
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMBINING ANALYTICAL SMOOTHING WITH
SURROGATE LOSSES FOR IMPROVED
DECISION-FOCUSED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Many combinatorial optimization problems in routing, scheduling, and assignment
involve parameters such as price or travel time that must be predicted from data;
so-called predict-then-optimize (PtO) problems. Decision-focused learning (DFL)
is a family of successful end-to-end techniques for PtO that trains machine learning
models to minimize the error of the downstream optimization problems. For each
instance, this requires computing the derivative of the optimization problem’s
solution with respect to the predicted input parameters. Previous works in DFL
employ two main approaches when the parameters appear linearly in the objective:
(a) using a differentiable surrogate loss instead of regret; or (b) turning the com-
binatorial optimization problem into a differentiable mapping by smoothing the
optimization to a quadratic program or other smooth convex optimization problem
and minimizing the regret of that. We argue that while smoothing makes the
optimization differentiable, for a large part, the derivative remains approximately
zero almost everywhere, with highly non-zero values near the transition points.
To address this plateau effect, we propose minimizing a surrogate loss even after
smoothing. We experimentally demonstrate the advantage of minimizing surrogate
losses instead of the regret after smoothing across a series of problems. Further-
more, we show that by minimizing a surrogate loss, a recently developed fast, fully
neural optimization layer matches state-of-the-art performance while dramatically
reducing training time up to five-fold. Thus, our paper opens new avenues for
efficient and scalable DFL techniques.

1 INTRODUCTION

Many decision-making problems in real-world can be cast as optimization problems. Some parameters
of these optimization problems are often unknown due to uncertainty or the anticipation of future
events. As prediction of these parameters is crucial for making high-quality decisions, leveraging
contextual information is important at prediction time. The availability of historical data, combined
with the rapid growth of predictive machine learning (ML), has fueled increasing interest in data-
driven contextual optimization (Sadana et al., 2025).

When the goal is to predict parameters (such as cost or travel time) of an optimization problem,
such problems can be viewed as “predict-then-optimize”(PtO) problems, including two key steps—
the prediction of the unknown parameters and the subsequent optimization using those predicted
parameters. Prediction-focused learning is the approach to tackle PtO problems by treating the
prediction step independent of the optimization step, based on the assumption that increasing accuracy
of predictions would lead to good quality decisions. However, in practice, ML models fail to achieve
100% accuracy, and in the presence of prediction errors, such a prediction-focused approach fails
to consider how the error in predictions impacts the solution to the optimization problem. This fact
motivates the research in decision-focused learning (DFL), as surveyed by Mandi et al. (2024).

DFL trains ML models to predict the uncertain parameters by directly minimizing the task loss,
which reflects the quality of the solutions made using the predicted parameters. Gradient-based
DFL entails computing the derivative of the optimization problem’s solution with respect to the
predicted parameters. However, for combinatorial optimization problems, this derivative is almost

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

always zero because slight parameter changes typically do not alter the solution, except at certain
transition points where the derivative does not exist. In this paper, we focus on predicting parameters
of combinatorial optimization problems, where the predicted parameters appear linearly in the
objective function. Previous works in DFL use two broad categories of approaches: (a) turning the
combinatorial optimization problem into a differentiable mapping by smoothing the optimization to a
convex optimization problem (Wilder et al., 2019; Mandi & Guns, 2020), and then minimizing the
task loss, and (b) using surrogate loss functions (Elmachtoub & Grigas, 2022; Mulamba et al., 2021;
Mandi et al., 2022), for which gradients or subgradients exist.

The existing DFL literature views these two approaches separately. Consequently, minimizing the
task loss of the smoothed problem is the standard approach in category (a). However, while smoothing
makes the optimization differentiable, excessive smoothing can cause the solution to the “smoothed"
problem to deviate significantly from the original solution. In practice, the smoothing strength is kept
reasonably low to ensure that it does not overshadow the true objective of the original optimization
problem. We argue that, with a moderate level of smoothing, the derivative remains nearly zero in
most regions, becoming highly non-zero only at transition points. For this reason, we propose to
minimize the surrogate loss, even though it is possible to minimize regret directly by differentiating
through the smoothed optimization problem. We justify the advantage of using a surrogate loss by
comparing the pattern of the gradient landscape with respect to regret and the surrogate loss. In
this way, this paper combines the two approaches of DFL. This allows us to accelerate DFL by
minimizing surrogate loss using a fast differentiable optimization layer.

In summary, this paper makes the following contributions:

• To address the plateau effect which occurs even after smoothing, we combine the two
families of DFL approaches by minimizing a surrogate loss post-smoothing.

• We empirically demonstrate that for smoothing approaches, minimizing surrogate losses
results in lower regret on test data than minimizing the regret. This highlights the benefit of
minimizing the surrogate loss even when the optimization problem is smoothed.

• To improve the scalability of DFL, McKenzie et al. (2024) recently developed a fast, fully
differentiable neural optimization layer for linear programs (LPs). We demonstrate that
minimizing the surrogate loss using this optimization layer achieves regret comparable to
existing state-of-the-art methods while reducing training time by up to five-fold.

2 PREDICT-THEN-OPTIMIZE PROBLEM DESCRIPTION

In PtO problems, decisions are made by solving constrained optimization (CO) problems. In this
work, we focus on CO problems with linear objectives and the prediction of objective function
parameters. These CO problems can be formulated as LPs or integer LPs (ILPs), both of which have
extensive practical applications. Any LP can be transformed in the following standard LP form:

v⋆(y) = argmin
v

y⊤v s.t. Av = b; v ≥ 0 (1)

where v ∈ RK is a decision variable and v⋆(y) is the optimal solution for a given cost parameter
y ∈ RK . ILPs differ from LPs in that the decision variables v are restricted to integer values. For
brevity, we use F to denote the feasible space. So, for the standard LP formulation, F = {v ∈
RK |Av = b ;v ≥ 0}. Unless it is explicitly stated otherwise, v⋆ will denote v⋆(y).

To account for uncertainty in the decision-making, PtO problems comprise two steps—the prediction
of the unknown parameters and solving the optimization problem using the predicted parameters.
We consider PtO formulation, where the vector of cost parameters y is not known prior to solving.
Instead, a list of contextual information ϕ, correlated with y is available for predicting y. In PtO
problems, an ML model Mω (with trainable parameters ω) is trained to map ϕ → y using past
observation pairs {(ϕi,yi)}Ni=1. Given their success in predictive tasks, neural networks have become
the preferred choice for the predictive modeling task in PtO problems.

A straightforward approach to the PtO problem is to train Mω to generate accurate parameter
predictions ŷ = Mω(ϕ) by minimizing the prediction errors with respect to ground-truth y. Previous
works (Wilder et al., 2019; Elmachtoub & Grigas, 2022; Mandi et al., 2020) justify why such a
prediction-focused approach produces suboptimal performance. By contrast, in decision-focused

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

learning (DFL), the ML model is directly trained to optimize the task loss, the quality of the resulting
decisions. When only the parameters in the objective function are predicted, the task loss of interest is
typically regret, which measures the suboptimality of a decision resulting from prediction errors. The
regret for making the decisions v under the true realization y can be expressed in the following form:

Regret(v,y) = y⊤v − y⊤v⋆(y) (2)

In PtO problems, one can consider other task losses, such as squared decision errors (SqDE) between
v⋆(y) and v⋆(ŷ), i.e., SqDE = ||v⋆(y)− v⋆(ŷ)||2.

