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ABSTRACT

Many combinatorial optimization problems in routing, scheduling, and assignment
involve parameters such as price or travel time that must be predicted from data;
so-called predict-then-optimize (PtO) problems. Decision-focused learning (DFL)
is a family of successful end-to-end techniques for PtO that trains machine learning
models to minimize the error of the downstream optimization problems. For each
instance, this requires computing the derivative of the optimization problem’s
solution with respect to the predicted input parameters. Previous works in DFL
employ two main approaches when the parameters appear linearly in the objective:
(a) using a differentiable surrogate loss instead of regret; or (b) turning the com-
binatorial optimization problem into a differentiable mapping by smoothing the
optimization to a quadratic program or other smooth convex optimization problem
and minimizing the regret of that. We argue that while smoothing makes the
optimization differentiable, for a large part, the derivative remains approximately
zero almost everywhere, with highly non-zero values near the transition points.
To address this plateau effect, we propose minimizing a surrogate loss even after
smoothing. We experimentally demonstrate the advantage of minimizing surrogate
losses instead of the regret after smoothing across a series of problems. Further-
more, we show that by minimizing a surrogate loss, a recently developed fast, fully
neural optimization layer matches state-of-the-art performance while dramatically
reducing training time up to five-fold. Thus, our paper opens new avenues for
efficient and scalable DFL techniques.

1 INTRODUCTION

Many decision-making problems in real-world can be cast as optimization problems. Some parameters
of these optimization problems are often unknown due to uncertainty or the anticipation of future
events. As prediction of these parameters is crucial for making high-quality decisions, leveraging
contextual information is important at prediction time. The availability of historical data, combined
with the rapid growth of predictive machine learning (ML), has fueled increasing interest in data-
driven contextual optimization (Sadana et al., 2025).

When the goal is to predict parameters (such as cost or travel time) of an optimization problem,
such problems can be viewed as “predict-then-optimize”(PtO) problems, including two key steps—
the prediction of the unknown parameters and the subsequent optimization using those predicted
parameters. Prediction-focused learning is the approach to tackle PtO problems by treating the
prediction step independent of the optimization step, based on the assumption that increasing accuracy
of predictions would lead to good quality decisions. However, in practice, ML models fail to achieve
100% accuracy, and in the presence of prediction errors, such a prediction-focused approach fails
to consider how the error in predictions impacts the solution to the optimization problem. This fact
motivates the research in decision-focused learning (DFL), as surveyed by Mandi et al. (2024).

DFL trains ML models to predict the uncertain parameters by directly minimizing the task loss,
which reflects the quality of the solutions made using the predicted parameters. Gradient-based
DFL entails computing the derivative of the optimization problem’s solution with respect to the
predicted parameters. However, for combinatorial optimization problems, this derivative is almost
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always zero because slight parameter changes typically do not alter the solution, except at certain
transition points where the derivative does not exist. In this paper, we focus on predicting parameters
of combinatorial optimization problems, where the predicted parameters appear linearly in the
objective function. Previous works in DFL use two broad categories of approaches: (a) turning the
combinatorial optimization problem into a differentiable mapping by smoothing the optimization to a
convex optimization problem (Wilder et al., 2019; Mandi & Guns, 2020), and then minimizing the
task loss, and (b) using surrogate loss functions (Elmachtoub & Grigas, 2022; Mulamba et al., 2021;
Mandi et al., 2022), for which gradients or subgradients exist.

The existing DFL literature views these two approaches separately. Consequently, minimizing the
task loss of the smoothed problem is the standard approach in category (a). However, while smoothing
makes the optimization differentiable, excessive smoothing can cause the solution to the “smoothed"
problem to deviate significantly from the original solution. In practice, the smoothing strength is kept
reasonably low to ensure that it does not overshadow the true objective of the original optimization
problem. We argue that, with a moderate level of smoothing, the derivative remains nearly zero in
most regions, becoming highly non-zero only at transition points. For this reason, we propose to
minimize the surrogate loss, even though it is possible to minimize regret directly by differentiating
through the smoothed optimization problem. We justify the advantage of using a surrogate loss by
comparing the pattern of the gradient landscape with respect to regret and the surrogate loss. In
this way, this paper combines the two approaches of DFL. This allows us to accelerate DFL by
minimizing surrogate loss using a fast differentiable optimization layer.

In summary, this paper makes the following contributions:

• To address the plateau effect which occurs even after smoothing, we combine the two
families of DFL approaches by minimizing a surrogate loss post-smoothing.

• We empirically demonstrate that for smoothing approaches, minimizing surrogate losses
results in lower regret on test data than minimizing the regret. This highlights the benefit of
minimizing the surrogate loss even when the optimization problem is smoothed.

• To improve the scalability of DFL, McKenzie et al. (2024) recently developed a fast, fully
differentiable neural optimization layer for linear programs (LPs). We demonstrate that
minimizing the surrogate loss using this optimization layer achieves regret comparable to
existing state-of-the-art methods while reducing training time by up to five-fold.

2 PREDICT-THEN-OPTIMIZE PROBLEM DESCRIPTION

In PtO problems, decisions are made by solving constrained optimization (CO) problems. In this
work, we focus on CO problems with linear objectives and the prediction of objective function
parameters. These CO problems can be formulated as LPs or integer LPs (ILPs), both of which have
extensive practical applications. Any LP can be transformed in the following standard LP form:

v⋆(y) = argmin
v

y⊤v s.t. Av = b; v ≥ 0 (1)

where v ∈ RK is a decision variable and v⋆(y) is the optimal solution for a given cost parameter
y ∈ RK . ILPs differ from LPs in that the decision variables v are restricted to integer values. For
brevity, we use F to denote the feasible space. So, for the standard LP formulation, F = {v ∈
RK |Av = b ;v ≥ 0}. Unless it is explicitly stated otherwise, v⋆ will denote v⋆(y).

To account for uncertainty in the decision-making, PtO problems comprise two steps—the prediction
of the unknown parameters and solving the optimization problem using the predicted parameters.
We consider PtO formulation, where the vector of cost parameters y is not known prior to solving.
Instead, a list of contextual information ϕ, correlated with y is available for predicting y. In PtO
problems, an ML model Mω (with trainable parameters ω) is trained to map ϕ → y using past
observation pairs {(ϕi,yi)}Ni=1. Given their success in predictive tasks, neural networks have become
the preferred choice for the predictive modeling task in PtO problems.

