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Abstract

We present Re-weighted Gradient Descent (RGD), a novel optimization technique that
improves the performance of deep neural networks through dynamic sample re-weighting.
Leveraging insights from distributionally robust optimization (DRO) with Kullback-Leibler
divergence, our method dynamically assigns importance weights to training data during each
optimization step. RGD is simple to implement, computationally efficient, and compatible
with widely used optimizers such as SGD and Adam. We demonstrate the effectiveness of
RGD on various learning tasks, including supervised learning, meta-learning, and out-of-
domain generalization. Notably, RGD achieves state-of-the-art results on diverse benchmarks,
with improvements of +0.7% on DomainBed, +1.44% on tabular classification, +1.94%
on GLUE with BERT, and +1.01% on ImageNet-1K with ViT.

1 Introduction

Deep neural networks (DNNs) have become essential for solving a wide range of tasks, including image
classification, object detection, machine translation, and speech recognition. The most commonly used
paradigm for learning DNNs is empirical risk minimization (ERM Vapnik (1999)), which aims to identify
a network that minimizes the average loss of training data points. Several algorithms, including SGD
(Nemirovsky et al., 1983), Adam (Kingma & Ba, 2015), and Adagrad (Duchi et al., 2011), have been
proposed for solving ERM. However, a drawback of ERM is that it weighs all the samples equally, often
ignoring the rare and more difficult samples and focusing on the easier and abundant samples. This leads to
suboptimal performance on unseen data, especially when the training data is scarce (Namkoong & Duchi,
2017). Consequently, recent works have developed data re-weighting techniques for improving the performance
of ERM. One particularly fruitful approach in this line of work is the framework of Distributionally Robust
Optimization (DRO) (Ben-Tal et al., 2013), which assigns higher weights to hard examples, often leading to
models with better performance than ERM.

DRO selects the best model while also accounting for various uncertainties in the training data distribu-
tion (Ben-Tal et al., 2013). In particular, DRO treats the data distribution as uncertain and finds models
which are robust to perturbations in the data distribution (e.g., removing a small fraction of points, adding
random noise to each data point, etc.). This makes the model more robust to noise in the training dataset.
For example, in the context of classification, this forces the model to place less emphasis on noisy features
and more emphasis on useful and predictive features. Consequently, models optimized using DRO have good
generalization guarantees on unseen samples, and good performance on heterogeneous subpopulations in the
data (Namkoong & Duchi, 2017; Duchi & Namkoong, 2018).

Concretely, let Θ be the model space, Pdata be the data distribution, and `(θ, z) be the loss of point z w.r.t
model θ. Unlike ERM which minimizes the average loss Ez∼Pdata [`(θ, z)], DRO minimizes the following
objective

inf
θ

sup
P ′:D(P ′||Pdata)≤ρ

EP ′ [`(z, θ)].

Here, ρ is the perturbation radius, and D is a divergence that measures the distance between two probability
distributions. Popular choices for D include f -divergences, which are defined as Df (Q||P ) = EP [f(dQ/dP )]
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for some convex function f : R+ → R. In this case, Shapiro (2017) derived the following equivalent dual
formulation of the above objective

inf
λ≥0

inf
η∈R

Ez∼Pdata

[
λf∗

(
`(θ, z)− η

λ

)]
+ λρ+ η. (1)

Here, f∗(s) = supt{st− f(t)} is the Fenchel conjugate of f . This alternative way of expressing DRO shows
how it implicitly reweighs samples using the conjugate f∗. The seminal works of Duchi et al. (2021a);
Namkoong & Duchi (2017) studied this objective for various f -divergences and showed that it has variance
reduction properties, and leads to models with good generalization performance under small perturbations
(ρ = O(1/n), where n is the data size). Furthermore, Duchi & Namkoong (2018) showed that DRO under
large perturbations (ρ = O(1)) leads to models with good fairness, tail risk guarantees. In another line of
work, Li et al. (and its extended version Li et al. (2023)) considered KL divergence DRO, which is obtained
by choosing f(x) = x log x, and showed that setting dual variable λ to a negative value results in robust
models that can withstand corruptions in the training data.