3 DECISION-FOCUSED LEARNING FOR COMBINATORIAL OPTIMIZATION

The DFL approach trains Mω to directly minimize 1
N

∑N
i=1 Regret(v

∗(Mω(ϕi)),yi), the empirical
risk minimization counterpart of E[Regret(v∗(Mω(ϕ)),y)] since the true distribution is unknown.
This minimization of regret in gradient descent-based learning requires backpropagation through
the CO problem, which involves computing the derivative of v⋆(ŷ) with respect to ŷ = Mω(ϕ).
While dv⋆(ŷ)

dŷ can be computed for convex optimization problems through implicit differentiation
(Agrawal et al., 2019; Amos & Kolter, 2017), it is more challenging when the optimization problem
is combinatorial. This is because when the parameters of a CO problem change, the solution either
remains unchanged or shifts abruptly, meaning the derivatives are almost always zero and undefined
at abrupt changes.

Broadly there are two approaches of implementing DFL for CO problems: (a) smoothing the CO
to a smooth convex optimization problem and (b) using a surrogate loss that is differentiable. For a
detailed discussion on how existing DFL techniques tackle this challenge, we refer readers to the
survey paper by Mandi et al. (2024).

3.1 DIFFERENTIABLE OPTIMIZATION BY SMOOTHING OF COMBINATORIAL OPTIMIZATION

Differentiable optimization represents an optimization problem as a differentiable mapping from its
parameters to its solution. Since for a combinatorial problem, this mapping is not differentiable, one
prominent research direction in DFL involves smoothing the combinatorial optimization problem
into a differentiable optimization problem. We particularly focus on smoothing by regularization.
There exists another from of smoothing—smoothing by perturbation, as proposed by Pogančić et al.
(2020); Blondel et al. (2020); Niepert et al. (2021); Sahoo et al. (2023). In this work, we focus on
optimization problems with linear objective functions such as LPs and ILPs. For an LP, the solution
will always lie in one of the vertices of the LP simplex. So, the LP solution remains unchanged
as long as the cost vector changes while staying within the corresponding normal cone (Boyd &
Vandenberghe, 2004). However, the solution will suddenly switch to a different vertex if the cost
vector slightly moves outside the normal cone, as illustrated in Figure 1a. Because the solution
abruptly jumps between the vertices, the LP solution is not a differentiable function of the cost vector.

To address this, methodologies under analytical smoothing first modify the optimization problem
and then analytically differentiate the modified optimization problem. For LPs, Wilder et al. (2019)
propose transforming the LPs into ‘smoothed’ quadratic programs (QPs) by augmenting the objective
function with the square of the Euclidean norm of the decision variables in the following form:

min
v

ŷ⊤v + µ∥v∥22 s.t. Av = b ;v ≥ 0 (3)

where µ ≥ 0 is the smoothing parameter, controlling the strength of smoothing. After smoothing, the
solution is not restricted to being at a vertex of the LP polyhedron. In the ‘smoothed’ problem, unlike
the original LP, the solution do not change abruptly. The solution either may not change or change
smoothly with the change of the cost vector, as illustrated in Figure 1b. Consequently, v⋆(ŷ) becomes
differentiable with respect to ŷ. The QP smoothing approach has been applied in various DFL works
(Ferber et al., 2020; 2023; McKenzie et al., 2024). Mandi & Guns (2020) consider another form of
smoothing by adding logarithm barrier term into the LP. When the underlying optimization problem
is an ILP, smoothing of the LP, resulting from the continuous relaxation of the ILP is carried out.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) LP Solutions (b) Solutions to the QP smoothing

Figure 1: Schematic diagram showing the effect of QP smoothing. (a) LP solutions and the corre-
sponding isocost line for four cost vectors. The green, cyan and red cost vectors result in the same
solution, the top vertex, highlighting that a slight rotation of the isocost lines may not alter the LP
solution. However, if the isocost lines rotate too much, for example, the violet line, the solution
suddenly shifts to a different vertex. (b) The isocost lines change after applying QP smoothing, and
the solution is no longer restricted to a vertex. For example, the red vector results in a smooth change
in the solution. However, even with smoothing, some cost vectors, like the cyan and green, may still
share the same solution.

3.2 SURROGATE LOSSES FOR DFL

Surrogate loss functions are used for training in DFL because they are crafted to have non-zero
(sub)gradients everywhere while also directly correlating with the task loss—as regret decreases,
surrogate loss functions decrease as well. We focus on two surrogate loss functions, used widely in
DFL.

3.2.1 SMART PREDICT THEN OPTIMIZE(SPO)

The SPO+ loss (Elmachtoub & Grigas, 2022), a convex upper bound of Regret(v⋆(ŷ),y), is one of
the first and most widely used surrogate losses for linear objective optimization problems.

Regret(v⋆(ŷ),y) = y⊤v⋆(ŷ)− y⊤v⋆ = y⊤v⋆(ŷ)− 2ŷ⊤v⋆(ŷ) + 2ŷ⊤v⋆(ŷ)− y⊤v⋆

≤ max
v′∈F

{y⊤v′ − 2ŷ⊤v′}+ 2ŷ⊤v⋆(ŷ)− y⊤v⋆ ≤ max
v′∈F

{y⊤v′ − 2ŷ⊤v′}+ 2ŷ⊤v⋆ − y⊤v⋆︸ ︷︷ ︸
LSPO+ (v⋆(ŷ),y)

Instead of minimizing Regret , they propose to minimize this convex upperbound, which is called
LSPO+(v⋆(ŷ),y) loss. It can be expressed in the following form:

LSPO+(v⋆(ŷ),y) = max
v′∈F

{2ŷ⊤v⋆ − y⊤v⋆ − (2ŷ − y)⊤v′} = (2ŷ − y)⊤v⋆ − min
v′∈F

{(2ŷ − y)⊤v′}

= (2ŷ − y)⊤v⋆ − (2ŷ − y)⊤v⋆(2ŷ − y) (4)

They also propose the following sub-gradient for gradient-based training using any solver of choice:

∇LSPO+ = 2

(
v⋆ − v⋆(2ŷ − y)

)
(5)

3.2.2 CONTRASTIVE LOSS

Mulamba et al. (2021) propose a surrogate loss based on noise-contrastive estimation (NCE) (Gutmann
& Hyvärinen, 2012). The loss is derived by considering the log-likelihood ratio between v⋆ and other
feasible points v′. By maximizing this likelihood, they propose to minimize the following NCE loss:

LNCE(v
⋆(ŷ),y) = max

v′∈F
{ŷ⊤v⋆ − ŷ⊤v′} = ŷ⊤v⋆ − min

v′∈F
{ŷ⊤v′} = ŷ⊤v⋆ − ŷ⊤v⋆(ŷ) (6)

Note that LNCE is similar to LSPO+ , except that in LNCE , 2ŷ − y is replaced with ŷ. This
introduces a shortcoming in LNCE . The minimum of LNCE , which is zero, can be achieved either

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

when v⋆(ŷ) = v⋆ or by predicting ŷ = 0. To prevent minimizing LNCE by predicting ŷ = 0,
Mulamba et al. (2021) further modify LNCE to derive the self-contrastive estimation (SCE) loss:

LSCE(v
⋆(ŷ),y) = (ŷ−y)⊤v⋆−(ŷ−y)⊤v⋆(ŷ) = ŷ⊤v⋆−ŷ⊤v⋆(ŷ)+y⊤v⋆(ŷ)−y⊤v⋆(y) (7)

Proposition 1. LSCE(v
⋆(ŷ),y) has the following properties (proof is given in Appendix A):

1. LSCE(v
⋆(ŷ),y) ≥ 0

2. When the set of optimal solutions is a singleton
LSCE(v

⋆(ŷ),y) = 0 =⇒ Regret(v⋆(ŷ),y) = 0;
Regret(v⋆(ŷ),y) = 0 =⇒ LSCE(v

⋆(ŷ),y) = 0.

