
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NOVA: GENERATIVE LANGUAGE MODELS FOR ASSEM-
BLY CODE WITH HIERARCHICAL ATTENTION AND CON-
TRASTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Binary code analysis is the foundation of crucial tasks in the security domain;
thus building effective binary analysis techniques is more important than ever.
Large language models (LLMs) although have brought impressive improvement to
source code tasks, do not directly generalize to assembly code due to the unique
challenges of assembly: (1) the low information density of assembly and (2) the
diverse optimizations in assembly code. To overcome these challenges, this work
proposes a hierarchical attention mechanism that builds attention summaries to
capture the semantics more effectively, and designs contrastive learning objectives
to train LLMs to learn assembly optimization. Equipped with these techniques,
this work develops Nova, a generative LLM for assembly code. Nova outperforms
existing techniques on binary code decompilation by up to 14.84 – 21.58% (absolute
percentage point improvement) higher Pass@1 and Pass@10, and outperforms
the latest binary code similarity detection techniques by up to 6.17% Recall@1,
showing promising abilities on both assembly generation and understanding tasks.

1 INTRODUCTION

Binary code plays an irreplaceable role in the security domain, being the foundation of crucial tasks
including vulnerability detection (Güler et al., 2019; Duan et al., 2020; Chen et al., 2022b), malware
detection (Spensky et al., 2016; Aonzo et al., 2023; Xu et al., 2014), binary recovery (Su et al., 2024;
Zhang et al., 2021; Chen et al., 2022c), and legacy software maintenance (Carbone et al., 2009;
Carlini et al., 2015; Martin et al., 2010). For example, when performing tasks such as identifying
attacks and malware, security analysts often only have access to assembly, i.e., the human-readable
representation of binary code, which is extremely difficult to understand (Su et al., 2024; Zhang
et al., 2021; Chen et al., 2022c). Thus, combined with the increasing sophistication of cybercrime
that poses significant threats worldwide (e.g., cybercrime is predicted to cost the world $10.5 trillion
annually by 2025 (Sausalito, 2020)), effective binary analysis techniques are in high demand.

0: endbr64
4: push %rbp
5: mov %rsp,%rbp
8: mov %rdi,-0x8(%rbp)
c: mov %rsi,-0x10(%rbp)
10: mov -0x8(%rbp),%rax
14: mov (%rax),%edx
16: mov -0x10(%rbp),%rax
1a: mov (%rax),%eax
1c: cmp %eax,%edx
...

(b) Assembly (O0-Optimized) (c) Assembly (O1-Optimized)(a) Source Code Function

0: endbr64
4: mov (%rdi),%ecx
6: mov (%rsi),%edx
8: mov $0xffffffff,%eax
d: cmp %edx,%ecx
f: jl 17
11: setg %al
14: movzbl %al,%eax
17: retq

#include <stdio.h>
#include <math.h>

int compare(int *x, int *y) {
 if (*(int*)x < *(int*)y)
 return -1;
 if (*(int*)x > *(int*)y)
 return 1;
 return 0;
}

Figure 1: Example that shows the semantics and diverse optimizations of assembly code.

Large language models pre-trained on source code have brought improvement in various software
development domains (Chen et al., 2022a; Liu et al., 2023; Chen et al., 2023; Le et al., 2022;
Jiang et al., 2023; Xia et al., 2023). However, these LLMs are not designed for or trained with
assembly corpus, not achieving their full potential on binary code analysis tasks such as binary code
similarity (Wang et al., 2022; Xu et al., 2023a), malware detection (Su et al., 2024), and binary code
decompilation (Tan et al., 2024; Armengol-Estapé et al., 2024; Hosseini & Dolan-Gavitt, 2022).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Existing work applying LLMs on assembly code mainly piggybacks on encoder-style LLMs (Wang
et al., 2022; Su et al., 2024; Xu et al., 2023a), unable to benefit from the more extensive pre-training,
updated architectures, scaling of state-of-the-art generative LLMs. Other work using generative
LLMs for decompilation shows a low unit test passing rate of the decompiled programs (Tan et al.,
2024; Armengol-Estapé et al., 2024).

The challenges of leveraging generative LLMs for assembly code are twofold. First, compared to
source code, assembly code has a lower information density. A short source-code sequence maps
to an assembly-code sequence that is often several times longer. Thus, assembly semantics span
across a long sequence of tokens. Figure 1 (a) shows an example of a source code function that
compares two integers, while Figure 1 (b) shows its corresponding assembly code optimized with
O0 flag. In the O0-optimized assembly code, the five instructions from 10: mov -0x8(%rbp),%rax
to 1c: cmp %eax,%edx perform the checking whether the value of x is smaller than the value of y
(correspond to if (*(int*)x < *(int*)y) in the source code). A single assembly instruction alone
represents little meaningful semantics in the source code. It is the combinations of many instructions
and the dependencies between them represent the semantics. Such combinations of instructions are
long, which is hard for LLMs to learn.

Second, assembly code is diverse due to compiler optimization. The assembly code of the same
source code function looks dramatically different with different compiler optimization. Figure 1
(c) shows the assembly of the same function compiled with O1 and O0 flags, which consists of a
significantly different set of instructions. Such syntax diversity is hard for LLMs to learn, preventing
LLMs from obtaining consistently good performances on differently optimized assembly code.

In this work, we develop Nova, a generative foundation LLM pre-trained for assembly code with
two key novelties. First, to address the low-information-density and long-sequence challenge, we
design a hierarchical self-attention, which contains three categories of attention at different levels of
granularity: intra-instruction attention, preceding-instruction attention, and inter-instruction attention.
The key insight is to build attention summaries, i.e., we create per-statement attention labels, which
act as the summary of a statement. We then use preceding-instruction attention to capture semantics
between a token and its preceding instruction label and use inter-instruction attention for long
dependencies. Besides, we design functionality contrastive learning and optimization contrastive
learning objectives to train Nova to learn the semantics behind the diverse syntax of assembly.

This work makes the following contributions:

• We propose a novel hierarchical attention mechanism that captures the assembly’s low-density
semantics at three granularity levels.

• We design contrastive learning objectives to train LLMs to learn assembly with diverse optimiza-
tions and encode assembly more efficiently.

• We develop Nova, a generative foundation LLM with hierarchical attention and contrastive learning
for assembly. Nova outperforms state-of-the-art on binary decompilation by up to 14.84 – 21.58%
higher Pass@k and on binary similarity detection by up to 6.17% Recall@1.

2 RELATED WORK

2.1 BINARY MODELS

Machine learning models are widely used in binary program analysis tasks. However, these models
are typically designed for specific tasks such as binary code similarity detection (Pei et al., 2020;
Xu et al., 2023a; Wang et al., 2022), variable name prediction (Chen et al., 2022c; Xu et al., 2023b;
Zhang et al., 2021), binary code type inference (Pei et al., 2021), and are built from scratch.

Recent techniques have started to pre-train foundation LLMs for binaries. CodeArt (Su et al., 2024)
pre-trains encoder-style LLMs with a regularized attention design to better encode assembly code
semantics. SLaDe (Armengol-Estapé et al., 2024) trains BART (Lewis et al., 2019) models on
assembly. Meta LLMCompiler (Cummins et al., 2024) train CodeLlama models on LLVM IR to
optimize binary code. LLM4Decompile (Tan et al., 2024) trains DeepSeekCoder with assembly
for binary code decompilation. However, CodeArt does not generalize to generation tasks due to
its encoder architecture. LLMCompiler trained on LLVM IR cannot be effectively transferred to
assembly code. SLaDe and LLM4Decompile are limited in performance due to a lack of special

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

designs for assembly. In contrast, Nova proposes hierarchical attention and contrastive learning
objectives, outperforming existing techniques on both understanding (binary code similarity detection)
and generation (binary code decompilation) tasks.

2.2 LARGE SOURCE-CODE MODELS

LLMs demonstrate promising results on many code-related tasks, such as code generation (Chen
et al., 2022a; Liu et al., 2023; Chen et al., 2023; Le et al., 2022; Yue et al., 2021; Chen et al., 2021;
Nijkamp et al., 2022; Fried et al., 2023; Rozière et al., 2023; Guo et al., 2024; Lozhkov et al., 2024;
Hui et al., 2024), bug fixing (Jiang et al., 2023; Xia et al., 2023) and vulnerability fixing (Wu et al.,
2023; Steenhoek et al., 2023; He & Vechev, 2023). The advances in using LLMs are attributed
to the knowledge learned from massive source code and natural language text in their training
datasets (Touvron et al., 2023; OpenAI, 2023). Nova is designed and trained for assembly, which has
unique challenges such as low information density and diverse optimization.

2.3 ATTENTION MECHANISM

Standard self-attention is widely used in transformer architecture (Vaswani et al., 2017) to capture soft
dependencies between tokens in the input. Many special attention mechanisms have been designed
for better learning in various scenarios (Yang et al., 2016; Huang et al., 2024). LongCoder (Guo et al.,
2023) combines window attention and global attention (attention sink (Xiao et al., 2024)) to handle
long input of source code. We have shown that LongCoder’s window attention is less effective than
Nova’s on assembly code.