Inspired by these impressive properties, several recent studies have developed algorithms for optimizing DRO
and designed data re-weighting techniques for various learning tasks. These algorithms fall into two broad
categories: (a) Primal-Dual techniques which rely on alternating mirror ascent, descent to solve the min-max
DRO objective (Namkoong & Duchi, 2016; Yan et al., 2020b; Fidon et al., 2020), and (b) Compositional
optimization techniques which solve an equivalent compositional/dual form of DRO, which takes the form
g(Ez[h(z, θ)]), for some functions g, h (Qi et al., 2021; 2023b;a; Li et al., 2023). While these algorithms come
with good convergence guarantees, they have certain drawbacks that limit their use in practice. (a) Scalability:
primal-dual algorithms require updating and sampling from a probability distribution over the entire dataset
at each iteration, making them computationally expensive. Although compositional optimization techniques
alleviate this issue, gradient estimation within these algorithms is non-trivial as the objective is no longer
an empirical mean of the losses evaluated at the training data points. Overcoming this often necessitates
maintaining moving averages of sample weights, which introduces additional hyperparameters, complicating
their application to large-scale scenarios (Qi et al., 2023b; Li et al.). (b) Robustness to Outliers: many
real-world datasets contain outliers1, which pose challenges to algorithms optimizing DRO. In particular,
these outliers often result in poor performance and instability during the DRO training process (Zhu et al.,
2022; Zhai et al., 2021). Existing works often fail to account for outliers in real datasets, leading to subpar
performance (see Table 1 for a detailed comparison).

Paper Algorithm
Per-step compute

complexity
(compared to SGD)

Hyper-parameters Handles
outliers in DRO?

Namkoong & Duchi (2016) P-D O(logn)× more expensive lr of dual variables No
Qi et al. (2021) C-M 2× more expensive moving avg. parameter No
Li et al.; 2023)
Qi et al. (2023b) C-M same as SGD exponential scale,

moving avg. parameter No2

This Work stochastic optimization
of inner obj. same as SGD clipping level Yes

Table 1: Comparison with relevant prior works for optimizing KL-DRO. See Section 2 for a detailed discussion.
P-D in the 2nd column refers to primal-dual, and C-M refers to compositional minimization. 3rd column
corresponds to the cost of running each step of the algorithm. 4th column corresponds to additional parameters
introduced by the algorithm on top of learning rate (lr) of primal variables.

In this work, we address the aforementioned limitations of DRO optimization techniques. We focus on KL
divergence-based DRO, and develop a lightweight algorithm for efficiently solving the resulting objective. Our
algorithm simply optimizes the inner objective in Equation 1 using SGD. This gives rise to our stochastic
Re-weighted Gradient Descent (RGD) algorithm, a variant of the classical SGD, that re-weights data points
during each optimization step based on their difficulty. A key component of our algorithm is weight clipping

1An outlier is a data point that lies significantly outside the typical pattern of a dataset. These outliers could be because of
noise in data collection process or could be introduced by a malicious adversary. In this work, we are primarily concerned about
the former type of outliers.
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that we introduce to protect against (benign) outliers and stabilize the algorithm. As demonstrated in
our experiments (see Section 4, Appendix D), weight clipping significantly improves the performance of
our algorithm on numerous learning tasks involving real-world datasets. Another noteworthy aspect of our
algorithm is that it has the same runtime as SGD, has only one hyper-parameter, and scales to models with
billions of parameters.

1.1 Evaluation

In our experiments, we show that using our re-weighting scheme on top of existing learning algorithms improves
their generalization performance in a variety of learning tasks including supervised learning, meta learning,
out-of-domain generalization. While prior works focused on settings involving fairness, class imbalance to show
improvements of DRO type methods, our work is the first to show significant improvements in generalization
in large scale learning tasks across various domains.

Supervised Learning: We evaluate RGD on several supervised learning tasks in language and vision
domains. In the language domain, we apply RGD for BERT fine-tuning on the General Language Under-
standing Evaluation (GLUE) benchmark and show that RGD outperforms the BERT baseline by +1.94%. In
the vision domain, we apply RGD for ImageNet-1K classification using ViT-S model, and show that RGD
outperforms the ViT-S baseline by +1.01%.

Tabular Classification: Recently, Majmundar et al. (2022) introduced a tabular representation learning
method called MET. Deep learning methods trained with the learned representations from MET achieved
SOTA performance on downstream classification tasks, significantly improving upon Gradient Boosting
decision trees (GBDT; Friedman (2001)). Our experiments show that applying RGD to the MET framework
improves its performance by 1.51% and 1.27% on binary and multi-class tabular classification, respectively.

Domain Generalization: In domain generalization, the distributions of train and test datasets could be
different (for example, training on pictures of real dogs and evaluating cartoon dogs). This task requires
robustness to distribution shifts and DRO is a natural framework in this context. Gulrajani & Lopez-Paz
(2021) showed that the ERM framework applied over deep networks, is highly effective for this problem.
Perhaps surprisingly, this remained the state-of-the-art (SOTA) algorithm for a long time. Only recently,
ERM has been beaten on this challenging task (Cha et al., 2022; Addepalli et al., 2023). In this work, we
show that using RGD on top of these recent techniques further boosts their performance by 0.7% and gives
SOTA results on this task.