When LSCE is minimized using a blackbox optimization solver, the gradient would be:

∇LSCE
= v⋆ − v⋆(ŷ) (8)

4 MINIMIZING SURROGATE LOSS WITH A SMOOTHED SOLVER

Since smoothing converts the non-smooth combinatorial problem into a smooth optimization problem,
existing approaches minimize regret during training. The intuition is that this reduces expected regret
in unseen instances, aligning with the empirical risk minimization paradigm in ML. However, a
close inspection of how the incorporation of smoothing changes the gradient landscape reveals a
shortcoming in this approach.

The introduction of smoothing ensures that the solution transitions smoothly, rather than abruptly,
near the original optimization problem’s transition points. However, the solution of the smoothed
optimization remains unchanged, or changes very slowly, in regions where the original problem’s
solution is constant, provided the smoothing strength is kept low as illustrated in Figure 1b. So in this
region, dv⋆(ŷ)

dŷ is are nearly zero. When regret is minimized, the derivative of it with respect to the ŷ

takes the following form:

∂v⋆(y)

∂y

∣∣∣
y=ŷ

y (9)

where ∂v⋆(y)
∂y

∣∣∣
y=ŷ

is computed by considering the smoothed optimization problem. As we illustrated

above, smoothing addresses the non-differentiability at the transition points, but the derivative dv⋆(ŷ)
dŷ

still remains zero far from these points. Hence, the derivative in Eq. 9 remains zero. This would also
be true if SqDE is considered as the training loss. In this case, the derivative would be:

∂v⋆(y)

∂y

∣∣∣
y=ŷ

(v⋆(ŷ)− v⋆) (10)

In both Eq. 10 and Eq. 9, the derivative turns zero due to ∂v⋆(y)
∂y

∣∣∣
y=ŷ

becoming zero. Consequently,

training by gradient descent would fail to change ŷ despite ŷ resulting non-zero regret.

To prevent the derivative from vanishing far from the transition points, in this paper, we argue in
favour of minimizing a surrogate loss such as noise contrastive loss when the smoothed optimization
problem is considered. For instance, when LSPO+ is minimized, the derivative of the loss with
respect to the ŷ takes the following form:

2
(
v⋆ − v⋆(2ŷ − y)

)
+ 2

∂v⋆(y)

∂y

∣∣∣
y=2ŷ−y

(y − 2ŷ) (11)

Similarly if LSCE is minimized after smoothing, the resulting derivative would be:

(v⋆ − v⋆(ŷ)) +
∂v⋆(y)

∂y

∣∣∣
y=ŷ

(y − ŷ) (12)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 2: (a) The numerical illustration demonstrates that while smoothing removes abrupt changes
in the solution and makes the regret continuous, the solution often remains flat across most regions,
resulting in a zero gradient, not suitable for training. In contrast, LSCE (with or without smoothing)
provides a more responsive landscape: when regret is non-zero, LSCE ensures non-zero gradient. (b)
Progression of predictions by epochs when the smoothed regret and SCE are used as training losses.

The way Eq. 12 differs from Eq. 9 is the term (v⋆ − v⋆(ŷ)) and the multiplier of ∂v⋆(y)
∂y

∣∣∣
y=ŷ

is

(y − ŷ) instead of y. The term (v⋆ − v⋆(ŷ)) prevents dL
dŷ going to zero even when dv⋆(ŷ)

dŷ ≈ 0.

Note that if we minimize LSCE or LSPO+ using a blackbox optimization solver, ∂v⋆(y)
∂y cannot be

computed and only the first part of the derivative would be used. So, in this case, Eq. 11 and Eq. 12
would reduce to Eq. 5 and Eq. 8 respectively.

A deep dive into the gradient landscape. To convince readers that the solution of the smoothed
optimization remains unchanged, we will demonstrate how the gradient landscape changes after
QP smoothing with a simple illustration. For this, we consider the following one-dimensional
optimization problem:

min
v

yv s.t. 0 ≤ v ≤ 1 (13)

where y ∈ R is the parameter to be predicted. Note that the solution of this problem is: v⋆(y) = 1 if
y < 0 and v⋆(y) = 0 if y > 0. When y = 0 any value in the interval [0,1] is an optimal solution.

Let us assume that the true value of y is 4 and hence v⋆(y) = 0. The red line in Figure 2a shows how
the value of regret changes as ŷ changes. The regret is 4 when ŷ ≤ 0 and 0 when ŷ > 0. The regret
changes abruptly at the point ŷ = 0. After augmenting the objective with the quadratic smoothing
term µ

2 v
2 with µ > 0 , the solution of the smoothed problem is:

v⋆(y) =

0; when y > 0

− y
µ ; when − µ < y ≤ 0

1; when y ≤ −µ

This makes the derivative non-zero in the interval −µ ≤ y ≤ 0. However, it is still zero when
y < −µ. Hence, if ŷ < −µ, the derivative of regret is 0, even if regret is non-zero. Consequently,
the predictions cannot be changed by gradient descent despite regret being zero. The regret with the
smoothed problem is shown by the blue line in Figure 2a for µ = 6. The strength of smoothing can be
increased by assigning µ to a high value. However, if µ ≫ |y|, v⋆(y) ≈ 0 almost everywhere. On the
other hand, LSCE with and without smoothing are plotted with green and violet colors, respectively.
In both cases, LSCE is strictly decreasing for ŷ < 0. This ensures a non-zero derivative, suitable for
guiding ŷ towards the positive half-space if ŷ < 0.

Example. We further illustrate this with a simple fractional knapsack problem, which is an LP.
Let us consider that we have two items and space for only one item. This can be formulated as a

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

minimization problem:

min −y1v1 − y2v2 s.t. v1 + v2 ≤ 1; v1, v2 ≥ 0

Let us assume the true values of y1 and y2 are (0.8, 0.4). The corresponding solution is (v1, v2) =
(1, 0). The grey region in Figure 2b corresponds to any predictions satisfying ŷ1 > ŷ2. Such
predictions will induce the true solution, resulting in zero regret. Further assume that the initial
predictions are (ŷ1, ŷ2) = (0.1, 0.01). We show the progression of predictions by epochs when regret
and SCE are used as training loss, using the smoothed optimization problem with blue and green
lines, respectively in Figure 2b. The predictions does not change with training epochs when regret
is used as the loss because the derivatives of regret with respect to ŷ1 and ŷ2 are zero. On the other
hand, when LSCE is used as the loss, (ŷ1, ŷ2) gradually move from the white region to the grey
region, eventually resulting in zero regret. Note that increasing the strength of smoothing may provide
non-zero gradient across the space. But this will entirely alter the optimization problem’s solution.
For instance, in this knapsack example, high values of µ would make both v1 and v2 close to zero.

