ) can get as close as desired to the

ideal parameter G∞
λ (θθθ) by increasing the size of the sample from the dataset Dt used for retraining

at iteration t and thus decreasing the optimization error. On the one hand, it is relatively strong to
assume that one can approximate G∞

λ (θθθ) in the parameter space (usually such bounds regard the
expected loss). On the other hand, the fact that this assumption is local makes it slightly weaker.

We now state our main result with finite sample size, with high probability, that iterative retraining
remains within a neighborhood of the fixed point θθθ⋆.

Theorem 2. (Approximate Stability) Under the same assumptions of Theorem 1 and Assump-
tion 3, we have that there exists 0 < ρ < 1 and δ > 0 such that if ∥θθθn0 − θθθ⋆∥ ≤ δ then, with
probability 1− δ,

∥θθθnt − θθθ⋆∥ ≤
(
εOPT +

a√
n

√
log

bt

δ

)
t∑

l=0

ρl + ρt∥θθθ0 − θθθ⋆∥ , ∀t > 0 . (14)

The main takeaway on Theorem 2 is that the error between the iteratively retrained parameters θθθnt
and θθθ⋆ can be decomposed in three main terms: the optimization error εOPT ·∑t

l=0 ρ
l, the statistical

error a/
√
n ·
√
log b/δ ·∑t

l=0 ρ
l, and the iterative retraining error ρt∥θθθ0 − θθθ⋆∥. Interestingly, under

the assumption that the proportion of real data is large enough, the error between θθθnt and θθθ⋆ does
not necessarily diverge as stated in Shumailov et al. (2023); Alemohammad et al. (2023).

4 RELATED WORK

Generative Models trained on Synthetic Data. The study of generative models within a feedback
loop has been a focus of recent contemporary works by Alemohammad et al. (2023); Shumailov et al.
(2023). Both these works exhibit the model collapse phenomenon in settings where the generative
model is iteratively retrained from scratch (Alemohammad et al., 2023) and finetuned (Shumailov
et al., 2023). Similar in spirit to our work, Alemohammad et al. (2023) advocates for the injection of
real data—and even to add more fresh data—to reduce model collapse but falls short of providing
theoretical stability guarantees which we provide. The effect of generative models trained on web-
scale datasets contaminated with synthetic samples has also been investigated; corroborating the
degradation of generated sample quality (Martínez et al., 2023a;b; Hataya et al., 2023).

Performative Predicition. The nature of the stability results in Theorem 1 and Theorem 2 bear
connections with the literature on “performative prediction" in supervised classification (Perdomo
et al., 2020). In both cases, the outputs of the models affect the sampling distribution, which
influences the objectives themselves. As such, we seek to characterize the existence and nature of
fixed points. However, we note that performative prediction focuses on supervised learning, and the
required assumption in iterative stability for generative models is weaker than those to ensure global
convergence in the performative prediction literature. For instance, Perdomo et al. (2021) require
strong convexity with respect to θθθ, while Mofakhami et al. (2023) need stronger continuity properties
of the mapping θθθ 7→ pθθθ. In contrast, we only require assumptions on pθθθ around an optimal point θθθ⋆.
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5 EXPERIMENTS

We now investigate the iterative retraining of deep generative models in practical settings4. As our
real-world models ingest datasets sampled from empirical distributions, they necessarily operate under
statistical error arising from finite sampling. Other sources of error that inhibit learning the perfect
generative model—irrespective of the expressiveness of the architecture—include optimization errors
from the learning process and other numerical errors from lack of numerical precision. Our goal with
this empirical investigation is to characterize the impact on the performance of these models as a
function of λ and iterative retraining iterations while holding the size of the real dataset constant.

Datasets and Models. We perform experiments on synthetic toy data as found in Grathwohl
et al. (2018), CIFAR-10 (Krizhevsky and Hinton, 2009), and FlickrFacesHQ 64 × 64 (FFHQ-
64) datasets (Karras et al., 2019). For deep generative models, we conduct experiments with
continuous normalizing flows (Chen et al., 2018) constructed using a conditional flow-matching
loss (CFM (Lipman et al., 2022; Tong et al., 2023)) and two powerful diffusion models in De-
noising Diffusion Probabilistic Models (DDPM, Ho et al. 2020) and Elucidating Diffusion Mod-
els (EDM, Karras et al. 2022) where we relied on the original codebases torch-cfm (https:
//github.com/atong01/conditional-flow-matching), ddpm-torch (https://
github.com/tqch/ddpm-torch) and edm (https://github.com/NVlabs/edm) for
faithful implementations. Finally, we commit to the full release of our code upon publication.

Results on Synthetic Data. In Figures 3 and 4 we illustrate the learned densities of DDPM (Figure 3)
on the 8 Gaussians dataset and conditional normalizing flows (Figure 4) on the two moon datasets.
On the one hand, we observe model collapse if the generative models are fully retrained on their
own synthetic data (top rows). On the other hand, if the model is retrained on a mix of real and
generated data (bottom rows), then the iterative process does not diverge. In Figures 3 and 4, the
model is iteratively retrained on as much generated data as real data. For Figure 3 we iteratively
retrain a DDPM diffusion model for 200 epochs on 104 samples. For Figure 4 we iteratively retrain a
conditional flow matching model for 150 epochs on 103 samples.