Meta-Learning: In meta-learning, we aim to learn models that generalize to new tasks with limited data.
Predominant approaches in this domain use the classical ERM to optimize deep networks (Finn et al., 2017;
Snell et al., 2017; Kumar et al., 2023). However, a common issue in this domain is that the learned models
solve most tasks but fail catastrophically in some tasks. Consequently, this has promoted works that focus
on worst-case performance (Collins et al., 2020). Recently, Li et al. (2023) used KL-DRO to tackle this
problem. However, the authors applied their algorithm for solving meta-regression on a toy-dataset that is
free of outliers, and haven’t showcased their algorithm on practically relevant datasets such as Omniglot,
miniImageNet. In this work, we show that using RGD as an off-the-hat addition to Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017) can significantly improve the worst-case accuracy of these models on
meta-classification benchmarks such as Omniglot, miniImageNet by up to 3%.

1.2 Contributions

This work makes the following key contributions:

• KL-DRO Inspired Re-weighting (RGD). We introduce RGD, a novel, lightweight data re-
weighting technique that improves the generalization of deep neural networks. Inspired by the
principles of KL-DRO, RGD dynamically re-weights samples during optimization based on their
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difficulty. We further enhance robustness with weight clipping to mitigate the influence of outliers.
RGD is versatile and easily integrated with widely used optimizers like Adam, SGD.

• State-of-the-Art (SOTA) Performance Enhancement. Extensive experiments demonstrate
that RGD delivers significant performance gains across diverse learning tasks. In tabular classification,
RGD boosts the accuracy of MET (Majmundar et al., 2022) by +1.44%. For out-of-domain
generalization, RGD outperforms FRR (Addepalli et al., 2023) on DomainBed by +0.7%. Additionally,
RGD improves the performance of BERT on GLUE benchmarks by +1.94% and ViT on ImageNet-1K
by +1.01%. (see Section 4, Appendix D)

2 Related Work

This section reviews relevant research on DRO. For a comprehensive overview of other popular data reweighting
methods in machine learning, including AdaBoost, curriculum learning, please refer to Appendix A.

DRO dates back to the early works of Ben-Tal et al. (2009; 2013). Since then several works have studied
various statistical and optimization aspects of DRO. The seminal works of Lam (2016); Namkoong & Duchi
(2017); Duchi et al. (2021b) formally showed that minimizing empirical DRO risk - under small perturbations
(ρ = O(1/n), where n is the data size) - is equivalent to minimizing sum of empirical risk and its standard
deviation. Consequently, optimizing DRO leads to a better bias-variance trade-offs and generalizing models.
In this work, we rely on this property of DRO to develop our re-weighting scheme. In another seminal work,
Duchi & Namkoong (2018) showed that DRO - under large perturbations (ρ = O(1)) - leads to models with
good tail performance.

The aforementioned properties of DRO has led to numerous works applying it in various learning scenarios.
For instance, Duchi & Namkoong (2018); Sagawa* et al. (2020); Qi et al. (2021; 2023b); Li et al.; 2023) used
DRO to tackle problems of class-imbalanaced classification and fairness. In another line of work, Namkoong
& Duchi (2017); Fidon et al. (2020) studied DRO for designing models that generalize better than ERM. Our
work falls in this second category of works that focus on generalization.

From an optimization perspective, several works have focused on designing efficient algorithms for optimizing
the DRO objective. These algorithms can be classified into two broad categories: primal-dual (Namkoong &
Duchi, 2016; Fidon et al., 2020; Yan et al., 2020b), compositional optimization techniques (Qi et al., 2021;
2023b;a; Li et al.). One of the key drawbacks of primal-dual techniques is that they update and sample
from a probability distribution over the entire training data at each step (aka. dual variables). A naive
implementation of this step takes O(n) time, which is prohibitive for large-scale tasks. Namkoong & Duchi
(2016) reduced the complexity of this step to O(logn) using data structures such as balanced binary search
trees. However, the resulting algorithms are hard to implement in practice. Another drawback of these
algorithms is that they require storing a buffer of weights for the entire dataset, which is infeasible at the scale
of LLMs. Even if storing the weights is feasible, the presence of data augmentations complicates the resulting
algorithms. Compositional optimization algorithms overcome these drawbacks by working with an equivalent
dual formulation of DRO that can be written as composition of two functions: g(Ez[h(z, θ)]). One major
drawback of these techniques though is that estimating the gradient ∇θg(Ez[h(z, θ)]) from a mini-batch is
non-trivial. This requires certain additional steps in the algorithm which add to its complexity. For instance,
the algorithm of Qi et al. (2021) requires making two backward passes at each step of SGD. The convergence
analysis of Li et al. required two independent mini-batches at each iteration. The algorithms of Qi et al.
(2023b); Li et al. both require maintaining a moving average of the weights of the mini-batches, thus adding
an additional hyper-parameter to the algorithm.