5 ADDRESSING THE SCALABILITY OF DFL

Implementing DFL entails a significant computational burden, as it requires solving and differentiating
the CO problem for each training instance in every epoch using predicted parameters. While Mulamba
et al. (2021) address this issue by using solution caching instead of repeatedly solving the optimization
problem, a faster and more scalable implementation of the optimization problem is a promising
direction, which has been receiving increasing attention recently. Research in this area is tangential
to the learning-to-optimize paradigm (Bengio et al., 2021; Kotary et al., 2021), which trains an
ML model to output CO solutions directly from the parameters. Recently, McKenzie et al. (2024)
introduced a differentiable method, called DYS-Net, based on a three-operator splitting technique
(Davis & Yin, 2017), to compute the solution of an LP. Next, we will provide a brief overview of
DYS-Net, as we aim to train by minimizing a surrogate loss using DYS-Net for accelerating DFL.

DYS-Net for LPs. The motivation behind DYS-Net emerges from projected gradient descent
(Duchi et al., 2008). Projected gradient descent differs from standard gradient descent in that, after
each iteration, the current predictions, if not inside feasible space, is projected into the feasible space.
However, projecting into the feasible space of a combinatorial optimization problem is itself an
expensive operation. If we consider standard form LPs, the feasible space can be expressed as:

F ≡ F1 ∩ F2 where F1
.
= {Av = b} and F2

.
= {v ≥ 0}.

Although projecting an infeasible solution v directly into F is not a trivial operation, projecting into
F1 and F2 separately are much simpler tasks. Projecting into F1 takes the following form:

PF1
(v)

.
= v −A†(Av − b)

where A† is the pseudo inverse of A. Projecting into F2 takes the following form:

PF2(v)
.
= max{0,v}

where max operates element-wise. In order to obtain the LP solution to a given cost vector y,
McKenzie et al. (2024) propose the following fixed point iteration.

vk+1 = vk − PF2
(vk) + PF1

(
(2− αµ)PF2

(vk)− vk − αy
)

(DYS)

which converges to v⋆(y) as k → ∞. In practice, we use a finite number of iterations k in a single
forward pass to get an approximation of v⋆(y). Note that all operations in Eq. DYS can be expressed
as matrix operations and can be implemented using neural networks, which has the potential for
greater scalability and reduced training time by leveraging recent advancements in GPU hardware.

We denote the solution obtained in this method as DYS (y). To improve the scalability of DFL,
McKenzie et al. (2024) use DYS-Net during training, minimizing SqDE between v⋆(y) and DYS (ŷ).
In this work, we instead propose training by minimizing LSCE between the outputs of DYS (y) and
v⋆(y). The intuition of this is based on our discussion in the previous section.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6 EXPERIMENTAL EVALUATION

In order to demonstrate the advantage of using LSCE as the training loss, we conduct experiments on
four well-established DFL benchmark problems.

Cubic Top-K (Top-K). This optimization problem is adopted from Shah et al. (2022). The
optimization problem is to choose the best among N resources. Each resource is associated with
feature ϕn ∼ U [−1, 1] and its true utility is defined by the cubic equation: yn = 10ϕ3

n − 6.5ϕn.
However, to predict the utility from the feature, a linear model is used.

Shortest path on a grid (SP). The goal of this optimization problem is to find the path, with lowest
cost on a k × k grid, starting from the southwest node and ending at the northeast node of the grid
(Elmachtoub & Grigas, 2022). The cost of each edge is unknown and should be predicted before
solving the problem. The true relation between the features and the costs are non-linear, but linear
model is used for predictions.

Multi-Dimensional Knapsack (KP). The objective of the knapsack problem is to select a subset of
items with the highest total value, subject to a capacity constraint. The weights of the items and the
knapsack’s capacity are known, but the values of the items are unknown. Therefore, the prediction
task is to predict the value of each item using features.

Travelling salesperson problem (TSP). Given a set of nodes, the goal is to find the tour, with the
lowest cost, that visits every node exactly once. As before, the costs are related to the features in a
non-linear manner, but a linear predictive model is used for prediction.

We use PyEPO (Tang & Khalil, 2023) to generate the training, validation and test instances for the SP,
KP and TSP problems. In all three problems, the true relation between the features and the costs are
non-linear, but linear model is used for predictions. We experiment with polynomial degree parameter
and noise half-width parameter being 6 and 0.5, respectively. The predictive models are implemented
using PyTorch (Paszke et al., 2019) and Gurobipy (Gurobi Optimization, 2021) is used as a blackbox
combinatorial solver to obtain the optimal solution. To solve and differentiate through the smooth
optimization problem after adding the quadratic regularizer, we use CvxpyLayer (Agrawal et al.,
2019). We use the implementation of DYS-NET by McKenzie et al. (2024). The experiments were
executed on a computer with an Intel(R) Core(TM) i7-13800H processor using 32 Gb of RAM.

6.1 REGRET VS. SURROGATE LOSS WITH QP SMOOTHING

We report normalized relative regret on test data in Table 1, calculated as follows:

1

Ntest

Ntest∑
i=1

y⊤
i (v

⋆(ŷi)− v⋆
i)

y⊤
i v

⋆
i

. (14)

For evaluation, we always use an exact combinatorial solver. The column MSE corresponds to
ML models trained with the MSE loss between y and ŷ. As this approach does not consider
the optimization problem during training, we anticipate it would have higher regret than the DFL
approaches. Implementation of perturbed Fenchel-Young (PFY) (Berthet et al., 2020), LSPO+ and
LSCE using combinatorial solvers serve as three DFL benchmarks. We choose LSPO+ and PFY, as
they are best performing DFL methods across various optimization problems (Mandi et al., 2024;
Tang & Khalil, 2023). When LSPO+ and LSCE are minimized using combinatorial solvers, Eq. 5
and Eq. 8 are used for gradient backpropagation. The three columns under CvxpyLayer show regret
when the losses are backpropagated through the smoothed QP problem using CvxpyLayer. Regret
appears only under CvxpyLayer, because it can only be minimized after QP smoothing. This paper is
the first to test the last two approaches, which combine differential smoothing and surrogate losses.

For the Top-K problem, all DFL approaches have exact same regret. We explain this behaviour in
the appendix. Next, we highlight that in all cases, minimizing LSPO+ or LSCE results in lower test
regret than minimizing Regret using CvxpyLayer, which corroborates the main proposal we made
in this paper. Across all experiments, we observe that minimizing LSCE using CvxpyLayer yields
regret similar to LSPO+ and PFY, which use combinatorial solvers. This shows that minimizing

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Normalized relative regret on test data for four optimization problems. We mention the
number of resources, the size of the grid, the number of items and the number of nodes for the Top-K,
shortest path, knapsack and TSP problems respectively in the parenthesis.

