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Abstract
Zero-shot models like CLIP are often fine-tuned
on a target dataset to improve its accuracy fur-
ther, but this can compromise out-of-distribution
(OOD) robustness. Robust Fine-Tuning (RFT
) (Wortsman et al., 2022c), which interpolates
between the zero-shot and fine-tuned models, has
been proposed to address this issue. However, un-
derstanding when RFT actually improves OOD er-
ror remains limited. In this work, we empirically
investigate the robustness of RFT in CLIP models,
focusing on two key factors: 1) the presence or
absence of barriers in the interpolation path be-
tween the zero-shot and fine-tuned models, and
2) fine-tuning choices such as data augmentation
and learning rate magnitude. Our extensive experi-
ments reveal that the absence of barriers correlates
with larger gains in OOD accuracy for RFT. Ad-
ditionally, we show that fine-tuning without data
augmentation and using smaller learning rates
consistently results in lower OOD errors. While
similar findings have been reported for CNN mod-
els, this is the first work, to the best of our knowl-
edge, to study these properties for CLIP models.

1. Introduction
Understanding the behavior of large machine learning mod-
els like CLIP (Radford et al., 2021) on OOD tasks is im-
portant for their safe deployment. Analyzing their behavior
on a linear path between the initial and the final parameters
has been proposed as a simple yet insightful approach this.
However, prior works (Vlaar & Frankle, 2022; Lucas et al.,
2021; Neyshabur et al., 2020; Draxler et al., 2018; Entezari
et al., 2022; Chatterji et al., 2020) has primarily focused on
CNN models for this analysis and whether such analysis ex-
tends to other kinds of architecture has not been thoroughly
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explored. On the other hand, several works have shown
that while foundation models like CLIP exhibit outstanding
zero-shot OOD performance, this can be further improved if
they are fine-tuned on the relevant target domain. However,
this improvement comes at the cost of reduced performance
on domains that it is not trained on. To solve this problem,
inspired by the above-mentioned works on linear interpo-
lation in CNNs, Wortsman et al. (2022b) showed that on
the linear path connecting the zero-shot model and the final
fine-tuned model, there exists a model with better OOD
performance and proposed an algorithm called Robust Fine
Tuning (RFT) to find this parameter. However, RFT does
not always succeed in achieving large improvement in OOD
accuracy compared to the zero-shot model, and very little
understanding exists of when the improvement is large and
when it isn’t. In this work, we aim to address this lack of
knowledge. Inspired by earlier work on the linear interpola-
tion between two CNN models, we first procvide extensive
experimental results to examine the correlation between the
linear path’s geometry and CLIP’s capability to generalize
on OOD tasks. We aim to address the following question:

How does loss monotonicity on OOD samples
relate to CLIP generalization?

Second, we investigate the role of the complexity fine-tuning
algorithm on CLIP’s OOD generalization. In particular, we
ask the following question

How does data augmentation and choice of learn-
ing rate affect OOD generalization for CLIP?

Robust Fine-Tuning (RFT) method has two steps: first,
they fine-tune the zero-shot model on the target distribu-
tion. Second, they combine the original zero-shot and
fine-tuned models by linearly interpolating between their
weights, coined as weight-space ensembling. Nevertheless,
the connection between linear interpolation and OOD gen-
eralization for CLIP has not been thoroughly investigated.
The question of why the linear interpolation between zero-
shot and fine-tuned CLIP models succeeds in OOD tasks,
and the conditions under which the linear path between two
CLIP models indicates robust generalization performance
on OOD tasks, remains an unresolved problem. The latest
advancements in the loss landscape of CNNs and the connec-
tion between linear paths in CNNs and generalization have
motivated us to reconsider these discoveries within the con-
text of a foundation model such as CLIP. Our objective is to
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bridge the gap between assumptions made about linear inter-
polation and loss landscape geometry in the context of CNN
models and the generalization capabilities of CLIP. We in-
tend to determine the conditions under which linear interpo-
lation may be successfully done between two CLIP models.