CAST (Shi et al., 2021) is a new neural architecture that splits the abstract syntax tree (AST) of source
code into subtrees, encodes the subtrees, and aggregates to the final encoding. PA-former (Chai & Li,
2024) is a new neural architecture that constructs source code as pyramid input based on their AST
structure and contains a pyramid attention mechanism to calculate the features in a hierarchical way.
HierarchyNet (Nguyen et al., 2023) is a neural architecture that considers source code AST, data flow,
and control flow graphs. Similarly, it cannot be applied to assembly code. Different from CAST,
PA-former, and HierarchiyNet, Nova’s attention design is for assembly code, is more lightweight and
can be plugged into any pre-trained generative LLM.

3 APPROACH

Figure 2 presents the overall approach of Nova. We build Nova on top of foundation models for
source code (Guo et al., 2024) to utilize their source code and natural language generation ability. We
first collect large assembly corpora (Section 3.1). Section 3.2 describes Nova’s hierarchical attention
design. With the collected assembly corpora, we then pretrain Nova with language modeling and
contrastive learning objectives (Section 3.3). Then, we fine-tune Nova on two important downstream
tasks, binary code decompilation, and binary code similarity detection (Sections 3.4 and 3.5), to
prove Nova’s effectiveness and benefits to the binary research domain.

Data

Language
Modeling

Functional Contrastive
Learning

Optimization
Contrastive Learning

Pre-Trained LLM

Hierarchical Attention

Nova

Figure 2: Overview of developing Nova

Table 1: Statistics (number of C and X86-64 as-
sembly functions) of the pre-training datasets.

Origin C Functions O0 O1 O2 O3 Total

AnghaBench 757.1K 743.1K 726.4K 718.7K 717.8K 3.7M
The-Stack 138.8K 125.1K 119.7K 116.9K 108.8K 609.3K

3.1 DATA COLLECTION

In this work, we focus on X86-64 assembly functions for C programs. Yet, Nova’s approach is
generalizable to other assembly languages such as ARM assembly.

We derive our X86-64 assembly functions dataset from two source code corpora: C functions in
The-Stack (Li et al., 2023) and AnghaBench (da Silva et al., 2021). We compile the C programs into
executables using gcc with different optimization levels (i.e., O0, O1, O2 and O3), strip the executables
to remove debug information, and disassemble them into X86-64 assembly code using objdump. We

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

treat every function as a separate data point. Table 1 shows the number of C functions in the two
original datasets, and the number of X86-64 assembly functions we collected from them.

We perform certain normalization on the assembly functions: (1) removing all the “%” and comments,
(2) adding whitespace around “,”, “(”, “)”, (3) converting all the hexadecimal numbers to decimal
numbers, and (4) replacing the address of each instruction with special labels (e.g., replacing “0” and
“4” in Figure 1 (b) with “[INST-1]” and “[INST-2]”) placing at the end of each instruction. More
details are in Appendix A.1.

3.2 HIERARCHICAL SELF-ATTENTION

Nova uses hierarchical self-attention that is specially designed to learn the low-information-density
semantics in the long sequence of assembly code. Specifically, Nova learns the assembly code in
an hierarchical way by providing a modified attention mask. Different from standard token-level
attentions (Vaswani et al., 2017; Radford & Narasimhan, 2018; Radford et al., 2019; Brown et al.,
2020), our hierarchical self-attention contains three categories at different levels of granularity.

mov eax , $1

mov ebx , $2

mov ecx , eax

add ecx , ebx

(b) Tokenized Assembly Code with Attention Illustration

(a) Assembly Code Hierarchical Attention Mask

This is the assembly code:
mov eax , $1
mov ebx , $2
mov ecx , eax
add ecx , ebx
What is the source code?

mov e ax , $ 1 [INST-1]

mov e bx , $ 2

mov ec x , e ax

add ec x , e bx

[INST-2]

[INST-3]

[INST-4]

mov e ax , $ 1 [INST-1]

intra-instruction
attention

preceding-
instruction attention

inter-instruction
attention

(c) Assembly Code Attention Compatible with Standard Attention

Figure 3: Design of Nova’s hierarchical attention for assembly code

(1) Intra-Instruction Attention: Due to the low information density in assembly, intra-instruction
attention is designed to capture the summary of every instruction, which is the standard causal
attention but limited to tokens of each instruction (the yellow part in Figures 3) (a) and (b). Tokens
in different instructions have no attention weights. The “[INST]” label at the end of the instruction has
attention to all the tokens in the instruction and thus captures the semantics of the entire instruction
(e.g., “[INST-1]” captures the semantics of “mov eax, $1”).

(2) Preceding-Instruction Attention: In addition to the local semantics of each instruction, the use
of assembly instructions (such as the choice of registers) depends on the context. For example, after
the first instruction “mov eax, $1”, the second instruction should not reuse “eax” to store another value
“$2” immediately. To capture such context, the preceding-instruction attention enables each token in
an instruction to have attention to the “[INST]” label of the preceding instruction (the light green
part in Figures 3 (a) and (b)).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(3) Inter-Instruction Attention: To understand function semantics (i.e., functionality), which lies
in the dependencies across different instructions, the inter-instruction attention is designed to let
the “[INST]” label of each instruction have attention to all the labels of previous instructions. For
example, “[INST-4]” has attention to “[INST-1]”, “[INST-2]”, and “[INST-3]” (the dark green part
in Figures 3 (a) and (b)). The inter-instruction attention is only enabled for “[INST]” labels, as they
represent the semantics of each instruction.

To sum up, the hierarchical self-attention breaks the semantics of assembly code into three parts. The
intra-instruction attention captures the instruction summary, and the preceding-instruction attention
captures the context with the preceding instruction. The inter-instruction attention learns the long
dependencies across instructions on top of the “[INST]” labels that contain the instruction summary.
Figure 3 (c) also shows how Nova’s hierarchical attention for assembly code is compatible with the
standard self-attention for text and source code. As existing LLMs have shown good performance
on text and source code using the standard self-attention, we keep the standard causal attention
mask within and between any chunks of text or source code in the input (the light grey part shown
in Figure 3 (c)). The attention from text or source code to assembly code (and vice versa) is only
allowed for the “[INST]” tokens as they are designed to contain the assembly instruction summaries.

3.3 CONTRASTIVE LEARNING

The syntax gap between assembly code and source code, and syntax diversity between differently-
optimized assembly code make LLMs struggle to distinguish the semantics behind the syntax. Nova
adopts contrastive learning technique (Gao et al., 2021) during pre-training to train LLMs to encode
assembly code meaningfully w.r.t semantics. The standard pre-training objective is language modeling
by minimizing the negative likelihood of code in the pre-training corpus (Radford & Narasimhan,
2018), notated as Llm. In addition, Nova is pre-trained with two new objectives, Lfcl for functionality
contrastive learning and Locl for optimization contrastive learning.

O01

src1

src2

src3

src4

O02 O03 O04

func1 <cmp>

func2 <sort>

func3 <min>

func4 <max>
similar

di�erent

compile & disassemble

distance matrix Ddi�erent functions

O0

src

O0

O1

O1 O2 O3

similar

di�erent

distance matrix D

(b) Design of Functionality CL (d) Design of Optimization CL

func <cmp>

src

O0 asm

O1 asm

cmp

sort

(a) CL Across Functionalities

d(e*
cmp, e*

cmp)

src

O0 asm

O1 asm

d(e*
sort, e

*
sort)

d(e*
cmp, e*

sort)

src

O0 asm

O1 asm

O2 asm

O3 asm

(c) CL Across Optimizations

Figure 4: Design of functionality and optimization contrastive learning (CL). “asm” denotes assembly.

Functionality CL: Functionality CL trains Nova to focus more on the functionalities of assembly
code rather than the syntax. Code with the same functionality (assemblies from the same source
code), should be encoded closer in the latent space. For instance, in Figure 4 (a), embeddings of
source and assembly code of function “cmp” are closer to each other, and the same for function “sort”.
Nova is designed and implemented on decoder-only generative LLM, and we refer the hidden states
from the last transformer layer as embedding. For source code, we use the average of each token’s
embedding as the source code function’s embedding. For assembly, we use the average of all the
“[INST]” tokens’ embedding as the embedding of the assembly function, as each “[INST]” token is
supposed to capture the semantics of that instruction by the design of hierarchical self-attention.

Let esf be the embedding of function f in s form (s = −1 for source code, and s ∈ [0, 1, 2, 3] for O0
to O3 optimized assembly). For simplicity, let S = [−1, 0, 1, 2, 3] be the domain of s. Functionality
CL optimizes Nova with the constraint:

∀fi ∈ F, max
s,t∈S

(d(e
s
fi , e

t
fi)) < min

s,t∈S
fj ̸=fi∈F

(d(e
s
fi , e

t
fj))

, where d calculates the l2 distance between two embeddings and F is the full set of functions in the
training corpus.

Such constraints can be trained by optimizing the embeddings of a batch of functions, each function
in two different forms. For the example in Figure 4 (b), there are two forms (source code and O0

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

assembly) of four functions. Once Nova encodes the batch of source code and assembly functions,
we calculate the distance matrix {Dij}fi,fj∈F = {d(esfi , e

t
fj
)}, and minimize the loss:

Lfcl = − log
∑
s,t∈S

∑
fi∈F

1−
exp

(
d(esfi , e

t
fi
)
)∑

fj∈F exp
(
d(esfi , e

t
fj
)
)

This objective minimizes the distance between embeddings for the same function, i.e., the diagonal
in the distance matrix.

Optimization CL: LLMs can be confused if being asked to directly connect a source code function
to its O3-optimized assembly, due to their dramatically different syntax. Such a huge gap can be filled
by learning how the source code is transformed to O0, O1, O2 and eventually to O3 assembly, as the
optimization levels are ordered.