Combinatorial CvxpyLayer

MSE PFY LSPO+ LSCE Regret LSPO+ LSCE

Top-K (50) 1.614
±0.874

0.051
±0.006

0.051
±0.006

0.051
±0.006

0.246
±0.439

0.051
±0.006

0.051
±0.006

Top-K (80) 1.622
±0.896

0.018
±0.001

0.018
±0.001

0.018
±0.001

0.419
±0.896

0.018
±0.001

0.018
±0.001

Top-K (100) 1.623
±0.9

0.013
±0.001

0.013
±0.001

0.013
±0.001

0.214
±0.45

0.013
±0.001

0.013
±0.001

SP (5 × 5) 0.45
±0.124

0.328
±0.037

0.302
±0.042

0.431
±0.06

0.339
±0.035

0.303
±0.044

0.303
±0.032

SP (8 × 8) 0.539
±0.064

0.425
±0.048

0.447
±0.038

0.632
±0.082

0.486
±0.041

0.454
±0.031

0.445
±0.036

SP (10 × 10) 0.492
±0.113

0.462
±0.118

0.443
±0.103

0.626
±0.165

0.745
±0.174

0.442
±0.105

0.424
±0.111

KP (10) 0.129
±0.051

0.098
±0.049

0.101
±0.034

0.163
±0.009

0.197
±0.047

0.11
±0.032

0.104
±0.044

KP (20) 0.174
±0.037

0.128
±0.035

0.134
±0.037

0.16
±0.035

0.222
±0.075

0.139
±0.027

0.129
±0.029

KP (40) 0.176
±0.019

0.149
±0.011

0.142
±0.008

0.17
±0.011

0.217
±0.025

0.153
±0.008

0.146
±0.009

TSP (5) 0.101
±0.036

0.079
±0.032

0.067
±0.028

0.152
±0.05

0.095
±0.029

0.078
±0.027

0.073
±0.026

TSP (6) 0.111
±0.021

0.06
±0.015

0.059
±0.014

0.161
±0.071

0.069
±0.009

0.081
±0.01

0.059
±0.006

TSP (8) 0.12
±0.008

0.072
±0.011

0.071
±0.013

0.117
±0.021

0.081
±0.01

0.095
±0.011

0.065
±0.012

LSCE using CvxpyLayer can compete with the state-of-the-art in DFL. Moreover, LSPO+ produce
lower regret, when a combinatorial solver is used, whereas LSCE performs better with CvxpyLayer.
This opens up an interesting side observation— Eq. 5 (LSPO+) provide a better subgradient than
Eq. 8 (LSCE). However, when one can differentiate through the optimization, LSCE (Eq. 12) has a
better gradient than LSPO+ (Eq. 11).

6.2 EXPERIMENT WITH DYS-NET

The previous experiment shows that minimizing LSCE with a smoothed solver, such as CvxpyLayer
results in regret comparable to that of the state-of-the-art DFL approaches. In the next set of
experiments, we will minimize LSCE using DYS-Net, which can be fully implemented as a neural
network offering substantial improvement in training time.

We present the result for larger problem instances of KP, SP and TSP in Figure 3. In the upper and
lower panels, we compare normalized relative test regret and training time of one epoch, respectively.
First, we point out that across all instances, training with LSCE consistently achieves lower regret
than training with SqDE using DYS-Net, as done by McKenzie et al. (2024). So, the advantage of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 3: Experiment with DYS-Net in relatively larger KP, SP and TSP instances (from left
to right). SPOcombinatorial

+ minimizes LSPO+ using Gurobi solvers, SCEcvxpy and SCEDY S

minimize LSCE using CvxpyLayer and DYS-Net, respectively, whereas SqDEDY S minimizes
squared decision error using DYS-Net.

minimizing LSCE is also manifested with DYS-Net. Although DYS-Net trains significantly faster,
minimizing LSCE with CvxpyLayer yields lower regret as it optimally solves the smoothed problem,
unlike DYS-Net. Still, in all the knapsack and TSP instances, LSCE with DYS-Net matches the
regret of the SPO approach with significant reduction in training time. For the shortest path instances
up to grid-size of 25, LSCE with DYS-Net produces regret comparable to SPO; however, regret
increases for grid-size of 30, where LSCE with CvxpyLayer has lower regret than SPO.

In summary, minimizing LSCE with DYS-Net yields regret similar to SPO, while significantly
reducing runtime. The advantage becomes more pronounced with larger problem sizes; for instance,
in the 11-node TSP, DYS-Net is 5 times faster than SPO, which solves an ILP. Notably, these results
were achieved without GPU training, suggesting that even greater runtime reductions are possible
with GPU usage. By achieving regret comparable to SPO while reducing runtime, our work marks a
key advancement in DFL.

7 CONCLUSION

In this paper, we challenge the conventional DFL approach of directly minimizing empirical regret
when a smoothing operation is applied to make the optimization problem differentiable. Instead, we
recommend minimizing a surrogate loss, such as LSCE and justify this by comparing the pattern of
the gradient landscape concerning regret and the surrogate loss. By doing so, we effectively merge
the two families of approaches in DFL. To provide evidence for minimizing surrogate losses rather
than regret, we empirically demonstrate the advantage of minimizing LSCE instead of Regret using
CvxpyLayer as the differentiable layer across four benchmark problems. Furthermore, we experiment
with the recently proposed DYS-Net, a fast neural solver for LP. By minimizing Regret or SqDE ,
DYS-Net cannot attain regret as low as SPO. We show that for most problems minimizing LSCE

using DYS-Net produces regret as low as the state-of-the-art SPO method, with a clear advantage in
runtime up to five-fold.

Future work includes applying this approach to real-world large-scale applications with full GPU
training. Furthermore, new fully neural smoothing approaches or better surrogate losses can also
benefit from this joint approach. While used here for linear objective functions, future work can
investigate the joint applicability of both smoothing and surrogates for non-linear optimisation too.

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in neural information processing systems, 32,

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

2019.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pp. 136–145. PMLR, 2017.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial optimization:
A methodological tour d’horizon. European Journal of Operational Research, 290(2):405–421,
2021. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.2020.07.063.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable pertubed optimizers. Advances in neural information processing
systems, 33:9508–9519, 2020.

Mathieu Blondel, André FT Martins, and Vlad Niculae. Learning with fenchel-young losses. J. Mach.
Learn. Res., 21(35):1–69, 2020.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

Damek Davis and Wotao Yin. A three-operator splitting scheme and its optimization applications.
Set-valued and variational analysis, 25:829–858, 2017.

John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projections onto
the l1-ball for learning in high dimensions. In Proceedings of the 25th International Conference
on Machine Learning, ICML ’08, pp. 272–279, New York, NY, USA, 2008. Association for
Computing Machinery. ISBN 9781605582054. doi: 10.1145/1390156.1390191.

Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science, 68(1):
9–26, 2022.

Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program as
a layer. Proceedings of the AAAI Conference on Artificial Intelligence, 34(02):1504–1511, Apr.
2020.

Aaron Ferber, Emily Griffin, Bistra Dilkina, Burcu Keskin, and ML Gore. Predicting wildlife
trafficking routes with differentiable shortest paths. In Proceedings of the Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 20th International Conference,
CPAIOR 2023, 2023.

LLC Gurobi Optimization. Gurobi optimizer reference manual. http://www.gurobi.com,
2021.

Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized statistical
models, with applications to natural image statistics. The journal of machine learning research, 13
(1):307–361, 2012.

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end constrained
optimization learning: A survey. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27
August 2021, pp. 4475–4482. ijcai.org, 2021.

Jayanta Mandi and Tias Guns. Interior point solving for lp-based prediction+optimisation. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 7272–7282, 2020.

Jayanta Mandi, Emir Demirović, Peter J. Stuckey, and Tias Guns. Smart predict-and-optimize for
hard combinatorial optimization problems. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(02):1603–1610, Apr. 2020.

Jayanta Mandi, Víctor Bucarey, Maxime Mulamba Ke Tchomba, and Tias Guns. Decision-focused
learning: Through the lens of learning to rank. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
14935–14947. PMLR, 17–23 Jul 2022.