Experimental Setup. For EDM we use the code, pre-trained models, and optimizers from the
official implementation (specifically the ddpmpp architecture with unconditional sampling) and
a batch size of 128 for FFHQ-64 and 256 for CIFAR-10. For OTCFM, we used the torchCFM
implementation https://github.com/atong01/conditional-flow-matching. All
other hyperparameters are those provided in the official implementations. After each training iteration,
we generate a set of images of the same size as the training set, {x̃i}ni=1, x̃i ∼ pθθθ. This corresponds
to 5 · 104 images for CIFAR-10 and 7 · 104 images for FFHQ-64. At each iteration, we compute
the FID (Heusel et al., 2017) as well as precision and recall (Kynkäänniemi et al. 2019, which are
correlated with fidelity and diversity) between the real data and the full set of generated data. All
the metrics are computed using the FLS package (https://github.com/marcojira/fls,
Jiralerspong et al. 2023). See Appendix G for further details. Then, following Algorithm 1 we
create a dataset which is a mix of all the real data Dreal, and a fraction of the generated data
Dsynth = {x̃i}⌊λ·n⌋i=1 . After each retraining iteration, the network and the optimizer are saved, and
the next retraining step resumes from this checkpoint. FFHQ-64 models are finetuned for 3.5 · 106
images, which is equivalent to 5 epochs on the real dataset. As in Shumailov et al. (2023), CIFAR-10
models are finetuned for 5 · 106 images, which corresponds to 10 epochs on the real dataset. Note
that since the created datasets Dreal ∪ {x̃i}⌊λ·n⌋i=1 do not have the same size (i.e., their size depends on
λ: |Dreal ∪{x̃i}⌊λ·n⌋i=1 | = n+ ⌊λ ·n⌋), we train on a constant number of images and not epochs which
is necessary for a fair comparison between multiple fractions λ of the incorporated generated data.

Analysis of Results. We plot our empirical findings of iterative retraining of OTCFM and EDM in
Figure 2. In particular, we report FID, precision, and recall as a function of the number of retraining
iterations for various values of λ. Note that the dashed black line with circles corresponds to the
baseline of retraining without synthetic data λ = 0, while the solid yellow line λ = 1 is retraining
with equal amounts of synthetic and original real data. The dashed red line with triangles corresponds
to retraining generative models only on their own data. Every other line is an interpolation between
the settings of the black and yellow lines. As predicted by Theorem 2, if the proportion of real data
is large enough, i.e., the value of λ is small enough, then the retraining procedure is stable, and

4Code to reproduce the experiments can be found at github.com/QB3/gen_models_dont_go_mad.
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Figure 2: FID, precision, and recall of the generative models as a function of the number of retraining for
multiple fractions λ of generated data, D = Dreal ∪ {x̃i}⌊λ·n⌋

i=1 , x̃i ∼ pθθθt . For all models and datasets, only
training on synthetic data (dashed red line with triangles) yields divergence. For the EDM models on CIFAR-10
(middle row), the iterative retraining is stable for all the proportions of generated data from λ = 0 to λ = 1. For
the EDM on FFHQ-64 (bottom row), the iterative retraining is stable if the proportion of used generated data is
small enough (λ < 0.5).

models do not diverge (see for instance, the CIFAR-10 and FFHQ-64—EDM rows of Figure 2. If the
fraction of used generated data λ is too large, e.g., λ = 1, we observe that FID might diverge. This
provides empirical evidence in support of the model collapse phenomenon in both Alemohammad
et al. (2023); Shumailov et al. (2023) where the generative models diverge and lead to poor sample
quality. Interestingly, for all fractions λ used to create the iterative training dataset Dt, the precision
of EDM models decreases with the number of retraining while their recall increases. It is worth
noting we observe the inverse trend between precision for OTCFM on CIFAR-10.

6 CONCLUSION AND OPEN QUESTIONS

We investigate the iterative retraining of generative models on their own synthetic data. Our main
contribution is showing that if the generative model initially trained on real data is good enough, and
the iterative retraining is made on a mixture of synthetic and real data, then the retraining procedure
Algorithm 1 is stable (Theorems 1 and 2). Additionally, we validate our theoretical findings
(Theorems 1 and 2) empirically on natural image datasets (CIFAR-10 and FFHQ-64) with various
powerful generative models (OTCFM, DDPM, and EDM). One of the limitations of Theorems 1
and 2 is that the proposed sufficient condition to ensure stability may not be necessary. Precisely,
under Assumptions 1 and 2, there is a gap to close between the necessity of λ < +∞ and the
sufficiency λ(1 + Lϵ

α ) < 1 for local stability. Another avenue for future work is to understand better
the impact of the finite sampling aspect (described in Section 3.2) on iterative retaining stability.
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A PROOF OF PROPOSITION 1

Sampling step:
{
xj
t = µµµt +

√
Σtz

j
t , with Zt

j
i.i.d.∼ N0,I, 1 ≤ j ≤ n , (4)

Learning step:
{
µµµt+1 = 1

n

∑
j

xj
t , Σt+1 = 1

n−1

∑
j

(
xj
t −µµµt+1

)(
xj
t −µµµt+1

)T
. (5)

Proposition 1. (Gaussian Collapse) For all initializations of the mean µ0 and the covariance Σ0,
iteratively learning a single multivariate Gaussian solely on its generated data yields model collapse.
More precisely, if µt and Σt follows Equations (4) and (5), then, there exists α < 1,

E(
√

Σt) ⪯ αt
√

Σ0 −→
t→+∞

0 . (6)

For exposition purposes, we first prove Proposition 1 for a single one-dimensional Gaussian (Ap-
pendix A.1). Then prove Proposition 1 for a single multivariate Gaussian in Appendix A.2.

