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Abstract

Large Language Models (LLMs) have revolutionized a wide range of domains such as natural
language processing, computer vision, and multi-modal tasks due to their ability to compre-
hend context and perform logical reasoning. However, the computational and memory de-
mands of LLMs, particularly during inference, pose significant challenges when scaling them
to real-world, long-context, and real-time applications. Key-Value (KV) cache management
has emerged as a critical optimization technique for accelerating LLM inference by reducing
redundant computations and improving memory utilization. This survey provides a com-
prehensive overview of KV cache management strategies for LLM acceleration, categorizing
them into token-level, model-level, and system-level optimizations. Token-level strategies
include KV cache selection, budget allocation, merging, quantization, and low-rank decom-
position, while model-level optimizations focus on architectural innovations and attention
mechanisms to enhance KV reuse. System-level approaches address memory management,
scheduling, and hardware-aware designs to improve efficiency across diverse computing en-
vironments. Additionally, the survey provides an overview of both text and multimodal
datasets and benchmarks used to evaluate these strategies. By presenting detailed tax-
onomies and comparative analyses, this work aims to offer useful insights for researchers and
practitioners to support the development of efficient and scalable KV cache management
techniques, contributing to the practical deployment of LLMs in real-world applications.

1 Introduction

Large Language Models (LLMs) Hadi et al. (2023); Zhu et al. (2023), trained on massive corpora, have
revolutionized various domains such as natural language processing Naveed et al. (2023); Min et al. (2024);
Xu et al. (2024a), computer vision Liu et al. (2023a); Zhang et al. (2024c); Berrios et al. (2023), and
multi-modal Zhang et al. (2024a); Cui et al. (2024); Wu et al. (2023) tasks. Their ability to understand
context and perform logical reasoning has enabled remarkable success in various fields, such as time series
analysis Jin et al. (2023); Ma et al. (2024a), recommendation Tan & Jiang (2023); Wu et al. (2024c),
autonomous driving Yang et al. (2023); Chen et al. (2024b); Fu et al. (2024b), and healthcare Qiu et al.
(2023); Zhou et al. (2023b). These breakthroughs are powered by state-of-the-art architectures and training
paradigms, enabling models to achieve unparalleled performance across diverse tasks. Prominent LLMs, such
as GPT Brown et al. (2020); Radford et al. (2018; 2019), LLaMA Touvron et al. (2023); Dubey et al. (2024),
DeepSeek Dai et al. (2024); DeepSeek-AI et al. (2024); Lu et al. (2024), Mistral Jiang et al. (2024a; 2023),
and GLM Zeng et al. (2023); Du et al. (2022), are built on the foundational transformer architecture Vaswani
et al. (2017), which excels at capturing long-range dependencies in sequential data. However, despite their
powerful capabilities, the computational and memory demands of LLMs, particularly during inference,
present significant challenges when scaling them to real-world, long-context, and real-time applications.

A critical bottleneck in LLM inference lies in the efficient management of Key-Value (KV) pairs. Recently,
caching techniques Gracioli et al. (2015); Podlipnig & Böszörmenyi (2003) have been extensively employed
to store previously computed intermediate results, allowing their reuse in subsequent inference steps to
accelerate the model, such as graph neural networks Li & Chen (2021); Li et al. (2023c); Lin et al. (2020).
Fortunately, the auto-regressive generation mechanism inherent to LLMs presents an opportunity to leverage
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KV caching for efficient text generation. Specifically, auto-regressive generation enables LLMs to produce
text token by token, with each token conditioned on all previously generated ones. While this approach is
highly effective for generating coherent and contextually relevant outputs, it struggles with poor scalability
for long input sequences. This limitation arises because LLMs must compute attention values for every pair
of tokens, causing the time and space complexity of the attention matrix to grow quadratically with sequence
length. To address this issue, the KV cache mechanism stores the key and value matrices from previous
decoding steps, allowing them to be reused. This significantly reduces redundant computations, as the model
only computes attention values between new tokens and previously processed tokens, avoiding the need to
recompute all attention values.

Several recent surveys Zhu et al. (2023); Zhuang et al. (2023); Park et al. (2024); Wang et al. (2024b);
Ding et al. (2023); Miao et al. (2023); Wan et al. (2023); Zhou et al. (2024c); Tang et al. (2024c); Kachris
(2024); Xu et al. (2023); Albalak et al. (2024); Zefan-Cai (2024) have explored the domain of efficient LLMs.
These surveys primarily examine various aspects of LLM efficiency, presenting valuable insights while leaving
room for further refinement and innovation. In particular, many of these works primarily focus on holistic
approaches to improving LLM efficiency, examining a wide range of techniques across multiple dimensions,
such as span data-level optimizations (e.g., prompt engineering), model architecture-level optimizations (e.g.,
efficient transformer designs), and system-level optimizations (e.g., task scheduling). For instance, Ding et al.
(2023) explore efficiency techniques that integrate data-level and model architecture perspectives, while Miao
et al. (2023) examine efficient LLM inference from a comprehensive system-level perspective. Similarly, Tang
et al. (2024c), Wan et al. (2023), and Xu et al. (2023) provide analyses that encompass data, model, and
system-level optimizations, reflecting holistic approaches to LLM acceleration.

On the other hand, some surveys focus on more specialized aspects for LLM acceleration. For example, Zhu
et al. (2023), Park et al. (2024), Wang et al. (2024b), and Tang et al. (2024c) focus on model compression as
a key aspect of model-level optimization. Similarly, Kachris (2024) examine hardware acceleration strategies
tailored for LLMs, while Xu et al. (2023) investigate parameter-efficient tuning approaches. Albalak et al.
(2024) discuss data selection strategies to enhance the efficiency of LLM training, and Xia et al. (2024)
highlight collaborative techniques, such as speculative decoding Leviathan et al. (2023); Kim et al. (2024b),
to accelerate model inference. Li et al. (2024c) focus on prompt compression. Similar to our work, Shi
et al. (2024), Li et al. (2024a), and Yuan et al. (2024) also explore the use of KV caches to accelerate
LLMs. However, our survey is both complementary and more comprehensive, offering a detailed taxonomy
of KV cache management for text-based and multi-modal LLMs. We categorize techniques across token-level,
model-level, and system-level perspectives and include benchmarks for both text and multi-modal scenarios.
In particular, complementing existing KV cache surveys, we provide a detailed comparison of the differences
and advantages of existing models at the token-level, model-level, and system-level.

Specifically, this survey provides a comprehensive overview of the current state of KV cache management
and its role in accelerating LLM inference. We begin by introducing the transformer architecture and the
role of the KV cache in enabling efficient auto-regressive text generation. We then analyze the challenges
associated with KV cache management, including its impact on computational complexity, memory usage,
and real-time performance. Following this, we present a taxonomy of existing optimization techniques,
categorizing them into token-level, model-level, and system-level optimization approaches. Additionally, we
discuss datasets and evaluation metrics used to benchmark these techniques and provide insights into their
effectiveness across various tasks and applications.

2 Preliminary

Large language models (LLMs), pretrained on vast corpora, have demonstrated superior capabilities in
context understanding and logical reasoning. These models have achieved remarkable success across a wide
range of tasks in various domains, including natural language processing Naveed et al. (2023); Min et al.
(2024); Xu et al. (2024a) and computer vision Liu et al. (2023a); Zhang et al. (2024c); Berrios et al. (2023).
Mainstream LLMs, such as GPT Bubeck et al. (2023), LLaMA Touvron et al. (2023), and DeepSeek Dai
et al. (2024), are primarily built on the transformer architecture Vaswani et al. (2017). To explore the role of
Key-Value (KV) cache management in accelerating LLM computations, we first outline the core components
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Table 1: Notation Summary
Symbol Definition

X Input sequence of tokens
X Dense representations of X

dx Dimensionality of the input embeddings.
E Embedding matrix E ∈ Rdvocab×dx .

P E(X) Positional encoding
Qi, Ki, Vi Query, Key, and Value matrices

dk, dv Query/Key and Value dimension
WQi , WKi , WVi Weight matrices for computing Qi, Ki, Vi.

Zi Self-attention Output
WO Weight matrix

W1, W2 Weight matrices
b1, b2 Bias vectors

t Sequence length index
tc Number of tokens stored in the KV cache.

Kt
i, Vt

i Key and Value at step t

K̂t−1
i , V̂t−1

i Cached Key and Value
h Number of attention heads per layer
L Number of transformer layers

P (xt+1|x1, · · · , xt) Conditional probability

of the transformer model and then introduce the mechanisms for managing the KV cache to accelerate the
LLMs. Important notations in this survey are summarized in Tab. 1.

2.1 Transformer Architecture

Transformers Vaswani et al. (2017) have become the backbone of LLMs due to their ability to efficiently
capture long-range dependencies sequential data, such as text. This capability makes them particularly
well-suited for tasks like machine translation, text generation, and image captioning. The transformer
architecture follows an encoder-decoder structure, where most LLMs utilize only the decoder component.
We first introduce the core components of the Transformer decoder and then describe the critical auto-
regressive generation mechanism. Particularly, we do not describe certain components in transformer, such
as normalization, as they do not impact the understanding of KV cache management.

2.1.1 Transformer Decoder

As shown in Fig. 1, a decoder-based transformer architecture is composed of multiple stacked Transformer
blocks, each designed to process sequential data effectively. Typically, a Transformer block consists of two
core components, i.e., a Multi-Head Self-Attention (MHSA) mechanism and a Feed Forward Network (FFN).
These blocks are arranged sequentially, where the output of one block is passed as input to the next. This
iterative design allows the model to refine its understanding of the input sequence progressively, making it
highly effective for tasks such as text generation and language modeling.

Positional Encoding. Before the input sequence is processed by the Transformer blocks, it undergoes a
preprocessing phase. First, a tokenizer processes the input sentence X by splitting it into discrete units,
such as words or subwords. The resulting sequence can be represented as X = [x1, x2, · · · , x|X|]. These
tokens are then mapped to dense vector representations using an embedding layer, i.e., X = IXE⊤, where
IX ∈ {0, 1}n×dvocab represents the one-hot vector of tokenized input X, E ∈ Rdvocab×dx is the embedding
matrix, and X = [x1,x2, · · · ,x|X|] ∈ Rn×dx is the resulting matrix of embedded token representations. Since
the Transformer architecture does not inherently account for the order of tokens in a sequence, positional
encodings are added to the token embeddings X to incorporate positional information. This can be ex-
pressed as X = X + PE(X), where PE(X) ∈ Rn×dx represents a function Zhao et al. (2023); Zheng et al.
(2021); Su et al. (2024) (e.g., RoPE Su et al. (2024)) that generates positional embeddings for the input X.
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Figure 1: The decoder-only Transformer for LLMs.

Note that Relative positional embeddings, such as RoPE Su et al. (2024) (Rotary Positional Embedding),
differ significantly from absolute positional encodings. RoPE introduces positional information at each layer
of the model through rotational transformations.

Transformer Block. Once the input features are prepared, they are passed through a series of stacked
Transformer blocks. Each block begins with the Multi-Head Self-Attention (MHSA) mechanism, which
captures both local and global dependencies. For each token, the self-attention mechanism computes a
weighted sum over all other tokens in the sequence, where the weights are derived from the similarity
between the tokens. Particularly, since the operations within each transformer block are identical, we use a
single transformer block as an example. Specifically, given the input to a block, denoted as X ∈ R|X|×d, the
MHSA mechanism computes the query vectors Qi ∈ R|X|×dk , key vectors Ki ∈ R|X|×dk , and value vectors
Vi ∈ R|X|×dv . These vectors are obtained through learned linear transformations as follows:

Qi = XWQi
, Ki = XWKi

, Vi = XWVi
, (1)

where WQi
∈ Rdx×dk , WKi

∈ Rdx×dk and WVi
∈ Rdx×dv are the learned weight parameters. Then, the

self-attention operation is applied to each triple (Qi,Ki,Vi), and obtain the output of the i-th attention
head Zi as follows:

Zi = Attention(Qi,Ki,Vi) = Softmax
(

QiK⊤
i√

dk

)
Vi, (2)

where
√
dk is a scaling factor to ensure the numerical stability. To capture diverse relationships, multiple at-

tention with h heads are applied to X in parallel, and their outputs are concatenated with one transformation
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as follows:

Z = Concat(Z1,Z2, . . . ,Zh)WO, (3)

where Concat is concatenation operation and WO ∈ Rdv×do is the trainable parameters.

Following the self-attention mechanism, the output is passed through a Feed Forward Network (FFN).
The FFN is a fully connected neural network that applies two linear transformations separated by a nonlinear
activation function σ(·) (e.g, ReLU Agarap (2018)) :

FFN(Z) = σ(ZW1 + b1)W2 + b2 (4)

where W1 ∈ Rdo×d1 and W2 ∈ Rd1×d2 are two parameters, b1 ∈ Rd1 and b2 ∈ Rd2 are two bias vectors.

2.1.2 Auto-regressive Generation Mechanism

LLMs employ an autoregressive mechanism to generate text token by token, with each token conditioned
on the previously generated ones. This iterative process ensures that the output sequence remains coherent
and contextually appropriate. Formally, given an input sequence of tokens X = [x1, x2, · · · , xt], the model
predicts the next token xt+1 at each decoding step t by modeling the conditional probability distribution
as follows:

P (xt+1|x1, x2, · · · , xt) = Softmax(htWout + bout), (5)

where ht ∈ Rdh represents the hidden state of the LLM regarding X at step t, Wout ∈ Rdh×vocab is the
output projection matrix, and bout is the bias vector. The softmax function converts the logits into a
probability distribution over the vocabulary. Then, at each decoding step, the model generates the next
token xt+1 by sampling from the predicted probability distribution:

xt+1 ∼ P (xt+1|x1, x2, · · · , xt). (6)

The generated token xt+1 is then appended to the sequence X = [x1, · · · , xt, xt+1], and the process continues
until a special end-of-sequence (EOS) token is generated or a predefined maximum length is reached.

2.2 Key-Value Cache in Transformer Models

Auto-regressive generation is a powerful mechanism that enables LLMs to produce high-quality, contextually
coherent text. However, it presents computational challenges for long sequences, as the Keys and Values need
to be recomputed for each token during the generation process. The KV cache optimization addresses this
issue by storing the previously computed Keys and Values and reusing them for subsequent token generation,
thereby reducing redundant computations and improving inference efficiency.

2.2.1 Auto-regressive Generation with KV Cache

Here, we describe how caching KV pairs of tokens accelerates LLM inference. Specifically, at each decoding
step t, the model performs self-attention over the entire sequence X = [x1, · · · , xt−1, xt] to generate the next
token xt+1. This process requires the computation of Keys and Values matrices for all previously processed
tokens in X = [x1, · · · , xt]. Notably, when generating the token xt, the LLM has already computed the
Keys and Values for the tokens in X[1 : t − 1] = [x1, · · · , xt−1]. The KV cache optimizes this process by
storing the previously computed Keys and Values matrices for X[1 : t − 1] and reusing them, thereby only
requiring the computation of Keys and Values for the new token xt. This significantly improves efficiency
by eliminating redundant computations.

Formally, at decoding step t, the new token embedding xt is used to compute the query vector qti , key vector
kti, and value vector vti as follows:

qti = xtWQi
, kti = xtWKi

, vti = xtWVi
, (7)
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The newly computed kti and vti are then appended to the cached key and value matrices from previous steps:

Kt
i = Concat(K̂t−1

i ,kti), Vt
i = Concat(V̂t−1

i ,Vt
i), (8)

where K̂t−1
i ∈ Rt−1×dk and V̂t−1

i ∈ Rt−1×dv represent the cached key and value matrices of tokens in
X[1 : t− 1]. These cached matrices are then used in the scaled dot-product attention computation for token
xt. The attention output zti for the token xt at step t is calculated as:

zti = Softmax
(

qtiKt
i
⊤

√
dk

)
Vt
i, (9)

Then, a similar KV reuse process can be applied to different attention heads in each layer of the LLM.

2.2.2 Time and Space Complexity Analysis

Given a transformer-based L-layer LLM with h attention heads per layer and an input sequence of length
X = [x1, · · · , xt], we analyze the time saved and the space required to store cached KV pairs. For simplicity,
we assume the Keys and Values of tc tokens are stored for all heads across all LLM layers.

Computational Complexity. For each token, the saved computation time comes from avoiding the re-
peated computation of Keys and Values in Equation 1, self-attention result in Equation 2, and linear trans-
formation in Equation 3. We omit the time analyze on operations in transformer that do not affect the
understanding of KV cache acceleration, such as layer norm and position encoding.

• QKV Computation. The time of computing Queries, Keys and Values for each token in Equation 1 is
△1 = O(2dxdk + dxdv).

• Self-attention Result. The time complexity of computing each attention score zi in Equation 2 takes
O(t(dk + dv)).

• Linear Transformation. To merge the h attention results in Equation 3 the time is △2 = O(hdv+dvdo).

Therefore, for tc cached tokens across h attention heads and L layers, the total saved computation time is:

O (L · h · tc · t · (dk + dv) + L · h · tc (△1 + △2)) (10)

Thus, the saved time is directly proportional to the number of cached tokens tc, significantly accelerating
model computation, especially for longer sequences (when t is large).

Space Complexity. Compared to computation without caching, additional space is required to store the
cached KV pairs for tc tokens across h attention heads and L layers. Assuming each Key and Value is stored
in Float16 precision, the total extra space needed can be expressed as:

O(L · h · tc · 2 · sizeof(Float16)) (11)

Thus, for the same LLM model, the extra space required to store the KV pairs primarily depends on the num-
ber of cached tokens and the precision of the cached Keys and Values. To address this, existing approaches
explore various techniques to reduce the extra space consumption, such as caching only the most important
Keys and Values or applying quantization techniques to lower the bit precision of the stored Keys and Values.

2.3 Challenges in KV Cache Management

As analyzed in Sec. 2.2.2, reusing cached KV pairs enables the LLM to avoid recomputing past tokens,
resulting in significant speedups during inference. However, as sequence lengths grow, the size of the KV
cache increases proportionally, placing significant pressure on memory. Consequently, it becomes challenging
to manage this cache effectively to accelerate LLM computation without excessive space usage.
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• Cache Eviction Policies: Determining which items to evict when the cache reaches its capacity is a
complex problem. Popular policies Podlipnig & Böszörmenyi (2003) like Least Recently Used (LRU) or
Least Frequently Used (LFU) do not align with LLMs patterns, leading to suboptimal performance.

• Memory Management: The memory required for the KV cache grows linearly with both the sequence
length and the number of layers, which can quickly exceed the hardware memory limits, especially for long
sequences. Consequently, managing the collaboration between different types of storage hardware (e.g.,
GPU, CPU, or external memory) becomes a significant challenge.

• Latency Bottlenecks: Accessing and updating the cache at each decoding step can introduce latency,
particularly for hardware with limited memory bandwidth.

• Compression Trade-offs: Compressing the KV cache can reduce memory usage but may degrade model
performance if key information is lost.

• Dynamic Workloads: Handling dynamic and unpredictable workloads, where access patterns and data
requirements frequently change, requires adaptive caching strategies that can respond in real time.

• Distributed Coordination: In distributed KV caches, maintaining coordination across multiple nodes
to ensure consistency, fault tolerance, and efficient resource usage adds significant complexity.

3 Taxonomy

In the above sections, we analyzed how the number of cached Key-Value (KV) pairs significantly impacts both
the computation time and the additional memory required during inference. Efficient KV cache management
is critical to balancing performance improvements and resource utilization, especially as sequence lengths
and model sizes continue to grow. After carefully reviewing existing approaches, we categorize KV cache
optimization strategies into three levels: token-level optimization, model-level optimization, and system-level
optimizations. Each level addresses specific aspects of the challenges associated with KV cache management
and offers distinct techniques to enhance efficiency. The detailed taxonomy is illustrated in Fig. 2.

• Token-Level Optimization refers to improving KV cache management efficiency by focusing on fine-
grained the careful selection, organization, and compression at the token level, requiring no architectural
changes to the original model. While KV cache selection (Sec. 4.1) focuses on prioritizing and storing only
the most relevant tokens. KV cache budget allocation (Sec. 4.2) dynamically distributes memory resources
across tokens to ensure efficient cache utilization under limited memory. Furthermore, KV cache merging
(Sec. 4.3) reduces redundancy by combining similar or overlapping KV pairs, while KV Cache Quantization
(Sec. 4.4) minimizes the memory footprint by reducing the precision of cached KV pairs. Finally, KV cache
low-rank decomposition (Sec. 4.5) uses low-rank decomposition technique to reduce cache size.