11

http://www.gurobi.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jayanta Mandi, James Kotary, Senne Berden, Maxime Mulamba, Victor Bucarey, Tias Guns, and
Ferdinando Fioretto. Decision-focused learning: Foundations, state of the art, benchmark and
future opportunities. Journal of Artificial Intelligence Research, 80:1623–1701, 2024.

Daniel McKenzie, Howard Heaton, and Samy Wu Fung. Differentiating through integer linear
programs with quadratic regularization and davis-yin splitting. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=
H8IaxrANWl.

Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey,
and Tias Guns. Contrastive losses and solution caching for predict-and-optimize. In Zhi-Hua
Zhou (ed.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI-21, pp. 2833–2840. International Joint Conferences on Artificial Intelligence Organization,
8 2021. doi: 10.24963/ijcai.2021/390. Main Track.

Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit mle: Backpropagating through
discrete exponential family distributions. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34,
pp. 14567–14579. Curran Associates, Inc., 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differenti-
ation of blackbox combinatorial solvers. In International Conference on Learning Representations,
2020.

Utsav Sadana, Abhilash Chenreddy, Erick Delage, Alexandre Forel, Emma Frejinger, and Thibaut
Vidal. A survey of contextual optimization methods for decision-making under uncertainty.
European Journal of Operational Research, 320(2):271–289, 2025. ISSN 0377-2217. doi:
https://doi.org/10.1016/j.ejor.2024.03.020.

Subham Sekhar Sahoo, Anselm Paulus, Marin Vlastelica, Vít Musil, Volodymyr Kuleshov, and Georg
Martius. Backpropagation through combinatorial algorithms: Identity with projection works. In
The Eleventh International Conference on Learning Representations, 2023.

Sanket Shah, Kai Wang, Bryan Wilder, Andrew Perrault, and Milind Tambe. Decision-focused
learning without decision-making: Learning locally optimized decision losses. In NeurIPS, 2022.

Bo Tang and Elias B. Khalil. Pyepo: A pytorch-based end-to-end predict-then-optimize library for
linear and integer programming, 2023.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, pp. 1658–1665. AAAI Press, 2019.

A PROOF OF PROPOSITION 1

Proof. 1. Following the definition of LSCE ,

LSCE(v
⋆(ŷ),y) = (ŷ − y)⊤v⋆(y)− (ŷ − y)⊤v⋆(ŷ)

= ŷ⊤(v⋆(y)− v⋆(ŷ)) + y⊤(v⋆(ŷ)− v⋆(y))

ŷ⊤(v⋆(y) − v⋆(ŷ)) ≥ 0, because v⋆(ŷ) is the optimal solution to ŷ. In a similar way,
y⊤(v⋆(ŷ)− v⋆(y)) ≥ 0. Hence, LSCE(v

⋆(ŷ),y) ≥ 0.

2. We will prove the claim by contradiction. Assume that LSCE(v
⋆(ŷ),y) = 0 but

Regret(v⋆(ŷ),y) = y⊤(v⋆(ŷ) − v⋆(y)) > 0 . This is possible if v⋆(ŷ) ̸= v⋆(y).

12

https://openreview.net/forum?id=H8IaxrANWl
https://openreview.net/forum?id=H8IaxrANWl

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

As the solution to ŷ is different from v⋆(y), the singleton assumption implies that
∃v′ ∈ F \ {v⋆(y)} : ŷ⊤v′ < ŷ⊤v⋆(y). In this case, we have:

ŷ⊤v⋆(y)− ŷ⊤v′ > 0

⇒ (ŷ⊤v⋆(y)− ŷ⊤v′) + (y⊤v′ − y⊤v⋆(y)) > (y⊤v′ − y⊤v⋆(y)) ≥ 0

⇒ (ŷ − y)⊤v⋆ − (ŷ − y)⊤v⋆(ŷ) > 0

In the second line, y⊤v′ − y⊤v⋆(y) is added in both sides and this term is nonnegative as
v⋆(y) is the optimal solution to y. This implies LSCE(v

⋆(ŷ),y) > 0 and we arrive at a
contradiction. Thus we prove that LSCE(v

⋆(ŷ),y) = 0 =⇒ Regret(v⋆(ŷ),y) = 0.

Next, assume Regret(v⋆(ŷ),y) = 0. This implies that y⊤v⋆(ŷ) = y⊤v⋆(y). This can
only be true if v⋆(ŷ) = v⋆(y) because of the singleton assumption. Hence, LSCE(v

⋆(ŷ),y)
= (ŷ − y)⊤(v⋆(y)− v⋆(ŷ)) = 0.

B SIMULATION EXPERIMENT

In Section 4, we made the case for minimizing surrogate loss such as LSCE instead of Regret . Our
main argument is for a relatively low value of smoothing parameter µ, Regret will have zero gradient.
However, LSCE will not have this problem. We provided two illustrations considering small-scale
optimization problems. In this case, we justify this with higher-dimensional optimization problems.
We consider Top-1 selection problem with different number of items M .

max
v∈{0,1}

y⊤v s.t. v⊤1 ≤ 1 (15)

y = [y1, . . . , yM] ∈ RM is the vector denoting value of all the items and v = [v1, . . . , vM] is the
vector decision variables. To replicate the setup of a PtO problem, we solve the optimization problem
with ŷ. Let us assume yi, ŷi ≥ 0.

Before, solving the problem with simulation, we will show one interesting aspect of this problem.
Note that when µ > 0, the following relaxed optimization problem is solved:

max
v

y⊤v − µ

2
||v||2 s.t. v⊤1 ≤ 1; v ≥ 0 (16)

We point out that the solution to the unconstrained optimization problem is v⋆i = yi

µ > 0.

The augmented Lagrangian of Equation 16 is

L = y⊤v − µ

2
||v||2 + λ(1− v⊤1) + σ⊤v (17)

where λ and σ = [σ1, . . . , σM] are dual variables. By differentiating L with respect to vi, we obtain
one condition of optimality, which is the following:

yi − µvi − λ+ σi = 0 =⇒ vi =
yi − λ+ σi

µ
(18)

Without any loss of generality, let y(1) ≥ y(2) ≥ . . . y(M). (In the d) As, solution to the constrained
optimization problem is vi > 0, y(1) will definitely be greater than zero. Hence, σi = 0 because of
strict complementarity. So, we can write v(1) − v(k) = y(1)−y(k)−σ(k)

µ . As, v(1) − v(k) ≤ 1, we can
write:

y(1) − y(k) − σ(k)

µ
≤ 1 =⇒ µ ≥ y(1) − y(k) − σ(k) (19)

So,

y(1) − y(k) > µ =⇒ σ(k) > 0 =⇒ y(k) = 0 (20)

This suggest that if y(k) < y(1) − µ, only v(1) = 1 and all other decision variables will be zero in the
optimal solution.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 4: Results of Computational Simulation

To generate the ground truth y, we randomly select M integers without replacement from the set
1, . . . ,M . The predicted costs, ŷ, are generated by considering a different sample from the same
set. As a result, y and ŷ contain the same numbers but in different permutations. It is important to
note that all elements in both vectors are positive integer values. We compute the solution to the
optimization problem for y and ŷ. We solve the optimization problem with ŷ using a ‘smoothed’
optimization layer—CvxpyLayer. in order to compare the gradients of Regret and LSCE . We
compute the gradients of both the losses for multiple values of M and µ. For each configuration of
M and µ, we run 20 simulations.