Outlier robust DRO. Recent works have shown that DRO is highly sensitive to outliers (Zhai et al., 2021;
Zhu et al., 2022). This is because DRO tends to magnify the influence of outliers by upweighting them further.
This is one of the reasons for the suboptimal performance of existing DRO algorithms on real world datasets.
To address this, Zhai et al. (2021) consider an adversarial model for outliers (where ε-fraction of training data

2Li et al. developed hierarchical TERM framework for handling outliers in DRO (see Appendix D.4). But their framework is
only applicable to settings such as group fairness where the learner has a priori knowledge of group memberships.
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could be arbitrarily corrupted by a malicious adversary). They develop a heuristic to remove the outliers
during each descent step for χ2-DRO and CVaR. While interesting, this is too strong of an adversary model
which leads to data wastage in practice.

Min-min DRO. Min-min DRO minimizes the following objective: infP ′:D(P ′||Pdata)≤ρ EP ′ [`(z, θ)]. Contrast
this with DRO which minimizes: supP ′:D(P ′||Pdata)≤ρ EP ′ [`(z, θ)]. Unlike DRO which is primarily studied for
generalization and fairness properties, min-min DRO is studied for training in the presence of outliers (Li
et al.; Kumar & Amid, 2021; Majidi et al., 2021). Instead of upweighting high loss points, min-min DRO
downweights them.

Other applications of DRO. Sagawa* et al. (2020) optimized Group DRO for fair models when the group
information is known. Sinha et al. (2018) studied DRO with Wasserstein divergence for learning models that
are robust to adversarial perturbations. DRO also appears in many classical statistical problems. For example,
many boosting algorithms (including AdaBoost) can be viewed as performing DRO with KL-divergence-based
uncertainty sets (Arora et al., 2012; Friedman, 2001). Faury et al. (2020) relied on KL-DRO for counterfactual
risk minimization. Sakhi et al. (2020) use DRO for improving offline contextual bandits algorithms.

3 Algorithm and Derivation

In this section, we first formally introduce DRO and describe its generalization properties. Next, we derive
RGD as a technique for solving DRO.

3.1 Distributionally Robust Optimization

Consider a general learning problem where we are given n i.i.d samples {zi}ni=1 drawn from some unknown
distribution Pdata. Let P̂data be the empirical distribution over these samples. Our ideal goal is to find a
model θ ∈ Θ that minimizes the population risk: R(θ) := EPdata [`(z; θ)]. Here `(z; θ) is the loss of z under
model θ. Since Pdata is typically unknown, a standard practice in ML/AI is to minimize the empirical risk,
which is defined as

R̂n(θ) := E
P̂data

[`(z; θ)] = 1
n

n∑
i=1

`(zi; θ).

In DRO, we assume that a “worst-case” data distribution shift may occur, which can harm a model’s
performance. So, DRO optimizes the loss for samples in that “worst-case” distribution, making the model
robust to perturbations (see Figure 2 for illustration). Letting D be a divergence that measures the distance
between two probability distributions, the population and empirical DRO risks w.r.t D are defined as

RD(θ) := sup
P ′:D(P ′||Pdata)≤ρ

EP ′ [`(z, θ)], R̂D,n(θ) := sup
P ′:D(P ′||P̂data)≤ρ

EP ′ [`(z, θ)].