Higher-level optimization applies a super-set of optimization rules compared to lower-level optimiza-
tion. Nova learns such order with the optimization CL objective, encoding differently-optimized
assembly code orderly. Optimization CL optimizes Nova with the constraint: the more optimizations
applied, the larger the difference between embeddings of optimized and unoptimized code. For
instance, Figure 4 (c) and (d) illustrate that for the same function “cmp”, the distance between source
code and assembly increases when the optimization level increases. Formally, optimization CL
minimizes the following loss:

Locl =
∑
f∈F

∑
s<t1<t2∈S

max
(
0, d(esf , e

t1
f)− d(esf , e

t2
f)

)
Overall, the final training loss combines the three: L = Llm + λ(Lfcl + Locl), where λ is set to 0.1 to
balance the losses in this work.

3.4 TASK 1: BINARY CODE DECOMPILATION

Binary code decompilation (BCD) helps developers to understand binary code by recovering binary
code into more readable high-level source code (e.g., C programs) (Fu et al., 2019; Liang et al., 2021;
Armengol-Estapé et al., 2024; Tan et al., 2024). The input to the model for BCD is formatted as an
instruction prompt (notated by p): # This is the assembly code with {opt} optimization: {asm},
where “opt” is the optimization-level applied to the assembly and “asm” is the assembly code to
decompile. Nova is fine-tuned to generate the expected source code function src following the
instruction prompt. The fine-tuning objective is minimizing the loss: Lbcd = − log P (src|p).

3.5 TASK 2: BINARY CODE SIMILARITY DETECTION

Binary code similarity detection (BCSD) aims to measure the similarity between two binary code
snippets (Wang et al., 2022; Su et al., 2024), which is the foundation of various applications such as
plagiarism detection (Luo et al., 2014; Sæbjørnsen et al., 2009) and vulnerability detection (David &
Yahav, 2014; David et al., 2018; 2017; 2016).

A widely used setting is taking a query assembly of the function fq that is compiled with one
optimization level (denoted by s), and a pool of candidate assembly of K (e.g., 50, 100, etc.)
functions (notated by fp

i , 1 ≤ i ≤ K) compiled with a different optimization level (denoted by
t ̸= s). There exists a unique candidate assembly coming from the same source code as the query
(∃!1 ≤ i ≤ K, fp

i = fq , called the positive candidate). Nova is fine-tuned to encode these binaries, so
that the positive candidate has the highest similarity with the query assembly among the pool. The
learning objective is as follows:

LBCSD = − log

fq :=f
p
i∑

1≤i≤K

1−
exp

(
d(e

s
fq , etfp

i
)
)

∑
1≤j≤K exp

(
d(esfq , etfp

j
)
)

We follow previous work (Su et al., 2024) to let s be O0-assembly and t be O3-assembly, which is the
hardest setting.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 EXPERIMENTAL SETUP

This section describes the setup of pre-training and fine-tuning of Nova, as well as the existing
baselines we compare Nova with, and the evaluation metrics we used in the two downstream tasks.
Appendix A.2 contains additional details such as training hyper-parameters.

4.1 PRE-TRAINING

We use the C and X86-64 assembly functions collected from AnghaBench and The-Stack for pre-
training. We pre-train Nova starting from DeepSeek-Coder (Guo et al., 2024), and the hierarchical
attention is applied on half of the attention heads to balance between its effectiveness and the existing
knowledge in the standard attention layers (Justified in Appendix A.3). Nova is pre-trained with
language modeling for one epoch, followed by contrastive learning objectives for another epoch.

4.2 FINE-TUNING FOR BINARY CODE DECOMPILATION

Training Data: We sample (due to computation resource limitation) 2.16M assembly-to-source-code
pairs (0.338B tokens) from the pre-training corpus to build the BCD fine-tuning data.

Test Data: We use HumanEval-Decompile (Tan et al., 2024) as the test benchmark, which was
not used in training. HumanEval-Decompile is derived from the C language adaptation of the
HumanEval (Chen et al., 2021) benchmark and contains 164 C functions, each compiled with O0 – O3
optimization flags and disassembled into X86-64 assembly.

Baselines: Nova is compared with existing SOTA LLM4Decompile (Tan et al., 2024), Meta LLM-
Compiler (Cummins et al., 2024), and other general code LLMs (CodeLlama (Rozière et al., 2023),
StarCoder2 (Lozhkov et al., 2024), DeepSeekCoder (Guo et al., 2024), Qwen2.5-Coder (Hui et al.,
2024), Granite Mishra et al. (2024), LongCoder (Guo et al., 2023), GPT-3.5-Turbo, and GPT-4o).
LLM4Decompile trains DeepSeekCoder using the same AnghaBench corpus for binary decompi-
lation. Meta LLMCompiler trains CodeLlama models using LLVM IRs, X86, and ARM assembly
code to optimize and translate binary code.

Evaluation: We let each model sample 20 decompilations per assembly function, using the temper-
ature of 0.2 and top p of 0.95 (Chen et al., 2021). Except for LLM4Decompile and Nova that are
fine-tuned for binary code decompilation, we provide all other baselines with three-shot examples for
few-shot learning (Brown et al., 2020).

4.3 FINE-TUNING FOR BINARY CODE SIMILARITY DETECTION

Training Data: To compare Nova with existing works on BCSD fairly (Wang et al., 2022; Su et al.,
2024), we use the same dataset, BinaryCorp-3M (Wang et al., 2022), as the fine-tuning data for
BCSD, which contains the O0 and O3 assembly of 224,606 functions.

Test Data: Following existing work (Su et al., 2024; Xu et al., 2023a), we use real-world benchmarks,
Binutils, Curl, ImageMagick, SQLite, OpenSSL, and Putty, as the test benchmarks, which are
nonexistent in the training data.

Baselines: Nova is compared with jTrans (Wang et al., 2022), DiEmph (Xu et al., 2023a) and
CodeArt (Su et al., 2024). jTrans is a Transformer (Vaswani et al., 2017) encoder trained on
binaries with masked token prediction and jump target prediction tasks. DiEmph uses an instruction
deemphasis technique to prevent the model from learning instruction distribution biases introduced by
compilers. CodeArt proposes a regularized attention mask for encoder models to capture instructional
semantics and data dependencies.

Evaluation: We randomly sample K (K = 50, 100, 200, 500) source code functions from each
project, compile them into binaries with O0 and O3 optimization flags, and disassemble them into
X86-64 assemblies. BCSD techniques encode these assemblies into embeddings (Nova uses the
average last-layer hidden states of all the “[INST]” tokens in an assembly as its embedding). Then
each O0 assembly is used as the query to calculate their similarity with the K O3 candidate assemblies
(using cosine similarity). Metric Recall@1 is the ratio of queries for which the candidate from the
same source code has the highest similarity among all the candidates.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 RESULTS

5.1 BINARY CODE DECOMPILATION

Comparison with SOTA Techniques: Table 2 shows the Pass@1 and Pass@10 of the decompiled
code from assemblies on HumanEval-Decompile. The results are grouped by optimization level (i.e.,
the benchmark contains 164 assemblies of each optimization level), and the average is also reported.

Table 2: Nova’s Pass@K and comparison with existing techniques on HumanEval-Decompile.

Techniques Pass@1 Pass@10
O0 O1 O2 O3 Avg. O0 O1 O2 O3 Avg.

CodeLlama-7B 6.95 3.81 4.54 3.78 4.77 8.53 5.97 7.34 5.17 6.75
StarCoder2-7B 6.31 4.33 5.64 5.95 5.56 8.77 5.18 6.09 7.17 6.80
DeepSeekCoder-7B 9.63 7.56 7.41 6.68 7.82 13.60 11.38 11.52 9.44 11.49
Qwen-2.5-Coder-7B 4.76 5.79 5.58 5.27 5.35 6.34 7.69 6.56 5.79 6.60
LLMCompiler-7B 5.95 5.85 5.55 5.82 5.79 7.01 7.31 7.47 7.01 7.20
GPT-3.5-Turbo 7.41 6.13 4.33 3.90 5.44 9.56 8.38 6.23 5.12 7.32
GPT-4o 21.34 18.29 14.48 13.05 16.79 29.94 26.74 21.42 19.88 24.50

LLM4Decompile-1B 15.30 8.26 9.36 8.38 10.33 21.79 15.23 16.17 13.70 16.72
Nova-1B 37.53 21.71 22.68 18.75 25.17 49.38 34.84 36.95 32.03 38.30

LLM4Decompile-6B 29.97 19.05 20.46 18.32 21.95 40.40 27.75 28.85 28.51 31.38
Nova-6B 48.78 30.58 30.85 27.23 34.36 57.47 47.45 43.03 39.68 46.91

Overall, Nova’s Pass@1 and Pass@10 are higher than all SOTA binary decompilation techniques
and general LLMs with even smaller model sizes. Specifically, for each optimization level, Nova
consistently decompiles more assemblies into source code correctly than the rest of the compared
techniques. Note that Meta LLMCompiler is mainly designed for LLVM IR optimization, and thus is
still incapable of assembly code decompilation.