Note that y(1) > y(2) > . . . y(M) because of the way we created the dataset. Moreover, as all
values in ŷ and y are integer, Equation 20 suggests if µ < 1, the solution to the relaxed problem
(equation 16) will be binary. So, the discussion in Section 4 suggests that slight change of the cost
parameter would not change the solution and hence the zero gradient problem would appear while
differentiating Regret .

In Figure 4, we plotted the average absolute values of the gradients of the two losses— LSCE and
Regret . As we hypothesized the gradient turns zero whenever Regret is minimized with µ < 1. It is
true that for µ > 1, Regret have non-zero gradient. However, higher values of µ turns solution to the
‘smoothed’ problem very different from the solution to the original problem. We show this in Table 2
by displaying the average Manhattan distance between solutions of the true and ‘smoothed’ problem
for same ŷ.

We also highlight that, for the same values of µ, the average Manhattan distances remain same across
different M . Examining the results of the simulations, we observed that the solution to the smoothed
problem is fractional. For example, when µ = 2, the solution includes two non-zero values— 0.77
and 0.23. Typically, the value 0.77 appears in the position corresponding to the highest value in ŷ,
i.e., where there is a 1 in solution vector. As a result, the Manhattan distance becomes (1-0.77)+0.23
= 0.46. Interestingly, these values remain unchanged across different values of M . Therefore, the
Manhattan distance remains constant as long as µ does not change.

C NON-CONVEXITY OF LSCE

The SPO+ loss, LSPO+(v⋆(ŷ),y), proposed by Elmachtoub & Grigas (2022) is a convex function
of ŷ. However, the LSCE loss proposed by Mulamba et al. (2021) is non-convex with respect to ŷ.
Note that,

LSCE(v
⋆(ŷ),y) = ŷ⊤(v⋆(y)− v⋆(ŷ)) + y⊤(v⋆(ŷ)− v⋆(y))

We can easily show the convexity of LSCE with a numerical example. Let us consider the example
introduced in Equation 13. In Figure 5, we plot LSCE and LSPO+ for different values of ŷ. To make
this plot, we use an exact solver, not the ‘smoothed’ solver. Note that, LSCE includes a jump when

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

M

µ 5 10 20 40 80 100

0.100 0.000 0.000 0.000 0.000 0.000 0.000
0.500 0.000 0.000 0.000 0.000 0.000 0.000
0.990 0.000 0.000 0.000 0.000 0.000 0.001
1.050 0.089 0.089 0.089 0.089 0.089 0.089
1.500 0.465 0.466 0.465 0.465 0.465 0.464
2.000 0.622 0.622 0.622 0.622 0.622 0.622
5.000 1.165 1.165 1.165 1.165 1.165 1.165

Table 2: We tabulate average Manhattan distance between the solution of the ‘smoothed’ problem
and the solution of the original problem for different values of M and µ.

Figure 5: A numerical illustration to show LSCE is not convex, but LSPO+ is.

the solution of ŷ switches from 1 to 0. However, this is not the case for LSPO+ . More specifically,
3
4LSCE(2, y) +

1
4LSCE(−2, y) > LSCE(

3
4 (2) +

1
4 (−2), y) = LSCE(1, y), which violates the

definition of a convex function.

D MINIMIZING LSPO+ USING DYS-NET

In Table 1, we show that minimizing LSCE results in lower regret compared to minimizing LSPO+

using CvxpyLayer. Since both CvxpyLayer and DYS-Net are differentiable ‘smoothed’ layers, we

Figure 6: Experiment with DYS-Net in relatively larger KP, SP and TSP instances (from left to right).
In addition to Figure 3, we have included the regret results for minimizing LSPO+ using DYS-Net.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 7: Comparison between DYS-Net and solution caching.

would expect similar results with DYS-Net. For this reason, we included only LSCE in Figure 3. To
ensure completeness, we added the results of minimizing LSPO+ with DYS-Net in Figure 6. As we
hypothesized, this leads to higher average regret compared to minimizing LSCE .

E COMPARISON AGAINST SOLUTION CACHING

To reduce the long training time of DFL, Mulamba et al. (2021) propose the idea of solution caching.
Instead of finding the optimal solution to ŷ or ((2ŷ − y) for LSPO+), Mulamba et al. (2021) suggest
returning a heuristic solution by selecting the optimal one from a finite-dimensional ‘cache.’ They
initialize the cache with all existing solutions in the training data. Furthermore, during training, they
randomly solve for p% of the training instances. Note that if, solve ratio, p = 100%, this strategy
becomes equivalent to solving the combinatorial problem for every instance. Conversely, if p = 0%,
no additional problem-solving is required during training.

We compare the performance of DYS-Net with solution caching in Figure 7. SPOp=10%
+ denotes

the case where LSPO+ is minimized with a solve ratio of 10%. Similarly, SPOp=5%
+ and SPOp=0%

+

correspond to solve ratios of 5% and 0%, respectively. Similarly, SCEp=5% stands for minimizing
LSCE with p = 5%. Note that while solution caching approach, Equation 5 and Equation 8 are used
for backpropagating LSPO+ and LSCE respectively.

It is evident in Figure 7 that p = 0% results in higher regret for LSPO+ . However, the regret is much
lower for p being 5% and 10%. Nevertheless, we point out minimizing LSCE with DYS-Net results
in lower regret. This is particularly prominent for the TSP instances. In terms of training efficiency,
solution caching has lower training time for these instances.

F COMPARATIVE ANALYSIS IN LARGER TSP INSTANCES

In Figure 3, we compared TSP instances till 11 nodes. This is due to the fact that for larger TSP
instances, we cannot complete training of SPOcombinatorial

+ and SCEcvxpy . In Figure 8, we consider
TSP instances with 15, 20 and 25 nodes. We focus exclusively on TSP instances because, among the
three optimization problems considered, because it is the most difficult and time consuming to solve.
We have excluded SPOcombinatorial

+ and SCEcvxpy and included SPOp=5%
+ and SCEp=5%.

We first draw the reader’s attention to the observation that SPOp=5%
+ requires more training time

compared to SCEp=5%. This discrepancy arises because, in SPOp=5%
+ , the optimization problem is

solved for 2ŷ − y. Solving for 2ŷ − y is more challenging and time-consuming compared to solving
for ŷ, as done in SCEp=5%. This is due to the difference in scale between the true cost (y) and the
predicted cost (ŷ) We point that this pattern is also visible in Figure 7. The computational burden
of SPOp=5%

+ becomes especially pronounced for the larger problem instances. For these instances,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8: Comparative analysis on larger TSP instances.

Figure 9: Relationship between yn and ϕn in the Top-K experiment.

solving the optimization problem with 2ŷ − y often results in timeouts, meaning Gurobi returns an
approximate solution instead of the exact one. This is the reason why SPOp=5%

+ exhibits relatively
higher regret than SCEp=5% for these problems.

In contrast, for SCEp=5%, timeouts never occurred, and it exhibits lower training times compared
to SPOp=5%

+ . For TSP with 15 nodes, SCEp=5% outperforms DYS-Net in terms of training time.
However, as problem size increases, DYS-Net demonstrates better scalability, whereas solving the
optimization problem even for 5% of the training instances becomes significantly time-intensive in
SCEp=5%.