• Model-level Optimization refers to designing an efficient model structure to optimize KV cache man-
agement. This can further refer to several strategies: Attention grouping and sharing (Sec. 5.1) methods
examine the redundant functionality of key and values and group and share KV cache within or across
transformer layers. Architecture alterations (Sec. 5.2 emerge to design new attention mechanisms or con-
struct extrinsic modules for KV optimization. Furthermore, there are also works designing or combining
non-transformer architectures 5.3 that adopt other memory efficient designs like recurrent neural networks
to optimize the KV cache in traditional transformers.

• System-level Optimization refers to optimizing the KV Cache management through two classic low-
level aspects: memory management (Sec. 6.1) and scheduling (Sec. 6.2). While memory management
techniques focusing on architectural innovations like virtual memory adaptation, intelligent prefix sharing,
and layer-aware resource allocation, scheduling strategies have evolved to address diverse optimization
goals through prefix-aware methods for maximizing cache reuse, preemptive techniques for fair context
switching, and layer-specific mechanisms for fine-grained cache control. In addition, we provide a detailed
introduction for hardware accelerator design in Sec. 6.3, including single/multi-GPU, I/O-based solutions,
heterogeneous computing and SSD-based solutions.
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Figure 2: Taxonomy of KV Cache Management for Large Language Models.

4 Token-level Optimization

In the token level, optimization focuses exclusively on improving KV cache based on the characteristics and
patterns of KV pairs of tokens, without considering enhancements from model architecture improvements
or system parallelization techniques. In general, token-level optimization methods are primarily guided by
observations from LLMs and sequential inputs. Existing approaches can be categorized into five main types:
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Token-level
Optimization

KV Cache Low-rank De-
composition (Sec. 4.5)

Learned Low-rank Ap-
proximation (Sec 4.5.3)

LESS Dong et al. (2024a), MatryoshkaKV Lin
et al. (2024a)

Tensor
Decomposition (Sec 4.5.2)

DecoQuant Liu et al. (2024d)

Singular Value Decom-
position (Sec 4.5.1)

ECKVH Yu et al. (2024), EigenAttention Sax-
ena et al. (2024a), ZDC Zhang & Shen (2024),
LoRC Zhang et al. (2024d), ShadowKV Sun
et al. (2024a), Palu Chang et al. (2024), Q-
Filters Godey et al., Loki Singhania et al.
(2024),

KV Cache
Quantization (Sec. 4.4)

Outlier Redistri-
bution (Sec 4.4.3)

MassiveActivation Sun et al. (2024b),
QuaRot Ashkboos et al. (2024), Qserve Lin
et al. (2024d), Q-INT4 Xi et al. (2023), Spin-
Quant Liu et al. (2024g), DuQuant Lin et al.
(2024b), SmoothQuant Xiao et al. (2023),
OS+ Wei et al. (2023), AffineQuant Ma
et al. (2024b), FlatQuant Sun et al. (2024d),
AWQ Lin et al. (2024c), OmniQuant Shao
et al. (2023)

Mixed-precision Quan-
tization (Sec 4.4.2)

KVQuant Hooper et al. (2024b), IntactKV Liu
et al. (2024e), SKVQ Duanmu et al. (2024),
KIVI Liu et al. (2024h), WKVQuant Yue
et al. (2024), GEAR Kang et al. (2024),
MiKV Yang et al. (2024c), ZIPVL He et al.
(2024a), ZipCache He et al. (2024b), Pre-
fixQuant Chen et al. (2024c), MiniKV Sharma
et al. (2024), ResQ Saxena et al. (2024b), KV-
AdaQuant Hariri et al. (2025)

Fixed-precision Quan-
tization (Sec 4.4.1)

ZeroQuant Yao et al. (2022), FlexGen Sheng
et al. (2023), QJL Zandieh et al. (2024), PQ-
Cache Zhang et al. (2024b)

KV Cache
Merging (Sec. 4.3)

Cross-layer Merging (Sec 4.3.2) MiniCache Liu et al. (2024a), KVSharer Yang
et al. (2024d)

Intra-layer
Merging (Sec 4.3.1)

CCM Kim et al. (2024a), LoMA Wang & Xiao
(2024), DMC Nawrot et al. (2024), CaM Zhang
et al. (2024g), D2O Wan et al. (2024a),
AIM Zhong et al. (2024b), Look-M Wan
et al. (2024b), ZeroMerge Liu et al. (2025),
KVMerger Wang et al. (2024c), CHAI Agarwal
et al. (2024)

KV Cache Budget Al-
location (Sec. 4.2)

Head-wise Budget Al-
location (Sec 4.2.2)

AdaKV Feng et al. (2024), CriticalKV Anony-
mous (2024c), LeanKV Zhang et al. (2024f),
RazorAttention Tang et al. (2024a),
HeadKV Fu et al. (2024c), DuoAttention Xiao
et al. (2024b)

Layer-wise Budget Al-
location (Sec 4.2.1)

PyramidKV Cai et al. (2024), PyramidIn-
fer Yang et al. (2024a), DynamicKV Anony-
mous (2024b), PrefixKV Wang et al. (2024a),
SimLayerKV Zhang et al. (2024e)

KV Cache
Selection (Sec. 4.1)

Dynamic Selection without
Permanent Eviction (Sec 4.1.3)

InfLLM Xiao et al. (2024a), Quest Tang et al.
(2024b), PQCache Zhang et al. (2024b),
SqueezedAttention Hooper et al. (2024a),
RetrievalAttention Liu et al. (2024b), EM-
LLM Fountas et al. (2024), ClsuterKV Liu
et al. (2024c),Loki Singhania et al. (2024)

Dynamic Selection with Per-
manent Eviction (Sec 4.1.2)

H2O Zhang et al. (2023b), BUZZ Zhao et al.
(2024a), NACL Chen et al. (2024d), Scis-
sorhands Liu et al. (2023c), Keyformer Adnan
et al. (2024), SepLLM Chen et al. (2024a)

Static KV Cache Se-
lection (Sec 4.1.1)

FastGen Ge et al. (2024), SnapKV Li et al.
(2024b), L2Compress Devoto et al. (2024),
Attention-Gate Zeng et al. (2024)

Figure 3: Taxonomy of the Token-level Optimization for KV Cache Management.

KV cache selection, KV cache budget allocation, KV cache merging, KV cache quantization, and KV cache
low-rank decomposition. The taxonomy of the token-level optimization is shown in Fig. 3.

4.1 KV Cache Selection
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Figure 4: The sparsity of attention matrix.

As shown in Fig. 4, the attention matrix is sparse. KV cache selection mechanisms have emerged as a critical
optimization strategy, aimed at reducing memory utilization of KV caches, minimizing inference latency,
and enhancing overall throughput in large language models. These optimization objectives have driven the
development of various selection methodologies, which can be classified into two distinct categories: (1) static
KV cache selection, which performs token filtering exclusively during the prefilling phase, with selected
tokens remaining fixed throughout subsequent decoding steps; and (2) dynamic KV cache selection,
which continuously updates KV cache during the decoding phase, enabling adaptive cache management. In
dynamic KV cache selection approaches, KV cache tokens that are not selected may be permanently evicted
or offloaded to hierarchical caching devices such as CPU memory, implementing a multi-tier storage strategy.
Given that real-time KV cache selection during decoding may incur substantial computational overhead,
several studies have focused on developing optimized retrieval algorithms to enhance the efficiency of this
process. These optimizations include block-level retrieval instead of token-level granularity to reduce search
complexity, asynchronous query mechanisms to hide latency, and parallel retrieval pipelines to accelerate the
selection process. These optimization efforts aim to mitigate the computational burden while maintaining
the effectiveness of token selection. The summary of the KV cache selection is listed in Tab. 2.

4.1.1 Static KV Cache Selection

Static KV cache selection methods perform a one-time compression on the KV Cache immediately after
the prefilling phase is completed. The model then uses this compressed KV cache for subsequent decoding
inference. FastGen Ge et al. (2024) introduces a pattern-aware approach by identifying five fundamental
attention structures and implementing targeted selection strategies. These include proximity-based reten-
tion for local attention patterns, selective preservation of critical tokens for punctuation-focused attention,
frequency-based filtering for sparse attention distributions, and complete token retention for broad atten-
tion patterns. SnapKV Li et al. (2024b) simplifies FastGen’s approach by focusing solely on retrieving
tokens based on their importance scores. It demonstrates that among all prompt tokens, only a portion
carries crucial information for response generation, with these tokens maintaining their significance during
the generation phase. The approach employs an end-positioned observation window to detect these impor-
tant contextual tokens. Their corresponding key-value pairs are then concatenated with the tokens from the
observation window. L2Compress Devoto et al. (2024) proposes another simple yet effective approach to
identify important tokens during the prefilling phase using the L2 norm for key embeddings. By analyzing
attention distributions in decoder-only Transformers, the authors find a clear correlation between the L2
norm of a key embedding and its attention score during decoding, where a low L2 norm usually leads to
high attention scores. Based on this observation, they propose a strategy that compresses the KV Cache by
retaining tokens with lower L2 norms. Attention-Gate Zeng et al. (2024) introduces a learnable KV-Cache
eviction mechanism that processes the entire context sequence and generates token-wise eviction decisions
through a parameterized policy network, enabling dynamic in-context memory management.
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Table 2: Comparison of KV cache selection strategies.
Method Initial

tokens
Top-k
tokens

Recent
tokens

Permanent
eviction

Dynamic
selection

Selection
granularity Remark

FastGen
Ge et al. (2024)

✓ ✓ ✓ ✓ token five attention structures

SnapKV
Li et al. (2024b)

✓ ✓ ✓ token observation window-based

L2Compress
Devoto et al. (2024)

✓ token L2 norm-based importance

Attention-Gate
Zeng et al. (2024)

✓ ✓ token learned eviction policy

StreamingLLM
Xiao et al. (2024c)

✓ ✓ ✓ ✓ token initial and recent tokens

LM-Infinite
Han et al. (2024)

✓ ✓ ✓ ✓ token distance ceiling

H2O
Zhang et al. (2023b)

✓ ✓ ✓ ✓ token accmulative attention score

BUZZ
Zhao et al. (2024a)

✓ ✓ ✓ ✓ ✓ token beehive-like structure

Scissorhands
Liu et al. (2023c)

✓ ✓ ✓ ✓ token persistence of importance

NACL
Chen et al. (2024d)

✓ ✓ ✓ ✓ token diversified random eviction

Keyformer
Adnan et al. (2024)

✓ ✓ ✓ ✓ token gumbel logit adjustment

InfLLM
Xiao et al. (2024a)

✓ ✓ ✓ ✓ block block-level KV management

Quest
Tang et al. (2024b)

✓ ✓ block new block representation

PQCache
Zhang et al. (2024b)

✓ ✓ ✓ ✓ block product quantization

SqueezedAttention
Hooper et al. (2024a)

✓ ✓ cluster hierarchical clusters

RetrievalAttention
Liu et al. (2024b)

✓ ✓ ✓ ✓ token ANN search

EM-LLM
Fountas et al. (2024)

✓ ✓ ✓ ✓ event episodic events

SparQ
Ribar et al. (2024)

✓ ✓ ✓ token low-dimensional retrieval

InfiniGen
Lee et al. (2024)

✓ ✓ token asynchronous prefetching

RecycledAttention
Xu et al. (2024b)

✓ ✓ ✓ token periodic top-k selection

MagicPIG
Chen et al. (2024g)

✓ ✓ ✓ ✓ token Local Sensitive Hash

4.1.2 Dynamic Selection with Permanent Eviction

This category of methods performs frequent KV cache selection during the decoding phase, permanently
removing unselected KV cache tokens from memory. Early works employ a sliding-window mechanism to
address long-text inference challenges, where tokens falling outside the window are permanently evicted
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and become inaccessible. StreamingLLM Xiao et al. (2024c) uncovers a crucial phenomenon in transformer
attention where preserved key-value pairs from initial sequence tokens maintain crucial model performance.
This attention sink effect manifests through asymmetric attention weight accumulation at early positions,
regardless of semantic significance. The approach leverages this characteristic by incorporating attention
sink positions with recent context for efficient processing. LM-Infinite Han et al. (2024) demonstrates that
conventional techniques, including sliding-window patterns and relative positional encodings, fail to resolve
length generalization issues. The study introduces a novel methodology through the integration of Λ-shaped
attention masking and attention distance ceiling mechanisms.

Recent works have explored leveraging attention scores as a criterion for selecting significant KV cache tokens.
H2O Zhang et al. (2023b) observes that attention computations are primarily driven by a select group of high-
impact tokens, known as Heavy Hitters (H2). This method reformulates cache optimization as a dynamic
submodular problem, utilizing cumulative attention scores to guide token retention decisions. Unlike H2O,
BUZZ Zhao et al. (2024a) employs a beehive-like structure that selects Heavy Hitters in local KV cache
segments. NACL Chen et al. (2024d) identifies a fundamental limitation in H2O, namely their dependence
on potentially biased local attention statistics. To overcome this issue, they develop an alternative approach
implementing a diversified random eviction strategy for token selection. Scissorhands Liu et al. (2023c) builds
upon the temporal significance principle, which suggests that tokens demonstrating historical importance
maintain their influence in subsequent computational steps. This observation enables the preservation of
repetitive attention patterns through selective token retention. Additionally, Keyformer Adnan et al. (2024)
reveals that token removal distorts the underlying softmax probability distribution. Considering the pivotal
role of softmax distributions in token significance evaluation, they incorporate regularization techniques to
mitigate these distributional perturbations. SepLLM Chen et al. (2024a) observes that separator tokens (e.g.,
commas, periods, and line breaks) receive disproportionately high attention scores and naturally summarize
text segments. Building on this, SepLLM retains separator tokens together with initial tokens, important
tokens, and recent tokens in the cache.

4.1.3 Dynamic Selection without Permanent Eviction

The aforementioned permanent eviction-based approaches face two significant limitations. First, the irre-
versible eviction of tokens potentially impairs the model’s performance on long-sequence tasks, particularly
in needle-in-a-haystack scenarios, and these methods prove challenging to adapt to multi-turn dialogue con-
texts. Second, KV cache selection during the decoding phase introduces computational overhead, adversely
affecting decoding latency and compromising end-to-end acceleration. To address these challenges, several
studies have focused on developing decoding-phase KV cache selection strategies without permanent evic-
tion. These approaches typically employ multi-tier cache systems (e.g., CPU-GPU hierarchical caching) and
leverage advanced data structures and system-level enhancements to optimize retrieval efficiency, enabling
efficient inference with reduced GPU KV cache footprint.

To accelerate the retrieval of critical tokens, several research efforts have proposed index-based approaches
that organize and access KV cache at block or cluster granularity, enabling efficient query and extraction
operations. InfLLM Xiao et al. (2024a) maintains full KV cache in blocks while facilitating long sequence pro-
cessing through a hierarchical storage strategy. The framework employs CPU-GPU memory orchestration,
preserving essential tokens and current computational units in GPU memory while offloading less frequently
accessed units to CPU memory. To further enhance top-k block retrieval precision, the Quest Tang et al.
(2024b) framework presents a refined block representation approach based on minimal and maximal key val-
ues in KV cache blocks. PQCache Zhang et al. (2024b) also implements block-based KV cache management
and identifies salient tokens through Maximum Inner-Product Search (MIPS), leveraging Product Quantiza-
tion (PQ) codes and centroids. SqueezedAttention Hooper et al. (2024a) employs K-means clustering in an
offline stage to group semantically similar keys, with each group represented by a centroid. During inference,
it compares input queries against these centroids to identify and load only the semantically relevant keys
from the context. Similarly, RetrievalAttention Liu et al. (2024b) index KV cache tokens using approxi-
mate nearest neighbor search (ANNS) techniques. Additionally, EM-LLM Fountas et al. (2024) dynamically
segments incoming tokens into episodic events. Besides, it implements a hybrid retrieval mechanism that
combines semantic similarity matching with temporal context to efficiently access relevant KV cache seg-
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ments. Similarly, ClusterKV Liu et al. (2024c) groups tokens into semantic clusters and selectively recalls
them during inference, achieving both high accuracy and efficiency for LLMs.

To accelerate top-k token identification, SparQ Ribar et al. (2024) identifies the r most significant elements
in the incoming query vector and selectively retrieves the corresponding components along the hidden di-
mension of the cached key matrix K for approximate attention computation. To overlap prefetching latency,
InfiniGen Lee et al. (2024) employs asynchronous prefetching, utilizing indices of salient KV entries selected
by queries from the previous layer to retrieve KV cache entries in the current layer. To ensure maximum
model performance, RecycledAttention Xu et al. (2024b) sustains the entire KV cache during inference
computations, yielding no improvements in memory efficiency. The approach performs periodic top-k token
selection to identify salient tokens. Moreover, MagicPIG Chen et al. (2024g) shows that attention-based
top-k selection may incur performance degradation. To address this limitation, they introduce a novel
heterogeneous computing framework leveraging Locality Sensitive Hashing (LSH) techniques. The system
stores LSH hash tables and performs attention estimation on CPU. Recently, Loki Singhania et al. (2024) is
a sparse attention method motivated by the observation that attention key vectors lie in a low-dimensional
space, leveraging PCA-based dimensionality reduction and dynamic top-k token selection to significantly
reduce computation and memory overhead while preserving model accuracy.

4.1.4 Summary and Future Directions

Static KV cache selection algorithms demonstrate superior decoding efficiency overall; however, their
efficacy remains to be thoroughly validated in multi-turn dialogues and extended decoding length scenarios.
Dynamic KV cache selection algorithms, while adaptive, introduce additional computational overhead
during the decoding phase due to frequent cache selection operations. Multi-tier cache architectures and
prefetching schemes partially mitigate these challenges, yet their capability to achieve rapid and accurate
retrieval within acceptable decoding latency constraints requires further empirical validation, particularly
in real-world applications involving long sequences. Furthermore, existing selection methods predominantly
rely on attention score-based top-k selection mechanisms. However, based on existing positional encoding
schemes, current top-k approaches may not be able to effectively identify and extract relevant tokens in
ultra-long sequence tasks.

4.2 KV Cache Budget Allocation

The hierarchical architecture of LLMs leads to diverse information extraction patterns across layers, with
each layer’s KV-cache contributing differently to model performance. This inherent heterogeneity indicates
that uniform KV-cache compression across layers may be suboptimal. KV cache budget allocation addresses
this challenge by intelligently distributing memory resources based on each component’s importance to
prediction accuracy, thereby optimizing memory utilization while minimizing accuracy degradation. It is
worth noting that budget allocation approaches prioritize the effective allocation of computational budget
rather than token selection strategies. Current budget allocation strategies can be categorized into two levels
of granularity: layer-wise budget allocation, which assigns different compression ratios across model layers,
and the more fine-grained head-wise budget allocation, which enables precise memory distribution across
individual attention heads within each layer, offering more flexible and targeted optimization opportunities.
The summary of KV budget allocation is listed in Tab. 3.

4.2.1 Layer-wise Budget Allocation

In contrast to conventional approaches with uniform KV cache sizes, PyramidKV Cai et al. (2024) employs
a pyramid-shaped memory allocation strategy, assigning larger cache capacities to lower layers that pro-
gressively decrease in upper layers. This design is supported by the observation that lower layers exhibit
uniform attention distributions across input sequences, while upper layers show concentrated attention on
specific tokens. PyramidInfer Yang et al. (2024a) also adopts a pyramid-shaped budget allocation strategy
while selecting tokens with high attention values at each layer. Additionally, during the decoding phase,
PyramidInfer dynamically maintains a set of significant tokens through frequent updates driven by attention
values. Unlike previous methods, DynamicKV Anonymous (2024b) implements an input-adaptive budget
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Table 3: Comparison of KV cache budget allocation strategies. Extra: Extra-calibration
Method Layer-wise Head-wise Retrieval-head Input-specific Extra Remark

PyramidKV

Cai et al. (2024)
✓ pyramid-shaped

PyramidInfer

Yang et al. (2024a)
✓ pyramid-shaped

DynamicKV

Anonymous (2024b)
✓ ✓ maximize attention retention rate

PrefixKV

Wang et al. (2024a)
✓ ✓ maximize attention retention rate

CAKE

Anonymous (2024a)
✓ ✓ layer-specific preference score

SimLayerKV

Zhang et al. (2024e)
✓ ✓ KV cache compression for lazy layers

AdaKV

Feng et al. (2024)
✓ ✓ minimize attention computation loss

CriticalKV

Anonymous (2024c)
✓ ✓ minimize attention computation loss

LeanKV

Zhang et al. (2024f)
✓ ✓ maximize attention retention rate

RazorAttention

Tang et al. (2024a)
✓ ✓ ✓ echo and induction heads

HeadKV

Fu et al. (2024c)
✓ ✓ ✓ retrieval and reasoning heads

DuoAttention

Xiao et al. (2024b)
✓ ✓ ✓ learned retrieval heads

allocation strategy by analyzing attention patterns. Specifically, it computes the average attention scores
between recent and historical tokens, identifies the top-k tokens with highest attention values across layers,
and proportionally distributes the budget based on the density of significant tokens in each layer. Similarly,
PrefixKV Wang et al. (2024a) identifies the most important tokens for each layer by computing the average
attention score of tokens within that layer. PrefixKV Wang et al. (2024a) then uses a unified threshold to
determine the number of retained tokens, adaptively adjusting the retention for each layer based on its im-
portance distribution. CAKE Anonymous (2024a) examines attention scores through two lenses: the spatial
distribution of inter-token attention and the temporal evolution of attention focus. These measurements
are combined to compute layer-specific importance scores, which further guide the allocation of memory
resources. Additionally, SimLayerKV Zhang et al. (2024e) identifies lazy layers - those exhibiting limited
effectiveness in capturing long-range dependencies. The framework then selectively preserves cache entries,
maintaining initial and recent tokens for lazy layers while retaining complete KV cache for non-lazy layers.