A.1 1D-GAUSSIAN CASE.

In the one-dimensional case, the sampling and the learning steps become

Sampling step:
{
xt
j = µt + σtz

j
t , with zjt

i.i.d.∼ N0,I, 1 ≤ j ≤ n , (15)

Learning step:
{
µt+1 = 1

n

∑
j

xj
t , σ2

t+1 = 1
n−1

∑
j

(
xj
t − µt+1

)2
. (16)

Proposition 1 can be proved using the following lemmas. First, one can obtain a recursive formula
for the variances σ2

t (Lemma A.1 i)). Then a key component of the proof is to take the expectation of
the standard deviation σt (not the variance σ2

t , which stays constant because we used an unbiased
estimator of the variance), this is done in Lemma A.1 ii). Finally, Lemma A.1 iii) shows how to
upper-bound the expectation of the square root of a χ2 variable.

Lemma A.1. i) If (σt) and (µt) follow Equations (15) and (16), then, for all µ0, σ0,

σ2
t+1 =

1

n− 1

∑
j

zjt −
1

n

∑
j′

Zt
j′

2

σ2
t . (17)

ii)

∀t ≥ 1, σt+1 =

√
St√

n− 1
σt ,

√
St ∼ χn−1 . (18)

iii)

∀t ≤ 1,E(σt) = αtσ0 , (19)

with α = α(n) =
E
(√

χ2
n−1

)
√
n− 1

< 1 .

Proof. Lemma A.1 i). Let t ≥ 1.

µt+1 =
1

n

∑
j

Xt
j =

1

n

∑
j

(µt + zjtσt) (20)

= µt +
σt

n

∑
j

ztj , (21)
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hence

σ2
t+1 =

1

n− 1

∑
j

(
Xt

j − µt+1

)2
(22)

=
1

n− 1

∑
j

µt + zjtσt − µt −
σt

n

∑
j′

ztj′

2

(23)

=
1

n− 1

∑
j

zjt −
1

n

∑
j′

ztj′

2

σ2
t . (24)

Proof. Lemma A.1 ii) Cochran theorem states that St :=
∑
j

zjt −
1

n

∑
j′

ztj′

2

∼ χ2
n−1. Com-

bined with Lemma A.1 i), this yields

∀t ≥ 1, σt+1 =

√
St√

n− 1
σt , (25)

where
√
St ∼ χn−1.

Proof. Lemma A.1 iii). The independence of the zjt implies independence of the St, which yields
that for all t ≥ 1

E(σt+1|σt) = E
( √

St√
n− 1

|σt

)
σt (26)

= E
( √

St√
n− 1

)
σt because St ⊥⊥ σt , (27)

E(σt+1) = E
( √

St√
n− 1

)
︸ ︷︷ ︸

:=α

E(σt) because E(E(σt+1|σt)) = E(σt+1) . (28)

The independence of the Zt yields independence of the St. Combined with the strict Jensen inequality
applied to the square root, it yields

α = E
( √

St√
n− 1

)
(29)

<

√
E
(

St

n− 1

)
(30)

= 1 because E(St) = n− 1 since St ∼ χ2
n−1 . (31)

The strict Jensen inequality comes from the fact that the square root function is strictly convex, and
St ∼ χ2

n−1 is not a constant random variable. Note that α is strictly smaller than 1 and is independent
of the number of retraining. However α depends on the number of samples n, and that α(n) → 1,
when n → ∞.

A.2 MULTI-DIMENSIONAL CASE.

Sampling step:
{
xj
t = µµµt +

√
Σtz

j
t , with zjt

i.i.d.∼ N (0, I), 1 ≤ j ≤ n , (4)

Learning step:
{
µµµt+1 = 1

n

∑
j

xj
t , Σt+1 = 1

n−1

∑
j

(
xj
t −µµµt+1

)(
xj
t −µµµt+1

)T
. (5)
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The generalization to the multi-dimensional follows the same scheme as the unidimensional case: the
key point is to upper the expectation of the square root of the covariance matrix

Lemma A.2. i) If (Σt) and (µµµt) follow Equations (4) and (5), then, for all µµµ0,Σ0,

Σt+1 =
1

n− 1

√
Σt

∑
j

zjt −
1

n

∑
j′

Zt
j′

zjt −
1

n

∑
j′

Zt
j′

⊤


︸ ︷︷ ︸
:=S

√
Σt . (32)

ii) Let

S =
∑
j

zjt −
1

n

∑
j′

Zt
j′

zjt −
1

n

∑
j′

Zt
j′

⊤

, (33)

then √
E(S) =

√
n− 1Id , (34)

iii) Then

E(
√
S) ⪯ α

√
n− 1Id =

√
E(S) , (35)

with 0 ≤ α = λmax

(
E(

√
S)√

n−1

)
< 1.

iv) Finally

E
(√

Σt+1

)
⪯ αE

(√
Σt

)
, (36)

with 0 ≤ α < 1.