A straightforward approach to the PtO problem is to train Mω to generate accurate parameter
predictions ŷ = Mω(ϕ) by minimizing the prediction errors with respect to ground-truth y. Previous
works (Wilder et al., 2019; Elmachtoub & Grigas, 2022; Mandi et al., 2020) justify why such a
prediction-focused approach produces suboptimal performance. By contrast, in decision-focused
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learning (DFL), the ML model is directly trained to optimize the task loss, the quality of the resulting
decisions. When only the parameters in the objective function are predicted, the task loss of interest is
typically regret, which measures the suboptimality of a decision resulting from prediction errors. The
regret for making the decisions v under the true realization y can be expressed in the following form:

Regret(v,y) = y⊤v − y⊤v⋆(y) (2)

In PtO problems, one can consider other task losses, such as squared decision errors (SqDE) between
v⋆(y) and v⋆(ŷ), i.e., SqDE = ||v⋆(y)− v⋆(ŷ)||2.

3 DECISION-FOCUSED LEARNING FOR COMBINATORIAL OPTIMIZATION

The DFL approach trains Mω to directly minimize 1
N

∑N
i=1 Regret(v

∗(Mω(ϕi)),yi), the empirical
risk minimization counterpart of E[Regret(v∗(Mω(ϕ)),y)] since the true distribution is unknown.
This minimization of regret in gradient descent-based learning requires backpropagation through
the CO problem, which involves computing the derivative of v⋆(ŷ) with respect to ŷ = Mω(ϕ).
While dv⋆(ŷ)

dŷ can be computed for convex optimization problems through implicit differentiation
(Agrawal et al., 2019; Amos & Kolter, 2017), it is more challenging when the optimization problem
is combinatorial. This is because when the parameters of a CO problem change, the solution either
remains unchanged or shifts abruptly, meaning the derivatives are almost always zero and undefined
at abrupt changes.

Broadly there are two approaches of implementing DFL for CO problems: (a) smoothing the CO
to a smooth convex optimization problem and (b) using a surrogate loss that is differentiable. For a
detailed discussion on how existing DFL techniques tackle this challenge, we refer readers to the
survey paper by Mandi et al. (2024).

3.1 DIFFERENTIABLE OPTIMIZATION BY SMOOTHING OF COMBINATORIAL OPTIMIZATION

Differentiable optimization represents an optimization problem as a differentiable mapping from its
parameters to its solution. Since for a combinatorial problem, this mapping is not differentiable, one
prominent research direction in DFL involves smoothing the combinatorial optimization problem
into a differentiable optimization problem. We particularly focus on smoothing by regularization.
There exists another from of smoothing—smoothing by perturbation, as proposed by Pogančić et al.
(2020); Blondel et al. (2020); Niepert et al. (2021); Sahoo et al. (2023). In this work, we focus on
optimization problems with linear objective functions such as LPs and ILPs. For an LP, the solution
will always lie in one of the vertices of the LP simplex. So, the LP solution remains unchanged
as long as the cost vector changes while staying within the corresponding normal cone (Boyd &
Vandenberghe, 2004). However, the solution will suddenly switch to a different vertex if the cost
vector slightly moves outside the normal cone, as illustrated in Figure 1a. Because the solution
abruptly jumps between the vertices, the LP solution is not a differentiable function of the cost vector.

To address this, methodologies under analytical smoothing first modify the optimization problem
and then analytically differentiate the modified optimization problem. For LPs, Wilder et al. (2019)
propose transforming the LPs into ‘smoothed’ quadratic programs (QPs) by augmenting the objective
function with the square of the Euclidean norm of the decision variables in the following form:

min
v

ŷ⊤v + µ∥v∥22 s.t. Av = b ;v ≥ 0 (3)

where µ ≥ 0 is the smoothing parameter, controlling the strength of smoothing. After smoothing, the
solution is not restricted to being at a vertex of the LP polyhedron. In the ‘smoothed’ problem, unlike
the original LP, the solution do not change abruptly. The solution either may not change or change
smoothly with the change of the cost vector, as illustrated in Figure 1b. Consequently, v⋆(ŷ) becomes
differentiable with respect to ŷ. The QP smoothing approach has been applied in various DFL works
(Ferber et al., 2020; 2023; McKenzie et al., 2024). Mandi & Guns (2020) consider another form of
smoothing by adding logarithm barrier term into the LP. When the underlying optimization problem
is an ILP, smoothing of the LP, resulting from the continuous relaxation of the ILP is carried out.
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(a) LP Solutions (b) Solutions to the QP smoothing

Figure 1: Schematic diagram showing the effect of QP smoothing. (a) LP solutions and the corre-
sponding isocost line for four cost vectors. The green, cyan and red cost vectors result in the same
solution, the top vertex, highlighting that a slight rotation of the isocost lines may not alter the LP
solution. However, if the isocost lines rotate too much, for example, the violet line, the solution
suddenly shifts to a different vertex. (b) The isocost lines change after applying QP smoothing, and
the solution is no longer restricted to a vertex. For example, the red vector results in a smooth change
in the solution. However, even with smoothing, some cost vectors, like the cyan and green, may still
share the same solution.

3.2 SURROGATE LOSSES FOR DFL

Surrogate loss functions are used for training in DFL because they are crafted to have non-zero
(sub)gradients everywhere while also directly correlating with the task loss—as regret decreases,
surrogate loss functions decrease as well. We focus on two surrogate loss functions, used widely in
DFL.

3.2.1 SMART PREDICT THEN OPTIMIZE(SPO)

The SPO+ loss (Elmachtoub & Grigas, 2022), a convex upper bound of Regret(v⋆(ŷ),y), is one of
the first and most widely used surrogate losses for linear objective optimization problems.

Regret(v⋆(ŷ),y) = y⊤v⋆(ŷ)− y⊤v⋆ = y⊤v⋆(ŷ)− 2ŷ⊤v⋆(ŷ) + 2ŷ⊤v⋆(ŷ)− y⊤v⋆

≤ max
v′∈F

{y⊤v′ − 2ŷ⊤v′}+ 2ŷ⊤v⋆(ŷ)− y⊤v⋆ ≤ max
v′∈F

{y⊤v′ − 2ŷ⊤v′}+ 2ŷ⊤v⋆ − y⊤v⋆︸ ︷︷ ︸
LSPO+ (v⋆(ŷ),y)

Instead of minimizing Regret , they propose to minimize this convex upperbound, which is called
LSPO+(v⋆(ŷ),y) loss. It can be expressed in the following form:

LSPO+(v⋆(ŷ),y) = max
v′∈F

{2ŷ⊤v⋆ − y⊤v⋆ − (2ŷ − y)⊤v′} = (2ŷ − y)⊤v⋆ − min
v′∈F

{(2ŷ − y)⊤v′}

= (2ŷ − y)⊤v⋆ − (2ŷ − y)⊤v⋆(2ŷ − y) (4)

They also propose the following sub-gradient for gradient-based training using any solver of choice:

∇LSPO+ = 2

(
v⋆ − v⋆(2ŷ − y)