4.2.2 Head-wise Budget Allocation

AdaKV Feng et al. (2024) leverages the observation that attention patterns exhibit distinct concentrations
across different heads. It implements head-specific memory allocation by optimizing an L1 loss bound be-
tween the original and pruned multi-head attention outputs. Within the constraints of a layer-wise budget,
the method distributes cache capacity among heads to maximize the preserved attention information col-
lectively. Building upon AdaKV, CriticalKV Anonymous (2024c) introduces significant enhancements by
recognizing that the importance of KV cache entries extends beyond attention weights to encompass value
states and pretrained parameter matrices. Leveraging this insight, the framework implements a novel selec-
tion algorithm that identifies essential cache entries by minimizing the maximum potential output perturba-
tion. LeanKV Zhang et al. (2024f) implements a fine-grained memory optimization strategy that operates
independently for each attention head and input request. The method identifies the smallest subset of tokens
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necessary to preserve the majority of information flow, allocating cache space based on a predefined attention
score threshold - typically maintaining 95% of the total attention mass.

Retrieval head-based methods represent a specialized category of head-wise allocation strategies that focuses
on identifying and prioritizing attention heads crucial for extracting key information from long sequences.
This approach allocates larger cache budgets to these specialized heads, known as retrieval heads Wu et al.
(2024d), due to their significant role in information extraction. RazorAttention Tang et al. (2024a) charac-
terizes two distinct categories of retrieval heads: echo heads, which focus on previously occurring identical
tokens, and induction heads, which attend to antecedent tokens that precede current token repetitions. This
framework implements differential caching strategies, maintaining complete cache entries for retrieval heads
while condensing remote tokens into consolidated compensation tokens for non-retrieval heads. HeadKV Fu
et al. (2024c) further enhances RazorAttention by introducing a novel head assessment framework that si-
multaneously evaluates both retrieval and reasoning capabilities to optimize KV cache allocation strategies.
DuoAttention Xiao et al. (2024b) further introduces a parameterized approach to distinguish between two
categories of attention mechanisms: retrieval heads, essential for comprehensive long-context processing,
and Streaming heads, which primarily engage with recent tokens and attention sinks. This classification is
achieved through learned parameters that automatically identify retrieval heads requiring full attention spans.

4.2.3 Summary and Future Directions

Despite recent advances and growing attention in KV cache budget allocation research, several critical chal-
lenges remain unaddressed. First, the relationship between allocation strategies and model performance
requires further investigation. For instance, a notable discrepancy exists between pyramid-shaped allocation
strategies Cai et al. (2024); Yang et al. (2024a) advocating larger budgets for lower layers, and retrieval
head-based studies Tang et al. (2024a); Fu et al. (2024c) which demonstrate that lower layers rarely exhibit
retrieval head characteristics and thus require minimal cache resources. Additionally, the field lacks com-
prehensive experimental comparisons, particularly regarding the compatibility and performance benefits of
head-wise budget allocation strategies with state-of-the-art frameworks like vLLM Kwon et al. (2023) and
FlashAttention Dao et al. (2022) Dao (2024) Shah et al. (2024). Also, existing methods, such as PyramidIn-
fer Yang et al. (2024a), demonstrate some adaptability to input attention patterns. However, future research
could target real-time, task-specific allocation strategies that dynamically adjust memory budgets during
inference based on input characteristics, task complexity, or downstream requirements.

4.3 KV Cache Merging

KV cache merging offers a promising solution by compressing or consolidating KV caches without significantly
degrading model accuracy. Rather than a uniform compression strategy, KV cache merging techniques
leverage the inherent redundancy within and across layers to dynamically optimize memory utilization. These
methods aim to reduce the size of KV caches while preserving critical information necessary for accurate
attention computations, enabling efficient inference in resource-constrained settings. Existing KV cache
merging strategies can be categorized into two primary approaches: intra-layer merging, which focuses
on consolidating KV caches within individual layers to reduce memory usage per layer, and cross-layer
merging, which targets redundancy across layers to eliminate unnecessary duplication. Both approaches
offer complementary advantages, providing flexibility to balance memory savings and model performance
degradation. The summary of the KV cache merging is listed in Tab. 4.

4.3.1 Intra-layer Merging

As the input sequence length increases, the number of Keys and Values grows, leading to higher computa-
tional costs for the attention process. To address this, CCM Kim et al. (2024a), LoMA Wang & Xiao (2024),
DMC Nawrot et al. (2024) propose to learn a compression module to compress KV of tokens.

Specifically, CCM Kim et al. (2024a) inserts a special indicator token, [COMP], into the input sequence and
compresses the accumulating past attention key/value (KV) pairs in each layer between these indicators
into a compact memory space. This compression leverages techniques inspired by the Compressive
Transformer Rae et al. (2020) and Gisting Mu et al. (2023). Instead of computing attention across all
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Table 4: The summary of existing KV Cache merging approaches.
Model

Merge Layer
Merge Unit Merge Metric Merge Type Training-free

Intra-layer Cross-layer
CCM

Kim et al. (2024a)
✓ Token Sliding Window Many-to-One ×

LoMA
Wang & Xiao (2024)

✓ Token Sliding Window Many-to-Many ×

DMC
Nawrot et al. (2024)

✓ Token Learned Merge Indictor Many-to-One ×

D2O
Wan et al. (2024a)

✓ Token Cosine Similarity Two-to-One ✓

CaM
Zhang et al. (2024g)

✓ Token Attention Score Many-to-One ✓

AIM
Zhong et al. (2024b)

✓ Token Cosine Similarity Many-to-One ✓

ZeroMerge
Liu et al. (2025)

✓ Token Cosine Similarity Many-to-One ✓

Look-M
Wan et al. (2024b)

✓ Token Cosine Similarity Many-to-One ✓

KVMerger
Wang et al. (2024c)

✓ Token Weighted Gaussian Kernel Many-to-One ✓

CHAI
Agarwal et al. (2024)

✓ Head Attention Score Many-to-One ✓

MinCache
Liu et al. (2024a)

✓ Token Angular Distance Two-to-One ✓

KVSharer
Yang et al. (2024d)

✓ Layer Euclidean Distance Many-to-One ✓

tokens, CCM Kim et al. (2024a) computes attention scores for each new token by referencing the merged
token. Similarly, LoMA Wang & Xiao (2024) inserts a special token into the input sequence to determine
which consecutive tokens should be compressed. LoMA Wang & Xiao (2024) performs compression
using bidirectional attention, repetition zone supervision, and carefully designed attention masks and loss
functions. DMC Nawrot et al. (2024) learns a variable to decide whether to append new KV pairs to
the cache when necessary or to merge them into existing KV representations using a weighted average.
Note that CCM Kim et al. (2024a), LoMA Wang & Xiao (2024), and DMC Nawrot et al. (2024) require
supervised learning to learn a compression module.

Instead, CaM Zhang et al. (2024g), KVMerger Wang et al. (2024c), and D2O Wan et al. (2024a) are
training-free, which rely on observations and directly propose rule-based or heuristic-based merging strate-
gies. Specifically, they separate the Keys and Values of tokens in each layer into important (retrained)
and unimportant (evicted) tokens. They then keep potentially useful unimportant tokens by merging their
Keys and Values with retained important tokens, ensuring that no valuable information is lost. Particularly,
D2O Wan et al. (2024a) merges the Key (or Value) of a evicted token with one retained token based on cosine
similarity. Similar to D2O, AIM Zhong et al. (2024b), Look-M Wan et al. (2024b), and ZeroMerge Liu et al.
(2025) merge Keys (resp. Values) of multiple tokens into one. CaM Zhang et al. (2024g) merges the Keys
(or Values) of multiple evicted tokens with retained tokens based on attention scores to get the final merged
results. Also, KVMerger Wang et al. (2024c) first identifies the merge token sets by clustering consecutive
tokens with high cosine similarity, ensuring that only adjacent tokens with strong contextual relevance are
grouped together. Then, KVMerger merges the tokens in each merge set into the pivotal token (chosen
based on the highest attention score) using Gaussian kernel weights, where closer tokens contribute more to
the merged state.

Instead of merging the KV of multiple tokens into one, CHAI Agarwal et al. (2024) observes that heads
in multi-head attention often produce highly correlated attention scores for tokens, particularly in the later
layers of LLMs. To exploit this redundancy, CHAI Agarwal et al. (2024) clusters attention heads within each

16



Under review as submission to TMLR

Figure 5: The quantization of attention matrix.

layer that produce similar outputs and computes attention for only a single representative head in each clus-
ter. Specifically, within each cluster, CHAI Agarwal et al. (2024) selects one representative head to perform
the attention computation, and the computed attention scores are shared across all heads in the cluster.

4.3.2 Cross-layer Merging

MiniCache Liu et al. (2024a) observes that KV caches in middle-to-deep layers exhibit high angular simi-
larity, making them ideal for merging. To achieve this, MiniCache Liu et al. (2024a) merges the Key (and
Value) pairs of each token from adjacent similar layers into a single shared representation. Specifically,
MiniCache Liu et al. (2024a) decomposes KV vectors into magnitude and direction components, storing only
the shared directional vectors, token magnitudes, and unmergeable tokens to maximize memory efficiency.
Differently, KVSharer Yang et al. (2024d) observes a counterintuitive phenomenon: when the KV caches
of two layers differ significantly, sharing one layer’s KV cache with another during inference does not cause
significant performance degradation. Based on this observation, KVSharer Yang et al. (2024d) computes the
Euclidean distance between the KV caches of all layer pairs, ranks the pairs by dissimilarity, and prioritizes
the most dissimilar layers for sharing. Since KVSharer Yang et al. (2024d) can share the KV cache of one
layer to multiple other layers, the stored KV cache is eliminated significantly.

4.3.3 Summary and Future Directions

KV cache merging represents a transformative approach to optimizing memory utilization in LLMs by
consolidating or compressing KV caches while maintaining high model accuracy. However, there are several
key directions and challenges for future exploration in this domain. Firstly, current KV cache merging
methods are typically designed to work across a wide range of tasks, but fine-tuning merging strategies
for specific tasks or domains could further enhance efficiency. For example, certain tasks may tolerate
more aggressive merging due to inherent redundancy in their attention patterns, while others may require
more conservative approaches to preserve accuracy. Adaptive merging mechanisms that adjust compression
levels on-the-fly based on task difficulty, sequence length, or available hardware resources are an exciting
avenue for future work. Secondly, sparse attention mechanisms, which already reduce the computational
complexity of attention by operating on subsets of tokens, could be combined with KV cache merging to
achieve even greater efficiency. Exploring how merging complements sparsity-based approaches, such as
block-sparse or low-rank attention, could lead to novel hybrid solutions. Thirdly, while empirical results
show that merging does not significantly degrade performance, providing theoretical guarantees about the
preservation of critical information could enhance the reliability of these methods. Future work might focus
on quantifying the relationship between merging strategies, token importance, and attention accuracy to
provide more formal guarantees.

4.4 KV Cache Quantization
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Figure 6: Three types of quantization. Then matrix X ∈ RT×C , where T is the number of tokens and C is
the feature dimension.

As shown in Fig.5, quantization techniquesLin et al. (2016); Wu et al. (2020); Kwasniewska et al. (2019); Zhou
et al. (2018); Jiang & Agrawal (2018) aim to convert full-precision values into lower-bit integers, reducing
computational and storage requirements. Quantization techniques have been widely used to accelerate
machine learning models from different aspects, such model parameter quantization Frantar et al. (2022);
Dettmers et al. (2024); Bondarenko et al. (2023); Cheng et al. (2017) and data feature quantization Zhou
et al. (2023a); Jegou et al. (2010). Similarly, Key-Value (KV) cache quantization is emerging as a highly
promising solution to address the memory and computational bottlenecks in LLMs. During autoregressive
decoding, LLMs generate key-value pairs for every attention layer across all tokens in the sequence. If
we store all KV pairs in the memory with full precision, this cache grows linearly with longer sequences,
increasing the memory and bandwidth requirements significantly. Quantization reduces the precision of
numerical representations (e.g., from FP32 to INT8 or INT4), drastically compressing the size of the KV
cache. This compression can achieve up to 4x or more memory savings, making it feasible for LLMs to
operate on resource-constrained devices like GPUs with limited memory or edge devices.

However, the presence of outliers in Keys and Values poses a significant challenge for low-bit quantization, as
these extreme values can lead to substantial performance degradation when compressed into reduced bit rep-
resentations Dettmers et al. (2022); Bondarenko et al. (2021); Wei et al. (2022). Based on the techniques used,
existing KV cache quantization approaches can be classified into three main categories: Fixed-precision
quantization, where all Keys and Values are quantized to the same bit-width; Mixed-precision quantiza-
tion, which assigns higher precision to critical parts of the cache while using lower precision for less important
components; and Outlier redistribution, which redistributes or smooths the outliers in Keys and Values
to improve quantization quality. These methods collectively enable efficient KV cache compression while
mitigating the performance degradation typically associated with low-bit quantization.

4.4.1 Fixed-precision Quantization

Fixed-precision quantization proposes quantizing different Keys (different Values) of tokens to the same bit-
width. ZeroQuant Yao et al. (2022) propose per-token quantization for Keys and Values. As shown in Fig. 6,
the per-token quantization approach quantizes tokens individually. Particularly, ZeroQuant Yao et al. (2022)
dynamically computes the min-max range for each token during inference. This ensures that each token is
quantized based on its unique range, significantly reducing quantization error. Also FlexGen Sheng et al.
(2023) and QJL Zandieh et al. (2024) directly perform per-token quantization for Keys and Values, where
the scaling factor and zero-point are shared among all elements within the same token. PQCache Zhang
et al. (2024b) uses product quantization approaches Jegou et al. (2010); Matsui et al. (2018) to compress
KV pairs. However, uniform quantization approaches, which use a fixed bit-width for keys and values across
all tokens, can often be suboptimal. It is because they ignore the varying importance of tokens Zhang et al.
(2024f) and account for the outlier patterns in Keys and Values Dong et al. (2024b); Hooper et al. (2024b).
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Table 5: The summary of existing mixed-precision quantization models.
Model Keys Values Important Tokens Outlier storing Channel Reorder

Intial Middle Recent
KVQuant

Hooper et al. (2024b)
Channel, Pre-RoPE Per-Token ✓ ✓

KIVI
Liu et al. (2024h)

Channel Per-Token ✓

SKVQ
Duanmu et al. (2024)

Dynamic outlier-aware ✓ ✓ ✓

WKVQuant
Yue et al. (2024)

Learnable shifting ✓

QAQ
Dong et al. (2024b)

Adaptive quantization bits ✓ ✓ ✓ ✓

MiKV
Yang et al. (2024c)

Dynamic outlier-aware ✓ ✓ ✓

GEAR
Kang et al. (2024)

Dynamic outlier-aware ✓ ✓

ZIPVL
He et al. (2024a)

Conventional ✓ ✓ ✓

CacheGen
Liu et al. (2024f)

Layer-wise, token-locality

Atom
Zhao et al. (2024b)

Group-based ✓ ✓

4.4.2 Mixed-precision quantization

Unlike fixed-precision quantization, where all Keys or Values are quantized to the same bit-width (e.g.,
4-bit or 8-bit), mixed-precision quantization assigns higher or full precision to Keys and Values of critical
tokens and parts while using lower precision for less critical parts. The summary of KV mixed-precision
quantization is listed in Tab. 5. KVQuant Hooper et al. (2024b) proposes several strategies to quantize Keys
and Values smoothly based on observations. Firstly, KVQuant observes that the key values exhibit outliers
in specific channels prior to applying Rotary Positional Embedding (RoPE). However, after applying RoPE,
the magnitudes of these outlier channels become less consistent, creating a unique challenge for low-precision
quantization. Thus, KVQuant Hooper et al. (2024b) proposes to quantize the Keys per channel before
applying the RoPE operations and to quantize the Values per token. Secondly, KVQuant Hooper et al.
(2024b) observes that KV cache activations contain outliers that skew the quantization range. To address
this, they isolate outliers per vector (e.g., per-channel or per-token), store them in a sparse format, and
quantize the remaining values to a narrower range. Thirdly, LLMs disproportionately allocate high attention
scores to the first token (i.e., attention sink), and quantizing the first token will damage the performance of
LLMs. Thus, KVQuant Hooper et al. (2024b) retains the first token in full precision (FP16) while quantizing
the rest of the sequence, which is also used by IntactKV Liu et al. (2024e) and SKVQ Duanmu et al. (2024).
Similar to KVQuant Hooper et al. (2024b), KIVI Liu et al. (2024h) quantizes the Key cache per-channel,
as certain channels exhibit large outliers, and the Value cache per-token, as there are no significant outlier
patterns in the Value cache. Additionally, KIVI Liu et al. (2024h) retains the most recent Keys and Values
in full precision, while quantizing older KVs. This approach is based on the observation that the most recent
KVs are critical for generating subsequent tokens.

Similar to KIVI Liu et al. (2024h), WKVQuant Yue et al. (2024) temporarily retains the most recent
Keys and Values in full precision, while quantizing only the past KV cache. This approach Yue et al.
(2024) helps preserve precision during computation. Similarly, ResQ Saxena et al. (2024b) uses PCA to
identify high-variance components, which are quantized in 8-bit, while the rest are quantized in 4-bit. Also,
ResQ Saxena et al. (2024b) uses random rotations to suppress outliers, improving robustness. Additionally,
WKVQuant Yue et al. (2024) introduces a two-dimensional quantization strategy, which optimizes parameter
matrix to align the values in the KV cache into a smoother and more uniform range, significantly improving
quantization quality. GEAR Kang et al. (2024), MiKV Yang et al. (2024c), ZipCache He et al. (2024b) and
ZIPVL He et al. (2024a) quantize the KV cache based on the importance of each to achieve efficient and
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effective compression. First, GEAR Kang et al. (2024) applies quantization to compress the majority of less
important entries (e.g., 98%) to ultra-low precision, significantly reducing memory usage. Next, GEAR Kang
et al. (2024) employs a low-rank matrix to approximate residual errors, capturing structured patterns in the
data. Also, GEAR Kang et al. (2024) uses a sparse matrix stores outliers, correcting individual errors
caused by these values. MiKV Yang et al. (2024c) is a mixed-precision KV cache quantization approach.
Based on the importance of each token, measured using existing methods like H2O Zhang et al. (2023a) and
SnapKV Li et al. (2024b), MiKV Yang et al. (2024c) stores less important KV pairs in low precision while
retaining the most important KV pairs in high precision. Instead of approximating the importance weight
of each token, ZipCache He et al. (2024b) accurately computes the importance of each token. Instead of
computing importance score, PrefixQuant Chen et al. (2024c) observes that token-wise outliers frequently
occur at fixed positions (e.g., initial tokens) or low-semantic-value tokens (e.g., ".", "\n"). Based on this
observation, PrefixQuant Chen et al. (2024c) identifies high-frequency outlier tokens in LLMs offline and
prefixes them in the KV cache, effectively eliminating token-wise outliers. Similarly, MiniKV Sharma et al.
(2024) observes that important tokens can be identified before generation and remain consistent throughout
the generation process, retaining these important tokens in high precision.