Proof. (Lemma A.2 i)) Rearranging the learning and the sampling steps (Equations (4) and (5))
yields

xj
t = µµµt +

√
Σtz

j
t , (37)

µµµt+1 =
1

n

∑
j

xj
t , (38)

µµµt+1 = µµµt +
1

n

√
Σt

∑
j

zjt , hence (39)

xj
t −µµµt+1 =

√
Σt

zjt −
1

n

∑
j

zjt

 . (40)

Plugging Equation (40) in the learning step (Equation (5)) yields

Σt+1 =
1

n− 1

√
Σt

∑
j

zjt −
1

n

∑
j′

Zt
j′

zjt −
1

n

∑
j′

Zt
j′

⊤
√Σt . (41)
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Proof. (Lemma A.2 ii)) Since Zt
j

iid∼ N (0, I), then

E(S) = E

∑
j

zjt −
1

n

∑
j′

Zt
j′

zjt −
1

n

∑
j′

Zt
j′

⊤
 , (42)

=
∑
j

E

zjt −
1

n

∑
j′

Zt
j′

zjt −
1

n

∑
j′

Zt
j′

⊤

, (43)

=
∑
j

E

zjt −
1

n

∑
j′

Zt
j′

2

· I , (44)

= E
∑
j

zjt −
1

n

∑
j′

Zt
j′

2

︸ ︷︷ ︸
expectation of a unidimensional χ2

n−1 variable

· I , (45)

= (n− 1) · I . (46)

Proof. (Lemma A.2 iii)) The matrix square root operator is strictly concave (Marshall et al., 1979,
Chapter 16, Example E.7.d), in addition, S is not a Dirac, hence the strict Jensen inequality yields

E(
√
S) ≺

√
E(S) , (47)

≺
√
n− 1 · Id (by Lemma A.2 ii)) , (48)

⪯ α
√
n− 1 · Id , (49)

with = α = λmax

(
E(

√
S)√

n−1

)
< 1.

Proof. (Lemma A.2 iv))

Taking the matrix square root of Equation (41) yields

√
Σt+1 =

1

n− 1
Σ

1
4
t

√√√√√√
∑

j

zjt −
1

n

∑
j′

Zt
j′

zjt −
1

n

∑
j′

Zt
j′

⊤


︸ ︷︷ ︸
=
√
S

Σ
1
4
t , (50)

√
Σt+1 =

1

n− 1
Σ

1
4
t

√
SΣ

1
4
t . (51)

Taking the expectation of Equation (51) conditioned on Σt yields

E
(√

Σt+1|Σt

)
=

1√
n− 1

Σ
1
4
t E
(√

S|Σt

)
Σ

1
4
t , (52)

=
1√
n− 1

Σ
1
4
t E
(√

S
)
Σ

1
4
t (because G ⊥⊥ Σt) , (53)

⪯ 1√
n− 1

Σ
1
4
t α
√
E (S)Σ

1
4
t (by Lemma A.2 iii)) , (54)

= α
1√
n− 1

Σ
1
4
t

√
(n− 1)IΣ

1
4
t , (55)

= α
√

Σ+1 , (56)

E
(√

Σt+1

)
⪯ αE

(√
Σt

)
(because E

(
E
(√

Σt+1|Σt

))
= E

(√
Σt+1

)
) . (57)
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B PROOF OF PROPOSITION 2

Proposition 2. Let pθθθ : x 7→ Nµµµ,Σ(x) = e−
1
2 (x−µµµ)⊤Σ−1(x−µµµ)/

√
(2π)d|Σ|, with µµµ ∈ Rd, Σ ≻ 0,

θθθ = (µµµ,Σ−1), then Ex∼pθθθ(x)[∇2
θθθ log pθθθ(x)] ≺ 0 and x 7→ ∇2

θθθ log pθθθ(x) is 1-Lipschitz.

(Proof of Proposition 2.) Following the computation of Barfoot (2020), and using the fact that
∇Σ−1 log det(Σ) = Σ (Boyd and Vandenberghe, 2004, Sec A.4.1) one has

− log pθθθ(x) = −1

2
log det(Σ−1) +

1

2
(x−µµµ)⊤Σ−1(x−µµµ) +

d

2
log(2π) , hence (58)

−∇(µµµ,Σ) log pθθθ(x) =

(
Σ−1(µµµ− x)

1
2 (x−µµµ)(x−µµµ)⊤ −Σ

)
, then (59)

−∇2
(µµµ,Σ) log pθθθ(x) =

(
Σ−1 (µµµ− x)⊗ Id

Id ⊗ (µµµ− x) 1
2 (Σ⊗Σ)

)
. (60)

Equation (60) shows that x 7→ ∇2
θθθ log pθθθ(x) is 1-Lipschitz. In addition, since Σ ≻ 0, then

E[−∇2
(µµµ,Σ−1) log pθθθ(x)] ≻ 0.

C PROOF OF PROPOSITION 3

Proposition 3. (The Local Maximum Likelihood Solution is Unique) Let θθθ⋆ be a solution of Equa-
tion (7) that satisfies Assumptions 1 and 2. If ϵL < α, then for all λ > 0 and θθθ in a small enough
neighborhood U around θθθ⋆, there exists a unique local maximizer G∞

λ (θθθ) in U .

(Proof of Proposition 3). Let θθθ⋆ be a solution of Equation (7). Assume that θθθ⋆ follows Assumptions 1
and 2. We recall that

H(θθθ,θθθ′) :=

:=H1(θθθ
′)︷ ︸︸ ︷

Ex̃∼pdata
[log pθθθ′(x̃)] +λ

:=H2(θθθ,θθθ
′)︷ ︸︸ ︷

Ex∼pθθθ [log pθθθ′(x)] , and (61)

G∞
λ (θθθ) := argmax

θθθ′
H(θθθ,θθθ′) . (62)

Using Proposition 4, since θθθ⋆ is a solution of Equation (7), then ∇θθθ′H(θθθ⋆, θθθ⋆) = 0. In addition,
Assumption 2 ensures that θθθ⋆ ∈ local-argmaxθθθ′∈Θ H(θθθ⋆, θθθ′) and that ∇2

θθθ′H(θθθ⋆, θθθ⋆) is invertible.
Hence, by the implicit function theorem (Lang, 1999, Theorem 5.9), for θθθ in a neighborhood of
θθθ⋆ we have that there exists a continuous function g such that g(θθθ⋆) = θθθ⋆ and ∇θθθ′H(θθθ, g(θθθ)) = 0.
Finally, in order to show that g(θθθ) is a local maximizer of θθθ′ 7→ H(θθθ,θθθ′) we just need to show that
∇2

θθθ′H(θθθ,θθθ⋆) ≺ 0.