With the same model size, Nova-1B outperforms LLM4Decompile-1B with a 14.84% higher averaged
Pass@1, and a 21.58% higher Pass@10. Nova-6B outperforms LLM4Decompile-6B with a 12.41%
higher averaged Pass@1, and a 15.53% higher Pass@10. When compared with GPT-4o, an order of
magnitude larger model, Nova-1B produces an 8.38% higher Pass@1 and 13.80% higher Pass@10.
Examples of Nova’s correct decompilation are provided in Appendix A.5.

Comparison with Techniques Handling Long Input: Nova’s hierarchical attention design targets
to address the low information density and long input challenge of assembly code. There are other
techniques that handles long input challenges in text and source code, with Granite-3B-Code-Base-
128K and LongCoder being the most related ones. Granite trains LLM on repository-level long
inputs, which is an orthogonal approach with Nova’s approach (hierarchical attention and contrastive
learning). We train Granite-3B-Code-128K with Nova’s approach, and Table 3 shows that Nova’s
approach brings improvement to Granite over standard fine-tuning even if it has already been trained
with long code data.

Table 3: Nova’s approach brings improvement to LLM that has been trained with long input data.

Techniques Pass@1 Pass@10
O0 O1 O2 O3 Avg. O0 O1 O2 O3 Avg.

Granite (3B-Code-128K) 5.91 3.78 5.09 5.52 5.08 8.19 5.16 6.56 7.15 6.76
Granite + Standard Fine-Tuning 20.88 13.54 11.37 10.09 13.97 30.05 19.77 18.31 15.77 20.98
Granite + Nova’s Approaches 31.04 14.57 14.70 13.66 18.49 39.57 21.23 21.77 19.82 25.60

Table 4: Nova’s hierarchical attention is more effective on assembly code.

Techniques Pass@1 Pass@10
O0 O1 O2 O3 Avg. O0 O1 O2 O3 Avg.

Nova-1B (using LongCoder’s Attention) 34.59 19.07 19.72 17.34 22.68 42.19 32.37 32.86 29.04 34.12
Nova-1B 37.53 21.71 22.68 18.75 25.17 49.38 34.84 36.95 32.03 38.30

LongCoder combines window attention and global attention to learn long code input. We compare
LongCoder’s attention design with Nova’s hierarchical attention design by replacing the hierarchical

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Ablation study of Nova-1B on HumanEval-Decompile.

Techniques Pass@1 Pass@10
O0 O1 O2 O3 Avg. O0 O1 O2 O3 Avg.

LLM4Decompile-1B 15.30 8.26 9.36 8.38 10.33 21.79 15.23 16.17 13.70 16.72

Nova−CL−HA 20.73 16.16 15.03 11.19 15.78 33.55 28.12 26.96 21.01 27.41
Nova−HA 30.58 19.88 20.58 16.40 21.86 44.75 33.13 33.31 29.82 35.25
Nova 37.53 21.71 22.68 18.75 25.17 49.38 34.84 36.95 32.03 38.30

attention of Nova-1B with LongCoder’s attention design. Table 4 shows that Nova’s hierarchical
attention is more effective in learning assembly code. Nova’s attention design considers the instruction-
level local semantics and dependencies between different instructions, which fits better than fix-sized
window attention to assembly code.

Ablation Study: We conduct an ablation study by comparing Nova-1B with the following models to
show the effectiveness of contrastive learning objectives and hierarchical attention design:

• Nova−CL−HA: Removing contrastive learning and hierarchical self-attention. This is simply
training DeepSeekCoder-1.3B on the assembly corpus using language modeling. This can be
viewed as our reproduction (retrain) of LLM4Decompile-1B using the same amount of data.

• Nova−HA: Removing the hierarchical self-attention, training DeepSeekCoder-1.3B on the assem-
bly corpus using both the language modeling and contrastive learning objectives.

Table 5 shows the results of the ablation study. Nova−CL−HA produces an average Pass@1 of
15.78% and Pass@10 of 27.41%. With additional contrastive learning objectives, Nova−HA improves
the Pass@1 on all optimization levels over Nova−CL−HA, showing a higher averaged Pass@1 and
Pass@10. Further applying the hierarchical self-attention on Nova−HA boosts the overall Pass@1
from 21.86% to 25.17%, and Pass@10 from 35.25% to 38.30%.

Table 6: Recall@1 on BCSD with K = 50

Benchmarks jTrans DiEmph CodeArt Nova-1B Nova-6B

Binutils 0.68 0.80 0.84 0.87 0.89
Curl 0.72 0.84 0.86 0.89 0.94
ImageMagick 0.53 0.71 0.78 0.86 0.90
SQLite 0.73 0.79 0.78 0.77 0.78
OpenSSL 0.70 0.83 0.88 0.90 0.92
Putty 0.63

::
0.72 0.69

::
0.72 0.71

Avg. 0.67 0.78 0.81 0.84 0.86

Table 7: Recall@1 on BCSD with K = 100

Benchmarks jTrans DiEmph CodeArt Nova-1B Nova-6B

Binutils 0.60 0.63 0.81 0.79 0.79
Curl 0.63 0.80 0.82 0.86 0.88
ImageMagick 0.54 0.71 0.76 0.79 0.81
SQLite 0.62 0.72 0.74 0.73 0.72
OpenSSL 0.60 0.80 0.87 0.88 0.90
Putty 0.58 0.64 0.64 0.65 0.64

Avg. 0.60 0.72 0.77 0.78 0.79

Table 8: Recall@1 on BCSD with K = 200

Benchmarks jTrans DiEmph CodeArt Nova-1B Nova-6B

Binutils 0.51 0.64 0.74 0.73 0.73
Curl 0.57 0.77 0.78 0.83 0.84
ImageMagick 0.39 0.51 0.67 0.73 0.75
SQLite 0.56 0.65

::
0.68

::
0.68 0.69

OpenSSL 0.54 0.71 0.82 0.84 0.88
Putty 0.49 0.58 0.55 0.55 0.58

Avg. 0.51 0.64 0.71 0.73 0.75

Table 9: Recall@1 on BCSD with K = 500

Benchmarks jTrans DiEmph CodeArt Nova-1B Nova-6B

Binutils 0.40 0.57 0.70 0.65 0.67
Curl 0.43 0.62 0.69 0.73 0.76
ImageMagick 0.25 0.42 0.58 0.61 0.65
SQLite 0.43 0.59 0.62 0.59 0.62
OpenSSL 0.43 0.61 0.76 0.78 0.82
Putty 0.38 0.50 0.49 0.47 0.51

Avg. 0.39 0.55 0.64 0.64 0.67

5.2 BINARY CODE SIMILARITY DETECTION

Tables 6, 7, 8 and 9 show the Recall@1 of Nova and existing BCSD techniques with pool size K of
50, 100, 200 and 500 on the six benchmarks. Underline indicates the best in each benchmark, while
::::
wave denotes the tied best (we only mark Nova-1B for clearer illustration).

Overall, Tables 6, 7, 8 and 9 show that on average, Nova-1B and Nova-6B achieve the highest
Recall@1 (in bold) under all four settings of K. Nova-6B further outperforms Nova-1B and achieves
the highest averaged Recall@1 under all four settings, ranking the ground-truth of 5%, 2%, 4%, and
3% more queries the most similar correspondingly compared to CodeArt. Nova-1B consistently
outperforms existing techniques with higher Recall@1 when K is 50, 100, and 200, meaning it

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

correctly ranks ground-truth of 3%, 1%, and 2% more queries as the most similar. Under the setting
of K = 500, Nova-1B ties with CodeArt with the same highest Recall@1. When looking into each
individual benchmark, Nova-1B always wins on the most benchmarks under different settings of pool
size K. For instance, Nova-1B wins on four benchmarks while DiEmph only wins on SQLite when
K = 50. We also conduct an ablation study on BCSD in Appendix A.6.

5.3 ANALYTIC EXPERIMENTS: HOW ARE NOVA’S EMBEDDINGS BETTER?

We use the widely-used t-SNE (van der Maaten & Hinton, 2008) to analyze and visualize high-
dimensional embeddings. We randomly sample seven coding problems from HumenEval-Decompile
(task id 19, 32, 34, 63, 119, 128, 143), encode the O0 – O3 assemblies by Nova−CL−HA and Nova-
1B. Figure 5 shows the embeddings that are visualized under the first two principal components. Each
color represents one task, and O0 – O3 assemblies are marked by ⃝, ▽, △, and □.

Compared with Nova−CL−HA (Figure 5 (a)), Nova−HA (Figure 5 (b)) including contrastive learning
objectives in the pre-training, can separate the embeddings of assemblies with different functionalities
better. Nova−HA clearly encode “Task 143” (orange points) away from the others. Yet, Nova’s
(Figure 5 (c)) embeddings group the assemblies by functionalities more precisely than Nova−HA,
suggesting that hierarchical attention enhances the training of contrastive learning objectives to learn
more effective encoding. Visualization using a different approach, PCA, is shown in Appendix A.7.
Analytic experiments on Nova’s hierarchical attention is shown in Appendix A.8.

O0 assemblies
O1 assemblies
O2 assemblies
O3 assemblies

Task 34

Task 143
Task 63

Task 19

Task 119

Task 128

Task 32

Task 143

(c) Nova's Embeddings(a) Nova-CL-HA's Embeddings (b) Nova-HA's Embeddings

Figure 5: t-SNE analysis of embeddings calculated by Nova−CL−HA, Nova−HA, and Nova.