Here, ρ is the perturbation radius. Popular choices for D include f -divergences, which are defined as
Df (Q||P ) = EP [f(dQ/dP )] for some convex function f : R+ → R. We note that many popular divergences,
such as Kullback–Leibler (KL) divergence (f(x) = x log x), Total Variation distance (f(x) = 1

2 |x− 1|), and
χ2-divergence (f(x) = (x− 1)2), fall into this category.
Generalization. Models learned using ERM can suffer from poor generalization (i.e., performance on unseen
data) in high-variance settings. For instance, consider the following well-known generalization guarantee that
holds with high probability for any θ ∈ Θ (Wainwright, 2019)

R(θ) ≤ R̂n(θ) + c1

√
Var

P̂data
(`(z; θ))
n

+ c2
n
. (2)

Here, c1, c2 > 0 are constants, and VarP (`(z; θ)) is the variance of `(z; θ) w.r.t distribution P . Such bounds
hold under certain regularity conditions on ` and Θ. While ERM minimizes the first term in the RHS above, it
totally ignores the second term involving the variance. Consequently, in high-variance and/or small n settings
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where R(θ) and R̂n(θ) are far away from each other, ERM tends to have poor generalization guarantees.
A natural technique to address this issue is to learn models that consider the bias-variance trade-off and
minimize the following objective.

min
θ∈Θ

R̂n(θ) + c1

√
Var

P̂data
(`(z; θ))
n

.

However, minimizing this objective is computationally intractable even when the loss ` is convex in θ, as
the overall objective is non-convex. Recent works have made an interesting connection between the above
objective and DRO to address this issue. Specifically, when D is an f -divergence, the following result holds
with high probability, whenever the perturbation radius ρ = c

n , for some appropriately chosen constant
c > 0 (Lam, 2019; Namkoong & Duchi, 2017)

R̂D,n(θ) = R̂n(θ) + c1

√
Var

P̂data
(`(z; θ))
n

+ c3
n
∀θ ∈ Θ.

Together with Equation 2, the above result shows that the empirical DRO risk R̂D,n(θ) is an upper bound of
the population risk R(θ) at any θ ∈ Θ. Consequently minimizing R̂D,n(θ) achieves a better bias-variance
trade-off than ERM, and leads to models with good generalization guarantees.

3.2 Stochastic Re-weighted Gradient Descent (RGD)

The above discussion motivates the use of DRO risk for learning models, especially in high variance and/or
low sample regime. We now derive our RGD algorithm as a technique to minimize the empirical DRO
risk R̂D,n, and to learn models with better generalization guarantees than ERM. Specifically, we consider
KL divergence-based DRO, where one adds perturbations to create data distributions that are close to
the original data distribution in the KL divergence metric, and learn a model with best performance over
all possible perturbations. The following proposition derives the equivalent dual representation of the KL
divergence-DRO objective, the proof of which can be found in Appendix B.1.
Proposition 3.1. (Shapiro, 2017) Consider DRO with KL-divergence-based uncertainty set. Then
minθ∈Θ R̂D,n can be rewritten as:

min
θ∈Θ

1
γ

logE
P̂data

[eγ`(z;θ)],

for some constant γ > 0 that is independent of θ.

Equipped with the dual representation, we now derive our RGD algorithm. Observe that minimizing the
compositional objective logE[exp (γ`(z; θ))] is equivalent to minimizing the inner objective E[exp (γ`(z; θ))].
In this work, we perform SGD on this inner objective, which leads to the following update:

θt+1 ← ΠΘ

(
θt − γηt

1
B

B∑
i−1

eγ`(zi;θt)∇θt`(zi; θt)
)
.

Here ΠΘ is the projection onto the feasible set Θ. The following proposition shows that this update rule
converges to the minimum of R̂D,n under certain conditions on `(z; ). The proof, given in Appendix B.2
follows from an application of Shamir & Zhang (2013, Theorem 2).
Proposition 3.2. Assume that Θ is a convex and compact set. For all data points z suppose that `(z; ·) is
convex, continuously differentiable and bounded in the range [−M,M ], and ∇`(z; ·) is uniformly bounded over
the set Θ. Let the step-size sequence (ηt)t be such that ηt = C√

t
∀ 1 ≤ t ≤ T or ηt = C√

T
∀ 1 ≤ t ≤ T . Then

the sub-optimality gap satisfies:

EθT

1
γ

logE
P̂data

[eγ`(z;θT )]−min
θ∈Θ

1
γ

logE
P̂data

[eγ`(z;θ)] = O

(
log T√
T

)
.
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Algorithm 1 Re-weighted Gradient Descent (RGD)
1: Input: Data {zi}ni=1, learning rate sequence {ηt}Tt=1, number of iterations T , loss function `, re-weighting function
g, mini-batch size B

2: for t = 0 . . . T − 1 do
3: Sample minibatch {zi}Bi=1
4: Compute losses for points in the minibatch:

`i ← `(zi; θt), ∀i ∈ 1 . . . B

5: Compute per-sample weights:
wi ← g(`i) ∀i ∈ 1 . . . B

6: Compute the weighted pseudo-gradient:

vt ←
1
B

B∑
i=1

wi∇θ`(zi; θt)

7: Update model parameters:
θt+1 ← ΠΘ(θt − ηtvt)

8: end for

This shows that choosing the re-weighting function g(u) in Algorithm 1 as eγu (for some appropriate choice of
γ) leads to robust models with better generalization guarantees. This is the choice of g we use in our paper.
One thing to note here is that, even though the proposition is specific to SGD, it can be easily extended to
other optimization techniques such as Adam.