∇2
θθθ′H(θθθ,θθθ⋆) = ∇2

θθθ′H1(θθθ
⋆) + λ∇2

θθθ′H2(θθθ,θθθ
⋆) (63)

= (1 + λ) ∇2
θθθ′H1(θθθ

⋆)︸ ︷︷ ︸
⪯−αI (using Assumption 2)

+λ(∇2
θθθ′H2(θθθ,θθθ

⋆)−∇2
θθθ′H1(θθθ

⋆)) , (64)

⪯ −(1 + λ)αI+ λ (Ex∼pθθθ [∇2 log pθθθ′(x)]− Ex∼pdata
[∇2 log pθθθ′(x)])︸ ︷︷ ︸

⪯εL (using Assumption 1)

, (65)

⪯ −α(1 + λ)Id + λεLId , (66)
≺ 0 if α ≥ εL . (67)

D PROOF OF PROPOSITION 4

Proposition 4. (The Optimal Parametric Generative Model is a Fixed Point) For a given data
distribution pdata, any θθθ⋆ solution of Equation (7), and for all λ > 0 we have,

θθθ⋆ = G∞
λ (θθθ⋆) . (10)
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Proof. The definition of G∞
λ (Equation (9)) yields

G∞
λ (θθθ⋆) := argmax

θθθ′∈Θ
H(θθθ,θθθ′) :=

:=H1(θθθ
′)︷ ︸︸ ︷

Ex̃∼pdata
[log pθθθ′(x̃)] +λ

:=H2(θθθ
⋆,θθθ′)︷ ︸︸ ︷

Ex∼pθθθ⋆ [log pθθθ′(x)] (68)

Since θθθ⋆ is a solution of Equation (7)

∀θθθ′ ∈ Θ,H1(θθθ
′) = Ex̃∼pdata

[log pθθθ′(x̃)] (69)
≤ Ex̃∼pdata

[log pθθθ⋆(x̃)] (70)
≤ H1(θθθ

⋆) . (71)

Gibbs inequality yields

∀θθθ′ ∈ Θ, H2(θθθ
⋆, θθθ′) = Ex∼pθθθ⋆ [log pθθθ′(x)] (72)

≤ Ex∼pθθθ⋆ [log pθθθ⋆(x)] (73)
≤ H2(θθθ

⋆, θθθ⋆) . (74)

H1 and H2(θθθ
⋆, ·) are both maximized in θθθ⋆ hence

Gλ(θθθ
⋆) = argmax

θθθ′
H1(θθθ

′) + λH2(θθθ
⋆, θθθ′) = θθθ⋆ . (75)
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E PROOF OF THEOREM 1

θθθ⋆ ∈ argmax
θθθ′∈θθθ

Ex∼pdata
[log pθθθ′(x)] . (7)

G∞
λ (θθθ) ∈ local-argmax

θθθ′∈θθθ
(Ex̃∼pdata

[log pθθθ′(x̃)]︸ ︷︷ ︸
:=H1(θθθ′)

+λEx∼pθθθ [log pθθθ′(x)]︸ ︷︷ ︸
:=H2(θθθ,θθθ′)

) . (9)

Assumption 1. For θθθ close enough to θθθ⋆, the mapping x 7→ ∇2
θθθ log pθθθ(x) is L-Lipschitz.

Assumption 2. The mapping θθθ 7→ Ex∼pdata
[log pθθθ(x)] is continuously twice differentiable locally

around θθθ⋆ and Ex∼pdata
[∇2

θθθ log pθθθ⋆(x)] ⪯ −αId ≺ 0.

Theorem 1. (Stability of Iterative Retraining) Given θθθ⋆ as defined in Equation (7) that follows As-
sumptions 1 and 2, we have that, if λ(1 + Lε

α ) < 1/2, then the operator norm of the Jacobian is
strictly bounded by 1, more precisely,

∥JθθθG∞
λ (θθθ⋆)∥2 ≤ λ(α+ εL)

α− λ(α+ εL)
< 1 . (11)

Consequently, there exists a δ > 0 such that for all θθθ0 ∈ θθθ that satisfy ∥θθθ0 − θθθ⋆∥ ≤ δ then starting at
θθθ0 and having θθθt+1 = G∞

λ (θθθt) we have that θθθt −→
t→+∞

θθθ⋆ and

∥θθθt − θθθ⋆∥ = Õ

((
λ(α+ εL)

α− λ(α+ εL)

)t

∥θθθ0 − θθθ⋆∥
)

. (12)

The main goal of Theorem 1 is to show that the operator norm of the Jacobian of the fixed-point
operator G is strictly bounded by one. We prove Theorem 1 with the following steps: using the
Implicit Function Theorem, Schwarz theorem, and analytic manipulations (Lemmas E.1 i) and E.1 ii))
we managed to obtain a simple formula for the Jacobian of G at θθθ⋆. Using Kantorovich-Rubenstein
duality, we manage to bound the Jacobian of the fixed-point operator at θθθ⋆ (Lemma E.1 iii)), and thus
to provide a condition for which ∥J Gλ(θθθ

⋆)∥2 < 1. These steps are detailed formally in Lemma E.1.