6 LIMITATIONS

One limitation is that Nova is X86-specific, as we only collect X86 assembly corpus for pre-training.
This design choice is mainly affected by two facts: (1) X86 assembly is used and explored in a
wide range of binary tasks (Wang et al., 2022; Su et al., 2024; Xu et al., 2023a; Chen et al., 2022c)
compared to other assembly languages, and (2) computation limitations. However, the proposed
techniques are independent of X86 assembly. Low information density and compiler optimization are
the common challenges of most assembly languages such as X86, ARM, and MIPS. The proposed
techniques can be applied to the future development of multi-lingual assembly LLMs. Another
potential limitation is the scale of models. We develop Nova-1B and Nova-6B. These two LLMs
show impressive ability in assembly code decompilation and encoding. There might be a potential
benefit of developing larger Nova models. However, due to the computing resources limitation, we
are unable to explore that in this work.

7 CONCLUSION

This work develops Nova, a generative foundation LLM for assembly code, which incorporates
two key novelties (hierarchical attention and contrastive learning objectives) to address the unique
challenges of assembly code. Evaluation on downstream tasks shows the effectiveness of Nova, which
outperforms existing techniques on binary code decompilation by up to 146.54% and outperforms
the latest binary code similarity detection techniques by up to 6.17%. We expect our hierarchical
attention and contrastive learning techniques to benefit source code and natural language foundation
models, which remains as future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Simone Aonzo, Yufei Han, Alessandro Mantovani, and Davide Balzarotti. Humans vs. Machines
in Malware Classification. In 32nd USENIX Security Symposium (USENIX Security 23), pp.
1145–1162, Anaheim, CA, 2023. USENIX Association. ISBN 978-1-939133-37-3. URL https:
//www.usenix.org/conference/usenixsecurity23/presentation/aonzo.

Jordi Armengol-Estapé, Jackson Woodruff, Chris Cummins, and Michael F. P. O’Boyle. SLaDe: A
Portable Small Language Model Decompiler for Optimized Assembly, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. CoRR, abs/2005.14165,
2020. URL https://arxiv.org/abs/2005.14165.

Martim Carbone, Weidong Cui, Long Lu, Wenke Lee, Marcus Peinado, and Xuxian Jiang. Mapping
kernel objects to enable systematic integrity checking. In Proceedings of the 16th ACM Conference
on Computer and Communications Security, CCS ’09, pp. 555–565, New York, NY, USA, 2009.
Association for Computing Machinery. ISBN 9781605588940. doi: 10.1145/1653662.1653729.
URL https://doi.org/10.1145/1653662.1653729.

Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R. Gross. Control-
Flow Bending: On the Effectiveness of Control-Flow Integrity. In 24th USENIX Security Sym-
posium (USENIX Security 15), pp. 161–176, Washington, D.C., 2015. USENIX Association.
ISBN 978-1-939133-11-3. URL https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/carlini.

Lei Chai and Ming Li. Pyramid attention for source code summarization. In Proceedings of the 36th
International Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY,
USA, 2024. Curran Associates Inc. ISBN 9781713871088.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak, Jon Ander Campos, Jun Shern Chan, Samuel R.
Bowman, Kyunghyun Cho, and Ethan Perez. Improving Code Generation by Training with Natural
Language Feedback, 2023.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
CodeT: Code Generation with Generated Tests, 2022a. URL https://arxiv.org/abs/2207.
10397.

Ligeng Chen, Zhongling He, Hao Wu, Fengyuan Xu, Yi Qian, and Bing Mao. DIComP: Lightweight
Data-Driven Inference of Binary Compiler Provenance with High Accuracy. In 2022 IEEE
International Conference on Software Analysis, Evolution and Reengineering (SANER), pp. 112–
122, 2022b. doi: 10.1109/SANER53432.2022.00025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
Large Language Models Trained on Code. CoRR, abs/2107.03374, 2021. URL https://arxiv.
org/abs/2107.03374.

Qibin Chen, Jeremy Lacomis, Edward J. Schwartz, Claire Le Goues, Graham Neubig, and Bogdan
Vasilescu. Augmenting Decompiler Output with Learned Variable Names and Types. In 31st

11

https://www.usenix.org/conference/usenixsecurity23/presentation/aonzo
https://www.usenix.org/conference/usenixsecurity23/presentation/aonzo
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/1653662.1653729
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

USENIX Security Symposium (USENIX Security 22), pp. 4327–4343, Boston, MA, aug 2022c.
USENIX Association. ISBN 978-1-939133-31-1. URL https://www.usenix.org/conference/
usenixsecurity22/presentation/chen-qibin.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What Does BERT Look
at? An Analysis of BERT’s Attention. In Tal Linzen, Grzegorz Chrupała, Yonatan Belinkov, and
Dieuwke Hupkes (eds.), Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pp. 276–286, Florence, Italy, August 2019. Association for
Computational Linguistics. doi: 10.18653/v1/W19-4828. URL https://aclanthology.org/
W19-4828.

Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel Synnaeve,
and Hugh Leather. Meta Large Language Model Compiler: Foundation Models of Compiler
Optimization, 2024. URL https://arxiv.org/abs/2407.02524.

Anderson Faustino da Silva, Bruno Conde Kind, José Wesley de Souza Magalhães, Jerônimo Nunes
Rocha, Breno Campos Ferreira Guimarães, and Fernando Magno Quinão Pereira. ANGHABENCH:
A Suite with One Million Compilable C Benchmarks for Code-Size Reduction. In 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pp. 378–390, 2021. doi:
10.1109/CGO51591.2021.9370322.

Yaniv David and Eran Yahav. Tracelet-Based Code Search in Executables. In Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, pp. 349–360, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450327848. doi: 10.1145/2594291.2594343. URL https://doi.org/10.1145/2594291.
2594343.

Yaniv David, Nimrod Partush, and Eran Yahav. Statistical Similarity of Binaries. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’16, pp. 266–280, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450342612. doi: 10.1145/2908080.2908126. URL https://doi.org/10.1145/2908080.
2908126.

Yaniv David, Nimrod Partush, and Eran Yahav. Similarity of Binaries through Re-Optimization.
SIGPLAN Not., 52(6):79–94, jun 2017. ISSN 0362-1340. doi: 10.1145/3140587.3062387. URL
https://doi.org/10.1145/3140587.3062387.

Yaniv David, Nimrod Partush, and Eran Yahav. FirmUp: Precise Static Detection of Common
Vulnerabilities in Firmware. SIGPLAN Not., 53(2):392–404, mar 2018. ISSN 0362-1340. doi:
10.1145/3296957.3177157. URL https://doi.org/10.1145/3296957.3177157.

Yue Duan, Xuezixiang Li, Jinghan Wang, and Heng Yin. DeepBinDiff: Learning Program-Wide
Code Representations for Binary Diffing. 01 2020. doi: 10.14722/ndss.2020.24311.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Wen
tau Yih, Luke Zettlemoyer, and Mike Lewis. InCoder: A Generative Model for Code Infilling and
Synthesis, 2023.

Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuandong Tian, Farinaz Koushan-
far, and Jishen Zhao. Coda: An End-to-End Neural Program Decompiler. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper files/paper/2019/file/
093b60fd0557804c8ba0cbf1453da22f-Paper.pdf.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple Contrastive Learning of Sentence
Embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 6894–6910, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.552. URL https:
//aclanthology.org/2021.emnlp-main.552.

12

https://www.usenix.org/conference/usenixsecurity22/presentation/chen-qibin
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-qibin
https://aclanthology.org/W19-4828
https://aclanthology.org/W19-4828
https://arxiv.org/abs/2407.02524
https://doi.org/10.1145/2594291.2594343
https://doi.org/10.1145/2594291.2594343
https://doi.org/10.1145/2908080.2908126
https://doi.org/10.1145/2908080.2908126
https://doi.org/10.1145/3140587.3062387
https://doi.org/10.1145/3296957.3177157
https://proceedings.neurips.cc/paper_files/paper/2019/file/093b60fd0557804c8ba0cbf1453da22f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/093b60fd0557804c8ba0cbf1453da22f-Paper.pdf
https://aclanthology.org/2021.emnlp-main.552
https://aclanthology.org/2021.emnlp-main.552

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Emre Güler, Cornelius Aschermann, Ali Abbasi, and Thorsten Holz. AntiFuzz: Impeding Fuzzing
Audits of Binary Executables. In 28th USENIX Security Symposium (USENIX Security 19), pp.
1931–1947, Santa Clara, CA, 2019. USENIX Association. ISBN 978-1-939133-06-9. URL
https://www.usenix.org/conference/usenixsecurity19/presentation/guler.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. LongCoder: a long-range pre-
trained language model for code completion. In Proceedings of the 40th International Conference
on Machine Learning, ICML’23. JMLR.org, 2023.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. DeepSeek-Coder: When the
Large Language Model Meets Programming – The Rise of Code Intelligence, 2024.

Jingxuan He and Martin Vechev. Large Language Models for Code: Security Hardening and
Adversarial Testing. CoRR, abs/2302.05319, 2023. URL https://arxiv.org/abs/2302.05319.

Iman Hosseini and Brendan Dolan-Gavitt. Beyond the C: Retargetable Decompilation using Neural
Machine Translation. In Proceedings 2022 Workshop on Binary Analysis Research, BAR 2022.
Internet Society, 2022. doi: 10.14722/bar.2022.23009. URL http://dx.doi.org/10.14722/
bar.2022.23009.