KV-AdaQuant Hariri et al. (2025) observes that the higher sensitivity of key matrices to quantization er-
rors due to their larger norms, and thus it allocates more bits to key matrices and fewer bits to value
matrices, optimizing both accuracy and memory efficiency. QAQ Dong et al. (2024b) proposes a qual-
ity adaptive quantization approach to dynamically determine the suitable quantization bit for each token,
based on its importance and sensitivity, while handling outliers and exceptions to maintain model perfor-
mance. SKVQ Duanmu et al. (2024) introduces the clipped dynamic quantization with channel reorder.
First, SKVQ Duanmu et al. (2024) uses a transformation-invariant permutation to group similar channels
based on their statistical characteristics and applies clipped dynamic quantization to mitigate the outlier
problem. Second, SKVQ Duanmu et al. (2024) maintains high precision for the initial tokens and the most
recent tokens while quantizing older tokens. Consequently, SKVQ Duanmu et al. (2024) effectively reduces
quantization errors and improves the accuracy of the quantized model. CacheGen Liu et al. (2024f) and
AsymKV Tao et al. (2024) use layer-wise asymmetric quantization, assigning higher-bit precision to key
matrices in sensitive early layers and lower-bit precision to less sensitive layers, balancing memory efficiency
and performance. Particularly, CacheGen Liu et al. (2024f) also exploits token-wise locality by encoding
deltas (differences) between KV tensors of nearby tokens instead of raw values. Atom Zhao et al. (2024b)
identifies and separates outlier channels, reordering the matrix to group these outlier channels at the end,
thereby ensuring regular memory access patterns for improved hardware utilization. Then, Atom Zhao et al.
(2024b) quantizes outliers with higher precision, while normal channels are quantized to INT4 for maximum
efficiency. In particular, Atom Zhao et al. (2024b) applies fine-grained group quantization by dividing matri-
ces into smaller subgroups (e.g., 128 elements per group) and performing quantization independently within
each group.

4.4.3 Outlier Redistribution

As previously mentioned, outliers in the Keys and Values present significant challenges for their quantization.
Recent research has proposed two main approaches to address this issue: redistributing the outliers into newly
appended virtual tokens or applying equivalent transformation functions to smooth the Keys and Values for
improved quantization accuracy. The summary of existing outlier redistribution models are listed in Table. 6.

Specifically, MassiveActivation Sun et al. (2024b) highlights the phenomenon of massive activations in large
language models (LLMs), where a small subset of activations is exponentially larger than the rest. To ad-
dress this, MassiveActivation Sun et al. (2024b) proposes appending a virtual token to the inputs, allowing
LLMs to encapsulate the massive outliers within these learned keys and values for each head. On the other
hand, to further address this issue, existing researchers Ashkboos et al. (2024); Lin et al. (2024d) introduce
equivalent transformation function-based approaches. Equivalent transformation functions are mathemati-
cal transformations applied to activations that preserve the underlying information while redistributing or
normalizing the values. By redistributing or scaling massive values, these approaches ensure that extreme
outliers do not disproportionately affect downstream processes like compression or quantization. Firstly,
QuaRot Ashkboos et al. (2024), Qserve Lin et al. (2024d), and Q-INT4 Xi et al. (2023) redistributes outlier
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Table 6: The summary of outlier redistribution models in Sec. 4.4.3.
Model Operation Formula Learn Remarks

MassiveAct
Sun et al. (2024b)

Add virtual tokens softmax

(
Q
[

KT , k′
]

√
d

)[
V

v′T

]
✓ Learnable k′, v′

QuaRot
Ashkboos et al. (2024)

Hadamard rotation XW⊤ = (XH)(H⊤W⊤) × H⊤H = I

Qserve
Lin et al. (2024d)

Hadamard rotation XW⊤ = (XH)(H⊤W⊤) × H⊤H = I

Q-INT4
Xi et al. (2023)

Hadamard rotation XW⊤ = (XH)(H⊤W⊤) × H⊤H = I

SmoothQuant
Xiao et al. (2023)

Scaling (X diag(s)−1) · (diag(s)W⊤) × s ∈ Rci

QS+
Wei et al. (2023)

Scaling, Shifting ((X − z) diag(s)−1 · diag(s) + z)W⊤ × s ∈ Rci

AWQ
Lin et al. (2024c)

Scaling arg mins

∥∥XW⊤ − X diag(s)−1)Q(diag(s)W⊤)
∥∥ ✓ Quantization Q(·)

OmniQuant
Shao et al. (2023)

Scaling, Shifting Qa

(
X−δ

s

)
Qw

(
s ⊙ W⊤

)
+ B + δW⊤ ✓ Learnable Qa(·), Qw(·)

DuQuant
Lin et al. (2024b)

Rotation, Permutation [(X · Λ)R̂(1) · P · R̂(2)] · [R̂⊤
(2) · P⊤ · R̂⊤

(1)(Λ−1 · W⊤)] × Matrices P, R

AffineQuant
Ma et al. (2024b)

Affine transform arg minP

∥∥XW⊤ − XP−1Q(PW⊤)
∥∥2

F
✓ Quantization Q(·)

FlatQuant
Sun et al. (2024d)

Affine transform AffineQuant + P = P1 ⊗ P2 ✓ Decomposition

values across all channels by Hadamard rotation, successfully lowering the maximum value of outlier tokens.
The Hadamard rotation of activations can be incorporated into the preceding linear layer, thereby redis-
tributing the outliers of Keys and Values into the parameters. Despite this improvement, outlier tokens still
exhibit magnitudes hundreds of times greater than normal tokens, causing notable performance issues when
using shared quantization scales across tokens Chen et al. (2024c). Expanding on this idea, SpinQuant Liu
et al. (2024g) proposes training an orthogonal matrix instead of relying on a random Hadamard matrix to
achieve better performance. Similarly, DuQuant Lin et al. (2024b) employs channel permutation to evenly
distribute outliers across blocks and utilizes block rotation to further smooth outliers.

SmoothQuant Xiao et al. (2023) leverages a key observation that different tokens show similar patterns of
variation across their channels. Based on this insight, it strategically shifts the quantization complexity from
activations to weights through an offline process. Specifically, SmoothQuant Xiao et al. (2023) introduces a
mathematically equivalent per-channel scaling transformation: Y = (Xdiag(s)−1)·(diag(s)W) = X̂Ŵ where
X represents Keys or Values, and the smoothing factor s ∈ RCi is used to scale X. This transformation
achieves two key benefits: it smooths the distribution of Keys and Values to facilitate easier quantization,
and it allows the smoothing factors to be efficiently incorporated into the parameters of previous layers
during offline processing. In particular, the smooth factor s is dynamically decided on based on inputs.
Similarly, The OS+ Wei et al. (2023) introduces channel-wise shifting to eliminate outlier asymmetry and
channel-wise scaling to reduce outlier concentration. These operations are seamlessly migrated to subsequent
layers, maintaining equivalence with the floating-point model while improving quantization performance.

Instead of using handcrafted transformations Lin et al. (2024b); Wei et al. (2023); Xiao et al. (2023) to shift
the quantization difficulty from activations to weights, AffineQuant Ma et al. (2024b) uses an affine transfor-
mation matrix that combines both scaling and rotation transformations. This allows it to optimize weight
distributions more effectively, aligning them better with the quantization function and reducing quantization
errors. The affine transformation matrix provides richer flexibility compared to SmoothQuant’s scalar-based
scaling, enabling finer adjustments to the weight and activation distributions. Based on AffineQuant Ma
et al. (2024b), FlatQuant Sun et al. (2024d) introduces a fast and learnable affine transformations to enhance
the flatness of weights and activations, which decomposes transformations into smaller matrices to reduce
memory and computational costs. Similarly, AWQ Lin et al. (2024c) and OmniQuant Shao et al. (2023)
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proposes differentiable and learnable equivalent transformations, which optimize the equivalent parameters
(e.g., channel-wise scaling and shifting) in an end-to-end manner using gradient descent.

4.4.4 Summary and Future Directions

KV cache quantization is a crucial technique for reducing memory and computational overhead in large
language models (LLMs) during autoregressive decoding. While significant progress has been made, this
field remains dynamic and rapidly evolving, with several promising directions for future research. Firstly,
one promising avenue is the development of real-time adaptive quantization methods. These techniques
could dynamically adjust quantization levels during inference based on real-time metrics such as token
importance, outlier presence, or sequence length. Such an approach could significantly enhance efficiency
while maintaining performance, especially for processing long sequences with varying levels of complexity.
Secondly, another important direction is extending KV cache quantization to multi-modal and multi-task
models. Multi-modal models, which process inputs from diverse domains such as text, vision, and audio, and
multi-task scenarios often exhibit highly diverse attention patterns and memory demands. This necessitates
the design of more advanced and tailored quantization strategies to balance efficiency and accuracy in these
increasingly complex settings.

Thirdly, hybrid quantization techniques also hold significant potential. By combining fixed-precision, mixed-
precision, and outlier redistribution methods, researchers could develop more versatile and efficient quan-
tization frameworks. For instance, integrating mixed-precision allocation schemes with outlier smoothing
transformations could optimize both memory usage and performance, offering a flexible approach adaptable
to a variety of tasks and models. finally, addressing the challenge of outliers remains a critical area of focus.
Outliers can have a disproportionate impact on quantization efficiency and model performance. Future re-
search could explore advanced outlier detection mechanisms or innovative encoding techniques to mitigate
their effects. Improved handling of outliers could further enhance the effectiveness of quantization methods,
enabling more robust and memory-efficient implementations.

4.5 KV Cache Low-rank Decomposition

Existing studies have demonstrated that the majority of information within KV caches can be captured
by a small subset of their singular values or low-rank components, making low-rank decomposition a pow-
erful tool for compression. By leveraging this property, KV cache low-rank decomposition techniques aim
to reduce memory requirements while preserving the essential information required for accurate attention
computations. Low-rank decomposition strategies can be classified into three main approaches: Singular
Value Decomposition (SVD), which exploits the low-rank structure of KV matrices to retain the most
critical singular values; Tensor Decomposition, which factorizes KV matrices into smaller components
for minimal redundancy; and Learned Low-rank Approximation, which incorporates adaptive mecha-
nisms to optimize compression based on learned representations. Each method provides a unique balance of
computational efficiency and accuracy retention, enabling scalable and memory-efficient LLM inference.

4.5.1 Singular Value Decomposition

Recent research has demonstrated that KV caches in large language models exhibit strong low-rank prop-
erties, where a small number of top singular values retain most of the information. Building upon this
discovery, numerous low-rank approximation techniques have been proposed for KV cache optimization.
These methods can be broadly categorized into two approaches: those that directly decompose the KV
cache and those that apply low-rank approximations to the KV weight matrices.

Among the methods that directly decompose KV caches, ECKVH Yu et al. (2024), EigenAttention Saxena
et al. (2024a), Q-Filters Godey et al., and ZDC Zhang & Shen (2024) all leverage Singular Value Decompo-
sition (SVD) techniques but with distinct implementations. ECKVH Yu et al. (2024) compresses KV caches
by grouping attention heads, applying SVD, and retaining top singular values, which effectively reduces the
number of KV heads while minimizing error. Similarly, EigenAttention Saxena et al. (2024a) employs SVD
to approximate keys, queries, and values with low-rank basis vectors, thereby reducing the dimensionality of
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KV matrices. Q-Filters Godey et al., meanwhile, offers a training-free KV cache compression method that
utilizes SVD-based key projections for efficient and accurate attention score approximations.

Besides, Loki Singhania et al. (2024) introduces an alternative approach that first computes approximate
attention scores in a reduced dimensional space to efficiently rank and select top-k keys. It then calculates
exact attention scores using only the selected keys in the transformed space, thereby reducing computational
and memory requirements while maintaining performance. Furthermore, ZDC Zhang & Shen (2024) imple-
ments an adaptive hybrid compression ratio mechanism that assigns higher compression to less important
tokens in shallower layers while preserving more important tokens in deeper layers, effectively leveraging the
similarity of token characteristics in adjacent layers.

Taking a fundamentally different approach, LoRC Zhang et al. (2024d) employs low-rank approximations of
KV weight matrices rather than decomposing the KV pairs themselves. Specifically, LoRC uses SVD to com-
press the Keys and Values parameter matrices (i.e., Wk

i and Wv
i ), decomposing them as Wk

i = Uk
i Σk

i Pk
i

⊤

and Wv
i = Uv

iΣv
iPv

i
⊤. Additionally, LoRC adopts a progressive compression strategy, applying compression

conservatively in shallower layers to minimize error amplification while compressing more aggressively in
deeper layers. Instead of storing complete Ki = XiWk

i and Vi = XiWv
i matrices, it only stores K̂i = XiUk

i

and V̂i = XiUv
i , along with Σk

i Pk
i

⊤ and Σv
iPv

i
⊤, achieving efficient KV cache compression without requiring

model retraining. Palu Chang et al. (2024) follows a comparable approach by applying SVD to compress KV
weight matrices simultaneously, while ShadowKV Sun et al. (2024a) takes a different angle by performing
SVD decomposition directly on pre-RoPE keys to reduce the dimensionality of key representations.

4.5.2 Tensor Decomposition

Tensor decomposition Kuleshov et al. (2015); Zhou et al. (2017); Haeffele & Vidal (2015) is a widely
used algorithm for factorizing a matrix into a sequential product of local tensors, such as Matrix Product
Operator (MPO) Liu et al. (2021) and turker decomposition Malik & Becker (2018) . Taking Matrix
Product Operator (MPO) Liu et al. (2021) as an example, the decomposition of a matrix W ∈ RI×J using
MPO can be defined as:

TD(W) =
n∏
k=1

T(k)[dk−1, ik, jk, dk], (12)

where T(k) represents the local tensor of size dk−1 × ik × jk × dk, with
∏n
k=1 ik = I and

∏n
k=1 jk = J .

Here, n denotes the number of local tensors, collectively referred to as the decomposed tensors. As shown
in Equation 12, MPO-based tensor decomposition is well-suited for KV cache compression as it reduces
the memory footprint by factorizing large key and value matrices into smaller local tensors, enabling
efficient storage while preserving essential information. This approach minimizes redundancy and maintains
the structural integrity required for accurate attention computations. DecoQuant Liu et al. (2024d)
combines quantization with low-rank decomposition to effectively reduce quantization errors. Specifically,
DecoQuant Liu et al. (2024d) leverages the Matrix Product Operator (MPO) to decompose matrices into
smaller local tensors. The larger tensors, which contain most of the parameters, are quantized to low-bit
precision, while the smaller tensors retain high precision to minimize overall quantization error.

4.5.3 Learned Low-rank Approximation

LESS Dong et al. (2024a) introduces a novel learned-kernel-based low-rank approximation approach to
efficiently approximate the results of the softmax function. Specifically, LESS Dong et al. (2024a) replaces
the softmax with a separable similarity metric, ϕ(qt)ψ(Kt)⊤, where ϕ and ψ are row-wise functions. Here,
qt ∈ R1×D represents the query, and Kt ∈ Rt×D represents the keys at step t. To elaborate, if ϕ and ψ

are such that: at = softmax
(

qtK⊤
t√
D

)
Vt ≈ ϕ(qt)ψ(Kt)⊤Vt

ϕ(qt)ψ(Kt)⊤1S×1
, then we only need to cache the hidden states

Ht = ψ(Kt)⊤Vt ∈ RR×D and the normalization factor zt =
∑t
s=1 ψ([Kt]s) ∈ R1×R for inference. Similarly,

MatryoshkaKV Lin et al. (2024a) compresses KV caches along the feature dimension by leveraging trainable
orthogonal projection matrices.
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Model-level
Optimization (Sec. 5)

Non-transformer Ar-
chitecture (Sec. 5.3)

Hybrid Architec-
ture (Sec. 5.3.2)

MixCon Xu & Lin (2024), GoldFinch
Goldstein et al. (2024), RecurFormer
Yan et al. (2024)

Adaptive Sequence
Processing Archi-

tecture (Sec. 5.3.1)

RWKV Peng et al. (2023), Mamba
Gu & Dao (2024), RetNet Sun et al.
(2023), MCSD Yang et al. (2024b)

Architecture Al-
teration (Sec. 5.2)

Augmented
Architecture (Sec. 5.2.2)

YOCO Sun et al. (2024c), CEPE Yen
et al. (2024), XC-Cache Monteiro
et al. (2024), Block Transformer Ho
et al. (2024)

Enhanced Atten-
tion (Sec. 5.2.1)

MLA DeepSeek-AI et al. (2024),
FLASH Hua et al. (2022), Infini-
Attention Munkhdalai et al. (2024)

Attention Grouping
and Sharing (Sec. 5.1)

Cross-Layer Shar-
ing (Sec. 5.1.2)

CLA Brandon et al. (2024), LCKV
Wu & Tu (2024), SA Liao & Vargas
(2024), MLKV Zuhri et al. (2024),
LISA Mu et al. (2024), Wu et al.
(2024e), CLLA Yang et al. (2024e),
DHA Chen et al. (2024e), SVFormer
Zhou et al. (2024b)

Intra-Layer Group-
ing (Sec. 5.1.1)

MQAShazeer (2019), GQA Ainslie
et al. (2023), AsymGQA Chen et al.
(2024f), Weighted GQA Chinnakon-
duru & Mohapatra (2024), QCQA
Joshi et al. (2024), KDGQA Khan
et al. (2024), GQKVAJavadi et al.
(2023)

Figure 7: Taxonomy of the model based KV optimization for Large Language Models.

4.5.4 Summary and Future Directions

KV cache low-rank decomposition is a powerful technique for compressing KV caches in LLMs while maintain-
ing the quality of attention computations. Current methods primarily rely on fixed low-rank approximations
applied uniformly across all layers or tokens. However, future advancements could focus on dynamic rank
adjustment, where the rank is tailored based on token importance, sequence length, or layer-specific proper-
ties, enabling a more optimal balance between memory efficiency and performance. Additionally, real-time
or streaming applications present a promising avenue for exploration. Since KV caches grow dynamically
during inference, lightweight and incremental decomposition methods that can adapt efficiently to expanding
sequences will be critical for supporting such scenarios without compromising latency or accuracy.

5 Model-level Optimization

In model-level optimization, new architectures or mechanisms are designed for transformers to allow more
efficient reuse of KV cache. Typically, these methods require retraining or fine-tuning of the model to come
into operation. Nevertheless, efficient transformation pipelines have also been proposed to allow for a fast
deployment to new architectures. According to where and how the refinement was made to the models, we
separate related works to the grouping and sharing mechanisms within or cross layers (Sec. 5.1), implementing
architecture modification or augmentation (Sec. 5.2), and incorporating non-transformer architectures for
optimization (Sec. 5.3). The taxonomy of the model-level optimization is shown in Fig. 7.

5.1 Attention Grouping and Sharing

This section explores attention grouping and sharing methods as effective strategies for optimizing key-value
(KV) management. We categorize the approaches into two distinct subtypes: intra-layer grouping (Sec.
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Table 7: The summary of Model-based Attention Grouping and Sharing approaches.
Method

Applied Location Intra-layer Grouped
Component

Cross-layer Shared
Component Retraining Required

Intra-layer Cross-layer
MQA

Shazeer (2019)
✓ K, V - ✓

GQA
Ainslie et al. (2023)

✓ K, V - Uptrain

AsymGQA
Chen et al. (2024f)

✓ K, V - Finetune

Weighted GQA
Chinnakonduru & Mohapatra (2024)

✓ K, V - Uptrain & Finetune

QCQA
Joshi et al. (2024)

✓ K, V - ✓

KDGQA
Khan et al. (2024)

✓ K, V - ✓

GQKVA
Javadi et al. (2023)

✓ Q, K, V - ✓

CLA
Brandon et al. (2024)

✓ ✓ K, V K, V ✓

LCKV
Wu & Tu (2024)

✓ - K, V ✓

SA
Liao & Vargas (2024)

✓ - Attention Weight ✓

MLKV
Zuhri et al. (2024)

✓ ✓ K, V K, V Uptrain

LISA
Mu et al. (2024)

✓ Q, K, V Lightweight adaption

Wu et al.
Wu et al. (2024e)

✓ - Q, K, V ✓

CLLA
Yang et al. (2024e)

✓ - Q, K, V ✓

DHA
Chen et al. (2024e)

✓ ✓ K, V Q, K, V Lightweight adaption

SVFormer
Zhou et al. (2024b)

✓ - V ✓

5.1.1) that focuses on grouping query, key, and value heads within individual layers to reduce redundancy
and improve efficiency, and cross-layer sharing 5.1.2 that shares key, value, or attention components across
layers to improve information reuse and reduce KV cache requirements. The summary of attention grouping
and sharing is listed in Tab. 7.