Lemma E.1. With A = ∇2
θθθ′,θθθ′H1(θθθ

⋆) and B = ∇2
θθθ,θθθ′H2(θθθ

⋆, θθθ⋆), under the assumptions of
Theorem 1:

i) There exists an open set U ⊂ Θ containing θθθ⋆ such that ∀θθθ ∈ U ,

JG(θθθ) = −λ
(
∇2

θθθ′,θθθ′H1(θθθ) + λ∇2
θθθ′,θθθ′H2(θθθ,G(θθθ))

)−1 · ∇2
θθθ,θθθ′H2(θθθ,G(θθθ)) . (76)

ii)

∇θθθ′θθθ′H2(θθθ
⋆, θθθ⋆) = −∇θθθ′θθθH2(θθθ

⋆, θθθ⋆) , (77)

and thus Jacobian at θθθ⋆ can be written

JG(θθθ⋆) =
(
Id + λA−1B

)−1 · λA−1B . (78)

iii) The spectral norm of A−1B and B−A can be bounded

∥A−1B∥2 ≤ 1 +
Lε

α
, (79)

and using Kantorovich-Rubenstein duality theorem

∥B−A∥2 ≤ LdW (pθθθ⋆ , pdata) . (80)

Proof. (Lemma E.1 i)) The definition of G yields

∇θθθ′H(θθθ,G(θθθ)) = 0 . (81)
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Differentiating Equation (81) using the chain rule yields

∇2
θθθ′,θθθH(θθθ,G(θθθ)) = −∇2

θθθ′,θθθ′H(θθθ,G(θθθ)) · J G(θθθ) , (82)

which implies

JG(θθθ) = −
(
∇2

θθθ′,θθθ′H(θθθ,G(θθθ))
)−1 ∇2

θθθ′,θθθH(θθθ,G(θθθ)) . (83)

Since H1 does not depend on θθθ

∇θθθH1(G(θθθ)) = 0 . (84)

Combining Equations (83) and (84) and the fact that G(θθθ⋆) = θθθ⋆ yields

JG(θθθ⋆) = −λ (∇θθθ′,θθθ′H1(θθθ
⋆) + λ∇θθθ′,θθθ′H2(θθθ

⋆, θθθ⋆))
−1 ∇θθθ′,θθθH2(θθθ

⋆, θθθ⋆) . (85)

Proof. (Lemma E.1 ii)) First, let’s compute ∇2
θθθ′,θθθH2(θθθ,θθθ

′):

H2(θθθ,θθθ
′) =

∫
X

log pθθθ′(x)pθθθ(x)dx , which yields (86)

∇θθθ′H2(θθθ,θθθ
′) =

∫
X

∇θθθ′ log pθθθ′(x)pθθθ(x)dx , and thus (87)

∇2
θθθ′,θθθH2(θθθ,θθθ

′) =

∫
X

∇θθθ′ log pθθθ′(x)∇θθθpθθθ(x)dx , (using Schwarz theorem). (88)

This yields

∇2
θθθ′,θθθH2(θθθ

⋆, θθθ⋆) =

∫
X

∇θθθ log pθθθ⋆(x)∇θθθpθθθ⋆(x)dx (89)

=

∫
X

∇θθθ[pθθθ⋆(x)∇θθθ log pθθθ⋆(x)︸ ︷︷ ︸
=

∇θθθpθθθ⋆ (x)

pθθθ⋆ (x)

]dx−
∫
X

∇2
θθθ,θθθ log pθθθ⋆(x)pθθθ⋆(x)dx︸ ︷︷ ︸
=∇2

θθθ′,θθθ′H2(θθθ⋆,θθθ⋆)

(90)

=

∫
X

∇2
θθθ,θθθpθθθ⋆(x)dx−∇2

θθθ′,θθθ′H2(θθθ
⋆, θθθ⋆) (91)

= ∇2
θθθ

∫
X

pθθθ⋆(x)dx︸ ︷︷ ︸
=1︸ ︷︷ ︸

=0

−∇2
θθθ′,θθθ′H2(θθθ

⋆, θθθ⋆) (92)

= −∇2
θθθ′,θθθ′H2(θθθ

⋆, θθθ⋆) . (93)

Consequently, with A = ∇2
θθθ′,θθθ′H1(θθθ

⋆, θθθ⋆) and B = ∇2
θθθ,θθθ′H2(θθθ

⋆, θθθ⋆) we get

JG(θθθ⋆) = (A+ λB)
−1 · λB (94)

=
(
Id + λA−1B

)−1 · λA−1B . (95)

Proof. Now, we have that

∥A−1B∥ = ∥A−1(B−A) + Id∥ (96)

≤ 1 + ∥A−1∥ · ∥B−A∥ (97)

≤ 1 +
Lε

α
, (98)
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where we used the triangle inequality, the submutliplicativity of the matrix norm and Assumptions 1
and 2 yield

∥B−A∥ =
∥∥∇2

θθθ,θθθ′H2(θθθ
⋆, θθθ⋆)−∇2

θθθ′,θθθ′H1(θθθ
⋆)
∥∥ (99)

=

∥∥∥∥∫
X

∇2
θθθ,θθθ log pθθθ⋆(x)pθθθ⋆(x)dx−

∫
X

∇2
θθθ,θθθ log pθθθ⋆(x)pdata(x)dx

∥∥∥∥ (100)

=
∥∥Ex∼pθθθ⋆

[
∇2

θθθ,θθθ log pθθθ⋆(x)
]
− Ex∼pd

[
∇2

θθθ,θθθ log pθθθ⋆(x)
]∥∥ (101)

≤ LdW (pθθθ⋆ , pdata) , (102)

by Kantorovich-Rubenstein duality theorem, where L is the Lipschitz norm of x 7→ ∇2
θθθ,θθθ log pθθθ(x).