In terms of regret, DYS-Net demonstrates a significant advantage with much lower regret compared
to other methods. This underscores the advantage of minimizing LSCE using DYS-Net, as it not only
delivers lower regret but also scales more effectively for larger problems.

G EXPLANATION OF THE TOP-K DATASET

In the Top-K experiments, the relationship between yn and ϕn is illustrated in Figure 9. All DFL
models learn a mapping with a positive slope. As a result, each model selects the Top-1 element as
the one with the highest value of ϕn, leading to identical accuracy across all DFL models. In contrast,
models trained with MSE loss fail to learn a positive slope, resulting in significantly higher regret.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

ϕ Mω ŷ
Combinatorial
Optimization

Optimal
Decisions

Figure 10: Schematic diagram of a predict-then-optimize (PtO) problem.

H PREDICT-THEN-OPTIMIZE PROBLEM DESCRIPTION

We consider predicting parameters in the objective function of an LP. These kinds of problems can
be framed as predict-then-optimize (PtO) problems consisting of a prediction stage followed by an
optimization stage, as illustrated in Figure 10. In the prediction stage, an ML model Mω (with
trainable parameters ω) is used to predict unknown parameters using features that are correlated to
the parameter. During the optimization stage, the problem is solved with the predicted parameters.
An offline dataset of past observations is available to train Mω .

It is important to distinguish datasets based on whether the true parameters, y, are observed and
included in the dataset. In some applications, the true parameters, y, may not be directly observable,
and only the solutions, v⋆(y), are observed. While v⋆(y) can be computed if y is known, the reverse
process is not true, as solving the inverse optimization problem is a research problem in its own.

Whether y is observed or not is important because in order to compute Regret (equation 2), we need
the true parameter y. Most of the benchmarks in PtO problems assume that y is observed in the past
observation. In this case the training data can be expressed as {(ϕi,yi,v

⋆(yi))}Ni=1 and the empirical
regret, 1

N

∑N
i=1 Regret(v

∗(Mω(ϕi)),yi), can be computed. In most PtO benchmark problems it is
assumed that the true y is observed in the training data (Mandi et al., 2024; Tang & Khalil, 2023).
However, if the true cost y is not observed in the training data, empirical regret cannot be computed.
Rather a different loss has to be considered. For instance, McKenzie et al. (2024) consider squared
decision errors (SqDE) between v⋆(y) and v⋆(ŷ), i.e., SqDE = ||v⋆(y)− v⋆(ŷ)||2.

I DIFFERENT APPROACHES TO DECISION-FOCUSED LEARNING

In PtO problems, the empirical regret can be calculated if the cost, y, is observed in the training
instances. However, just because it can be calculated does not mean it can be minimized using
gradient descent. Figure 11 illustrates the impact of integrating the optimization block into the
training loop of neural networks. The key challenge is that to directly minimize Regret , it must be
backpropagated through the optimization problem. However, for a combinatorial problem v⋆(ŷ)

does not change smoothly with ŷ, so the gradient, dv⋆(ŷ)
dŷ , is either zero or does not exist.

Differentiable Optimization by Smoothing. ‘Differentiable Optimization by Smoothing’ is one
approach to to circumvent this challenge. As explained in Section 3.1, approaches under this category
replace the original optimization problem with a ‘smoothed’ version of the optimization problem, in
which the solution can be expressed as a differentiable mapping of the parameter. For instance, if
the original problem is an LP, it can be replaced with a QP by adding a quadratic regularizer to the
objective of the LP. In this QP, the solution, v⋆(y), can be represented as a differentiable function
of the parameter y. When the problem is an ILP, first LP, resulting from continuous relaxation is
considered and then it is smoothed by adding quadratic regularizer. DYS-Net (McKenzie et al.,
2024) provides an approximate solution to the quadratically regularized LP problem, where the
computations are designed to be executed as standard neural network operations, enabling back-
propagation through it. To summarize, approaches in this category follow the training loop in Figure
11 but only after ‘smoothing’ the optimization problem.

Surrogate Losses for DFL. The primary goal of DFL is to minimize Regret . However, as explained
earlier, Regret cannot be minimized directly due to its non-differentiability. Techniques involving
surrogate losses aim to address this challenge by identifying suitable surrogate loss functions and
computing gradients or subgradients of these surrogate losses for optimization. Figure 12 depicts
the training loop of DFL using surrogate loss functions. In this approach, Regret(v⋆(ŷ),y) is not
explicitly computed. Instead, after predicting ŷ, a new cost vector ỹ is generated based on ŷ and y,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

ϕ v⋆(ŷ) = argminv ŷ⊤v
s.t. Av = b; v ≥ 0

Regret(v⋆(ŷ),y)

(ϕ,y,v⋆(y))

ŷ v⋆(ŷ)

dRegret
dŷ

dRegret
dv⋆(ŷ)

Training Data

dv⋆(ŷ)
dŷ

Figure 11: Decision-focused learning training loop.

ϕ

v⋆(ỹ) = argminv ỹ⊤v
s.t. Av = b; v ≥ 0

ỹ

∇

(ϕ,y,v⋆(y))

ŷ

Training Data

backpropgating ∇

Figure 12: Decision-focused learning using surrogate loss functions.

and the optimization problem is solved using this ỹ. Subsequently, a surrogate loss is computed, using
v⋆(ỹ) and v⋆(y), and its gradient,∇ (shown in pink) , is used for backpropagation. For example,
in the case of LSPO+ , ỹ = 2ŷ − y. As shown in Equation 4 LSPO+ = (2ŷ − y)⊤v⋆(y)− (2ŷ −
y)⊤v⋆(2ŷ−y) Then the gradient used for backpropagation is ∇ = 2(v⋆(y)−v⋆(2ŷ−y)). On the
other hand, in the case of LSCE , ỹ = ŷ and LSCE = ŷ⊤(v⋆(y)− v⋆(ŷ)) + y⊤(v⋆(ŷ)− v⋆(y)).
So, in this case, the gradient for backpropagation is ∇ = (v⋆(y)− v⋆(ŷ)).

Combining Surrogate Losses with Differentiable Optimization. The core idea proposed in
this paper is to combine these two approaches. Specifically, the original optimization problem in
Figure 12 is replaced with a smoothed version, allowing backpropagation through the smoothed
problem instead of using ∇ directly. We emphasis that this changes the gradient of the surrogate
losses. Instead of Equation 5 and Equation 8, Equation 11 Equation 12 will be used in this case for
backprogating LSPO+ and LSCE respectively.

19

	Introduction
	Predict-then-Optimize Problem Description
	Decision-Focused Learning for Combinatorial Optimization
	Differentiable Optimization by Smoothing of Combinatorial Optimization
	Surrogate Losses for DFL
	Smart Predict then Optimize(SPO)
	Contrastive Loss

	Minimizing Surrogate Loss with a Smoothed Solver
	Addressing the Scalability of DFL
	Experimental Evaluation
	Regret vs. Surrogate Loss with QP Smoothing
	Experiment with DYS-Net

	Conclusion
	Proof of Proposition 1
	Simulation Experiment
	Non-convexity of LSCE
	Minimizing LSPO+ using DYS-Net
	Comparison against Solution Caching
	Comparative Analysis in Larger TSP Instances
	Explanation of the Top-K Dataset
	Predict-then-Optimize Problem Description
	Different Approaches to Decision-Focused Learning