)
(5)

3.2.2 CONTRASTIVE LOSS

Mulamba et al. (2021) propose a surrogate loss based on noise-contrastive estimation (NCE) (Gutmann
& Hyvärinen, 2012). The loss is derived by considering the log-likelihood ratio between v⋆ and other
feasible points v′. By maximizing this likelihood, they propose to minimize the following NCE loss:

LNCE(v
⋆(ŷ),y) = max

v′∈F
{ŷ⊤v⋆ − ŷ⊤v′} = ŷ⊤v⋆ − min

v′∈F
{ŷ⊤v′} = ŷ⊤v⋆ − ŷ⊤v⋆(ŷ) (6)

Note that LNCE is similar to LSPO+ , except that in LNCE , 2ŷ − y is replaced with ŷ. This
introduces a shortcoming in LNCE . The minimum of LNCE , which is zero, can be achieved either
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when v⋆(ŷ) = v⋆ or by predicting ŷ = 0. To prevent minimizing LNCE by predicting ŷ = 0,
Mulamba et al. (2021) further modify LNCE to derive the self-contrastive estimation (SCE) loss:

LSCE(v
⋆(ŷ),y) = (ŷ−y)⊤v⋆−(ŷ−y)⊤v⋆(ŷ) = ŷ⊤v⋆−ŷ⊤v⋆(ŷ)+y⊤v⋆(ŷ)−y⊤v⋆(y) (7)

Proposition 1. LSCE(v
⋆(ŷ),y) has the following properties ( proof is given in Appendix A):

1. LSCE(v
⋆(ŷ),y) ≥ 0

2. When the set of optimal solutions is a singleton
LSCE(v

⋆(ŷ),y) = 0 =⇒ Regret(v⋆(ŷ),y) = 0;
Regret(v⋆(ŷ),y) = 0 =⇒ LSCE(v

⋆(ŷ),y) = 0.

When LSCE is minimized using a blackbox optimization solver, the gradient would be:

∇LSCE
= v⋆ − v⋆(ŷ) (8)

4 MINIMIZING SURROGATE LOSS WITH A SMOOTHED SOLVER

Since smoothing converts the non-smooth combinatorial problem into a smooth optimization problem,
existing approaches minimize regret during training. The intuition is that this reduces expected regret
in unseen instances, aligning with the empirical risk minimization paradigm in ML. However, a
close inspection of how the incorporation of smoothing changes the gradient landscape reveals a
shortcoming in this approach.

The introduction of smoothing ensures that the solution transitions smoothly, rather than abruptly,
near the original optimization problem’s transition points. However, the solution of the smoothed
optimization remains unchanged, or changes very slowly, in regions where the original problem’s
solution is constant, provided the smoothing strength is kept low as illustrated in Figure 1b. So in this
region, dv⋆(ŷ)

dŷ is are nearly zero. When regret is minimized, the derivative of it with respect to the ŷ

takes the following form:

∂v⋆(y)

∂y

∣∣∣
y=ŷ

y (9)

where ∂v⋆(y)
∂y

∣∣∣
y=ŷ

is computed by considering the smoothed optimization problem. As we illustrated

above, smoothing addresses the non-differentiability at the transition points, but the derivative dv⋆(ŷ)
dŷ

still remains zero far from these points. Hence, the derivative in Eq. 9 remains zero. This would also
be true if SqDE is considered as the training loss. In this case, the derivative would be:

∂v⋆(y)

∂y

∣∣∣
y=ŷ

(v⋆(ŷ)− v⋆) (10)

In both Eq. 10 and Eq. 9, the derivative turns zero due to ∂v⋆(y)
∂y

∣∣∣
y=ŷ

becoming zero. Consequently,

training by gradient descent would fail to change ŷ despite ŷ resulting non-zero regret.

To prevent the derivative from vanishing far from the transition points, in this paper, we argue in
favour of minimizing a surrogate loss such as noise contrastive loss when the smoothed optimization
problem is considered. For instance, when LSPO+ is minimized, the derivative of the loss with
respect to the ŷ takes the following form:

2
(
v⋆ − v⋆(2ŷ − y)

)
+ 2

∂v⋆(y)

∂y

∣∣∣
y=2ŷ−y

(y − 2ŷ) (11)

Similarly if LSCE is minimized after smoothing, the resulting derivative would be:

(v⋆ − v⋆(ŷ)) +
∂v⋆(y)

∂y

∣∣∣
y=ŷ

(y − ŷ) (12)
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(a) (b)

Figure 2: (a) The numerical illustration demonstrates that while smoothing removes abrupt changes
in the solution and makes the regret continuous, the solution often remains flat across most regions,
resulting in a zero gradient, not suitable for training. In contrast, LSCE (with or without smoothing)
provides a more responsive landscape: when regret is non-zero, LSCE ensures non-zero gradient. (b)
Progression of predictions by epochs when the smoothed regret and SCE are used as training losses.

The way Eq. 12 differs from Eq. 9 is the term (v⋆ − v⋆(ŷ)) and the multiplier of ∂v⋆(y)
∂y

∣∣∣
y=ŷ

is

(y − ŷ) instead of y. The term (v⋆ − v⋆(ŷ)) prevents dL
dŷ going to zero even when dv⋆(ŷ)

dŷ ≈ 0.

Note that if we minimize LSCE or LSPO+ using a blackbox optimization solver, ∂v⋆(y)
∂y cannot be

computed and only the first part of the derivative would be used. So, in this case, Eq. 11 and Eq. 12
would reduce to Eq. 5 and Eq. 8 respectively.

A deep dive into the gradient landscape. To convince readers that the solution of the smoothed
optimization remains unchanged, we will demonstrate how the gradient landscape changes after
QP smoothing with a simple illustration. For this, we consider the following one-dimensional
optimization problem:

min
v

yv s.t. 0 ≤ v ≤ 1 (13)

where y ∈ R is the parameter to be predicted. Note that the solution of this problem is: v⋆(y) = 1 if
y < 0 and v⋆(y) = 0 if y > 0. When y = 0 any value in the interval [0,1] is an optimal solution.

Let us assume that the true value of y is 4 and hence v⋆(y) = 0. The red line in Figure 2a shows how
the value of regret changes as ŷ changes. The regret is 4 when ŷ ≤ 0 and 0 when ŷ > 0. The regret
changes abruptly at the point ŷ = 0. After augmenting the objective with the quadratic smoothing
term µ

2 v
2 with µ > 0 , the solution of the smoothed problem is:

v⋆(y) =


0; when y > 0

− y
µ ; when − µ < y ≤ 0

1; when y ≤ −µ

This makes the derivative non-zero in the interval −µ ≤ y ≤ 0. However, it is still zero when
y < −µ. Hence, if ŷ < −µ, the derivative of regret is 0, even if regret is non-zero. Consequently,
the predictions cannot be changed by gradient descent despite regret being zero. The regret with the
smoothed problem is shown by the blue line in Figure 2a for µ = 6. The strength of smoothing can be
increased by assigning µ to a high value. However, if µ ≫ |y|, v⋆(y) ≈ 0 almost everywhere. On the
other hand, LSCE with and without smoothing are plotted with green and violet colors, respectively.
In both cases, LSCE is strictly decreasing for ŷ < 0. This ensures a non-zero derivative, suitable for
guiding ŷ towards the positive half-space if ŷ < 0.