Proof. (Theorem 1) Using Lemma E.1 iii), one has that if λ(1+ εL/α) < 1, then ∥λA−1B∥ < 1 and
thus (

Id + λA−1B
)−1

=

∞∑
k=0

(−λA−1B)k . (103)

Combining Lemma E.1 ii) and eq. (103) yields

JG(θθθ⋆) = −
∞∑
k=1

(−λA−1B)k . (104)

Thus, by the triangle inequality and the submutliplicativity of the matrix norm,

∥J G(θθθ⋆)∥ ≤
∞∑
k=1

∥λA−1B∥k =
∥λA−1B∥

1− ∥λA−1B∥ . (105)

To conclude, one simply needs to provide a sufficient condition for ∥λA−1B∥
1−∥λA−1B∥ < 1, which is

λ
(
1 + Lε

α

)
< 1/2.
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F PROOF OF THEOREM 2

Assumption 1. For θθθ close enough to θθθ⋆, the mapping x 7→ ∇2
θθθ log pθθθ(x) is L-Lipschitz.

Assumption 2. The mapping θθθ 7→ Ex∼pdata
[log pθθθ(x)] is continuously twice differentiable locally

around θθθ⋆ and Ex∼pdata
[∇2

θθθ log pθθθ⋆(x)] ⪯ −αId ≺ 0.

Theorem 2. (Approximate Stability) Under the same assumptions of Theorem 1 and Assumption 3,
we have that there exists 0 < ρ < 1 and δ > 0 such that if ∥θθθn0 − θθθ⋆∥ ≤ δ then, with probability
1− δ,

∥θθθnt − θθθ⋆∥ ≤
(
εOPT +

a√
n

√
log

bt

δ

)
t∑

l=0

ρl + ρt∥θθθ0 − θθθ⋆∥ , ∀t > 0 . (14)

Assumption 3. There exists a, b, εOPT ≥ 0 and a neighborhood U of θθθ⋆ such that with probability
1− δ over the samplings, we have5

∀θθθ ∈ U,∀n ∈ N, ∥Gn
λ (θθθ)− G∞

λ (θθθ)∥ ≤ εOPT +
a√
n

√
log

b

δ
. (13)

Proof. (Theorem 2)∥∥θθθnt+1 − θθθ⋆
∥∥ ≤

∥∥θθθnt+1 − θθθ∞t+1

∥∥+ ∥∥θθθ∞t+1 − θθθ⋆
∥∥ (106)

≤ ||Gn
λ,ζ(θθθ

n
t )− Gλ(θθθ

n
t )||+ ||G(θθθnt )− G(θθθ⋆)|| . (107)

Using Assumption 3, with probability 1− δ we have that∥∥Gn
λ,ζ(θθθ

n
t )− Gλ(θθθ

n
t )
∥∥ ≤ εOPT +

a√
n

√
log

b

δ
, (108)

Moreover Theorem 1 states that there exists a constant ρ < 1 such that

∥G(θθθnt )− G(θθθ⋆)|| ≤ ρ||θθθnt − θθθ⋆∥ . (109)

This yields that with probability 1− δ

∥∥θθθnt+1 − θθθ⋆
∥∥ ≤

(
εOPT +

a√
n

√
log

b

δ

)
+ ρ ∥θθθnt − θθθ⋆∥ . (110)

A recurrence and the conditional independence of the successive samplings yield

∀t > 0,P

(
∥θθθnt − θθθ⋆∥ ≤

(
εOPT +

a√
n

√
log

b

δ

)
t∑

i=0

ρi + ρt ∥θθθ0 − θθθ⋆∥
)

≥ (1− δ)t . (111)

Using the change of variable δ′ = δ · t yields

∀t > 0,P

(
∥θθθnt − θθθ⋆∥ ≤

(
εOPT +

a√
n

√
log

bt

δ′

)
t∑

i=0

ρi + ρt ∥θθθ0 − θθθ⋆∥
)

≥ (1− δ′/t)t︸ ︷︷ ︸
≥1−δ′

.

(112)

5We could have kept a more general bound as C(n, δ), and this choice comes without loss of generality.
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G ADDITIONAL EXPERIMENTS AND DETAILS

G.1 EIGHT GAUSSIANS – DDPM

C
ol

la
ps

in
g

Ground Truth No retraining #retrain. = 10 #retrain. = 20 #retrain. = 100

S
ta

bi
lit

y

Figure 3: Stability vs. collapsing of iterative retraining of generative models on their own data. Each
model’s density is displayed as a function of the number of retraining steps. The first two columns correspond to
the true density and the density of a diffusion model trained on the true data. As observed in Shumailov et al.
(2023); Alemohammad et al. (2023), iteratively retraining the model exclusively on its own generated data (top
row) yields a density that collapses: samples very near the mean of each mode are sampled almost exclusively
after 100 iterations of retraining. Contrastingly, retraining on a mixture of true and generated data (bottom row)
does not yield a collapsing density.