5.1.1 Intra-layer Grouping

As shown in Fig. 8, Shazeer first introduced Multi-Query Attention (MQA) Shazeer (2019) that modified
the traditional multi-head attention mechanism. In MQA, all attention heads in a transformer block share a
single key and value. This simple strategy can greatly accelerate the decoding procedure. The experiments
of the author show that MQA would gain much efficiency with only minor quality degradation incurring.

MQA is a radical strategy that would cause not just quality degradation, but also training instability. GQA
(Grouped Query Attention) Ainslie et al. (2023) introduced a trade-off solution by dividing the query heads
into multiple groups, while each group shares its own keys and values. In addition, an uptraining process
is proposed to efficiently convert existing MHA models to GQA configurations by mean-pooling the key
and value heads associated with each group. Empirical evaluations demonstrated that GQA models achieve
performance close to the original MHA models while offering inference time comparable to MQA.

There were several extensions based on GQA. AsymGQA Chen et al. (2024f) extends GQA by proposing
an activation-informed merging strategy. Instead of grouping the heads by uniform clustering, AsymGQA
dynamically determines the grouping of quries based on their activations similarities during training and
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Figure 8: Different QKV techniques.

constructs an asymmetric group results, which leads to better optimization and generalization. Weighted
GQA Chinnakonduru & Mohapatra (2024) introduces additional trainable weights to each key and value
head, which can be seamlessly integrated into existing GQA models. By tuning weights during training, it
improves the performance of the model without additional inference overhead. QCQA Joshi et al. (2024)
utilizes an evolutionary algorithm to identify the optimal query head groupings for GQA, which is guided
by a computationally efficient fitness function that leverages the weight-sharing error and the KV cache
to evaluate text generation quality and memory capacity. KDGQA Khan et al. (2024) argues that many
variances of GQA adopt a fixed grouping strategy, thus lacking dynamic adaptability to the evolving of key-
value interactions during training. Their Dynamic Key-Driven GQA address these issues by allocating groups
using key head norms adaptively during training, resulting in a flexible strategy to query head grouping and
enhance the performance.

GQKVA Javadi et al. (2023) advances the grouping strategy and comes up with a generalized query, key and
value grouping mechanism. It first introduces MKVA and GKVA, in which the key and value are grouped
to share the same query. Based on this, GQKVA is proposed to separately group the query and key-value
pairs. Typically, queries are partitioned into gq groups, and keys and values are partitioned into gkv groups,
and each combination of query and key-value pairs would interact using dot product attention. This results
in gq × gkv distinct outputs. It generalized different group strategy on query, key and value and preserves
good computational efficiency and comparable performance as MHA.

5.1.2 Cross-layer Sharing

Brandon et al. introduce Cross Layer Attention (CLA) Brandon et al. (2024) that extends the ideas of GQA
and MQA by sharing the key and value heads between adjacent layers, further reduce the redundancy in
the KV cache. This achieves an additional 2× KV cache size reduction compared to MQA, significantly
improving memory efficiency without altering computational complexity.

LCKV Wu & Tu (2024) proposes only to compute and cache the key and value for a small subset of layers, even
only the top layer, then let queries in bottom layers pair the saved keys and values for inference. This method
not only drastically improves the inference speed and reduces memory consumption but is also orthogonal
to existing memory-saving techniques, enabling straightforward integration for further optimization. While
such a mechanism makes next token computation depend on top layer keys and values of previous tokens,
which contradict to the parallel training of transformers, LCKV introduces an approximate training methods
to support parallel training.

SA (Shared Attention) Liao & Vargas (2024) proposes reuse of computed attention weights across multiple
layers, rather than recalculating them for each layer. Unlike other methods focusing on sharing key-value
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caches, SA leverages the isotropic tendencies of attention distributions observed in pre-trained LLMs to
directly share attention weights, greatly reducing both computational overhead and memory usage.

MLKV (Multi-Layer Key-Value) Zuhri et al. (2024) introduces a simple KV head sharing mechanism across
multiple transformer layers. MLKV uses the same single KV head as MQA within a layer, but it also shares
this KV head with multiple layers. This extreme strategy reduces the cache size to almost 1% of normal
GQA strategies, and experiments show that MLKV still has comparable performance.

LISA (Lightweight Substitute for Attention) Mu et al. (2024) makes a comprehensive analysis for the similar-
ity of attention patterns across layers. Directly sharing attention weights across layers is ineffective because
of the misalignment of the attention head and the sensitivity of shallow layers. LISA Mu et al. (2024)
addresses challenges by incorporating tiny feed-forward networks to align attention heads between layers
and using low-rank matrices to approximate variations in layer-wise attention weights. This achieves a 6×
compression of query and key parameters while maintaining high accuracy and perplexity.

Wu et al. (2024e) introduce a unified framework that systematically analyzes and optimizes the cross-layer
Key-Value cache sharing mechanism. They consolidate several existing methods, explore novel variants
within a cohesive structure, and make thorough evaluations of these methods. The study finds that 2
times reduction to KV cache size can outperform standard transformers in throughput without substantial
accuracy loss, while further reduction requires alternative design with additional training costs. With the
analysis results, they offer insight into the choice of appropriate KV sharing methods based on the specific
requirement or constraints.

CLLA (Cross-Layer Latent Attention) Yang et al. (2024e) introduces an integrated framework combining
multiple strategies: attention head size and dimension reduction, cross-layer cache sharing, and KV cache
quantization. By unifying these strategies, CLLA achieves extreme KV cache compression to less than 2%
of the original model size while maintaining performance levels comparable with uncompressed models.

DHA (Decoupled Head Attention) Chen et al. (2024e) addresses redundancy in MHA and adaptively con-
figures shared groups for key and value heads across layers, reducing KV cache requirements. Observing
that clustering and fusing similar heads can reduce KV cache size without significant performance reduction,
DHA designs a search, fusion, and continued pre-training framework that can progressively transform MHA
checkpoints into DHA models through linear fusion of head parameters, preserving the pre-trained knowledge
with small pre-training budget.

Observing that later layers in traditional transformers overly rely on narrow regions of attention, Zhou
et al. (2024b) introduce ResFormer that utilizes residual connections from the value embeddings of the first
layer to all subsequent layers, effectively approximating cross-layer attention without incurring significant
computational costs. They then propose a simplified variant SVFormer that shares a single value embedding
across all layers, dramatically reducing the KV cache size by nearly half while maintaining competitive
performance. The proposed architectures are flexible to incorporate with other KV-efficient strategies for
additional memory savings.

5.1.3 Summary and Future Directions

This section highlights innovative strategies for optimizing memory and computational efficiency through
intra-layer grouping and cross-layer sharing mechanisms. However, several avenues for improvement remain.
First, maintaining performance while optimizing efficiency, especially for precision-sensitive tasks, requires
further investigation. Methods that implement radical grouping and sharing mechanisms may compromise
the model fidelity for tasks requiring high precision. Second, scalability across diverse model architectures and
sizes is essential. Works such as DHA Chen et al. (2024e) and LISA Mu et al. (2024), which rely on specific
architectural assumptions, may struggle to generalize to emerging LLMs or non-standard configurations.
Third, the dynamics of attention across both time and layers are largely under-explored. Most existing
methods rely on static or pre-determined grouping and sharing strategies, neglecting the temporal and
contextual variations in attention patterns.

To address these challenges and unlock the full potential of attention optimization, future research should
focus on the following aspects. First, developing universal frameworks for attention grouping and sharing that
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Table 8: The summary of Model-based Intra-layer approaches.
Method Alteration Type KV Cache

Management
Retraining

RequirementEnhanced
Attention

Augmented
Architecture

MLA
DeepSeek-AI et al. (2024)

✓ Latent compression ✓

FLASH
Hua et al. (2022)

✓ Linear approximation ✓

Infini-Attention
Munkhdalai et al. (2024)

✓ Compressive cache ✓

YOCO
Sun et al. (2024c)

✓ Single global KV cache ✓

CEPE
Yen et al. (2024)

✓ Parallel encoding with cross-attn Lightweight

XC-Cache
Monteiro et al. (2024)

✓ Encoder cross-attention ✓

Block Transformer
Ho et al. (2024)

✓ Hierarchical local KV Lightweight

require minimal retraining to enhance adaptability and usability. Second, synergistic integration with other
optimization techniques, such as quantization and pruning, has significant potential to achieve even greater
efficiency gains. While some works like CLLA Yang et al. (2024e) have begun to address these opportunities,
more exploration could be carried out to unlock new levels of efficiency. Third, more dynamic and temporal
modeling could be leveraged to adaptively adjust grouping and sharing during runtime to better capture the
contextual requirements of different tasks and sequences. Finally, a deeper understanding of the downstream
impacts of these techniques on fine-tuning and transfer learning is crucial for their effective application in
real-world scenarios.

5.2 Architecture Alteration

This section explores architectural modifications to optimize KV cache usage. We categorize these methods
into two subsections: methods that refine the attention mechanism for KV cache efficiency (Sec. 5.2.1), and
methods that introduce structural changes for better KV management (Sec. 5.2.2). Many of these works
build upon the broader landscape of efficient attention mechanisms (e.g., Linear Transformer Katharopoulos
et al. (2020), Performer Choromanski et al. (2020), LinFormer Wang et al. (2020), etc.). Since our focus lies
on methods directly impacting KV cache handling, for a comprehensive overview of efficient attention mech-
anisms, we refer readers to dedicated surveys Zhou et al. (2024c). The summary of architecture alteration
for KV reuse is listed in Tab. 8.

5.2.1 Enhanced Attention

DeepSeek-V2 DeepSeek-AI et al. (2024) introduced Multi-Head Latent Attention (MLA) that adopts a
low-rank KV joint compression mechanism, replacing the full KV cache with compressed latent vectors.
The model adopts trainable projection and expansion matrices to do the compression. This compression
mechanism significantly reduces the memory requirement of the KV cache and allows the model to handle
sequences up to 128K tokens.

FLASH Hua et al. (2022) incorporates the Gated Attention Unit (GAU) to replace the MHA mechanism
in traditional transformers. GAU utilizes a single-head attention mechanism with gating functions that
selectively modulates importance in information flow. FLASH employs a linear approximation method for
attention computation through GAU module, which makes the model efficiently handle long contexts without
the quadratic scaling of traditional self-attention, thus mitigating heavy KV cache issues.
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Infini-Attention Munkhdalai et al. (2024) adopts representation compression to store long-term content. Fur-
thermore, they introduce a hybrid attention mechanism of masked local attention and long-term linear atten-
tion. The masked local attention replaces the standard MHA to let the model only concentrate on local con-
texts, while the long-term linear attention utilizes compressed memory for far-reaching dependencies and uses
linear attention for efficient aggregation. Thus, infini-attention combines both local fine-grained and long-
range compressed states, allowing a seamless balance between long-term and short-term context modeling.

5.2.2 Augmented Architecture

YOCO Sun et al. (2024c) builds a decoder-decoder architecture composed of two modules: a self-decoder and
a cross-decoder. The self-decoder efficiently encodes global key-value caches, while the cross-decoder reuses
these caches via cross-attention. This design ensures that key-value pairs are only cached once, substantially
reducing GPU memory usage while maintaining global attention capabilities. YOCO’s computation flow
also enables the prefilling to early exit, allowing faster prefill stages without altering the final output.

CEPE Yen et al. (2024) interleaves additional cross-attention layers between the self-attention and feed-
forward layers in the decoder model. It employs a small encoder to process long inputs chunk-by-chunk to
encoded representations as cross-attention layers’ inputs. In this way, CEPE can prevent the needs for KV
cache for every token and reduce computational cost by processing contexts in parallel. This also facilitates
an existing LLMs to expand its contexts while preserving the scalability and generalizability.

XC-Cache Monteiro et al. (2024) also utilizes an encoder to interleave cross-attention layers within existing
self-attention layers in pre-trained decoder-only models to prevent explicit prompt caching. The encoder
processes the context and converts it into a compact set of key-value pairs that summarize the essential in-
formation. It also finds that pre-trained causal decoders can be used to replace an encoder for representations
extraction, further reducing the training costs on additional encoder.

Block Transformer Ho et al. (2024) introduces a hierarchical global-to-local architecture by combining coarse-
grained global attention and fine-grained local attention. In lower layers, tokens are grouped into fixed-size
blocks, allowing global context modeling with reduced KV cache overhead. In upper layers, attention operates
within individual blocks, enabling lightweight, detailed token decoding with a smaller local KV cache.

5.2.3 Summary and Future Directions

This section explores research that introduces novel attention mechanisms or architectural modifications to
improve KV cache management. Although these approaches demonstrate significant progress in enabling
longer context windows and faster inference, several challenges remain. First, many methods, such as
CEPE Yen et al. (2024) and XC-Cache Monteiro et al. (2024) demonstrate strong performance on retrieval-
augmented tasks but may not generalize well across diverse workloads. This necessitates further research into
task-adaptive KV cache optimization strategies that dynamically adjust caching behavior to optimize for
different task demands. Secondly, integrating these novel mechanisms into existing pretrained models often
requires extensive retraining, hindering their adoption in resource-constrained environments. Developing
lightweight, modular approaches for retrofitting efficient KV caching into existing architectures is crucial for
a wider practical impact. Finally, the robustness and stability of these new mechanisms under real-world
conditions, such as noisy or dynamically changing inputs, require further investigation. Addressing these
limitations could improve reliability and efficiency in practical deployments.

5.3 Non-Transformer Architecture

While transformers are struggling with KV cache issues, researchers have revisited principles from traditional
sequential architectures, such as recurrent neural networks (RNNs) Salehinejad et al. (2017), which inherently
process sequences without the need for explicit KV caches. Inspired by the lightweight and memory-efficient
design of RNNs and efficient attention mechanisms, non-transformer architectures Xu et al. (2024e); Hasani
et al. (2022); Smith et al. (2022); Wang et al. (2022); Gu & Dao (2024); Peng et al. (2023) have emerged,
such as Mamba Gu & Dao (2024) and RWKV Peng et al. (2023), offering promising alternatives. While there
are a large type of new architectures, we only list methods associated with KV optimization. For further
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Table 9: The summary of Non-Transformer Architectures.
Method Key Mechanism No Traditional KV Cache KV Cache Compression
RWKV

Peng et al. (2023)
RNN-like with Transformer parallelism ✓

Mamba
Gu & Dao (2024)

Selective state-space model ✓

RetNet
Sun et al. (2023)

Retention mechanism ✓

MCSD
Yang et al. (2024b)

Slope-decay fusion ✓

MixCon
Xu & Lin (2024)

Transformer + Conba + MoE ✓

GoldFinch
Goldstein et al. (2024)

RWKV + Modified Transformer ✓

RecurFormer
Yan et al. (2024)

Mamba replacing some attention heads ✓

understanding to efficient non-transformer works, please refer to these surveys Zhou et al. (2024c); Xu et al.
(2024d); Qu et al. (2024); Patro & Agneeswaran (2024). The summary of non-transformer is listed in Tab. 9.

5.3.1 Adaptive Sequence Processing Architectures

RWKV Peng et al. (2023), which means Receptance Weighted Key Value, is an architecture that combines
the strengths of RNNs and transformers to achieve efficient sequence processing. RWKV integrates a linear
attention mechanism, enabling parallelizable training like transformers while retaining the efficient inference
characteristics of RNNs. By formulating the architecture to operate as either a transformer or an RNN,
RWKV achieves constant computational and memory complexity during inference, overcoming the quadratic
scaling issues of transformers.

Mamba Gu & Dao (2024) is built based on state space sequence models (SSMs) Gu et al. (2022; 2021).
Inspired by the state space systems, SSMs build scalable and memory-efficient long-range sequence modeling
frameworks. Mamba improves SSMs by making parameters input-dependent, allowing information to be
selectively propagated or forgotten along the sequence based on the current token. This addresses the inability
of traditional SSMs to effectively handle the complexity of nonlinear dependencies in natural languages.
Mamba omits attention and even MLP blocks, relying entirely on these selective state spaces for sequence
modeling. It also develops a hardware-aware parallel algorithm for efficient recurrent computations in training
and inference. Mamba achieves linear scaling in sequence length, demonstrating exceptional performance on
sequences of up to a million tokens.

RetNet Sun et al. (2023) introduces Retentive Network that combines elements of recurrence and attention,
presenting a novel retention mechanism for sequence modeling that offers training parallelism, low-cost
inference, and scalable performance together. The proposed Multi-scale Retention Module (MSR) enables
support to multiple computation paradigms: the parallel representation is similar to self-attention that adds
support to casual masks and parallel training. The recurrent representation is similar to RNN that allows
low-cost inference by maintaining state across sequence decoding. The chunkwise recurrent representation
constructs a hybrid form to the former representations to further enables handling long sequences. These
combined characteristics position RetNet as a strong alternative to transformers without a heavy KV cache
mechanism.

MCSD Yang et al. (2024b) features the new block called Multi-Channel Slope and Decay, which is made
up of two sections: The slope section can capture local features across short temporal spans, and the decay
section can capture global features across long temporal spans. The sections are fused through element-wise
operations. During inference, the process would be reformat into a recurrent representation, allowing both
spatial and temporal efficiency, minimizing the need for maintaining a large KV cache.
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5.3.2 Hybrid Architecture

With these non-transformer architecture, some methods construct mixed models to alleviate KV cache
necessities while keeping some peculiarities and merits of the self-attention mechanism.

MixCon Xu & Lin (2024) introduces a new architecture called Conba. Inspired by control theory, the Conba
layer incorperates a feedback and adaptive control mechanism that can adapt to different sequence-modeling
tasks and requirements dynamically with good computational efficiency. Furthermore, MixCon integrates
the Mixture of Experts (MoE) module, which dynamically selects the most relevant experts to process
parts of the sequence. Combining the transformer layer, the Conba layer, and the MoE module, MixCon
constructs a hybrid model with good balance between attention effectiveness and computational efficiency
and significantly reduces the total size of the KV cache.

GoldFinch Goldstein et al. (2024) first introduces several new architectures, including the GOLD layer,
which combines the Llama and RWKV channel mixer with several improvements, and the enhanced Finch
model (RWKV-6) that has significantly reduced parameters without sacrificing efficiency and performance.
GoldFinch also proposes a novel mechanism called TokenCat to produce a highly compressed global key
cache using the output of Finch layers. GoldFinch builds a hybrid architecture that constructs the key cache
in the early layers and consumes the key cache to produce output without the traditional value cache in the
top layers, providing a compact and reusable cache pipeline with linear scaling.

RecurFormer Yan et al. (2024) argues that not all transformer heads need to participate in the self-attention
mechanism. The work recognizes that certain attention heads show recency-aware behavior which focus on
local and short-range dependencies, dissipate the computation resource but gives little contribution. After
identifying these heads, RecurFormer replaces them with the Mamba components, achieving straightforward
KV cache reduction.

5.3.3 Summary and Future Directions

By exploring non-transformer modules such as recurrent and hybrid designs, these methods have introduced
novel paradigms that balance performance with computational efficiency, and also alleviate the KV cache
issues in traditional transformer architectures. Future research should focus on several key areas. First,
improving the scalability of recurrent architectures, such as RWKV Peng et al. (2023) and Mamba Gu
& Dao (2024), remains critical. Although these methods reduce memory and computational costs, their
performance in capturing ultra-long-range dependencies lags behind transformers. Second, hybrid designs
such as MixCon Xu & Lin (2024) and GoldFinch Goldstein et al. (2024) highlight the potential of integrating
diverse modules, yet their complexity introduces challenges in training stability and interpretability. Third,
the overall generalization capabilities and robustness of non-transformer architectures, while efficient, need
require further exploration for diverse input modalities.

6 System-level Optimization

As shown in Fig. 9, existing computing server systems consist of various components, such as GPUs, CPUs,
and memory storage. Optimizing LLM acceleration via KV cache at the system level is both practical and
intriguing, considering the different communication and data exchange mechanisms. Recent system-level
optimizations for KV cache in LLM inference can be broadly categorized into three main directions: memory
management (Sec. 6.1), scheduling strategies (Sec. 6.2), and hardware-aware designs (Sec. 6.3). These
complementary approaches collectively demonstrate the rich design space for system-level optimizations in
LLM inference, each addressing different aspects of the performance, efficiency, and resource utilization
challenges. The Taxonomy of the system-level optimization is in Fig. 10.