Weight Clipping. In our experiments, when computing per-sample weights, we clip the loss ` at some
constant τ > 0; that is, we use g(u) = eγmin(u,τ). We observed this clipping to help stabilize the training in
the presence of outliers. We note that this is different from other common techniques, such as loss, gradient
clipping, which are used to make the learning process robust to outliers in empirical risk minimization (Yang
et al., 2010; Catoni & Giulini, 2018; Menon et al., 2019; Koloskova et al., 2023). We plan to investigate the
robustness properties of weight clipping in more detail in future work. In our experiments, we choose the
scale parameter γ = 1/(τ + 1). Even with this fixed choice of γ, our algorithm provides a significant boost in
performance over vanilla optimization techniques (see Section 4.1 for ablations on our design choices).

Choice of divergences. One could rely on other divergences instead of the KL-divergence we used in
the above derivation. From a theoretical perspective, DRO with many f -divergences (KL, reverse KL,
chi-squared etc.) provides an upper bound on the true population risk (Lam, 2016; Duchi et al., 2021b). For
example, using χ2-divergence (f(x) = (x− 1)2) gives us the following re-weighting function for positive loss
functions: g(u) = u+ τ . Using reverse KL-divergence (f(x) = − log x) gives us the following re-weighting
function g(u) = 1

τ−u for some appropriate choice of τ (see Appendix B.3 for more details). Observe that the
reverse KL-divergence based weighting function is much more aggressive in up-weighting high loss points
than KL-divergence based weighting function. In the sequel, we denote the approach with g(u) = u+ τ as
RGD-χ2, g(u) = 1

τ−u as RGD-RevKL, and g(u) = emin(u,τ)/(τ+1) as RGD. While all the three techniques
provided a performance boost over ERM (see Appendix C), KL-divergence based reweighting has better
performance than reverse KL, chi-squared divergences. However, the current theoretical understanding of
DRO doesn’t explain this nuanced behavior and we believe that this is an interesting direction for future
research. From a practitioner perspective, the choice of f -divergence could be treated as a hyper-parameter
which could be tuned using cross-validation.

4 Experiments

In this section, we first present ablations on various design choices in our algorithm. Next, we present empirical
evidence showing that RGD outperforms ABSGD (Qi et al., 2023b), TERM (Li et al.), two state-of-the-art
algorithms for optimizing KL-DRO. Finally, we present large scale experiments showing that RGD can be
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widely applied across tasks such as supervised learning, meta learning to boost the generalization performance
of existing learning algorithms. Details regarding hyperparameter tuning are relegated to Appendix 5.
Additional experiments on class imbalanced classification, and large-scale tasks such as miniGPT pre-training,
EfficientNet finetuning are presented in Appendix D.
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Figure 1: Ablation of scaling and clipping factor of RGD training regime on the Imagenet dataset with a
ViT-S backbone.

4.1 Ablation Studies

In this section, we present ablations justifying the key design choices in our algorithm. All the results
presented here are for ImageNet-1K classification using ViT-S model.

Choice of scale parameter (γ). Recall, RGD uses γ = 1
τ+1 , where τ is the clipping level. To understand

the utility of this choice, we vary γ. To be precise, we set τ = 1 and get accuracy numbers of RGD with
various values of γ. Figure 1 (light blue line with stars) presents the results from this experiment. For
each value of γ, we report the accuracy obtained using the best learning rate identified using hold-out set
validation. It can be seen that RGD is fairly robust to the choice of γ.

Importance of clipping. We now study the importance of clipping. To this end, we replace the proposed
reweighting function in RGD with g(u) = eγu. Figure 1 (dark blue line with squares) presents the results
from this experiment, for various values of γ. It can be seen that the best accuracy without clipping is 1%
off compared to RGD with clipping (with τ = 1). We believe this performance drop primarily happens
because of the high weights given to the outliers. This demonstrates the importance of clipping. Next, we
vary the clipping factor τ . It is evident that as τ increases, the performance of RGD drops and approaches
the performance of no clipping. This shows the importance of setting an appropriate τ .