G.2 TWO MOONS – FLOW MATCHING

Co
lla

ps
e

Ground Truth No retraining #retrain. = 10 #retrain. = 20 #retrain. = 50

St
ab

ilit
y

Figure 4: Stability vs. collapsing of iterative retraining of generative models on their own data. Each
model’s density is displayed as a function of the number of retraining steps. The first two columns correspond to
the true density and the density of a diffusion model trained on the true data respectively.
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G.3 CIFAR-10 – DDPM

No Synth. Data (λ = 0)

λ = 0.001

λ = 0.01

λ = 0.1

λ = 0.2

λ = 0.3

λ = 0.4

λ = 0.5

λ = 0.6

λ = 0.7

λ = 0.8

λ = 0.9

λ = 1

Fully Synthetic

0 1 2 3 4 5
# retraining

5.0

7.5

10.0

C
IF
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R

-1
0

–
D

D
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M

FID

0 1 2 3 4 5
# retraining

0.65

0.66

0.67

Precision

0 1 2 3 4 5
# retraining

0.50

0.55

Recall

Figure 5: FID, precision, and recall of the generative models as a function of the number of retraining for
multiple fractions λ of generated data, D = Dreal ∪ {x̃i}⌊λ·n⌋

i=1 , x̃i ∼ pθθθt . Only training on synthetic data
(dashed red line with triangles) yields divergence.

For DDPM, since the optimizer was not provided in the checkpoints, we first train the model from
scratch for 1000 epochs and use it as a pretrained model.

G.4 DETAILS ON THE METRICS: PRECISION AND RECALL

High Level Idea The notion of precision and recall used for generative models is different from the
one used in standard supervised learning. It was first introduced in “Assessing Generative Models via
Precision and Recall” (Sajjadi et al., 2018) and refined in “Improved precision and recall metric for
assessing generative models” (Kynkäänniemi et al., 2019), which we use in practice. Intuitively, at
the distribution level, precision and recall measure how the training and the generated distributions
overlap. Precision can be seen as a measure of what proportion of the generated samples are contained
in the “support” of the training distribution. On the other hand, recall measures what proportion
of the training samples are contained in the “support” of the generated distribution. If the training
distribution and the generated distribution are the same, then precision and recall should be perfect.
If there is no overlap—i.e. disjoint between the training distribution and the generated distribution,
then one should have zero precision and zero recall.

Implementation Details In order to adapt these metrics for empirical distributions that have
finite samples customary of training deep generative models, multiple numerical tricks are required.
Specifically, for an empirical set of samples, the support of the associated distribution is approximated
by taking the union of balls centered at each point with radius determined by the distance to the k-th
nearest neighbor. This is generally done in some meaningful feature space (here we use Inception V3
network, Heusel et al. 2017). For FID, we follow the standard of comparing 50k generated samples to
the 50k samples in the training set. For precision and recall, with the same sets of samples, we follow
the methodology of (Kynkäänniemi et al., 2019) with k = 4. We used the FID, precision and recall
implementations of Jiralerspong et al. (2023) (https://github.com/marcojira/fls).
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G.5 SAMPLE VISUALIZATION

Fu
lly

Sy
nt

h.
λ
=

1
λ
=

0.
5

λ
=

0.
1

N
o

sy
nt

h.
da

ta

(a) 0 retrain. (b) 5 retrain. (c) 10 retrain. (d) 15 retrain. (e) 20 retrain.

Figure 6: EDM samples, with generative models iteratively retrained on their own data, only on
the synthetic data (top), and on a mix of synthetic and real data.
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G.6 QUANTITATIVE SYNTHETIC EXPERIMENTS
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Figure 7: Stability vs. collapsing of iterative retraining of generative models on their own data. The
Wasserstein-1 and 2 distances between the true data distribution and the generated one is displayed as a function
of the number of retraining. The distances are averaged over 50 runs, the line corresponds to the mean, and the
shaded area to the standard deviation. When the model is fully retrained only on its own data (Fully Synthetic,
dashed red line with triangles), the distance to the true data distribution diverges. When the model is retrained on
a mixture of real and synthetic data (λ = 0, λ = 0.5, λ = 1), then the distance between the generated samples
and the true data distribution stabilizes.

The setting of Figure 7 is the same as for Figure 4: we used the two-moons datasets, and learn
the samples using OT-CFM (Tong et al., 2023), a state-of-the art flow model, which corresponds
to a continuous normalizing flow, which is an exact likelihood. The dataset has 1000 samples,
and all the hyperparameters of the OT-CFM are the default ones from the implementation of
Tong et al. (2023), https://github.com/atong01/conditional-flow-matching/
blob/main/examples/notebooks/SF2M_2D_example.ipynb.
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G.7 PARAMETER CONVERGENCE
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Figure 8: Convergence in the Parameter Space. The figure displays the Euclidean norm of the difference
between the current parameters at retraining t θθθλt , and the parameters θθθt0 of the initial network used to finetune.
In order to have comparable scales between the models and the dataset, the norm is rescaled by the number of
parameters p of each network. The dashed black line shows the norm of the difference between the parameter θθθt0
of the initial network used to finetune, and a random initialization. Each column displays a different combinaison
of dataset and algorithm. One can that fully retraining on synthetic data yields to a larger distance to the initial
parameters, than retraining on a mix of synthetic and real data.

The setting of Figure 8 is the same as for Figure 2, we finetune the EDM (Karras et al., 2022) and
OTCFM models (Lipman et al., 2022; Tong et al., 2023) for 20 epochs and 20 retraining on CIFAR-10
and FFHQ.
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