Yunpeng Huang, Jingwei Xu, Junyu Lai, Zixu Jiang, Taolue Chen, Zenan Li, Yuan Yao, Xiaoxing Ma,
Lijuan Yang, Hao Chen, Shupeng Li, and Penghao Zhao. Advancing Transformer Architecture in
Long-Context Large Language Models: A Comprehensive Survey, 2024. URL https://arxiv.
org/abs/2311.12351.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng Ren, Jingren
Zhou, and Junyang Lin. Qwen2.5-Coder Technical Report. arXiv preprint arXiv:2409.12186,
2024.

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. Impact of Code Language Models on
Automated Program Repair. In Proceedings of the 45th International Conference on Software
Engineering, ICSE ’23, pp. 1430–1442. IEEE Press, 2023. ISBN 9781665457019. doi: 10.1109/
ICSE48619.2023.00125. URL https://doi.org/10.1109/ICSE48619.2023.00125.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C.H. Hoi. CodeRL:
Mastering Code Generation through Pretrained Models and Deep Reinforcement Learning. arXiv
preprint, abs/2207.01780, 2022.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. BART: Denoising Sequence-to-Sequence Pre-training for
Natural Language Generation, Translation, and Comprehension, 2019.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro,
Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason
Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas,
Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,
Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun
Guha, Leandro von Werra, and Harm de Vries. StarCoder: may the source be with you!, 2023.

Ruigang Liang, Ying Cao, Peiwei Hu, and Kai Chen. Neutron: an attention-based neural decompiler.
Cybersecurity, 4(1):5, 2021. ISSN 2523-3246. doi: 10.1186/s42400-021-00070-0. URL https:
//doi.org/10.1186/s42400-021-00070-0.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, Wei Yang, and Deheng Ye. RLTF:
Reinforcement Learning from Unit Test Feedback, 2023.

13

https://www.usenix.org/conference/usenixsecurity19/presentation/guler
https://arxiv.org/abs/2302.05319
http://dx.doi.org/10.14722/bar.2022.23009
http://dx.doi.org/10.14722/bar.2022.23009
https://arxiv.org/abs/2311.12351
https://arxiv.org/abs/2311.12351
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.1186/s42400-021-00070-0
https://doi.org/10.1186/s42400-021-00070-0

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov,
Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul,
Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii,
Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan
Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov,
Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri
Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa
Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. StarCoder 2 and The Stack
v2: The Next Generation, 2024. URL https://arxiv.org/abs/2402.19173.

Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. Semantics-Based Obfuscation-
Resilient Binary Code Similarity Comparison with Applications to Software Plagiarism Detection.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pp. 389–400, New York, NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450330565. doi: 10.1145/2635868.2635900. URL https://doi.org/10.
1145/2635868.2635900.

Jean-Phillipe Martin, Michael Hicks, Manuel Costa, Periklis Akritidis, and Miguel Castro. Dy-
namically checking ownership policies in concurrent c/c++ programs. SIGPLAN Not., 45
(1):457–470, jan 2010. ISSN 0362-1340. doi: 10.1145/1707801.1706351. URL https:
//doi.org/10.1145/1707801.1706351.

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang Shen, Aditya Prasad, Adriana Meza Soria,
Michele Merler, Parameswaran Selvam, Saptha Surendran, Shivdeep Singh, Manish Sethi, Xuan-
Hong Dang, Pengyuan Li, Kun-Lung Wu, Syed Zawad, Andrew Coleman, Matthew White, Mark
Lewis, Raju Pavuluri, Yan Koyfman, Boris Lublinsky, Maximilien de Bayser, Ibrahim Abdelaziz,
Kinjal Basu, Mayank Agarwal, Yi Zhou, Chris Johnson, Aanchal Goyal, Hima Patel, Yousaf
Shah, Petros Zerfos, Heiko Ludwig, Asim Munawar, Maxwell Crouse, Pavan Kapanipathi, Shweta
Salaria, Bob Calio, Sophia Wen, Seetharami Seelam, Brian Belgodere, Carlos Fonseca, Amith
Singhee, Nirmit Desai, David D. Cox, Ruchir Puri, and Rameswar Panda. Granite Code Models:
A Family of Open Foundation Models for Code Intelligence, 2024. URL https://arxiv.org/
abs/2405.04324.

Minh Huynh Nguyen, Nghi D. Q. Bui, Truong Son Hy, Long Tran-Thanh, and Tien N. Nguyen.
HierarchyNet: Learning to Summarize Source Code with Heterogeneous Representations, 2023.
URL https://arxiv.org/abs/2205.15479.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. A Conversational Paradigm for Program Synthesis. arXiv preprint, 2022.

OpenAI. GPT-4 Technical Report, 2023.

Kexin Pei, Zhou Xuan, Junfeng Yang, Suman Jana, and Baishakhi Ray. Trex: Learning execution
semantics from micro-traces for binary similarity. arXiv preprint arXiv:2012.08680, 2020.

Kexin Pei, Jonas Guan, Matthew Broughton, Zhongtian Chen, Songchen Yao, David Williams-King,
Vikas Ummadisetty, Junfeng Yang, Baishakhi Ray, and Suman Jana. StateFormer: Fine-grained
type recovery from binaries using generative state modeling. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pp. 690–702, 2021.

Alec Radford and Karthik Narasimhan. Improving Language Understanding by Generative Pre-
Training. 2018. URL https://api.semanticscholar.org/CorpusID:49313245.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners. 2019.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,

14

https://arxiv.org/abs/2402.19173
https://doi.org/10.1145/2635868.2635900
https://doi.org/10.1145/2635868.2635900
https://doi.org/10.1145/1707801.1706351
https://doi.org/10.1145/1707801.1706351
https://arxiv.org/abs/2405.04324
https://arxiv.org/abs/2405.04324
https://arxiv.org/abs/2205.15479
https://api.semanticscholar.org/CorpusID:49313245

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code Llama: Open Foundation Models for Code, 2023.

Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan, and Zhendong Su. Detect-
ing Code Clones in Binary Executables. In Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, ISSTA ’09, pp. 117–128, New York, NY, USA, 2009. Associa-
tion for Computing Machinery. ISBN 9781605583389. doi: 10.1145/1572272.1572287. URL
https://doi.org/10.1145/1572272.1572287.

Calif. Sausalito. Cybercrime Bytes: 10 Hot Security Certs, Public Safety Hacked, Intru-
sion’s Shield. Cybercrime Magazine, 2020. URL https://cybersecurityventures.com/
cybercrime-bytes-10-hot-security-certs-public-safety-hacked-intrusions-shield/.

Ensheng Shi, Yanlin Wang, Lun Du, Hongyu Zhang, Shi Han, Dongmei Zhang, and Hongbin Sun.
CAST: Enhancing Code Summarization with Hierarchical Splitting and Reconstruction of Abstract
Syntax Trees. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih (eds.), Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 4053–4062, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.332. URL https:
//aclanthology.org/2021.emnlp-main.332.

Chad Spensky, Hongyi Hu, and Kevin Leach. LO-PHI: Low-Observable Physical Host Instrumenta-
tion for Malware Analysis. 2016.

Benjamin Steenhoek, Md Mahbubur Rahman, Richard Jiles, and Wei Le. An Empirical Study of Deep
Learning Models for Vulnerability Detection. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), pp. 2237–2248, 2023. doi: 10.1109/ICSE48619.2023.00188.

Zian Su, Xiangzhe Xu, Ziyang Huang, Zhuo Zhang, Yapeng Ye, Jianjun Huang, and Xiangyu Zhang.
CodeArt: Better Code Models by Attention Regularization When Symbols Are Lacking, 2024.

Hanzhuo Tan, Qi Luo, Jing Li, and Yuqun Zhang. LLM4Decompile: Decompiling Binary Code with
Large Language Models, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation Language
Models. arXiv preprint arXiv:2302.13971, 2023.

Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE. Journal of
Machine Learning Research, 9(86):2579–2605, 2008. URL http://jmlr.org/papers/v9/
vandermaaten08a.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Hao Wang, Wenjie Qu, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, and Chao Zhang.
JTrans: Jump-Aware Transformer for Binary Code Similarity Detection. In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2022, pp.
1–13, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393799.
doi: 10.1145/3533767.3534367. URL https://doi.org/10.1145/3533767.3534367.

Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan, Petr Babkin, and
Sameena Shah. How Effective Are Neural Networks for Fixing Security Vulnerabilities. In
Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2023, pp. 1282–1294, New York, NY, USA, 2023. Association for Computing Machinery.
ISBN 9798400702211. doi: 10.1145/3597926.3598135. URL https://doi.org/10.1145/
3597926.3598135.

15

https://doi.org/10.1145/1572272.1572287
https://cybersecurityventures.com/cybercrime-bytes-10-hot-security-certs-public-safety-hacked-intrusions-shield/
https://cybersecurityventures.com/cybercrime-bytes-10-hot-security-certs-public-safety-hacked-intrusions-shield/
https://aclanthology.org/2021.emnlp-main.332
https://aclanthology.org/2021.emnlp-main.332
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3533767.3534367
https://doi.org/10.1145/3597926.3598135
https://doi.org/10.1145/3597926.3598135

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated Program Repair in the Era
of Large Pre-Trained Language Models. In Proceedings of the 45th International Conference on
Software Engineering, ICSE ’23, pp. 1482–1494. IEEE Press, 2023. ISBN 9781665457019. doi:
10.1109/ICSE48619.2023.00129. URL https://doi.org/10.1109/ICSE48619.2023.00129.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient Streaming
Language Models with Attention Sinks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Xiangzhe Xu, Shiwei Feng, Yapeng Ye, Guangyu Shen, Zian Su, Siyuan Cheng, Guanhong Tao,
Qingkai Shi, Zhuo Zhang, and Xiangyu Zhang. Improving Binary Code Similarity Transformer
Models by Semantics-Driven Instruction Deemphasis. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2023, pp. 1106–1118, New
York, NY, USA, 2023a. Association for Computing Machinery. ISBN 9798400702211. doi:
10.1145/3597926.3598121. URL https://doi.org/10.1145/3597926.3598121.