4.2 Comparison with existing KL-DRO optimization techniques

In this section, we present experimental results on ImageNet classification with ViT-S model to showcase the
efficacy of RGD over state-of-the-art KL-DRO optimization techniques ABSGD, and TERM (see Table 2).
We were unable to compare with the recent SCDRO algorithm of Qi et al. (2023a) due to technical difficulties
with implementing it in JAX (Bradbury et al., 2018) (the main difficulty arises from syncing values of
parameters across various devices). Furthermore, the algorithm is significantly more complex with many
hyperparameters. Table 2 shows that ABSGD, TERM with extensive tuning of three hyperparameters
(exponential scale, learning rate , and moving average parameter) achieve similar performance as baseline
ERM. In contrast, RGD outperforms the baseline ERM by 1.1% with minimal tuning of hyperparameters,
highlighting its efficacy. One of the reasons for this performance difference between RGD, and ABSGD,
TERM is the weight clipping we perform in our algorithm, which guards it from outliers. We note that
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SCDRO doesn’t perform weight clipping and could potentially suffer from a similar performance drop as
ABSGD, TERM. Additional details about the experiment can be found in Appendix D.1.1.

Next, we compare RGD with ABSGD, TERM for the problem of class imbalanced classification. For this
experiment, we consider the long-tailed CIFAR-10, CIFAR-100 datasets (Cui et al., 2019). Table 3 presents
the results from this experiment. It can be seen that RGD outperforms both ABSGD and TERM by > 1%
on average. Additional details about this experiment, including comparison with specialized techniques for
class imbalanced classification such as class-balanced loss (Cui et al., 2019) and focal loss (Lin et al., 2017),
can be found in Appendix D.2.
Table 2: Comparison of RGD with existing algorithms for solving KL-DRO on ImageNet-1K classification
with ViT-S model.

Algorithm ERM TERM ABSGD RGD
Accuracy 78.44 ± 0.35 78.03 ± 0.27 77.12 ± 0.82 79.11 ± 0.12

Table 3: Comparison of RGD with existing KL-DRO optimization techniques for class imbalanced classification.
The numbers represent test accuracy on Long-Tailed CIFAR-10, and CIFAR-100 datasets using ResNet-32.
Moreover, we perform hypothesis tests to confirm that these results are statistically significant with a p-value
that is less than 0.05.

Dataset CIFAR-10 CIFAR-100
Loss / Imbalance Factor 100 10 Avg. 100 10 Avg.
Cross Entropy (CE)
Default 71.75 ± 0.75 87.64 ± 0.45 79.7 38.35 ± 38.35 56.91 ± 0.41 47.63
TERM Li et al. 72.20 ± 0.18 87.52 ± 0.07 79.86 39.75 ± 0.04 57.91 ± 0.39 48.83
ABSGD Qi et al. (2023b) 72.43 ± 0.31 87.93 ± 0.25 80.18 39.77 ± 0.34 57.44± 0.25 48.61
RGD (Ours) 73.71 ± 0.04 87.78 ± 0.15 80.75 41.47 ± 0.30 58.49 ± 0.04 49.98

4.3 Supervised Learning

This section studies our approach when applied on standard supervised learning tasks such as BERT finetuning
on GLUE benchmark, and Imagenet-1K classification. We use a base model of ViT-S for the latter task.
Table 4 depicts our results from this experiment. On GLUE tasks, our RGD algorithm outperforms the
baseline by +1.94% with a standard deviation of 0.42%. Furthermore, we perform hypothesis testing to
condit that these results are statistically significant with a p-value that is less than 0.05. On Imagenet-1K,
we show a +1.01% improvement over baseline with the off-the-hat addition of the RGD reweighing and no
additional complexity in terms of compute: memory and time.

Furthermore, we also experiment with pre-training of the BERT-base model. We use the BooksCorpus
(800M words) (Zhu et al., 2015) and English Wikipedia (2,500M words) as our pre-training corpus. We
trained the Bert-base model for 450K steps, and tuned the learning rate (lr) for baseline, and lr, clipping
factor for RGD. We report both the MLM (Masked Language Model) accuracy and NSP (Next Sequence
Prediction) accuracy comparisons of RGD vs Default (ERM). It can be seen that our approach boosts the
MLM accuracy and NSP accuracy by +0.2% and +0.9% respectively (see Table 4). Furthermore, through
hypothesis testing, we show that the results are statistically significant with a p-value of 0.05. Additional
experiments on EfficientNet fine-tuning, DeiT model (Touvron et al., 2021) for ImageNet-1K classification,
and miniGPT (Zhu et al., 2024) pre-training are discussed in Appendix D.6.