2. Exploring the Monotonicity of Loss
Landscapes and the Existence of Barriers

We begin the definition of loss barrier in the context of
OOD loss landscape geometry. Then, we explore the
relationship between barriers and the generalization of
CLIP for OOD tasks.

Loss barrier. For loss landscapes, barriers refer to regions
of increased loss encountered along the interpolation path
between two sets of model parameters.

We examine a CLIP architecture that is parametrized by
θ and is fine-tuned on a task represented by a training
set Strain and a test set Stest. In the following, as we are
interested in the generalization of CLIP on OOD tasks,
we consider OOD loss and accuracy and write L(θ),A(θ)
for L(θ, SOOD),A(θ, SOOD). Assume that we have fixed
two different different sets of weights θ0 and θ1. Let
Lα(θ0,θ1) = L(αθ0 + (1 − α)θ1) and Aα(θ0,θ1) =
A(αθ0+(1−α)θ1) for α ∈ [0, 1] be the loss and accuracy,
respectively, of the CLIP network created by linearly inter-
polating between θ0 and θ1. Then, building upon the (Fran-
kle et al., 2020) definition for linear interpolation instability,
we define it for CLIP on OOD as the following notion.

Definition 1. The difference between the supremum of the
loss for any interpolation supα Lα(θ0,θ1) and the average
loss of the endpoints 1

2 (L(θ0) + L(θ1)) is called the linear
interpolation instability for the CLIP on OOD.

Recall that zero-shot CLIP performs better on OOD tasks
compared to the fine-tuned version of CLIP. Within the same
settings of (Wortsman et al., 2022b;a), we are interested
in exploring the linear path between zero-shot CLIP and
fine-tuned CLIP. Therefore, we set θ0 as zero-shot model.

Two parametrizations θ0 and θ1 have a barrier between
them if the linear interpolation instability for sufficiently
large δ, there exists an α /∈ {0, 1} such that:

sup
α

Lα(θ0,θ1;SOOD)− L(θ0;SOOD) ≥ δ > 0 (1)

The value of δ can be empirically determined for each OOD
task. Similarly, we state that linear interpolation or the RFT
algorithm can achieve high gain accuracy if there exists an
α ∈ [0, 1] such that:

sup
α

Aα(θ0,θ1;SOOD)−A(θ0;SOOD) ≥ ξ > 0 (2)

where ξ is sufficiently large. Also, we define a linear path
as having a gain if the supremum in Eq. 2 exists with ξ > 0.

It is important to mention that a path is considered a failure
mode if the supremum in Eq. 2 does not exist.

Hypothesis: Interpolating linearly on a path that in-
cludes barriers can have adverse effects on generaliza-
tion on OOD of models resulting from the interpola-
tion.

Prior research has shown that the existence of a barrier
between two CNN models can lead to failed interpolation
and that when a barrier is present in a linear path, the
interpolation process results in a failure mode with a
gain of 0.00% (Vlaar & Frankle, 2022; Lucas et al., 2021;
Entezari et al., 2022).

In Figure 1, we show despite all models exhibiting barriers
in their loss landscapes, linear interpolation or RFT algo-
rithm can still yield a model with slightly better performance
on OOD tasks. For example, the blue model, despite expe-
riencing an increasing loss, deviates slightly from the zero-
shot point and nonetheless achieves a new performance level
with a 1.39% gain. This phenomenon is similarly observed
in the red model. Furthermore, an interesting phenomenon
is noted in the black model, which attains high gain accu-
racy (2.11% gain) despite being derived from a linear inter-
polation that includes a barrier. Additionally, Figure 2 (right)
displays the quantified improvement achieved by each of the
70 CLIP models on ImageNet-A as an OOD task. Finally, in
the context of CLIP for OOD settings, no strong correlation
is observed between the depth of a path and generalization.