6.1 Memory Management

Recent advances in KV cache memory management for large language model (LLM) inference reveal three
distinct approaches aimed at enhancing memory efficiency. Architectural designs, exemplified by vLLM with
PagedAttention Kwon et al. (2023) and vTensor Xu et al. (2024c), adapt classical operating system principles
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Figure 9: Computer server architecture.

to create flexible, dynamic memory allocation systems that optimize the use of physical memory through
sophisticated mapping and virtual memory abstractions. Prefix-aware designs like ChunkAttention Ye et al.
(2024) and MemServe Hu et al. (2024) further refine this approach by organizing data structures to enable
efficient cache de-duplication and sharing of common prefixes, thereby improving both memory utilization
and computational efficiency. Together, these innovations illustrate the potential for significant enhancements
in LLM serving via memory management.

6.1.1 Architectural Design

The first category focuses on architectural innovations in memory management, led by vLLM with Page-
dAttention Kwon et al. (2023), which adapts OS-inspired paging concepts by partitioning KV caches into
fixed-size blocks with non-contiguous storage. PagedAttention partitions KV caches into fixed-size blocks
that can be stored non-contiguously in physical memory, while vLLM Kwon et al. (2023) implements a
virtual memory-like system that manages these blocks through a sophisticated mapping mechanism. This
architecture separates logical and physical KV blocks, enabling dynamic memory allocation and flexible
block management through block tables that track mapping relationships and fill states. This memory man-
agement approach enables efficient memory utilization both within and across requests, demonstrating how
classical OS memory management principles can be effectively adapted for LLM inference optimization.

This approach is further enhanced by vTensor Xu et al. (2024c), which introduces a virtual memory ab-
straction that decouples computation from defragmentation through three key components: the vTensor
Scheduler which generates memory management policies based on meta information, the vTensor Operation
which translates these policies into CUDA VMM operations, and the vTensor Pool which maintains virtual
tensor mappings. VTS processes instructions and creates policies based on memory state tracking, while
VTO executes these policies through asynchronous GPU operations. VTP completes the cycle by managing
virtual tensor storage and updating meta information for subsequent memory operations.

LeanKV Zhang et al. (2024f) combines unified paging with heterogeneous quantization and dynamic sparsity
mechanisms. It implements Hetero-KV quantization to store keys and values at different precisions, comple-
mented by a per-head dynamic sparsity mechanism that adapts memory allocation based on token impor-
tance across different attention heads and requests. To efficiently execute these strategies, LeanKV Zhang
et al. (2024f) introduces an advanced on-GPU memory management system featuring three key components:
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System-level Opti-
mization (Sec. 6)

Hardware-aware
Design (Sec. 6.3)

SSD-based
Design (Sec. 6.3.4)

FlexGen Sheng et al. (2023), In-
stInfer Pan et al. (2024)

Heterogeneous
Design (Sec. 6.3.3)

NEO Jiang et al. (2024c), Fast-
Decode He & Zhai (2024),
FlexInfer Xu et al. (2024c),
InfiniGen Lee et al. (2024),
Pensieve Yu & Li (2023),
FastServe Wu et al. (2024a),
PartKVRec Jiang et al. (2024b),
HeadInfer Luo et al. (2025)

I/O-based
Design (Sec. 6.3.2)

FlashAttention Dao et al.
(2022) Dao (2024) Shah
et al. (2024), Bifurcated At-
tention Athiwaratkun et al.
(2024), PartKVRec Jiang et al.
(2024b), HCache Gao et al.
(2024b), Cake Jin et al. (2024),
FastSwitch Shen et al. (2024)

Single/Multi-GPU
Design (Sec. 6.3.1)

HydraGen Juravsky et al.
(2024), DeFT Yao et al. (2024b),
vLLM Kwon et al. (2023),
ORCA Yu et al. (2022), Dist-
Serve Zhong et al. (2024a), Multi-
Bin Batching Guldogan et al.
(2024), Tree Attention Shyam
et al. (2024)

Scheduling (Sec. 6.2)

Layer-specific and
Hierarchical Schedul-

ing (Sec. 6.2.3)

LayerKV Xiong et al. (2024),
CachedAttention Gao et al.
(2024a), ALISA Zhao et al.
(2024c), LAMPS Shahout et al.
(2024)

Preemptive and
Fairness-oriented

Scheduling (Sec. 6.2.2)

FastServe Wu et al. (2024a),
FastSwitch Shen et al. (2024)

Prefix-aware Schedul-
ing (Sec. 6.2.1)

BatchLLM Zheng et al. (2024b),
RadixAttention Zheng et al.
(2024a)

Memory
Management (Sec. 6.1)

Prefix-aware De-
sign (Sec. 6.1.2)

ChunkAttention Ye et al. (2024),
MemServe Hu et al. (2024)

Architectural De-
sign (Sec. 6.1.1)

vLLM Kwon et al. (2023),
vTensor Xu et al. (2024c),
LeanKV Zhang et al. (2024f)

Figure 10: Taxonomy of the System-level Optimization for KV Cache Management.

unified paging for flexible memory organization, a circular free page list for efficient coordination, and a
bidirectional page table for minimal metadata overhead.

6.1.2 Prefix-aware Design

Some latest works emphasize optimizing data organization structures through prefix-aware designs.
ChunkAttention Ye et al. (2024) restructures KV cache management by organizing chunks within a pre-
fix tree structure, enabling runtime detection and sharing of common prefixes. It breaks down traditional
monolithic KV cache tensors into smaller, manageable chunks organized within a prefix tree structure, en-
abling efficient runtime detection and sharing of common prefixes across multiple requests. This architectural
design brings two significant memory management benefits: efficient KV cache deduplication through prefix
tree-based organization, and improved data locality through a two-phase partition algorithm for self-attention
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Table 10: Comparison of Memory Management Techniques for KV Cache Optimization.
Method Paged

Memory
Virtual

Memory
Dynamic
Sparsity

Prefix
Sharing

Distributed
Memory

vLLM
Kwon et al. (2023)

✓ ✓

vTensor
Xu et al. (2024c)

✓

LeanKV
Zhang et al. (2024f)

✓ ✓

ChunkAttention
Ye et al. (2024)

✓

MemServe
Hu et al. (2024)

✓ ✓

computation. By enabling dynamic identification and sharing of common prompt prefixes across multiple
requests, ChunkAttention Ye et al. (2024) optimizes both memory utilization and computational efficiency,
demonstrating how intelligent chunking and prefix-aware cache management can significantly enhance LLM
serving efficiency.

MemServe Hu et al. (2024) extends this concept to distributed settings with its MemPool system, which
orchestrates both CPU DRAM and GPU HBM resources across serving instances, managing active and
historical KV caches through a comprehensive set of distributed memory pool APIs. It presents a prompt
token-based indexing layer for historical KV cache retrieval, cross-instance data exchange mechanisms that
abstract away hardware heterogeneity, and a global scheduler implementing a prompt tree-based locality-
aware policy for enhanced cache reuse, collectively resulting in significant improvements in job completion
time and time-to-first-token performance.

These approaches often complement each other, suggesting potential benefits in combining multiple strate-
gies. For instance, LeanKV Zhang et al. (2024f)’s integration of compression with page-based management
and MemServe Hu et al. (2024)’s combination of distributed memory management with prefix-aware caching
demonstrate the effectiveness of hybrid approaches. The diversity of these solutions reflects both the com-
plexity of KV cache management and the rich opportunity space for continued innovation in optimizing
LLM inference systems. Tab.10 provides a comparison of various memory management techniques for KV
Cache, highlighting key features such as paged memory, virtual memory, dynamic sparsity, prefix sharing,
and distributed memory.

6.1.3 Summary and Future Directions

The exploration of memory management strategies for KV caches in large language model inference reveals
a promising landscape of innovations that enhance memory efficiency and overall system performance. Ar-
chitectural advancements, such as those seen in vLLM Kwon et al. (2023) and LeanKV Zhang et al. (2024f),
adapt traditional memory management principles for modern AI applications by incorporating paging and
virtual memory concepts for dynamic allocation. Prefix-aware designs like ChunkAttention Ye et al. (2024)
and MemServe Hu et al. (2024) optimize data organization, enabling the detection and sharing of common
prefixes, which reduces redundancy and speeds up inference.

Future work should advance memory management innovations through multiple synergistic directions: inves-
tigating adaptive memory hierarchies that dynamically adjust to workload patterns and resource constraints,
exploring novel compression techniques that preserve quick access while reducing memory footprint, develop-
ing intelligent prefetching mechanisms that anticipate and preload frequently accessed cache entries, research-
ing hardware-aware optimization strategies that leverage emerging memory technologies like computational
storage and processing-in-memory units, and designing distributed cache coherence protocols that efficiently
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maintain consistency across multiple inference nodes. Additionally, the exploration of machine learning-based
approaches could enable predictive memory allocation that learns from historical access patterns, while the
investigation of specialized data structures could yield more efficient prefix detection and sharing mechanisms.
These advancements, combined with research into heterogeneous memory systems that intelligently coor-
dinate different memory types based on access patterns and performance requirements, would significantly
enhance the scalability and efficiency of LLM inference systems across diverse deployment scenarios.

6.2 Scheduling

Based on these scheduling-oriented works, we can categorize KV cache scheduling optimizations into three
main approaches: 1) prefix-aware scheduling strategies, represented by BatchLLM Zheng et al. (2024b)
and RadixAttention Zheng et al. (2024a); 2) preemptive and fairness-oriented scheduling, exemplified by
FastServe Wu et al. (2024a) and FastSwitch Shen et al. (2024); 3) layer-specific and hierarchical scheduling
approaches, demonstrated by LayerKV Xiong et al. (2024), CachedAttention Gao et al. (2024a), and AL-
ISA Zhao et al. (2024c). These approaches collectively address different aspects of scheduling optimization,
from memory efficiency to fairness and latency reduction, while specialized solutions like LAMPS Shahout
et al. (2024) extend these concepts to specific use cases such as API-augmented LLM requests, demonstrating
the rich design space in KV cache scheduling optimization.

6.2.1 Prefix-aware Scheduling

Unlike traditional LRU-based cache management systems where shared KV contexts might be prematurely
evicted or unnecessarily extended in memory, BatchLLM Zheng et al. (2024b) implements explicit global
prefix identification and coordinated scheduling of requests sharing common KV cache content. It schedules
requests at the granularity of prefix-sharing groups, ensuring optimal KV cache reuse while minimizing cache
lifetime - requests with identical prefixes are deliberately scheduled together to maximize KV cache sharing
efficiency. This scheduling approach is complemented by a dynamic programming algorithm that optimizes
first-level prefix patterns, enabling more efficient KV cache management and reducing scheduling overhead.

RadixAttention Zheng et al. (2024a) builds around a radix tree structure, replacing traditional FCFS schedul-
ing with an intelligent cache-aware approach that prioritizes requests based on matched prefix lengths. It
implements dynamic memory management where cached tokens and running requests share the same mem-
ory pool, controlled by an LRU eviction policy that strategically removes leaf nodes while preserving valuable
ancestor prefixes. This is complemented by a reference counting mechanism that prevents eviction of ac-
tively used cache entries during continuous batching while enabling efficient memory reclamation when nodes
become unused.

6.2.2 Preemptive and Fairness-oriented scheduling

FastServe Wu et al. (2024a) implements a proactive KV cache management strategy that coordinates cache
movement between GPU and host memory, overlapping data transmission with computation to minimize
latency impact. This is integrated with a skip-join Multi-Level Feedback Queue scheduler that makes KV
cache scheduling decisions based on input length information, allowing jobs to enter appropriate priority
queues directly while avoiding unnecessary demotions through higher-priority queues. By combining token-
level preemption with sophisticated KV cache management and intelligent queue placement, FastServe Wu
et al. (2024a) achieves significant performance improvements over traditional run-to-completion systems like
vLLM Kwon et al. (2023).

FastSwitch Shen et al. (2024) introduces a fairness-oriented KV cache scheduling system that addresses the
overhead challenges of preemptive scheduling in LLM serving. There are three key mechanisms: enhancing
I/O utilization through intelligent cache movement scheduling, minimizing GPU idle time during context
switches, and eliminating redundant I/O operations in multi-turn conversations. Unlike traditional block-
based KV cache memory policies that prioritize memory efficiency at the cost of fragmentation and gran-
ularity limitations, FastSwitch Shen et al. (2024) implements a balanced approach that maintains efficient
memory usage while facilitating smoother context switching. This integrated scheduling approach enables
dynamic priority adjustments for fairness while minimizing the performance impact of context switches.
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Table 11: Comparison of Scheduling Approaches for KV Cache Optimization.
Method Prefix-aware Preemptive Fairness-oriented Layer-specific Hierarchical Dynamic

BatchLLM
Zheng et al. (2024b)

✓

RadixAttention
Zheng et al. (2024a)

✓ ✓

FastServe
Wu et al. (2024a)

✓ ✓

FastSwitch
Shen et al. (2024)

✓ ✓

LayerKV
Xiong et al. (2024)

✓

CachedAttention
Gao et al. (2024a)

✓ ✓

ALISA
Zhao et al. (2024c)

✓ ✓

LAMPS
Shahout et al. (2024)

✓ ✓

6.2.3 Layer-specific and Hierarchical Scheduling

LayerKV Xiong et al. (2024) introduces a novel layer-wise KV cache scheduling approach to address the
growing TTFT (Time to First Token) latency challenges in large-context LLM serving. The contribution
lies in its fine-grained, layer-specific KV cache block allocation and management strategy, which departs from
traditional monolithic cache management approaches. By implementing layer-wise KV block scheduling and
offloading mechanisms, LayerKV Xiong et al. (2024) enables more efficient memory utilization and reduces
queuing delays that typically occur when large context windows compete for limited GPU KV cache blocks.
It is complemented by an SLO-aware scheduler that optimizes cache allocation decisions based on service
level objectives, allowing for dynamic management of memory resources across model layers.

CachedAttention Gao et al. (2024a) introduces a hierarchical scheduling approach consisting of three-tier
strategies: layer-wise pre-loading coordinates KV cache movement across storage hierarchies using scheduler-
aware fetching and eviction policies, asynchronous saving overlaps I/O operations with GPU computation,
and intelligent cache placement decisions are made based on scheduler hints to ensure frequently accessed
KV caches reside in faster memory tiers. It also presents a novel positional encoding decoupling mechanism
that prevents KV cache invalidation during context window overflow through effective truncation strategies.

ALISA Zhao et al. (2024c) introduces a dual-level KV cache scheduling framework that combines algorithmic
sparsity with system-level optimization. At the algorithm level, the Sparse Window Attention mechanism
identifies and prioritizes the most important tokens for attention computation, creating a mixture of global
dynamic and local static sparse patterns that significantly reduces KV cache memory requirements. At the
system-level, its three-phase token-level dynamic scheduler that manages KV tensor allocation and optimizes
the trade-off between caching and recomputation. The scheduler makes dynamic decisions about which tokens
to cache in GPU memory versus recompute, based on their importance and system resource constraints.

LAMPS Shahout et al. (2024) implements a predictive scheduling mechanism that estimates both pre-API
outputs and optimal memory handling strategies during API calls, choosing between preserving, discarding,
or swapping KV cache content based on predicted memory waste.

6.2.4 Summary and Future Directions

Tab.11 compares scheduling approaches for KV cache optimization based on their support for prefix-
awareness, preemptive scheduling, fairness, layer-specific optimizations, hierarchical structures, and dynamic
adaptability. The advancements in scheduling strategies for KV cache management in large language model
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inference highlight a multifaceted approach to optimizing performance, memory efficiency, and fairness. By
categorizing these strategies into prefix-aware, preemptive and fairness-oriented, and layer-specific scheduling,
we see diverse methodologies addressing different challenges. For instance, prefix-aware strategies like Batch-
LLM Zheng et al. (2024b) and RadixAttention Zheng et al. (2024a) enhance cache reuse by intelligently group-
ing requests based on shared prefixes, minimizing cache lifetime and reducing overhead. Meanwhile, preemp-
tive approaches such as FastServe Wu et al. (2024a) and FastSwitch Shen et al. (2024) implement proactive
management techniques that optimize cache movement and scheduling, significantly improving latency and
ensuring fairness during context switching. Layer-specific scheduling methods like LayerKV Xiong et al.
(2024), CachedAttention Gao et al. (2024a), and ALISA Zhao et al. (2024c) further refine cache allocation
by implementing fine-grained management strategies tailored to the unique demands of different model layers.

Future work should advance these KV cache scheduling innovations through several interlinked dimensions:
developing adaptive hybrid systems that dynamically select optimal scheduling strategies based on real-time
workload characteristics, exploring predictive models that anticipate user request patterns to proactively
optimize cache allocation, investigating automated parameter tuning mechanisms that adjust scheduling
policies across different deployment scenarios, designing context-aware architectures that intelligently balance
prefix sharing with fairness requirements, and researching novel cache coherence protocols that efficiently
handle distributed inference scenarios. Additionally, the integration of reinforcement learning approaches
could enable self-optimizing schedulers that learn from historical usage patterns, while the exploration of
hardware-software co-design could yield specialized accelerators that directly support efficient KV cache
management operations. These advancements would collectively enhance the robustness, efficiency, and
adaptability of LLM inference systems across diverse operational conditions and deployment scales. Finally,
considering LLM serving Yao et al. (2024a), different scheduling and sharing for multiple users and queries
may lead to potential privacy leaks. Therefore, privacy protection techniques for LLM serving in multi-user
scenarios, such as differential privacy Zhao & Chen (2022); Dong & Yi (2021); Dong et al. (2023a), are worth
further investigation.

6.3 Hardware-aware Design

Recent hardware-aware optimizations for KV cache management span several key directions based on differ-
ent hardware architectures and constraints. Single/Multi-GPU designs focus on optimizing memory access
patterns, GPU kernel designs for efficient attention computation, and parallel processing with load bal-
ancing. IO-based designs optimize data movement across memory hierarchies through asynchronous I/O
and intelligent prefetching mechanisms. Heterogeneous designs orchestrate computation and memory allo-
cation across CPU-GPU tiers. SSD-based solutions have evolved from basic offloading approaches to more
sophisticated designs, with InstInfer leveraging computational storage drives (CSDs) to perform in-storage
attention computation, effectively bypassing PCIe bandwidth limitations. These approaches demonstrate
how hardware-aware designs can significantly improve LLM inference efficiency by carefully considering and
exploiting the characteristics of different hardware components and their interconnections.

6.3.1 Single/Multi-GPU Design

Based on these works focusing on GPU-oriented designs, we can categorize the approaches into several key
strategies for KV cache optimization. First, shared prefix optimization approaches like HydraGen Juravsky
et al. (2024) and DeFT Yao et al. (2024b) focus on efficient GPU memory utilization through batched prefix
computations and tree-structured attention patterns. Rather than maintaining separate KV caches for each
sequence with identical prefixes, HydraGen Juravsky et al. (2024) decomposes attention computation to lever-
age a single shared KV cache for common prefixes across multiple requests. It enables efficient GPU memory
utilization through two mechanisms: batched prefix KV cache access across sequences and separate handling
of unique suffix KV caches. For DeFT Yao et al. (2024b), its core contributions are twofold: KV-Guided
Grouping, which optimizes GPU memory access patterns by intelligently managing shared prefix KV caches
to minimize redundant global-to-shared memory transfers, and Flattened Tree KV Splitting, which ensures
balanced workload distribution across GPU compute units while minimizing computational redundancy.
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Second, distributed processing frameworks exemplified by vLLM Kwon et al. (2023) and ORCA Yu et al.
(2022) optimize multi-GPU scenarios through sophisticated memory management and synchronization mech-
anisms. vLLM Kwon et al. (2023) also implements a KV cache manager that coordinates memory alloca-
tion across distributed GPU workers in model-parallel deployments, where each GPU handles a subset of
attention heads while sharing the same logical-to-physical block mapping. This GPU-aware design enables
efficient memory utilization through near-zero fragmentation and flexible KV cache sharing, while supporting
Megatron-LM style tensor parallelism where GPUs execute in SPMD fashion with synchronized block-wise
matrix operations. The scheduler broadcasts control messages containing input tokens and block tables
to GPU workers, allowing them to independently process their assigned attention heads while maintaining
memory coherence through all-reduce operations, effectively eliminating redundant memory management
synchronization overhead and maximizing GPU utilization across distributed resources.

ORCA Yu et al. (2022) distributes model layers across GPUs using both intra-layer and inter-layer par-
allelism, where each worker process manages multiple GPU-controlling threads and coordinates KV cache
access through an Attention KV manager. ORCA’s GPU-aware design minimizes CPU-GPU synchroniza-
tion overhead by separating control message communication from tensor data transfer (via NCCL), allowing
each GPU thread to efficiently access KV cache memory using request IDs and token indices.