Example. We further illustrate this with a simple fractional knapsack problem, which is an LP.
Let us consider that we have two items and space for only one item. This can be formulated as a

6
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minimization problem:

min −y1v1 − y2v2 s.t. v1 + v2 ≤ 1; v1, v2 ≥ 0

Let us assume the true values of y1 and y2 are (0.8, 0.4). The corresponding solution is (v1, v2) =
(1, 0). The grey region in Figure 2b corresponds to any predictions satisfying ŷ1 > ŷ2. Such
predictions will induce the true solution, resulting in zero regret. Further assume that the initial
predictions are (ŷ1, ŷ2) = (0.1, 0.01). We show the progression of predictions by epochs when regret
and SCE are used as training loss, using the smoothed optimization problem with blue and green
lines, respectively in Figure 2b. The predictions does not change with training epochs when regret
is used as the loss because the derivatives of regret with respect to ŷ1 and ŷ2 are zero. On the other
hand, when LSCE is used as the loss, (ŷ1, ŷ2) gradually move from the white region to the grey
region, eventually resulting in zero regret. Note that increasing the strength of smoothing may provide
non-zero gradient across the space. But this will entirely alter the optimization problem’s solution.
For instance, in this knapsack example, high values of µ would make both v1 and v2 close to zero.

5 ADDRESSING THE SCALABILITY OF DFL

Implementing DFL entails a significant computational burden, as it requires solving and differentiating
the CO problem for each training instance in every epoch using predicted parameters. While Mulamba
et al. (2021) address this issue by using solution caching instead of repeatedly solving the optimization
problem, a faster and more scalable implementation of the optimization problem is a promising
direction, which has been receiving increasing attention recently. Research in this area is tangential
to the learning-to-optimize paradigm (Bengio et al., 2021; Kotary et al., 2021), which trains an
ML model to output CO solutions directly from the parameters. Recently, McKenzie et al. (2024)
introduced a differentiable method, called DYS-Net, based on a three-operator splitting technique
(Davis & Yin, 2017), to compute the solution of an LP. Next, we will provide a brief overview of
DYS-Net, as we aim to train by minimizing a surrogate loss using DYS-Net for accelerating DFL.

DYS-Net for LPs. The motivation behind DYS-Net emerges from projected gradient descent
(Duchi et al., 2008). Projected gradient descent differs from standard gradient descent in that, after
each iteration, the current predictions, if not inside feasible space, is projected into the feasible space.
However, projecting into the feasible space of a combinatorial optimization problem is itself an
expensive operation. If we consider standard form LPs, the feasible space can be expressed as:

F ≡ F1 ∩ F2 where F1
.
= {Av = b} and F2

.
= {v ≥ 0}.

Although projecting an infeasible solution v directly into F is not a trivial operation, projecting into
F1 and F2 separately are much simpler tasks. Projecting into F1 takes the following form:

PF1
(v)

.
= v −A†(Av − b)

where A† is the pseudo inverse of A. Projecting into F2 takes the following form:

PF2(v)
.
= max{0,v}

where max operates element-wise. In order to obtain the LP solution to a given cost vector y,
McKenzie et al. (2024) propose the following fixed point iteration.

vk+1 = vk − PF2
(vk) + PF1

(
(2− αµ)PF2

(vk)− vk − αy
)

(DYS)

which converges to v⋆(y) as k → ∞. In practice, we use a finite number of iterations k in a single
forward pass to get an approximation of v⋆(y). Note that all operations in Eq. DYS can be expressed
as matrix operations and can be implemented using neural networks, which has the potential for
greater scalability and reduced training time by leveraging recent advancements in GPU hardware.

We denote the solution obtained in this method as DYS (y). To improve the scalability of DFL,
McKenzie et al. (2024) use DYS-Net during training, minimizing SqDE between v⋆(y) and DYS (ŷ).
In this work, we instead propose training by minimizing LSCE between the outputs of DYS (y) and
v⋆(y). The intuition of this is based on our discussion in the previous section.
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6 EXPERIMENTAL EVALUATION

In order to demonstrate the advantage of using LSCE as the training loss, we conduct experiments on
four well-established DFL benchmark problems.

Cubic Top-K (Top-K). This optimization problem is adopted from Shah et al. (2022). The
optimization problem is to choose the best among N resources. Each resource is associated with
feature ϕn ∼ U [−1, 1] and its true utility is defined by the cubic equation: yn = 10ϕ3

n − 6.5ϕn.
However, to predict the utility from the feature, a linear model is used.

Shortest path on a grid (SP). The goal of this optimization problem is to find the path, with lowest
cost on a k × k grid, starting from the southwest node and ending at the northeast node of the grid
(Elmachtoub & Grigas, 2022). The cost of each edge is unknown and should be predicted before
solving the problem. The true relation between the features and the costs are non-linear, but linear
model is used for predictions.

Multi-Dimensional Knapsack (KP). The objective of the knapsack problem is to select a subset of
items with the highest total value, subject to a capacity constraint. The weights of the items and the
knapsack’s capacity are known, but the values of the items are unknown. Therefore, the prediction
task is to predict the value of each item using features.

Travelling salesperson problem (TSP). Given a set of nodes, the goal is to find the tour, with the
lowest cost, that visits every node exactly once. As before, the costs are related to the features in a
non-linear manner, but a linear predictive model is used for prediction.

We use PyEPO (Tang & Khalil, 2023) to generate the training, validation and test instances for the SP,
KP and TSP problems. In all three problems, the true relation between the features and the costs are
non-linear, but linear model is used for predictions. We experiment with polynomial degree parameter
and noise half-width parameter being 6 and 0.5, respectively. The predictive models are implemented
using PyTorch (Paszke et al., 2019) and Gurobipy (Gurobi Optimization, 2021) is used as a blackbox
combinatorial solver to obtain the optimal solution. To solve and differentiate through the smooth
optimization problem after adding the quadratic regularizer, we use CvxpyLayer (Agrawal et al.,
2019). We use the implementation of DYS-NET by McKenzie et al. (2024). The experiments were
executed on a computer with an Intel(R) Core(TM) i7-13800H processor using 32 Gb of RAM.