Finding: Applying linear interpolation along a path
that includes barriers does not necessarily result in a
failure mode.
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Figure 1: For 7 distinct fine-tuned CLIP models (each
colors shows different CLIP models) on ImageNet (Deng
et al., 2009), this plot demonstrates the accuracy and loss on
ImageNet-A (Hendrycks et al., 2021) as an OOD task. For
each model, we show the maximum accuracy gain achieved
along a corresponding linear path. In the loss plot, we show
depth as the largest barrier on the linear path starting from
zero-shot model.
Monotonicity of loss landscapes. As we delve into the con-
cept of interpolation within a path, including a barrier, it be-
comes imperative to examine interpolation along a trajectory
that demonstrates monotonic behavior. Formally, we define
a loss landscape as monotone if linear interpolation insta-
bility of loss being equals to 1

2 |L(θ0, SOOD)−L(θ1, SOOD)|.
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Figure 2: We show the effects of a monotonic increasing and monotonic decreasing correlation with the generalization
of CLIP on ImageNet-A as an OOD task (See Appendix A for more models). In the box plot, we measure the high gain
accuracy on OOD for 70 different fine-tuned CLIP models on ImageNet. This measurement is taken across the linear
interpolation between each fine-tuned model and the zero-shot CLIP model.

In this paper, we build upon the work of (Lucas et al., 2021;
Vlaar & Frankle, 2022), which explored the presence or
absence of the monotonic decrease (MLD) property for
CNNs (ResNet, VGG) in test loss landscape for ID. They
establish a link between successful linear interpolation and
the violation of the MLD property in the loss landscape
geometry. However, they argue that there is no correlation
between the presence or absence of the MLD property and
the generalization of CNNs. In this study, we investigate
the MLD property within the context of VLM, such as
CLIP, and specifically examine the loss landscape geometry
of OOD samples. Contrary to the findings for CNNs, we
demonstrate a significant correlation between the violation
of monotonicity and generalization of CLIP.

Monotonicity for OOD task. When applying monotonic
decreasing concept to OOD generalization with CLIP, an
inverse representation of this measure is also required. This
adjustment is needed because, as already mentioned, the
zero-shot CLIP performs better on OOD tasks compared
to the fine-tuned version of CLIP on specific tasks. Con-
sequently, for accurate analysis, it is essential to consider
a monotonic increase in loss too.

Case study 1: monotonic decreasing (MLD). In this case,
we investigate whether a loss landscape (Lα(θ0,θ1;SOOD))
with a MLD property can capture generalization on OOD
tasks. As shown in Figure 2, we show that when CLIP
models exhibit a MLD property, linear interpolation or the
RFT algorithm can achieve high gain accuracy along these
kinds of monotone path. Indeed, our empirical observations
indicate that whenever a linear path possesses the MLD
property, performing linear interpolation or using the RFT
algorithm in the context of CLIP models on that path is
reasonable. Our findings complement the studies conducted
by (Vlaar & Frankle, 2022; Lucas et al., 2021; Goodfellow
et al., 2015) regarding the success of linear interpolation
and the existence of MLD in CNNs throughout the context
of Lα(θ0,θ1;SOOD) for CLIP.

Case study 2: monotonic increasing (MLI). In this case,
we investigate whether a loss landscape (Lα(θ0,θ1;SOOD))
with a MLI property can capture generalization on OOD
tasks. As shown in Figure 2, when a linear path exhibits a

MLI property, linear interpolation or the RFT algorithm can
produce a new model that surpasses all models along that
path. This result demonstrates that monotonic decreasing
or MLD is not a necessary condition for achieving high
gain accuracy with CLIP on OOD tasks.