Third, phase-aware designs like DistServe Zhong et al. (2024a) separate prefill and decoding phases across
GPU resources to optimize their distinct memory access patterns. Novel batching strategies are represented
by Multi-Bin Batching Guldogan et al. (2024), which focuses on length-aware request grouping for improved
GPU utilization, while advanced parallel computation frameworks like Tree Attention Shyam et al. (2024)
introduce sophisticated reduction algorithms for efficient attention computation across multiple GPUs. Dist-
Serve Zhong et al. (2024a) recognizes that prefill and decoding phases have distinct KV cache utilization
characteristics and memory access patterns: prefill requires intensive computation with growing KV cache
sizes for processing input tokens, while decoding maintains a fixed KV cache size for generating output to-
kens. By physically separating these phases onto different GPUs, DistServe enables optimized GPU memory
management and KV cache access patterns specific to each phase, eliminating interference between prefill’s
bursty memory access patterns and decoding’s steady-state KV cache utilization. Multi-Bin Batching Gul-
dogan et al. (2024) introduces a length-aware batching strategy helps minimize GPU idle time and memory
fragmentation that typically occurs when processing requests of varying lengths in the same batch, as it
ensures that the KV cache memory allocated for each batch is utilized more uniformly across all requests.
Tree Attention Shyam et al. (2024) implements a tree-based reduction algorithm that fundamentally changes
how attention values are computed and aggregated across GPUs, enabling more efficient handling of KV
cache data through partial reductions that significantly reduce memory bandwidth requirements and peak
memory usage.

These approaches can collectively demonstrate how hardware-aware designs can significantly improve the
LLM efficiency by carefully considering GPU architecture characteristics and memory hierarchy constraints.

6.3.2 I/O-based Design

Recent I/O-focused optimizations for KV cache management span several key dimensions, targeting different
levels of the memory hierarchy. At the GPU level, approaches like FlashAttention Dao et al. (2022) Dao
(2024) Shah et al. (2024) and Bifurcated Attention Athiwaratkun et al. (2024) optimize data movement be-
tween HBM and SRAM through sophisticated tiling strategies and split attention computations, while CPU-
GPU data movement optimizations are addressed by systems like PartKVRec Jiang et al. (2024b), which
tackles PCIe bandwidth bottlenecks through hybrid recomputation and transfer strategies, and HCache Gao
et al. (2024b), which optimizes intermediate activation storage and restoration.

FlashAttention Dao et al. (2022) Dao (2024) Shah et al. (2024) employs a tiling strategy that carefully
manages KV cache access patterns, reducing redundant memory operations by keeping frequently accessed
portions of the KV cache in fast SRAM while systematically fetching and evicting data blocks to minimize
HBM accesses. Bifurcated Attention Athiwaratkun et al. (2024) presents an I/O-aware approach to op-
timize KV cache access patterns during shared-context batch decoding by strategically splitting attention
computations into two distinct GEMM operations. It specifically targets the memory bandwidth bottle-
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neck in high-batch scenarios with long contexts by minimizing repeated KV cache accesses, maintaining the
same computational FLOPs while drastically reducing memory I/O operations. For PartKVRec Jiang et al.
(2024b), its key innovation lies in its hybrid strategy of partial KV cache recomputation on the GPU while
simultaneously transferring the remaining cache data from CPU memory, effectively hiding PCIe transfer
latency. The implementation employs a sophisticated I/O-aware scheduling system that analyzes input
characteristics and hardware capabilities to determine the optimal balance between recomputation and data
transfer, dynamically managing KV cache movement to maximize PCIe bandwidth utilization while mini-
mizing GPU idle time. HCache Gao et al. (2024b) strategically stores and restores intermediate activations
instead of complete KV cache states, implementing a bubble-free restoration scheduler that carefully balances
computation and I/O operations to maximize bandwidth utilization. A key innovation is its chunk-based
storage manager that addresses the I/O pattern mismatch between saving (layer-before-token) and restora-
tion (token-before-layer) operations, optimizing data layout and access patterns to reduce I/O overhead.
Cake Jin et al. (2024) addresses the fundamental I/O bottleneck in loading cached KV states from disk to
GPU memory. It introduces a bidirectional parallelized strategy that simultaneously leverages both compu-
tational and I/O resources. This hybrid approach dynamically balances between loading cached KV states
from storage and computing them on GPUs, adapting automatically to varying system conditions without
manual parameter tuning.

Context management optimizations are exemplified by FastSwitch Shen et al. (2024), which implements effi-
cient context switching mechanisms for multi-user scenarios through granular memory management policies.
FastSwitch Shen et al. (2024) addresses I/O inefficiencies in traditional block-based KV cache approaches
by implementing a more granular and continuous memory management policy that minimizes I/O overhead
during preemption and context switching.

These approaches demonstrate how careful consideration of I/O patterns and memory hierarchy charac-
teristics can significantly improve LLM inference efficiency by minimizing data movement and maximizing
bandwidth utilization across different storage tiers.

6.3.3 Heterogeneous Design

Recent heterogeneous computing approaches for KV Cache demonstrate diverse strategies for optimizing
CPU-GPU collaboration. Systems like NEO Jiang et al. (2024c), FastDecode He & Zhai (2024) and Head-
Infer Luo et al. (2025) implement strategic workload distribution through CPU offloading of attention com-
putations, while FlexInfer Xu et al. (2024c) introduces virtual memory abstractions for optimal resource
coordination.

NEO Jiang et al. (2024c) advances heterogeneous computing for LLM inference by implementing strategic
CPU offloading of attention computations and KV cache states. Through asymmetric GPU-CPU pipelining
and load-aware scheduling, it optimally balances workloads across both computing platforms, enabling larger
GPU batch sizes without latency penalties. For FastDecode He & Zhai (2024), its key contribution lies in
its strategic offloading of memory-bound KV cache operations to distributed CPU resources, leveraging the
aggregate memory capacity and computing power of multiple CPU nodes rather than treating CPUs as
mere storage devices. By utilizing CPUs for KV cache computations and storage while keeping compute-
intensive operations on GPUs, it creates an efficient pipeline that maximizes resource utilization across
the heterogeneous infrastructure, enabling larger batch sizes and higher throughput. FlexInfer Xu et al.
(2024c) orchestrates CPU-GPU resource utilization for LLM inference by introducing the virtual memory-
based abstraction vTensor. By implementing fine-grained, selective offloading of attention heads’ KV cache to
CPU RAM while dynamically computing attention outputs, HeadInfer Luo et al. (2025) achieves remarkable
memory efficiency without compromising computational performance. It also supports both dense and sparse
attention mechanisms, integrates with pipeline parallelism for larger models. Unlike NEO Jiang et al. (2024c),
which focuses on strategic CPU offloading with asymmetric GPU-CPU pipelining, and FastDecode He &
Zhai (2024), which distributes KV cache operations across multiple CPU nodes, HeadInfer distinguishes
itself through its granular head-wise offloading strategy that eliminates the need to fully store KV cache for
any transformer layer on GPU while preserving complete mathematical equivalence without approximation.
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Table 12: Comparison of Hardware-aware Design Approaches for KV Cache Optimization.
Method Single/Multi-GPU I/O-aware Heterogeneous SSD-based

Bifurcated Attention Athiwaratkun et al. (2024) ✓

Cake Jin et al. (2024) ✓

DeFT Yao et al. (2024b) ✓

DistServe Zhong et al. (2024a) ✓

FastDecode He & Zhai (2024) ✓

FastSwitch Shen et al. (2024) ✓

FlexGen Sheng et al. (2023) ✓

FlexInfer Xu et al. (2024c) ✓

FlashAttention Dao et al. (2022)
Dao (2024) Shah et al. (2024)

✓ ✓

HCache Gao et al. (2024b) ✓

HydraGen Juravsky et al. (2024) ✓

InfiniGen Lee et al. (2024) ✓

InstInfer Pan et al. (2024)
Multi-Bin Batching Guldogan et al. (2024) ✓

NEO Jiang et al. (2024c) ✓

ORCA Yu et al. (2022) ✓

PartKVRec Jiang et al. (2024b) ✓

Pensieve Yu & Li (2023) ✓

Tree Attention Shyam et al. (2024) ✓

vLLM Kwon et al. (2023) ✓

Advanced caching and prefetching mechanisms are exemplified by InfiniGen Lee et al. (2024), which employs
speculative prefetching for KV cache entries, and Pensieve Yu & Li (2023), which implements multi-tier
caching for conversation states. For InfiniGen Lee et al. (2024), its key innovation lies in its prediction
mechanism that operates across the heterogeneous architecture, using partial computation of attention in-
puts and modified query-key weights to identify and prefetch only the most relevant KV cache entries from
CPU memory to GPU. Pensieve Yu & Li (2023) introduces a heterogeneous computing architecture specifi-
cally designed for multi-turn conversation LLM serving by implementing a sophisticated multi-tier caching
strategy across GPU and CPU resources. This stateful approach manages KV cache data across the het-
erogeneous memory hierarchy, maintaining conversation history states across multiple hardware tiers rather
than recomputing them for each interaction.

Sophisticated scheduling and preemption strategies are demonstrated by FastServe Wu et al. (2024a), which
focuses on token-level preemption and proactive memory management, and PartKVRec Jiang et al. (2024b),
which balances data transfer and recomputation through dynamic scheduling. For FastServe Wu et al.
(2024a), its token-level preemption capability is supported by a sophisticated heterogeneous memory man-
agement system that proactively coordinates KV cache data movement between GPU and host memory. It
implements a skip-join Multi-Level Feedback Queue scheduler that manages computational resources across
the CPU-GPU boundary, optimizing both computation scheduling and data movement. PartKVRec Jiang
et al. (2024b) employs a scheduler that dynamically optimizes the distribution of tasks across the heteroge-
neous hardware platform, using a profiler to analyze both hardware capabilities and workload characteristics.

These approaches collectively showcase how heterogeneous architectures can be effectively leveraged to over-
come single-device limitations while maintaining efficient resource utilization and minimizing communication
overhead between CPU and GPU resources.
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6.3.4 Solid-state Disk (SSD)-based Design

Recent SSD-based approaches for KV cache management demonstrate an evolution in storage utilization
strategies, from traditional extension of the memory hierarchy to computational storage innovations. Flex-
Gen Sheng et al. (2023) introduces an SSD-based approach to KV cache management that extends the
memory hierarchy across GPU, CPU memory, and disk storage, optimizing high-throughput LLM inference
on resource-constrained hardware through intelligent tensor storage and access pattern optimization deter-
mined by linear programming. The system’s key innovations include coordinated data placement across all
three storage tiers, optimized access patterns to minimize SSD latency impact, aggressive 4-bit compression
for both model weights and attention cache, and efficient utilization of SSD storage as a memory hierarchy
extension for KV cache management. InstInfer Pan et al. (2024) introduces a more revolutionary approach
by leveraging computational storage drives (CSDs) to perform attention computations directly within the
storage layer, transforming SSDs from passive storage devices into active computational units and utilizing
the high internal bandwidth of flash memory channels to bypass traditional PCIe bandwidth limitations.

These approaches demonstrate how storage devices can be effectively integrated into LLM inference systems,
either as memory hierarchy extensions or as computational resources, to enable efficient processing of large
models and long sequences in resource-constrained environments. Tab.12 compares hardware-aware design
approaches for KV cache optimization across four key features: Single/Multi-GPU support, I/O-awareness,
heterogeneous computing, and SSD-based design.

6.3.5 Summary and Future Directions

Recent advancements in hardware-aware designs for KV cache management emphasize optimizing perfor-
mance based on specific hardware architectures and constraints, demonstrating significant enhancements in
large language model inference efficiency. Approaches like HydraGen Juravsky et al. (2024) and vLLM Kwon
et al. (2023) in single and multi-GPU designs focus on efficient memory access patterns and load balanc-
ing, while I/O-based strategies such as FlashAttention Dao et al. (2022) Dao (2024) Shah et al. (2024)
and PartKVRec Jiang et al. (2024b) tackle data movement bottlenecks through intelligent prefetching and
scheduling mechanisms. Additionally, heterogeneous designs exemplified by NEO Jiang et al. (2024c) and
FastDecode He & Zhai (2024) effectively leverage CPU-GPU collaboration to maximize resource utilization.

Future work should advance this research through multiple interconnected directions: exploring novel archi-
tectural designs that combine specialized hardware accelerators with optimized memory hierarchies, investi-
gating hybrid systems that leverage computational storage drives and processing-in-memory capabilities, de-
veloping self-adaptive algorithms that dynamically optimize resource allocation based on workload patterns,
researching advanced compression techniques that maintain model fidelity while reducing memory require-
ments, and designing intelligent scheduling mechanisms that efficiently coordinate heterogeneous computing
resources including CPUs, GPUs, and custom accelerators. These improvements, working in concert, would
enhance both the performance and scalability of LLM inference systems across diverse deployment scenar-
ios, from edge devices to data centers, while maintaining adaptability to emerging hardware innovations and
varying computational demands.

6.4 Expanded Discussion

6.4.1 Cross-Category Integration

Our survey has categorized KV cache acceleration techniques into token-level, model-level, and system-level
optimizations, analyzing them primarily in isolation. However, the integration of techniques across these
categories represents a promising yet underexplored research direction that deserves dedicated investigation.
Existing literature predominantly evaluates individual techniques or combinations within the same category,
leaving significant knowledge gaps regarding cross-category interactions. The potential multiplicative ben-
efits of integrating techniques from different categories remain largely theoretical due to the combinatorial
explosion of possible configurations. This limitation is particularly relevant in our current survey, as compre-
hensive evaluation of all possible cross-category combinations would dramatically expand the scope beyond
feasible boundaries.
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6.4.2 Case Studies

Future case studies should explore how different application domains prioritize specific aspects of KV cache
management. For instance, high-throughput serving systems likely emphasize memory utilization and re-
quest scheduling capabilities, while mobile and edge deployments might prioritize aggressive compression
despite modest quality trade-offs. Enterprise platforms serving multiple models simultaneously face different
challenges around resource isolation and predictable performance.

These studies would help illuminate several critical aspects that receive insufficient attention in current
research: the gap between theoretical and realized performance improvements in production environments;
the impact of implementation complexity on adoption decisions; integration challenges with existing software
stacks; and the combinations of techniques that prove most effective for specific deployment scenarios.

6.4.3 Domain-Specific Optimizations

Different application domains exhibit unique text characteristics and context requirements that can inform
specialized KV cache strategies. In healthcare applications, where patient records contain critical medical
information distributed across long contexts, KV cache management might prioritize retaining medically
significant tokens (diagnoses, medications, test results) while compressing routine narrative content. Fi-
nancial and legal domains, characterized by highly structured documents with formal language patterns,
could benefit from structure-aware chunking strategies that preserve document hierarchy and definitional
content. Scientific applications dealing with technical literature might employ citation-aware token reten-
tion policies that maintain the coherence of mathematical derivations or experimental procedures. These
domain-specific approaches can potentially outperform general techniques by leveraging domain knowledge
and structural patterns, though their development requires interdisciplinary collaboration between domain
experts and LLM engineers. Future research in this direction could yield significant efficiency improvements
for domain-specific applications while providing insights that generalize to broader contexts.

6.4.4 Privacy and Security Considerations

As LLMs process sensitive information across shared computing resources, the persistence of data in KV
caches creates potential vectors for information leakage between users. Without proper isolation mechanisms,
tokens from one user’s conversation might influence responses to another user or be directly accessible
through careful probing. Future work should develop: (1) privacy-aware token selection algorithms that
consider information sensitivity when making eviction decisions, (2) secure isolation mechanisms for multi-
tenant environments, (3) formal verification approaches to ensure compliance with regulatory requirements
in domains like healthcare and finance, and (4) differential privacy techniques specifically adapted for KV
cache contents. As LLMs handle increasingly sensitive information, these privacy and security dimensions
will require greater attention from both researchers and practitioners.

6.4.5 Implementation Complexity

Implementation complexity varies substantially across techniques. Basic chunking strategies can typically
be implemented with minimal engineering effort and integrate easily with existing frameworks. In con-
trast, techniques requiring specialized CUDA kernels (like certain attention variants) or fine-grained mem-
ory management demand substantial development resources and hardware-specific optimizations. Similarly,
approaches involving complex eviction policies or online importance estimation introduce additional compu-
tational overhead and potential points of failure that must be carefully managed.

Deployment challenges extend beyond implementation to include considerations such as robustness across
diverse workloads, interaction with other optimization techniques (quantization, operation fusion), scalability
to multi-GPU/multi-node settings, and maintainability in production environments. Future research would
benefit from more explicitly addressing these implementation and deployment considerations, potentially
developing complexity metrics that would help practitioners better evaluate the practical trade-offs involved
in adopting different KV cache management strategies.
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Table 13: Long Context Benchmark. Specifically, the tasks in NumericBench differ from those in other
benchmarks. It serves as a primarily numeric benchmark, providing capabilities such as index retrieval,
numeric comparison, summaries of mathematical properties, and logical reasoning.

Benchmark Tasks Language
Q-A Summarization Reasoning Retrieval Generation Aggregation

NumericBench
Li et al. (2025)

✓ ✓ ✓ ✓ EN

RULER
Hsieh et al. (2024)

✓ ✓ ✓ ✓ EN

OneRuler
Kim et al. (2025)

✓ ✓ 26 languages

L-Eval
An et al. (2023)

✓ ✓ ✓ ✓ ✓ EN

M4LE
Kwan et al. (2023)

✓ ✓ ✓ EN/ZH

BAMBOO
Dong et al. (2023b)

✓ ✓ ✓ ✓ EN

LongBench
Bai et al. (2023)

✓ ✓ ✓ ✓ ✓ ✓ EN/ZH

SCROLLS
Shaham et al. (2022)

✓ ✓ ✓ EN

ZEROSCROLLS
Shaham et al. (2023)

✓ ✓ ✓ EN

LooGLE
Li et al. (2023a)

✓ ✓ ✓ ✓ EN

LongEval
Li* et al. (2023)

✓ ✓ ✓ ✓ ✓ EN

StreamingEval
Xiao et al. (2024c)

✓ ✓ EN

7 Text and Multi-modal Datasets

In this section, we introduce the text and multi-modal datasets used to evaluate LLM efficiency.

7.1 Text Dataset and Evaluation Metric

We collect a lot of long-context datasets from state-of-the-art benchmark frameworks and various papers,
including NumericBench Li et al. (2025), OneRuler Kim et al. (2025), RULER Hsieh et al. (2024), L-Eval
An et al. (2023), M4LE Kwan et al. (2023), BAMBOO Dong et al. (2023b), LongBench Bai et al. (2023),
SCROLLS Shaham et al. (2022), ZEROSCROLLS Shaham et al. (2023), LooGLE Li et al. (2023a), LongEval
Li* et al. (2023), StreamingEval Xiao et al. (2024c), and LRA Tay et al. (2020). Eventually, we categorize
these datasets into various tasks, including question answering, text summarization, text reasoning, text
retrieval, text generation, and aggregation. A brief introduction to the benchmarks will be provided in Sec.
7.1.1, with a summary of the task types covered by each benchmark presented in Tab.13.

7.1.1 Long-context Benchmark

• NumericBench Li et al. (2025) is a comprehensive benchmark designed to evaluate the fundamental nu-
merical reasoning capabilities of LLMs. Addressing the limitations of existing benchmarks, which primarily
focus on either linguistic competence or structured mathematical problem-solving, NumericBench targets
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six core numerical abilities: number recognition, arithmetic operations, contextual retrieval, comparison,
summary, and logical reasoning. The benchmark integrates datasets ranging from synthetic number lists
to real-world data, such as stock and weather information, to reflect practical challenges like noise, long
contexts, and multi-step reasoning. It provides actionable insights into improving LLMs’ handling of
numerical data, emphasizing the importance of numerical reasoning for real-world applications.

• RULER Hsieh et al. (2024) is a synthetic benchmark designed to evaluate the long-context capabilities
of language models across diverse task categories, including retrieval, multi-hop tracing, aggregation, and
question answering. Unlike retrieval-focused benchmarks, RULER introduces flexible configurations for
sequence length and task complexity, enabling a more comprehensive assessment of model behavior beyond
simple retrieval. By reducing reliance on parametric knowledge and incorporating tasks that simulate
real-world challenges, RULER highlights performance degradation as context length increases, revealing
limitations in current long-context models and offering insights into areas for improvement.