6.1 REGRET VS. SURROGATE LOSS WITH QP SMOOTHING

We report normalized relative regret on test data in Table 1, calculated as follows:

1

Ntest

Ntest∑
i=1

y⊤
i (v

⋆(ŷi)− v⋆
i )

y⊤
i v

⋆
i

. (14)

For evaluation, we always use an exact combinatorial solver. The column MSE corresponds to
ML models trained with the MSE loss between y and ŷ. As this approach does not consider
the optimization problem during training, we anticipate it would have higher regret than the DFL
approaches. Implementation of perturbed Fenchel-Young (PFY) (Berthet et al., 2020), LSPO+ and
LSCE using combinatorial solvers serve as three DFL benchmarks. We choose LSPO+ and PFY, as
they are best performing DFL methods across various optimization problems (Mandi et al., 2024;
Tang & Khalil, 2023). When LSPO+ and LSCE are minimized using combinatorial solvers, Eq. 5
and Eq. 8 are used for gradient backpropagation. The three columns under CvxpyLayer show regret
when the losses are backpropagated through the smoothed QP problem using CvxpyLayer. Regret
appears only under CvxpyLayer, because it can only be minimized after QP smoothing. This paper is
the first to test the last two approaches, which combine differential smoothing and surrogate losses.

For the Top-K problem, all DFL approaches have exact same regret. We explain this behaviour in
the appendix. Next, we highlight that in all cases, minimizing LSPO+ or LSCE results in lower test
regret than minimizing Regret using CvxpyLayer, which corroborates the main proposal we made
in this paper. Across all experiments, we observe that minimizing LSCE using CvxpyLayer yields
regret similar to LSPO+ and PFY, which use combinatorial solvers. This shows that minimizing
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Table 1: Normalized relative regret on test data for four optimization problems. We mention the
number of resources, the size of the grid, the number of items and the number of nodes for the Top-K,
shortest path, knapsack and TSP problems respectively in the parenthesis.

Combinatorial CvxpyLayer

MSE PFY LSPO+ LSCE Regret LSPO+ LSCE

Top-K (50) 1.614
±0.874

0.051
±0.006

0.051
±0.006

0.051
±0.006

0.246
±0.439

0.051
±0.006

0.051
±0.006

Top-K (80) 1.622
±0.896

0.018
±0.001

0.018
±0.001

0.018
±0.001

0.419
±0.896

0.018
±0.001

0.018
±0.001

Top-K (100) 1.623
±0.9

0.013
±0.001

0.013
±0.001

0.013
±0.001

0.214
±0.45

0.013
±0.001

0.013
±0.001

SP (5 × 5) 0.45
±0.124

0.328
±0.037

0.302
±0.042

0.431
±0.06

0.339
±0.035

0.303
±0.044

0.303
±0.032

SP (8 × 8) 0.539
±0.064

0.425
±0.048

0.447
±0.038

0.632
±0.082

0.486
±0.041

0.454
±0.031

0.445
±0.036

SP (10 × 10) 0.492
±0.113

0.462
±0.118

0.443
±0.103

0.626
±0.165

0.745
±0.174

0.442
±0.105

0.424
±0.111

KP (10) 0.129
±0.051

0.098
±0.049

0.101
±0.034

0.163
±0.009

0.197
±0.047

0.11
±0.032

0.104
±0.044

KP (20) 0.174
±0.037

0.128
±0.035

0.134
±0.037

0.16
±0.035

0.222
±0.075

0.139
±0.027

0.129
±0.029

KP (40) 0.176
±0.019

0.149
±0.011

0.142
±0.008

0.17
±0.011

0.217
±0.025

0.153
±0.008

0.146
±0.009

TSP (5) 0.101
±0.036

0.079
±0.032

0.067
±0.028

0.152
±0.05

0.095
±0.029

0.078
±0.027

0.073
±0.026

TSP (6) 0.111
±0.021

0.06
±0.015

0.059
±0.014

0.161
±0.071

0.069
±0.009

0.081
±0.01

0.059
±0.006

TSP (8) 0.12
±0.008

0.072
±0.011

0.071
±0.013

0.117
±0.021

0.081
±0.01

0.095
±0.011

0.065
±0.012

LSCE using CvxpyLayer can compete with the state-of-the-art in DFL. Moreover, LSPO+ produce
lower regret, when a combinatorial solver is used, whereas LSCE performs better with CvxpyLayer.
This opens up an interesting side observation— Eq. 5 (LSPO+ ) provide a better subgradient than
Eq. 8 (LSCE). However, when one can differentiate through the optimization, LSCE (Eq. 12) has a
better gradient than LSPO+ (Eq. 11).

6.2 EXPERIMENT WITH DYS-NET

The previous experiment shows that minimizing LSCE with a smoothed solver, such as CvxpyLayer
results in regret comparable to that of the state-of-the-art DFL approaches. In the next set of
experiments, we will minimize LSCE using DYS-Net, which can be fully implemented as a neural
network offering substantial improvement in training time.

We present the result for larger problem instances of KP, SP and TSP in Figure 3. In the upper and
lower panels, we compare normalized relative test regret and training time of one epoch, respectively.
First, we point out that across all instances, training with LSCE consistently achieves lower regret
than training with SqDE using DYS-Net, as done by McKenzie et al. (2024). So, the advantage of
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Figure 3: Experiment with DYS-Net in relatively larger KP, SP and TSP instances (from left
to right). SPOcombinatorial

+ minimizes LSPO+ using Gurobi solvers, SCEcvxpy and SCEDY S

minimize LSCE using CvxpyLayer and DYS-Net, respectively, whereas SqDEDY S minimizes
squared decision error using DYS-Net.

minimizing LSCE is also manifested with DYS-Net. Although DYS-Net trains significantly faster,
minimizing LSCE with CvxpyLayer yields lower regret as it optimally solves the smoothed problem,
unlike DYS-Net. Still, in all the knapsack and TSP instances, LSCE with DYS-Net matches the
regret of the SPO approach with significant reduction in training time. For the shortest path instances
up to grid-size of 25, LSCE with DYS-Net produces regret comparable to SPO; however, regret
increases for grid-size of 30, where LSCE with CvxpyLayer has lower regret than SPO.

In summary, minimizing LSCE with DYS-Net yields regret similar to SPO, while significantly
reducing runtime. The advantage becomes more pronounced with larger problem sizes; for instance,
in the 11-node TSP, DYS-Net is 5 times faster than SPO, which solves an ILP. Notably, these results
were achieved without GPU training, suggesting that even greater runtime reductions are possible
with GPU usage. By achieving regret comparable to SPO while reducing runtime, our work marks a
key advancement in DFL.