Xiangzhe Xu, Zhuo Zhang, Shiwei Feng, Yapeng Ye, Zian Su, Nan Jiang, Siyuan Cheng, Lin Tan,
and Xiangyu Zhang. LmPa: Improving Decompilation by Synergy of Large Language Model and
Program Analysis, 2023b.

Zhaoyan Xu, Antonio Nappa, Robert Baykov, Guangliang Yang, Juan Caballero, and Guofei Gu.
AUTOPROBE: Towards Automatic Active Malicious Server Probing Using Dynamic Binary
Analysis. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, pp. 179–190, New York, NY, USA, 2014. Association for Computing Machinery.
ISBN 9781450329576. doi: 10.1145/2660267.2660352. URL https://doi.org/10.1145/
2660267.2660352.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical
Attention Networks for Document Classification. In Kevin Knight, Ani Nenkova, and Owen
Rambow (eds.), Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 1480–1489, San
Diego, California, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/
N16-1174. URL https://aclanthology.org/N16-1174.

Wang Yue, Wang Weishi, Joty Shafiq, and C.H. Hoi Steven. CodeT5: Identifier-aware Unified
Pre-trained Encoder-Decoder Models for Code Understanding and Generation. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, 2021.

Zhuo Zhang, Yapeng Ye, Wei You, Guanhong Tao, Wen-chuan Lee, Yonghwi Kwon, Yousra Aafer,
and Xiangyu Zhang. OSPREY: Recovery of Variable and Data Structure via Probabilistic Analysis
for Stripped Binary. In 2021 IEEE Symposium on Security and Privacy (SP), pp. 813–832, 2021.
doi: 10.1109/SP40001.2021.00051.

A APPENDIX

A.1 DATA COLLECTION

This section provides additional details of the data collection. To collect assemblies from The-Stack,
we attempt to compile 4 million C programs, of which 138.8K is compiled successfully. We do not
collect more due to the computation resource limitations.

For the 757.1K and 138.8K source code that successfully compiled into executables (using gcc)
from AnghaBench and The-Stack, we disassemble them using objdump. objdump was not able to
successfully disassemble all the executables, resulting in some empty assembly code. Thus, the
number of O0 – O1 we obtain from each corpus is different and smaller than the number of source
codes as shown in Table 1.

Figure 6 shows an example of preprocessing the raw assembly code as described in Section 3.1.

16

https://doi.org/10.1109/ICSE48619.2023.00129
https://openreview.net/forum?id=NG7sS51zVF
https://doi.org/10.1145/3597926.3598121
https://doi.org/10.1145/2660267.2660352
https://doi.org/10.1145/2660267.2660352
https://aclanthology.org/N16-1174

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0: endbr64
4: push %rbp
5: mov %rsp,%rbp
8: mov %rdi,-0x8(%rbp)
c: mov %rsi,-0x10(%rbp)
10: mov -0x8(%rbp),%rax
14: mov (%rax),%edx
16: mov -0x10(%rbp),%rax
1a: mov (%rax),%eax
1c: cmp %eax,%edx
...

endbr64 [INST-0]
push rbp [INST-1]
mov rsp , rbp [INST-2]
mov rdi , -8 (rbp) [INST-3]
mov rsi , -16 (rbp) [INST-4]
mov -8 (rbp) , rax [INST-5]
mov (rax) , edx [INST-6]
mov -16 (rbp) , rax [INST-7]
mov (rax) , eax [INST-8]
cmp eax , edx [INST-9]
...

(a) Raw Assembly (b) Normalized Assembly

Figure 6: Example of assembly code preprocessing

Table 10: Comparison with applying hierarchical attention on all attention heads, using 1B models.

Techniques Pass@1 Pass@10
O0 O1 O2 O3 Avg. O0 O1 O2 O3 Avg.

Nova−HA 30.58 19.88 20.58 16.40 21.86 44.75 33.13 33.31 29.82 35.25
Nova (hierarchical on all heads) 32.38 18.87 20.56 16.34 22.04 45.95 32.19 32.78 29.01 34.98
Nova 37.53 21.71 22.68 18.75 25.17 49.38 34.84 36.95 32.03 38.30

A.2 TRAINING DETAILS

This section provides additional details of training. We pre-train Nova starting from DeepSeek-Coder,
using the language modeling objective (Llm) for one epoch on the C functions and assembly functions
collected from AnghaBench and The-Stack corpora. This step uses a batch size of 128, with the input
truncated by a 1,024 tokens limit. The model weights are updated using the AdamW optimizer. The
learning rate is 5e−5, using 1000 steps of warm-up and a cosine decay to adjust the learning rate.

Then, the model is further pre-trained with the combination of language modeling and contrastive
learning objectives (L = Llm + λ(Lfcl + Locl)), with λ set to 0.1. To train with the functionality
contrastive learning objective, we discard any source code that misses any one of O0 – O3 assemblies
and also discard the source code whose O2 assembly is the same as its O3 assembly. As a result,
this step is only trained for 0.36M data samples for one epoch. The batch size is 64, with the input
truncated by a 1,024 tokens limit. The learning rate is 2e−5 using the AdamW optimizer.

The fine-tuning of both BCD and BCSD uses a batch size of 64, with the input truncated by a
2,048 token limit. Similarly, the learning rate is 2e−5 using the AdamW optimizer, and the model
is fine-tuned for one epoch. During the training using the contrastive learning objectives, and the
fine-tuning of BCSD, we use the average of [INST] tokens’ last layer hidden states to represent the
embedding of a binary function.

Infrastructure The training are conducted on eight NVIDIA RTX A100 GPUs, each with 40GB
memory. Our implementation is based on Huggingface’s implementation of DeepSeek-Coder 1,
PyTorch 2, and DeepSpeed 3.

A.3 APPLYING HIERARCHICAL ATTENTION ON HALF ATTENTION HEADS

The hierarchical attention mask is always applied on half of the attention heads at each layer in
Nova. This ensures the LLM balances the hierarchical knowledge of assembly code and pre-trained
knowledge learned by full self-attention.

We conducted experiments applying hierarchical attention to all the attention heads. Results in
Table 10 show that when applying hierarchical attention to all the attention heads of transformer
layers, the performance does not improve enough and even drops under some settings. This implies
that the standard full self-attention mechanism indeed learns knowledge that may not be captured by
hierarchical attention. Thus, we only apply hierarchical attention to half of the attention heads in each
transformer layer of Nova to balance the knowledge learned by standard and hierarchical attention.

1https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base
2https://pytorch.org/get-started/locally/
3https://github.com/microsoft/DeepSpeed

17

https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-base
https://pytorch.org/get-started/locally/
https://github.com/microsoft/DeepSpeed

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4 ADDITIONAL ABLATION STUDY ON BINARY CODE DECOMPILATION

We provide additional ablation studies on studying the impact of each individual contrastive learning
objective. We study two more models:

• Nova−FCL−HA: Removing functional contrastive learning and hierarchical self-attention.
• Nova−OCL−HA: Removing optimization contrastive learning and hierarchical self-attention.

Table 11 shows that each component of the contrastive learning brings certain improvements to the
Pass@1 and Pass@10 on HumanEval-Decompile, and we find the impact of function contrastive
learning (FCL) is larger than the impact of optimization contrastive learning (OCL), suggesting that
aligning the model’s embeddings for assembly code with the same functionality is more useful.

Table 11: Ablation study of Nova-1B on HumanEval-Decompile.

Techniques Pass@1 Pass@10
O0 O1 O2 O3 Avg. O0 O1 O2 O3 Avg.

Nova−CL−HA 20.73 16.16 15.03 11.19 15.78 33.55 28.12 26.96 21.01 27.41
Nova−FCL−HA 22.38 16.20 16.37 13.25 17.05 36.13 29.48 30.02 23.76 29.85
Nova−OCL−HA 28.44 18.87 18.53 15.76 20.40 40.28 32.33 31.80 27.05 32.87
Nova−HA 30.58 19.88 20.58 16.40 21.86 44.75 33.13 33.31 29.82 35.25
Nova 37.53 21.71 22.68 18.75 25.17 49.38 34.84 36.95 32.03 38.30

<func0>:
0: endbr64
4: test %esi, %esi
6: jle 48 <func0+0x48>
8: lea -0x1(%rsi), %ecx
b: add $0x1, %rcx
f: mov $0x1, %edx
14: movss 0x0(%rip), %xmm3
1b: 00
1c: cmp %rcx, %rdx
1f: je 4e <func0+0x4e>
21: movss -0x4(%rdi, %rdx, 4), %xmm2
27: mov %rdx,%rax
2a: movaps %xmm2, %xmm1
2d: subss (%rdi, %rax, 4), %xmm1
32: andps %xmm3, %xmm1
35: comiss %xmm1, %xmm0
38: ja 54 <func0+0x54>
3a: add $0x1, %rax
3e: cmp %eax, %esi
40: jg 2a <func0+0x2a>
42: add $0x1, %rdx
46: jmp 1c <func0+0x1c>
48: mov $0x0, %eax
4d: retq
4e: mov $0x0, %eax
53: retq
54: mov $0x1, %eax
59: retq

int func0(float *arr, int n) {
 for (int i = 1; i < n; i++) {
 for (int j = 0; j < i; j++) {
 if (fabs(arr[i] - arr[j]) < 1.0f)
 return 1;
 }
 }
 return 0;
}

int func0(float *a, int n, float e) {
 int i, j;
 for (i = 0; i < n; i++)
 for (j = i + 1; j < n; j++)
 if (fabs(a[i] - a[j]) < e)
 return 1;
 return 0;
}O1 Assembly Code

Nova's Correct
Decompilation

GPT-4's Incorrect
Decompilation

int func0(const float *x, int n) {
 int i;
 float diff = 1.0f;
 for (i = 1; i < n; i++) {
 if (fabs(x[i] - x[i-1]) > diff)
 return 0;
 return 1;
} LLM4Decompile's Incorrect

Decompilation

Figure 7: Nova-1B correctly decompiles HumanEval-Decompile task 0.