• OneRuler Kim et al. (2025) is a multilingual benchmark that evaluates long-context language models
across 26 languages. It extends the English-only RULER framework with seven synthetic tasks testing
both retrieval and aggregation capabilities at various context lengths (8K-128K tokens). The benchmark
introduces innovative elements like nonexistent answer possibilities and covers both high and low-resource
languages, providing a comprehensive tool for assessing multilingual long-context understanding beyond
English-centric evaluation.

• L-Eval An et al. (2023) is a standardized benchmark for evaluating long-context language models (LCLMs)
across 20 diverse tasks, including closed-ended (e.g., reasoning) and open-ended (e.g., summarization)
scenarios, with input lengths from 3k to 200k tokens. It emphasizes data diversity, manual validation, and
improved evaluation methods, such as Length-Instruction-Enhanced (LIE) evaluation and LLM judges, to
better align with human judgment. By assessing 16 models, L-Eval reveals significant performance gaps
between open-source and commercial models, particularly in open-ended tasks, offering key insights into
advancing LCLM research.

• M4LE Kwan et al. (2023) presents a fresh approach to benchmarking the long-context comprehension
abilities of large language models. It encompasses 36 datasets spanning 11 task types and 12 domains,
with input lengths varying from 1K to 8K words. The benchmark evaluates five critical abilities: single-
span and multi-span understanding (both explicit and semantic) as well as global context comprehension.
By converting short-sequence tasks into extended long-context scenarios, M4LE provides a controlled
environment for studying the impact of input length. Tests on 11 state-of-the-art LLMs reveal notable
limitations, particularly in multi-span reasoning and semantic retrieval. This framework sets the stage for
advancing research in long-context processing for LLMs.

• BAMBOO Dong et al. (2023b) introduces a detailed benchmark for analyzing the ability of large language
models to process and understand long texts. It features ten datasets across five tasks, including question
answering, hallucination detection, text sorting, language modeling, and code completion. Covering diverse
domains and essential skills, BAMBOO is designed with four main principles: comprehensive capacity
evaluation, prevention of data contamination, precise automated assessment, and support for varying text
lengths such as 4k and 16k tokens. By distributing critical information across extended texts, BAMBOO
evaluates both overall comprehension and attention to detailed information, offering a reliable framework
for assessing long-context capabilities in language models.

• LongBench Bai et al. (2023) is a comprehensive bilingual benchmark designed to evaluate the long-context
understanding capabilities of large language models. It includes 21 datasets across six task categories, such
as question answering, summarization, and code completion, with support for both English and Chinese.
By standardizing datasets and enabling automated evaluation, LongBench provides a unified framework
to assess model performance on long sequences, highlighting the challenges and potential advancements
in long-context understanding.

• SCROLLS Shaham et al. (2022) is a benchmark designed to evaluate models’ ability to process natu-
rally long texts across diverse domains such as literature, science, and entertainment. It includes tasks
like summarization, question answering, and natural language inference, emphasizing the synthesis of
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information across extended inputs. By standardizing datasets and providing a unified text-to-text for-
mat, SCROLLS facilitates consistent evaluation and comparison of models, encouraging advancements in
handling long-range dependencies and improving NLP systems for real-world applications.

• ZEROSCROLLS Shaham et al. (2023) serves as a benchmark aimed at assessing the zero-shot reasoning
abilities of language models over extended texts. By incorporating six tasks from SCROLLS and intro-
ducing four additional datasets, including innovative aggregation tasks like sentiment analysis and book
summary sorting, it spans diverse domains such as government reports, literature, and reviews. With
a focus on reasoning across lengthy inputs, ZeroSCROLLS excludes training data, requiring models to
perform directly on test and validation sets. A live leaderboard further supports tracking advancements
and fostering research in long-text understanding.

• LooGLE Li et al. (2023a) presents a benchmark designed to evaluate the long-context reasoning ca-
pabilities of large language models (LLMs). By focusing on both short and long dependency tasks, it
incorporates documents published after 2022 across diverse domains, ensuring models rely on reasoning
rather than memorization. However, as we move into future, some of these documents may have been in-
cluded in subsequent model training, potentially reducing the benchmark’s effectiveness in purely zero-shot
evaluations.

• LongEval Li* et al. (2023) is a benchmark suite designed to evaluate the long-context capabilities of large
language models (LLMs). It focuses on tasks that require understanding and reasoning over extended text
inputs, addressing key challenges in long-context processing. The benchmark includes diverse datasets and
tasks, such as summarization, question answering, and information retrieval, tailored to assess both short
and long dependency reasoning. By providing a structured framework for evaluating LLMs’ performance
on long-context tasks, LongEval aims to drive advancements in model architectures and techniques for
handling extended textual data.

• StreamingEval Xiao et al. (2024c) is a benchmark specifically designed to assess the ability of instruction-
tuned large language models (LLMs) to perform question answering in streaming contexts, where input
sequences grow continuously. It evaluates models’ capacity to maintain performance over extended inter-
actions by simulating real-world scenarios with progressively increasing context lengths. The benchmark
highlights how traditional approaches struggle with efficiency and accuracy as sequence lengths surpass
pretraining limits, while frameworks like StreamingLLM demonstrate improved stability and scalability.
StreamingEval serves as a critical tool for measuring the effectiveness of LLMs in handling dynamic,
long-context tasks under streaming conditions.

7.1.2 Evaluation Metric for Text Datasets

General evaluation metrics used by text datasets mentioned above include Exact Match Rajpurkar et al.
(2016), Partial Match, Accuracy, Recall, Precision, F1, BLEU Papineni et al. (2002), Sacre-
BLEU Post (2018), Rouge Lin (2004), METEOR Denkowski & Lavie (2011), BERT Zhang et al. (2020),
Edit Similarity, Pass@k Chen et al. (2021) , Exponential Similarity, Concordance Index, Mean
Reciprocal Rank. In addition to general evaluation metrics, some more specific metrics are used in par-
ticular benchmarks. For datasets from L-Eval An et al. (2023), the GPT-4 metric means the win-rate
against Turbo-16K, judged by GPT-4. ∆L is the length difference between answer length and ground truth.
For LooGLE Li et al. (2023a), it utilizes GPT-4 for its QA and summarization task, using it for answer’s
semantic judgment.

• Exact Match (EM) Rajpurkar et al. (2016) is a metric used to evaluate the accuracy of models in tasks
like question answering or text generation. It measures the percentage of predictions that exactly match
the ground truth answer, considering both the content and format.

• Partial Match (PM) metric evaluates the similarity between a model’s output and the reference by
allowing partial credit for partially correct answers. Unlike strict metrics like Exact Match (EM), PM
accounts for overlaps or shared elements, such as keywords or phrases, making it more flexible in assessing
performance.
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• Accuracy is a metric used to evaluate the overall performance of a model by measuring the proportion
of correctly predicted instances (both positive and negative) out of the total instances.

• Recall is a metric used to evaluate a model’s ability to retrieve all relevant instances in a dataset. It
is calculated as the ratio of correctly retrieved relevant items to the total number of relevant items,
emphasizing completeness.

• Precision is a metric used to evaluate the accuracy of a model by measuring the proportion of correctly
predicted positive instances out of all predicted positive instances.

• F1 is a performance measure that combines Precision and Recall into a single score using their harmonic
mean. It provides a balanced evaluation, especially useful in datasets with imbalanced classes, by
considering both false positives and false negatives.

• BLEU Papineni et al. (2002), is a widely used metric for evaluating the quality of machine-generated
text, especially in machine translation. It works by comparing n-grams in the generated output with
reference texts to measure overlap, while applying penalties for overly short outputs to ensure fluency.

• SacreBLEU Post (2018) is a standardized version of the BLEU metric used to evaluate machine
translation quality. It simplifies BLEU’s implementation by fixing preprocessing steps like reference
handling to ensure consistent and reproducible results across different systems.

• Rouge Lin (2004) and its variants measure model’s performance by calculating overlap between model
output and reference answer with unigram(Rouge-1), bigram(Rouge-2), LCS(Rouge-L), etc. Gold
Rouge-1 in VCSUM dataset refers to using high-quality reference summaries (gold standards) for
evaluation, ensuring reliable and meaningful comparisons.

• METEOR Denkowski & Lavie (2011) (Metric for Evaluation of Translation with Explicit ORdering) is
a text evaluation metric designed to assess the quality of machine translation.

• BERT Zhang et al. (2020) metric, often referred to as BERTScore, is a text evaluation metric that uses
contextual embeddings from the BERT model to compare similarity between generated and reference texts.

• Edit Similarity is a metric that measures the similarity between two text sequences based on the
minimum number of edit operations required to transform one sequence into another. It is derived from
the concept of edit distance such as Levenshtein distance.

• Pass@k Chen et al. (2021) evaluates the performance of a model by measuring the percentage that
at least one of the top k generated outputs contains a correct solution. In datasets we surveyed, only
Pass@1 is used.

• Exponential Similarity is a metric that measures the similarity between two items by exponentially
weighting their differences, giving more importance to smaller discrepancies.

• Concordance Index is a metric used to evaluate the predictive accuracy of models, particularly in
survival analysis or ranking tasks.

• Mean Reciprocal Rank (MRR) is an evaluation metric commonly used in information retrieval and
recommendation systems to measure the quality of ranked results. It calculates the reciprocal of the rank
of the first relevant item in a result list and averages it across all queries.

7.2 Multi-modal Datasets and Evaluation Metric

Multi-modal datasets have emerged to address the need for a comprehensive understanding of the complex
real world by integrating diverse data types such as text, images, audio, and video. These datasets are
derived from widely utilized benchmarks, and we will conduct a detailed discussion for each benchmark
individually.
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Table 14: Multi-modal Benchmark Tasks. Specifically, for task abbreviation, Conv: conversation task;
Desc: description task; Reas: reasoning task; Perc: perception task; Pred: prediction task; SUMM:
summary task.

Benchmark Tasks Language
Conv Desc Reas Perc Pred Count Retrieval Order SUMM

LLaVA-Bench
Liu et al. (2023b)

✓ ✓ ✓ EN

MMBench
Yuan Liu et al. (2023)

✓ ✓ EN/ZH

MileBench
Song et al. (2024)

✓ ✓ ✓ EN

MLVU
Zhou et al. (2024a)

✓ ✓ ✓ ✓ ✓ ✓ EN

LongVideoBench
Wu et al. (2024b)

✓ ✓ EN

Video-MME
Fu et al. (2024a)

✓ ✓ EN

NExT-QA
Xiao et al. (2021)

✓ ✓ EN

MVBench
Li et al. (2023b)

✓ ✓ ✓ EN

MSVD-QA
Xu et al. (2017)

✓ EN

MSRVTT-QA
Xu et al. (2017)

✓ EN

7.2.1 Multi-modal Benchmark

We analyze the multi-modal benchmarks listed in Tab.14 and Tab.15, highlighting their distinct focuses.
Each benchmark is built upon one or more multi-modal datasets, involving their collection, processing, and
the use of specific validation metrics. Below, we provide a detailed introduction and description of each
multi-modal benchmark.

• LLaVA-Bench Liu et al. (2023b) is structured around image-ground-truth textual description-question-
answer triplets, segmented across COCO and In-The-Wild datasets. It assesses a model’s proficiency in
multi-modal instruction adherence and visual reasoning. By employing a suite of tasks and metrics, it
quantifies the model’s ability to comprehend and act on visual-language directives, articulate comprehen-
sive descriptions, and engage in intricate reasoning processes.

• MMBench Yuan Liu et al. (2023) serves as a bilingual multi-modal benchmark, facilitating a comparative
analysis of VLM performance across English and Chinese linguistic contexts. It distinctively assesses multi-
modal models using a hierarchical taxonomy of abilities, stringent quality assurance measures, and a dual-
language evaluation framework. Unlike other benchmarks, MMBench Yuan Liu et al. (2023) incorporates
the CircularEval strategy for comprehensive evaluation and utilizes LLMs for precise extraction of choices,
setting it apart from its counterparts.

• MileBench Song et al. (2024) evaluates the multi-modal long-context capabilities of LLMs, including both
diagnostic and realistic evaluation sets. It emphasizes long-context and multi-image tasks. This unique
focus allows it to capture the complexity and diversity of real-world multi-modal challenges, setting it
apart from existing benchmarks. The dataset in MileBench Song et al. (2024) is characterized by its
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Table 15: Multi-modal Benchmark Detailed Information. Specifically, for data type, Img: Image; T: text;
V: Video. For instance and average column, Q: questions; W: words; s: seconds. For example, 54 Img,
150 Q denote that there are 54 images with 150 questions.

Name Data Source Instance Average Metric
LLaVA-Bench

Liu et al. (2023b)
Img, T COCO, In-The-Wild 54 Img, 150 Q 1 Img, 59.9 W Relative Score

MMBench
Yuan Liu et al. (2023)

Img, T Internet 2948 Q 1 Img, 114.5 W Acc

MileBench
Song et al. (2024)

Img, T
Public,

self-building
6440 Q 15.2 Img, 422.3 W Acc, ROUGE-L

MLVU
Zhou et al. (2024a)

V, T
Public,

self-collection
1334 V, 2593 Q 704.6s V, 39.7 W M-Avg, G-Avg

LongVideoBench
Wu et al. (2024b)

V, T web-collected 3763 V, 6678 Q 730.5s V, 49.5 W Acc

Video-MME
Fu et al. (2024a)

V, T YouTube 900 V, 2700 Q 1017.9s V Acc

NExT-QA
Xiao et al. (2021)

V, T
YouTube,

TV Show, Public
1000 V, 47962 Q 44s V, 25.5 W Acc, WUPS

MVBench
Li et al. (2023b)

V, T Public 4000 Q 16.7s V, 31.3 W Acc

MSVD-QA
Xu et al. (2017)

V, T MSVD 1970 V, 50505 Q 10s V Acc

MSRVYY-QA
Xu et al. (2017)

V, T MSRVTT 10000 V, 243690 Q 15s V Acc

inclusion of long texts integrated with multiple images, reflecting real-world scenarios where context is
key. It contains a diverse range of tasks that require both comprehension and generation.

• MLVU Zhou et al. (2024a) is a holistic benchmark, designed to gauge the capabilities of multi-modal
LLMs in comprehending video content, transcends the constraints of its predecessors by significantly
increasing video durations, encompassing diverse video genres, and crafting a spectrum of assessment
tasks. This benchmark offers an extensive array of tasks and video genres to evaluate the comprehensive
competencies of MLLMs. It highlights the substantial potential for enhancement in current methodologies
and emphasizes the critical factors of context length, image comprehension quality, and the selection of
LLM architecture for future progress.

• LongVideoBench Wu et al. (2024b) offers an extensive benchmarking framework aimed at assessing the
capacity of large multi-modal models (LMMs) to comprehend lengthy videos with subtitles, extending up to
an hour. It places a strong focus on the retrieval and reasoning capabilities over extended, interwoven video
and language data streams, tackling the challenge of single-frame bias and underscoring its proficiency in
evaluating multi-modal comprehension in long contexts.

• Video-MME Fu et al. (2024a) assesses the proficiency of Multi-modal Large Language Models (MLLMs)
in analyzing videos. This dataset comprises a wide array of 900 videos spanning diverse domains and
subfields, ensuring extensive scenario coverage. It encompasses videos with lengths ranging from 11
seconds to 1 hour to gauge model flexibility across various time frames. Furthermore, it incorporates
various data modalities, including subtitles and audio tracks, to evaluate the comprehensive competencies
of MLLMs. The benchmark aims to test the models’ capacity for sequential visual data comprehension,
with an emphasis on temporal reasoning and the processing of multi-modal inputs.

• NExT-QA Xiao et al. (2021) boasts a dataset with 5,440 videos and approximately 52K manually anno-
tated question-answer pairs, sorted into causal, temporal, and descriptive categories. It poses a challenge
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to QA models to engage in reasoning about causal and temporal actions and to decipher complex object in-
teractions within daily activities. Distinguished from other video benchmarks, this benchmark specifically
focuses on causal and temporal action reasoning within realistic videos that are rich in object interac-
tions. It stands as one of the largest manually annotated VideoQA datasets, offering support for both
multiple-choice and open-ended questions, and includes a variety of videos that mirror real-life scenarios.

• MVBench Li et al. (2023b) comprises 200 multiple-choice question-answer (QA) pairs for each of the 20
temporal understanding tasks, amassing a total of 4,000 QA pairs. It draws from a variety of videos across
11 public datasets, spanning diverse domains and scenes, thereby testing models’ abilities to comprehend
temporal sequences. The benchmark automates the generation of multiple-choice QA pairs from existing
video annotations, minimizing human involvement and ensuring a fair evaluation process.

• MSVD-QA Xu et al. (2017) is a collection of 1,970 video clips with descriptive captions, initially for
video captioning. It features diverse real-world scenarios and assesses multi-modal learning models’
capabilities in understanding video content and generating natural language descriptions.

• MSRVTT-QA Xu et al. (2017) comprises 10,000 video clips with 20 human-transcribed sentences
each, focusing on connecting video content with language descriptions. It evaluates multi-modal learning
models’ ability to comprehend video information and translate it into coherent captions, testing their
video understanding and language generation skills in a more complex and diverse environment.

7.2.2 Evaluation Metric for Multi-modal Datasets

The evaluation metrics for multi-modal datasets include Relative Score, Accuracy, ROUGE-L, M-
Avg, G-Avg, WUPS. Several common metrics, including Accuracy, ROUHE-L, have been introduced
in Sec. 7.1.2. Here, we only introduce the special metrics of multi-modal datasets, which include Relativa
Score, M-Avg, G-Avg, WUPS as follows:

• Relative Score This metric is used in LLaVA-Bench to evaluate the performance of multi-modal models
by comparing their outputs to a reference model, typically text-based GPT-4. It is calculated as the
percentage ratio of the candidate model’s score to the reference model’s score, based on dimensions such
as helpfulness, relevance, accuracy, and level of detail.

• M-Avg Multiple-Choice Average is calculated as the mean accuracy across all multiple-choice tasks in
the MLVU benchmark. The accuracy for each task is determined by the proportion of correctly predicted
answers compared to the total number of questions within that task.

• G-Axg Generation Average s calculated as the mean score across all generation tasks in the MLVU
benchmark. Each task is evaluated on multiple dimensions (e.g., Accuracy, Relevance, Completeness, and
Reliability) using GPT-4, with scores ranging from 1 to 5. The overall score for each task is the average
of these dimensions, and G-Avg is the mean of these task-level scores.

• WUPS K et al. (2012) Wu-Palmer Similarity measures the semantic similarity between two words based
on their positions in a taxonomy (e.g., WordNet). It calculates how closely related two words are by
considering their least common ancestor (LCS).

8 Conclusion and Future Work

Advancements in LLMs have driven significant progress on various fields, but their high computational and
memory demands during inference pose challenges, especially for long-context and real-time applications.
KV cache management offers an effective solution by optimizing memory, reducing redundant computation,
and improving performance. This survey reviews KV cache management strategies across token-level,
model-level, and system-level optimizations. Token-level optimizations focus on fine-grained control of KV
cache through selection, budget allocation, merging, quantization, and low-rank decomposition, enabling
efficient resource allocation without altering model architectures. Model-level optimizations leverage
architectural innovations, such as attention grouping and non-transformer designs, to enhance the efficiency
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of KV reuse. System-level optimizations further complement these efforts by employing advanced memory
management, scheduling techniques, and hardware-aware designs to optimize resource utilization across
diverse computing environments.

While our survey provides a qualitative analysis of various KV cache management techniques, establishing
a comprehensive quantitative comparison framework remains a crucial future direction. The development of
unified benchmark results poses significant challenges that extend beyond the scope of the current survey. The
heterogeneity of existing experimental setups makes direct comparison impossible without re-implementation
and re-evaluation of numerous techniques under identical conditions. Many methods report results on differ-
ent hardware configurations, model scales, and workloads, creating incomparable performance metrics. The
rapidly evolving nature of LLM architectures means that performance characteristics observed today may
not generalize to future models.

The significant computational resources required to benchmark all techniques consistently across multiple
datasets exceeds what is feasible for a single survey study. Creating a truly fair comparison would necessitate
controlling for numerous variables including hardware specifications, model architectures, implementation
details, and workload characteristics—an undertaking that would constitute a substantial research project
in its own right. Future work should therefore focus on creating standardized benchmarking protocols that
stratify test cases based on context length (short, medium, and long), measure comprehensive performance
metrics (throughput, latency, memory efficiency), establish controlled testing environments, and standardize
reporting formats. This ambitious undertaking would require collaborative efforts across research groups,
potentially with shared infrastructure to ensure fair comparisons. We identify the investigation of the impact
of position embedding on KV cache compression as a future direction, given that the position of each token
changes its position embedding, which further affects the performance of downstream tasks.
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