Another crucial point derived from these two case studies
is that, unlike CNNs, achieving high gain accuracy along
a linear path just requires monotonicity. Our results
complement (Lucas et al., 2021) findings on the effect of
MLD on successful interpolation, extending these insights
to the generalizability of CLIP on OOD tasks. Specifically,
although we confirm that the presence of the MLD property
in loss landscape can be a reliable indicator for estimating
CLIP’s performance on OOD tasks but we find strong
correlation between pure monotonicity and generalization.
In Figure 2 (box-plot), we show that CLIP models with
monotone loss landscape (Lα(θ0,θ1;SOOD)) achieve
significantly high gain accuracy compared to models
exhibiting barriers in their loss landscapes.

Role of various fine-tuning strategies. We aim to explore
two critical components of CLIP fine-tuning. Firstly, we
examine the impact of small and large learning rates on
the shape of the linear path and the success of linear
interpolation. Secondly, we will investigate the role of data
augmentation during the fine-tuning of CLIP.

Hypothesis: The magnitude of the learning rate di-
rectly affects the geometry of the linear path.

In order to evaluate this hypothesis, we first trained a model
using a learning rate that was set to a low value. Afterward,
while keeping all other factors the same, we systematically
modified the learning rate, progressively raising it to two,
four, and ultimately eight times the initial value. Subse-
quently, we trained new models for each of these changes.

In Table 1, we show that fine-tuning with a large learning
rate can exhibit barriers in a linear path. Moreover, it
is clearly obvious that in a path with barriers, RFT does
not achieve high gain accuracy. This result shows that
RFT is not a generalizable algorithm for different settings,
and its performance is related to the properties of the
fine-tuned model. Indeed, smaller learning rates lead to
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smaller changes in the features of the zero-shot CLIP
model which are more robust to distribution shifts since
they were obtained from a much larger dataset than
ImageNet (Andriushchenko et al., 2023a).

Finding: Fine-tuning CLIP with a high learning rate
can increase linear interpolation instability and exhibit
barriers simultaneously.

3. On the Role of Data Augmentation
In this section, we further investigate the effect of data
augmentation on linear interpolation. In fine-tuning phase,
we use minimum crop size in the data augmentation and
optionally apply RandAugment (Cubuk et al., 2019),
mixup (Zhang et al., 2018), or CutMix (Yun et al., 2019).

Hypothesis: Fine-tuning θ1 without augmentation will
lead to a significant increase in accuracy when using
linear interpolation or the RFT algorithm.

In order to evaluate this hypothesis, we present a compar-
ison where all parameters of a model are fixed, and two
scenarios are considered: one model is fine-tuned with data
augmentation, and the other without it. In Figure 4, it is
evident that models without augmentation considerably
achieve substantial high gain accuracy. Controversy, linear
interpolation, or the RFT algorithm fails to achieve high
gain accuracy on the linear path between zero-shot and
augmented fine-tune CLIP.
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Figure 3: Gain accuracy on ImageNet-A for 70 different
CLIP models.

In Figure 3, we measure the gain accuracy on OOD for 70
different CLIP models on ImageNet-A (OOD). This demon-
strates that, among the 70 models, those fine-tuned without
augmentation achieve substantially high gain accuracy.

Our findings confirm the results previously obtained
by (Vlaar & Frankle, 2022), which indicate that reducing
the complexity of the task, such as by decreasing the amount
of data or removing augmentation, can enhance the test
accuracy of CNNs. In another context, (Andriushchenko
et al., 2023b) observed that for ResNets, there is a strong
correlation between sharpness (Foret et al., 2020) and
OOD performance, but only within each subgroup of
training parameters, such as augmentations and mixups.
However, they do not observe a clear correlation between
this phenomenon and ViTs (Dosovitskiy et al., 2021).
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Figure 4: We present a comparison where all parameters of
a model are fixed, and two scenarios are considered: one
model is fine-tuned with data augmentation and the other
without it (each color shows different CLIP models).