7 CONCLUSION

In this paper, we challenge the conventional DFL approach of directly minimizing empirical regret
when a smoothing operation is applied to make the optimization problem differentiable. Instead, we
recommend minimizing a surrogate loss, such as LSCE and justify this by comparing the pattern of
the gradient landscape concerning regret and the surrogate loss. By doing so, we effectively merge
the two families of approaches in DFL. To provide evidence for minimizing surrogate losses rather
than regret, we empirically demonstrate the advantage of minimizing LSCE instead of Regret using
CvxpyLayer as the differentiable layer across four benchmark problems. Furthermore, we experiment
with the recently proposed DYS-Net, a fast neural solver for LP. By minimizing Regret or SqDE ,
DYS-Net cannot attain regret as low as SPO. We show that for most problems minimizing LSCE

using DYS-Net produces regret as low as the state-of-the-art SPO method, with a clear advantage in
runtime up to five-fold.

Future work includes applying this approach to real-world large-scale applications with full GPU
training. Furthermore, new fully neural smoothing approaches or better surrogate losses can also
benefit from this joint approach. While used here for linear objective functions, future work can
investigate the joint applicability of both smoothing and surrogates for non-linear optimisation too.
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A PROOF OF PROPOSITION 1

Proof. 1. Following the definition of LSCE ,

LSCE(v
⋆(ŷ),y) = (ŷ − y)⊤v⋆(y)− (ŷ − y)⊤v⋆(ŷ)

= ŷ⊤(v⋆(y)− v⋆(ŷ)) + y⊤(v⋆(ŷ)− v⋆(y))

ŷ⊤(v⋆(y) − v⋆(ŷ)) ≥ 0, because v⋆(ŷ) is the optimal solution to ŷ. In a similar way,
y⊤(v⋆(ŷ)− v⋆(y)) ≥ 0. Hence, LSCE(v

⋆(ŷ),y) ≥ 0.

2. We will prove the claim by contradiction. Assume that LSCE(v
⋆(ŷ),y) = 0 but

Regret(v⋆(ŷ),y) = y⊤(v⋆(ŷ) − v⋆(y)) > 0 . This is possible if v⋆(ŷ) ̸= v⋆(y).
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As the solution to ŷ is different from v⋆(y), the singleton assumption implies that
∃v′ ∈ F \ {v⋆(y)} : ŷ⊤v′ < ŷ⊤v⋆(y). In this case, we have:

ŷ⊤v⋆(y)− ŷ⊤v′ > 0

⇒ (ŷ⊤v⋆(y)− ŷ⊤v′) + (y⊤v′ − y⊤v⋆(y)) > (y⊤v′ − y⊤v⋆(y)) ≥ 0

⇒ (ŷ − y)⊤v⋆ − (ŷ − y)⊤v⋆(ŷ) > 0

In the second line, y⊤v′ − y⊤v⋆(y) is added in both sides and this term is nonnegative as
v⋆(y) is the optimal solution to y. This implies LSCE(v

⋆(ŷ),y) > 0 and we arrive at a
contradiction. Thus we prove that LSCE(v

⋆(ŷ),y) = 0 =⇒ Regret(v⋆(ŷ),y) = 0.

Next, assume Regret(v⋆(ŷ),y) = 0. This implies that y⊤v⋆(ŷ) = y⊤v⋆(y). This can
only be true if v⋆(ŷ) = v⋆(y) because of the singleton assumption. Hence, LSCE(v

⋆(ŷ),y)
= (ŷ − y)⊤(v⋆(y)− v⋆(ŷ)) = 0.

B SIMULATION EXPERIMENT

In Section 4, we made the case for minimizing surrogate loss such as LSCE instead of Regret . Our
main argument is for a relatively low value of smoothing parameter µ, Regret will have zero gradient.
However, LSCE will not have this problem. We provided two illustrations considering small-scale
optimization problems. In this case, we justify this with higher-dimensional optimization problems.
We consider Top-1 selection problem with different number of items M .

max
v∈{0,1}

y⊤v s.t. v⊤1 ≤ 1 (15)

y = [y1, . . . , yM ] ∈ RM is the vector denoting value of all the items and v = [v1, . . . , vM ] is the
vector decision variables. To replicate the setup of a PtO problem, we solve the optimization problem
with ŷ. Let us assume yi, ŷi ≥ 0.

Before, solving the problem with simulation, we will show one interesting aspect of this problem.
Note that when µ > 0, the following relaxed optimization problem is solved:

max
v

y⊤v − µ

2
||v||2 s.t. v⊤1 ≤ 1; v ≥ 0 (16)

We point out that the solution to the unconstrained optimization problem is v⋆i = yi

µ > 0.

The augmented Lagrangian of Equation 16 is

L = y⊤v − µ

2
||v||2 + λ(1− v⊤1) + σ⊤v (17)

where λ and σ = [σ1, . . . , σM ] are dual variables. By differentiating L with respect to vi, we obtain
one condition of optimality, which is the following:

yi − µvi − λ+ σi = 0 =⇒ vi =
yi − λ+ σi

µ
(18)

Without any loss of generality, let y(1) ≥ y(2) ≥ . . . y(M). (In the d) As, solution to the constrained
optimization problem is vi > 0, y(1) will definitely be greater than zero. Hence, σi = 0 because of
strict complementarity. So, we can write v(1) − v(k) = y(1)−y(k)−σ(k)

µ . As, v(1) − v(k) ≤ 1, we can
write:

y(1) − y(k) − σ(k)

µ
≤ 1 =⇒ µ ≥ y(1) − y(k) − σ(k) (19)

So,

y(1) − y(k) > µ =⇒ σ(k) > 0 =⇒ y(k) = 0 (20)

This suggest that if y(k) < y(1) − µ, only v(1) = 1 and all other decision variables will be zero in the
optimal solution.
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Figure 4: Results of Computational Simulation

To generate the ground truth y, we randomly select M integers without replacement from the set
1, . . . ,M . The predicted costs, ŷ, are generated by considering a different sample from the same
set. As a result, y and ŷ contain the same numbers but in different permutations. It is important to
note that all elements in both vectors are positive integer values. We compute the solution to the
optimization problem for y and ŷ. We solve the optimization problem with ŷ using a ‘smoothed’
optimization layer—CvxpyLayer. in order to compare the gradients of Regret and LSCE . We
compute the gradients of both the losses for multiple values of M and µ. For each configuration of
M and µ, we run 20 simulations.

Note that y(1) > y(2) > . . . y(M) because of the way we created the dataset. Moreover, as all
values in ŷ and y are integer, Equation 20 suggests if µ < 1, the solution to the relaxed problem
(equation 16) will be binary. So, the discussion in Section 4 suggests that slight change of the cost
parameter would not change the solution and hence the zero gradient problem would appear while
differentiating Regret .