A.5 BINARY CODE DECOMPILATION CASE STUDIES

Figure 7 shows an example from HumanEval-Decompile (task id 0). Given the O1-optimized
assembly code, GPT-4 fails to figure out the number of function arguments correctly, missing one
important argument “float e”, and thus produces wrong functionality in the decompiled code.
LLM4Decompile-1B makes similar mistakes and also misses the inner nested for loop. Nova-1B
correctly decompiles the assembly into source code, where the ground truth is checking if any two
elements in the given list *a (with size n) are close to each other than a given threshold e.

Figure 8 shows another more complex example, HumanEval-Decompile task id 20. Nova-1B
correctly decompiles the source code, successfully figuring that the function is trying to find the two
elements that are closest to each other in the given array *a, with the result stored in minmax.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

<func0>:
0: endbr64
4: movss (%rdi), %xmm0
8: movss %xmm0, (%rdx)
c: movss 0x4(%rdi), %xmm1
11: movss %xmm1, 0x4(%rdx)
16: test %esi, %esi
18: jle 8b <func0+0x8b>
1a: lea -0x1(%rsi), %r9d
1e: mov $0x1, %r8d
24: mov %rdi, %rcx
27: movss 0x0(%rip), %xmm2
2e: 00
2f: add $0x1, %r9
33: movss 0x0(%rip), %xmm3
3a: 00
3b: cmp %r8, %r9
3e: je 82 <func0+0x82>
40: mov %r8, %rax
43: nopl 0x0(%rax, %rax, 1)
48: movss (%rcx), %xmm1
4c: movaps %xmm1, %xmm0
4f: subss (%rdi, %rax, 4), %xmm0
54: andps %xmm3, %xmm0
57: comiss %xmm0, %xmm2
5a: jbe 6d <func0+0x6d>
5c: movss %xmm1, (%rdx)
60: movss (%rdi, %rax, 4), %xmm1
65: movaps %xmm0, %xmm2
68: movss %xmm1, 0x4(%rdx)
6d: add $0x1, %rax
71: cmp %eax, %esi
73: jg 48 <func0+0x48>
75: add $0x1, %r8
79: add $0x4, %rcx
...
99: retq

void func0(float *a, int n, float
*minmax) {
 minmax[0] = a[0];
 minmax[1] = a[1];

 for (int i = 0; i < n; i++) {
 for (int j = i + 1; j < n; j++) {
 float diff = fabs(a[i] - a[j]);
 if (diff < minmax[1] - minmax[0])
 {
 minmax[0] = a[i];
 minmax[1] = a[j];
 }
 }
 }

 if (minmax[0] > minmax[1]) {
 float temp = minmax[0];
 minmax[0] = minmax[1];
 minmax[1] = temp;
 }
}

void func0(float *a, int n, float *b) {
 int i, j;
 float min, max;

 min = max = a[0];
 for (i = 1; i < n; i++) {
 if (a[i] < min)
 min = a[i];
 else if (a[i] > max)
 max = a[i];
 }
 b[0] = min;
 b[1] = max;
}

O2 Assembly Code
Nova's Correct
Decompilation

LLM4Decompile's Incorrect
Decompilation

Figure 8: Nova-1B correctly decompiles HumanEval-Decompile task 20.

Benchmarks Nova−CL−HA Nova−HA Nova-1B

Binutils 0.86 0.88 0.87
Curl 0.84 0.87 0.89
ImageMagick 0.79 0.80 0.86
SQLite 0.80 0.83 0.77
OpenSSL 0.90 0.92 0.90
Putty 0.68 0.66 0.72

Avg. 0.81 0.83 0.84

Table 12: Ablation study with K = 50.

Benchmarks Nova−CL−HA Nova−HA Nova-1B

Binutils 0.80 0.82 0.79
Curl 0.84 0.84 0.86
ImageMagick 0.70 0.72 0.79
SQLite 0.74 0.78 0.73
OpenSSL

::
0.89

:::
0.89 0.88

Putty 0.59 0.60 0.65

Avg. 0.76
:::
0.78

::
0.78

Table 13: Ablation study with K = 100.

Benchmarks Nova−CL−HA Nova−HA Nova-1B

Binutils 0.71 0.74 0.73
Curl 0.80 0.73 0.83
ImageMagick 0.61 0.63 0.73
SQLite 0.68 0.71 0.68
OpenSSL 0.85 0.87 0.84
Putty 0.53 0.53 0.55

Avg. 0.70 0.70 0.73

Table 14: Ablation study with K = 200.

Benchmarks Nova−CL−HA Nova−HA Nova-1B

Binutils 0.62
:::
0.65

::
0.65

Curl 0.67 0.71 0.73
ImageMagick 0.46 0.51 0.61
SQLite 0.61 0.62 0.59
OpenSSL 0.77 0.79 0.78
Putty 0.46 0.46 0.47

Avg. 0.60 0.62 0.64

Table 15: Ablation study with K = 500.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.6 BINARY CODE SIMILARITY DETECTION ABLATION STUDY

Table 12, 13, 14, 15 show the detailed ablation study results of BCSD. Nova wins on the most
benchmarks when K = 100 or 500, and ties with Nova−HA when K = 50, or 200.

Task 34

Task 32
Task 128

Task 63

Task 143

Task 119

Task 19

(c) Nova's Embeddings(a) Nova-CL-HA's Embeddings (b) Nova-HA's Embeddings

Task 143

O0 assemblies
O1 assemblies
O2 assemblies
O3 assemblies

Figure 9: PCA of embeddings calculated by Nova−CL−HA, Nova−HA, and Nova.

A.7 ADDITIONAL ANALYSIS OF EMBEDDING

Figure 9 shows the results of PCA of embeddings provided by Nova−CL−HA, Nova−HA, and
Nova, on randomly sampled seven examples, where Nova’s embeddings are consistently more
distinguishable by functionalities.

Figure 10: Comparison of attention distribution among standard and hierarchical heads.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.8 ADDITIONAL ANALYSIS OF ATTENTION

Figure 11: Learned per-instruction soft attention observed in the lower layers

Figure 10 shows the visualizations of attention weights in the final transformer layer of two select
heads with standard attention and two heads with learned hierarchical attention. Standard attention
exhibits two typical patterns, namely diagonal attention (i.e. tokens attending to themselves or nearby
tokens, shown in Figure 10 (a)), and broad attention (i.e. a single token attending broadly to the entire
sequence, shown in Figure 10 (b)). In contrast, in Nova’s hierarchical attention, attention weights are
allocated among distinct segments, each corresponding to an instruction (shown in Figure 10 (c)),
that focus on tokens comprising that instruction (e.g. opcodes and operands, shown in Figure 10 (d),
attentions are paid to “push”, “mov”, etc.).

Quantitatively, we have determined broad attention accounts for as much as 30% of all attention in
standard heads, especially in layers 1-8 (consistent with the findings of (Clark et al., 2019)), whereas
in Nova’s hierarchical attention, no more than 5% or all attention is allocated to each instruction
segment. This validates our goal of learning instruction-aware hierarchical attention in Nova.

In addition, in lower layers, we have observed attention weights to be softly distributed among tokens
comprising each instruction (Figure 11), which suggests Nova initially models cross-relations among
operation codes and operands in the first few layers, and later pools their summary representation
into the [INST] token in the later layers.

21

	Introduction
	Related Work
	Binary Models
	Large Source-Code Models
	Attention Mechanism

	Approach
	Data Collection
	Hierarchical Self-Attention
	Contrastive Learning
	Task 1: Binary Code Decompilation
	Task 2: Binary Code Similarity Detection

	Experimental Setup
	Pre-Training
	Fine-Tuning for Binary Code Decompilation
	Fine-Tuning for Binary Code Similarity Detection

	Results
	Binary Code Decompilation
	Binary Code Similarity Detection
	Analytic Experiments: How are Nova's embeddings better?

	Limitations
	Conclusion
	Appendix
	Data Collection
	Training Details
	Applying Hierarchical Attention on Half Attention Heads
	Additional Ablation Study on Binary Code Decompilation
	Binary Code Decompilation Case Studies
	Binary Code Similarity Detection Ablation Study
	Additional Analysis of Embedding
	Additional Analysis of Attention