Failure mode. We demonstrate that the combined use of
a high learning rate and data augmentation can adversely
affect the success of linear interpolation. This combination
can lead to a failure mode in the RFT algorithm or linear in-
terpolation. In Figure 5, we demonstrate instances of CLIP
models where the combination of high learning rates and
augmentation has an adverse effect on linear interpolation.
In this particular situation, linear interpolation reveals to
be completely worthless in producing superior models.
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Figure 5: We show the effect of the superposition of both
learning rate magnitude and the presence or absence of
augmentation during the fine-tuning of CLIP. Sometimes, it
can result in a failure mode.

Finding: Linear interpolation or the RFT algorithm
achieves significant high gain accuracy when θ1 is
fine-tuned without augmentation.

4. Conclusion
In conclusion, our study demonstrates that linear interpo-
lation plays a critical role in enhancing the generalization
capabilities of CLIP models for OOD tasks. We establish
that fine-tuning CLIP without dataset augmentation and
using appropriate learning rates significantly improves
OOD accuracy. Notably, a non-monotonic loss landscape,
often caused by higher learning rates, diminishes CLIP’s
generalization effectiveness. Overall, our findings bridge
theoretical assumptions about linear interpolation in CNN
models to practical applications in CLIP. Notably, this work
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is the first to investigate the generalization and interpretabil-
ity of CLIP (VLM) models using mode connectivity and
interpolation, providing new insights into their behavior
and potential for robust application across diverse tasks.
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A. Monotonocity of loss landscape geometry
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Figure 6: In this plot, we show the effects of a monotonic increasing (top) and monotonic decreasing (bottom) correlation
with the generalization of CLIP on ImageNet-A as an OOD task for 70 CLIP models. In the right plot, we measure the high
gain accuracy on OOD for these models. This measurement is taken across the linear interpolation between each fine-tuned
model and the zero-shot CLIP model.

B. On the Role of Learning Rate

Table 1: Fine-tuning CLIP on ImageNet with different learning rates. We show test accuracy on ImageNet and its variant
ImageNet-A as OOD.

LR ImageNet (%) OOD (%) RFT Gain (↑)%

LR = 1.00× 10−5 0.77 0.27 " 3.7
LR = 2.00× 10−5 0.77 0.21 % 0.01 ≈ 0.00
LR = 4.00× 10−5 0.76 0.17 % 0.03 ≈ 0.00
LR = 7.00× 10−5 0.76 0.11 % 0.04 ≈ 0.00
LR = 7.25× 10−5 0.78 0.14 % 0.00
LR = 8.00× 10−5 0.77 0.13 % 0.00

LR = 7.92× 10−6 0.77 0.29 " 3.21
LR = 3.61× 10−6 0.77 0.25 " 3.04
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C. On the Role of Data Augmentation
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Figure 7: In this plot, we show the effects of fine-tuning with augmentation (first row) and without augmentation (second
row) correlation with the generalization of CLIP on ImageNet-A as an OOD task for 70 CLIP models. In the bottom box plot,
we measure the high gain accuracy on OOD for these models. This measurement is taken across the linear interpolation
between each fine-tuned model and the zero-shot CLIP model.

In this section, we provide further details and additional results supporting our findings on the impact of data augmentation
during fine-tuning on the performance of CLIP models in out-of-distribution (OOD) tasks. Our primary observation is that
the presence of data augmentation during the fine-tuning phase negatively affects the efficacy of linear interpolation and the
Robust Fine-Tuning (RFT) algorithm. Specifically, we found that models fine-tuned with data augmentation do not exhibit
significant accuracy improvements along the linear path, whereas models fine-tuned without data augmentation do.

To substantiate these findings, we conducted multiple experiments with varying sets of parameters and different model
configurations. Figures in 7 illustrate that fine-tuning with data augmentation consistently results in worse-performing
models along the linear interpolation path. These results are consistent across different training runs and parameter settings,
highlighting the robustness of our observations.

These supplementary results provide a comprehensive view of the nuanced dynamics between data augmentation and
fine-tuning strategies, reinforcing our main findings that highlight the superior performance of CLIP models fine-tuned
without data augmentation on OOD tasks.
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