In Figure 4, we plotted the average absolute values of the gradients of the two losses— LSCE and
Regret . As we hypothesized the gradient turns zero whenever Regret is minimized with µ < 1. It is
true that for µ > 1, Regret have non-zero gradient. However, higher values of µ turns solution to the
‘smoothed’ problem very different from the solution to the original problem. We show this in Table 2
by displaying the average Manhattan distance between solutions of the true and ‘smoothed’ problem
for same ŷ.

We also highlight that, for the same values of µ, the average Manhattan distances remain same across
different M . Examining the results of the simulations, we observed that the solution to the smoothed
problem is fractional. For example, when µ = 2, the solution includes two non-zero values— 0.77
and 0.23. Typically, the value 0.77 appears in the position corresponding to the highest value in ŷ,
i.e., where there is a 1 in solution vector. As a result, the Manhattan distance becomes (1-0.77)+0.23
= 0.46. Interestingly, these values remain unchanged across different values of M . Therefore, the
Manhattan distance remains constant as long as µ does not change.

C NON-CONVEXITY OF LSCE

The SPO+ loss, LSPO+(v⋆(ŷ),y), proposed by Elmachtoub & Grigas (2022) is a convex function
of ŷ. However, the LSCE loss proposed by Mulamba et al. (2021) is non-convex with respect to ŷ.
Note that,

LSCE(v
⋆(ŷ),y) = ŷ⊤(v⋆(y)− v⋆(ŷ)) + y⊤(v⋆(ŷ)− v⋆(y))

We can easily show the convexity of LSCE with a numerical example. Let us consider the example
introduced in Equation 13. In Figure 5, we plot LSCE and LSPO+ for different values of ŷ. To make
this plot, we use an exact solver, not the ‘smoothed’ solver. Note that, LSCE includes a jump when
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M

µ 5 10 20 40 80 100

0.100 0.000 0.000 0.000 0.000 0.000 0.000
0.500 0.000 0.000 0.000 0.000 0.000 0.000
0.990 0.000 0.000 0.000 0.000 0.000 0.001
1.050 0.089 0.089 0.089 0.089 0.089 0.089
1.500 0.465 0.466 0.465 0.465 0.465 0.464
2.000 0.622 0.622 0.622 0.622 0.622 0.622
5.000 1.165 1.165 1.165 1.165 1.165 1.165

Table 2: We tabulate average Manhattan distance between the solution of the ‘smoothed’ problem
and the solution of the original problem for different values of M and µ.

Figure 5: A numerical illustration to show LSCE is not convex, but LSPO+ is.

the solution of ŷ switches from 1 to 0. However, this is not the case for LSPO+ . More specifically,
3
4LSCE(2, y) +

1
4LSCE(−2, y) > LSCE(

3
4 (2) +

1
4 (−2), y) = LSCE(1, y), which violates the

definition of a convex function.

D MINIMIZING LSPO+ USING DYS-NET

In Table 1, we show that minimizing LSCE results in lower regret compared to minimizing LSPO+

using CvxpyLayer. Since both CvxpyLayer and DYS-Net are differentiable ‘smoothed’ layers, we

Figure 6: Experiment with DYS-Net in relatively larger KP, SP and TSP instances (from left to right).
In addition to Figure 3, we have included the regret results for minimizing LSPO+ using DYS-Net.
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Figure 7: Comparison between DYS-Net and solution caching.

would expect similar results with DYS-Net. For this reason, we included only LSCE in Figure 3. To
ensure completeness, we added the results of minimizing LSPO+ with DYS-Net in Figure 6. As we
hypothesized, this leads to higher average regret compared to minimizing LSCE .

E COMPARISON AGAINST SOLUTION CACHING

To reduce the long training time of DFL, Mulamba et al. (2021) propose the idea of solution caching.
Instead of finding the optimal solution to ŷ or ((2ŷ − y) for LSPO+ ), Mulamba et al. (2021) suggest
returning a heuristic solution by selecting the optimal one from a finite-dimensional ‘cache.’ They
initialize the cache with all existing solutions in the training data. Furthermore, during training, they
randomly solve for p% of the training instances. Note that if, solve ratio, p = 100%, this strategy
becomes equivalent to solving the combinatorial problem for every instance. Conversely, if p = 0%,
no additional problem-solving is required during training.

We compare the performance of DYS-Net with solution caching in Figure 7. SPOp=10%
+ denotes

the case where LSPO+ is minimized with a solve ratio of 10%. Similarly, SPOp=5%
+ and SPOp=0%

+

correspond to solve ratios of 5% and 0%, respectively. Similarly, SCEp=5% stands for minimizing
LSCE with p = 5%. Note that while solution caching approach, Equation 5 and Equation 8 are used
for backpropagating LSPO+ and LSCE respectively.

It is evident in Figure 7 that p = 0% results in higher regret for LSPO+ . However, the regret is much
lower for p being 5% and 10%. Nevertheless, we point out minimizing LSCE with DYS-Net results
in lower regret. This is particularly prominent for the TSP instances. In terms of training efficiency,
solution caching has lower training time for these instances.

F COMPARATIVE ANALYSIS IN LARGER TSP INSTANCES

In Figure 3, we compared TSP instances till 11 nodes. This is due to the fact that for larger TSP
instances, we cannot complete training of SPOcombinatorial

+ and SCEcvxpy . In Figure 8, we consider
TSP instances with 15, 20 and 25 nodes. We focus exclusively on TSP instances because, among the
three optimization problems considered, because it is the most difficult and time consuming to solve.
We have excluded SPOcombinatorial

+ and SCEcvxpy and included SPOp=5%
+ and SCEp=5%.

We first draw the reader’s attention to the observation that SPOp=5%
+ requires more training time

compared to SCEp=5%. This discrepancy arises because, in SPOp=5%
+ , the optimization problem is

solved for 2ŷ − y. Solving for 2ŷ − y is more challenging and time-consuming compared to solving
for ŷ, as done in SCEp=5%. This is due to the difference in scale between the true cost (y) and the
predicted cost (ŷ) We point that this pattern is also visible in Figure 7. The computational burden
of SPOp=5%

+ becomes especially pronounced for the larger problem instances. For these instances,
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Figure 8: Comparative analysis on larger TSP instances.

Figure 9: Relationship between yn and ϕn in the Top-K experiment.

solving the optimization problem with 2ŷ − y often results in timeouts, meaning Gurobi returns an
approximate solution instead of the exact one. This is the reason why SPOp=5%

+ exhibits relatively
higher regret than SCEp=5% for these problems.

In contrast, for SCEp=5%, timeouts never occurred, and it exhibits lower training times compared
to SPOp=5%

+ . For TSP with 15 nodes, SCEp=5% outperforms DYS-Net in terms of training time.
However, as problem size increases, DYS-Net demonstrates better scalability, whereas solving the
optimization problem even for 5% of the training instances becomes significantly time-intensive in
SCEp=5%.

In terms of regret, DYS-Net demonstrates a significant advantage with much lower regret compared
to other methods. This underscores the advantage of minimizing LSCE using DYS-Net, as it not only
delivers lower regret but also scales more effectively for larger problems.

G EXPLANATION OF THE TOP-K DATASET

In the Top-K experiments, the relationship between yn and ϕn is illustrated in Figure 9. All DFL
models learn a mapping with a positive slope. As a result, each model selects the Top-1 element as
the one with the highest value of ϕn, leading to identical accuracy across all DFL models. In contrast,
models trained with MSE loss fail to learn a positive slope, resulting in significantly higher regret.
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ϕ Mω ŷ
Combinatorial
Optimization

Optimal
Decisions

Figure 10: Schematic diagram of a predict-then-optimize (PtO) problem.

H PREDICT-THEN-OPTIMIZE PROBLEM DESCRIPTION

We consider predicting parameters in the objective function of an LP. These kinds of problems can
be framed as predict-then-optimize (PtO) problems consisting of a prediction stage followed by an
optimization stage, as illustrated in Figure 10. In the prediction stage, an ML model Mω (with
trainable parameters ω) is used to predict unknown parameters using features that are correlated to
the parameter. During the optimization stage, the problem is solved with the predicted parameters.
An offline dataset of past observations is available to train Mω .

It is important to distinguish datasets based on whether the true parameters, y, are observed and
included in the dataset. In some applications, the true parameters, y, may not be directly observable,
and only the solutions, v⋆(y), are observed. While v⋆(y) can be computed if y is known, the reverse
process is not true, as solving the inverse optimization problem is a research problem in its own.

Whether y is observed or not is important because in order to compute Regret (equation 2), we need
the true parameter y. Most of the benchmarks in PtO problems assume that y is observed in the past
observation. In this case the training data can be expressed as {(ϕi,yi,v

⋆(yi))}Ni=1 and the empirical
regret, 1

N

∑N
i=1 Regret(v

∗(Mω(ϕi)),yi), can be computed. In most PtO benchmark problems it is
assumed that the true y is observed in the training data (Mandi et al., 2024; Tang & Khalil, 2023).
However, if the true cost y is not observed in the training data, empirical regret cannot be computed.
Rather a different loss has to be considered. For instance, McKenzie et al. (2024) consider squared
decision errors (SqDE) between v⋆(y) and v⋆(ŷ), i.e., SqDE = ||v⋆(y)− v⋆(ŷ)||2.

I DIFFERENT APPROACHES TO DECISION-FOCUSED LEARNING

In PtO problems, the empirical regret can be calculated if the cost, y, is observed in the training
instances. However, just because it can be calculated does not mean it can be minimized using
gradient descent. Figure 11 illustrates the impact of integrating the optimization block into the
training loop of neural networks. The key challenge is that to directly minimize Regret , it must be
backpropagated through the optimization problem. However, for a combinatorial problem v⋆(ŷ)

does not change smoothly with ŷ, so the gradient, dv⋆(ŷ)
dŷ , is either zero or does not exist.

Differentiable Optimization by Smoothing. ‘Differentiable Optimization by Smoothing’ is one
approach to to circumvent this challenge. As explained in Section 3.1, approaches under this category
replace the original optimization problem with a ‘smoothed’ version of the optimization problem, in
which the solution can be expressed as a differentiable mapping of the parameter. For instance, if
the original problem is an LP, it can be replaced with a QP by adding a quadratic regularizer to the
objective of the LP. In this QP, the solution, v⋆(y), can be represented as a differentiable function
of the parameter y. When the problem is an ILP, first LP, resulting from continuous relaxation is
considered and then it is smoothed by adding quadratic regularizer. DYS-Net (McKenzie et al.,
2024) provides an approximate solution to the quadratically regularized LP problem, where the
computations are designed to be executed as standard neural network operations, enabling back-
propagation through it. To summarize, approaches in this category follow the training loop in Figure
11 but only after ‘smoothing’ the optimization problem.

Surrogate Losses for DFL. The primary goal of DFL is to minimize Regret . However, as explained
earlier, Regret cannot be minimized directly due to its non-differentiability. Techniques involving
surrogate losses aim to address this challenge by identifying suitable surrogate loss functions and
computing gradients or subgradients of these surrogate losses for optimization. Figure 12 depicts
the training loop of DFL using surrogate loss functions. In this approach, Regret(v⋆(ŷ),y) is not
explicitly computed. Instead, after predicting ŷ, a new cost vector ỹ is generated based on ŷ and y,
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ϕ v⋆(ŷ) = argminv ŷ⊤v
s.t. Av = b; v ≥ 0

Regret(v⋆(ŷ),y)

(ϕ,y,v⋆(y))

ŷ v⋆(ŷ)

dRegret
dŷ

dRegret
dv⋆(ŷ)

Training Data

dv⋆(ŷ)
dŷ

Figure 11: Decision-focused learning training loop.

ϕ

v⋆(ỹ) = argminv ỹ⊤v
s.t. Av = b; v ≥ 0

ỹ

∇

(ϕ,y,v⋆(y))

ŷ

Training Data

backpropgating ∇

Figure 12: Decision-focused learning using surrogate loss functions.

and the optimization problem is solved using this ỹ. Subsequently, a surrogate loss is computed, using
v⋆(ỹ) and v⋆(y), and its gradient,∇ (shown in pink) , is used for backpropagation. For example,
in the case of LSPO+ , ỹ = 2ŷ − y. As shown in Equation 4 LSPO+ = (2ŷ − y)⊤v⋆(y)− (2ŷ −
y)⊤v⋆(2ŷ−y) Then the gradient used for backpropagation is ∇ = 2(v⋆(y)−v⋆(2ŷ−y)). On the
other hand, in the case of LSCE , ỹ = ŷ and LSCE = ŷ⊤(v⋆(y)− v⋆(ŷ)) + y⊤(v⋆(ŷ)− v⋆(y)).
So, in this case, the gradient for backpropagation is ∇ = (v⋆(y)− v⋆(ŷ)).

Combining Surrogate Losses with Differentiable Optimization. The core idea proposed in
this paper is to combine these two approaches. Specifically, the original optimization problem in
Figure 12 is replaced with a smoothed version, allowing backpropagation through the smoothed
problem instead of using ∇ directly. We emphasis that this changes the gradient of the surrogate
losses. Instead of Equation 5 and Equation 8, Equation 11 Equation 12 will be used in this case for
backprogating LSPO+ and LSCE respectively.
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