Table 4: Performance of RGD for various Supervised Learning tasks.

MNLI QQP QNLI SST-2 MRPC RTE COLA
Avg on
GLUE ImageNet-1K

BERT Pretraining
(MLM)

BERT Pretraining
(NSP)

Default 81.33 89.62 87.93 90.63 89.55 67.19 54.53 80.11 78.44 ± 0.35 71.31 98.01
RGD (Ours) 83.06 91.06 90.35 91.78 88.28 71.48 58.56 82.05 79.11 ± 0.12 71.35 ± 0.11 98.92 ± 0.09
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4.4 Tabular Classification

Table 5: Results on standard binary-class tabular datasets (AUROC): The bottom partition shows results of
our method with RGD loss. We show that the addition of our proposed approach significantly outperforms
existing methods, as well as SOTA.

Algorithm Obesity Income Criteo Thyroid Avg.
MLP 52.3 89.39 79.82 62.3 70.95
RF Breiman (2001) 64.36 91.53 77.57 99.62 83.27
MET-S
Default Majmundar et al. (2022) 71.84 93.85 86.17 99.81 87.92
RGD (Ours) 76.87 93.96 86.98 99.92 89.43

Table 6: Results on standard multi-class tabular datasets (Accuracy): The bottom partition shows results of
our method with RGD loss. We show that the addition of our proposed approach significantly outperforms
existing methods, as well as SOTA.

Algorithm FMNIST CIFAR10 MNIST CovType Avg.
MLP 87.62 16.50 96.95 65.47 66.64
RF Breiman (2001) 88.43 42.73 97.62 71.37 75.04
MET Majmundar et al. (2022) 91.68 47.82 99.19 76.71 78.85
MET-S
Default Majmundar et al. (2022) 90.94 48.00 99.01 74.11 78.02
RGD (Ours) 91.54 49.54 99.69 79.72 80.12

Learning with tabular data is a task where traditional machine learning methods, like random forest Breiman
(2001); Friedman (2001) are incredibly competitive against deep learning-based methods (Yoon et al., 2020).
Recently, Majmundar et al. (2022) obtained SOTA results for tabular classification using self-supervised
representation learning and relying on the learned representations in the downstream classification tasks (see
Section 1). Their work developed two algorithms namely, MET (representation learning with adversarial
training) and MET-S (representation learning without adversarial training). The adversarial training adds
robustness to the learned representations, thus improving performance. In this experiment, we integrate
RGD with MET-S instead of doing adversarial training. This allows us to test the robustness properties
of the models trained with RGD. Table 6 and Table 5 shows gains on multiple tabular datasets for the
multi-class classification and binary classification tasks. Notably, our approach outperforms previous SOTA
in this problem by +1.27%, and +1.5% on the multi-class and binary classification tasks respectively. We
refer to Appendix D.7 for a comprehensive comparison with baselines such as Gradient Boosting Decision
Trees (Friedman, 2001), VIME (Yoon et al., 2020), SubTab (Ucar et al., 2021), TabNet (Arik & Pfister, 2021),
DACL+ (Verma et al., 2021) and many more. Our motivation to experiment on these “permuted” MNIST,
“permuted” CIFAR, and “permuted” FMNIST can be traced back to the introduction of these datasets in the
works of Yoon et al. (2020); Ucar et al. (2021). Subsequently, other recent works such as Majmundar et al.
(2022) also experimented on these datasets and have become a standard benchmark for tabular classification.

4.5 Out Of Domain Generalization

In this section, we show that our technique can be used to boost the performance of OOD generalization
techniques. We experiment on DomainBed, a standard benchmark used to study the out-of-domain perfor-
mance of models. More information about the benchmark, the task to solve, and the metric is discussed
in Appendix D.9.1. The benchmark is notorious since the most basic approach, such as straightforward
Empirical Risk Minimization (ERM) as evaluated by Gulrajani & Lopez-Paz (2021), was the SOTA method
for a long time. Most new approaches either performed worse than ERM or marginally better. In recent
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Table 7: Results on DomainBed (Model selection: training-domain validation set): The bottom partition
shows results of our method with RGD loss. In both cases, with (top) and without (bottom) fixed linear
layer, the proposed approach outperforms existing methods, as well as SOTA.

Algorithm PACS VLCS OfficeHome DomainNet Avg.
ERM Gulrajani & Lopez-Paz (2021) 85.5 ± 0.1 77.5 ± 0.4 66.5 ± 0.2 40.9 ± 0.1 67.6
MIRO Cha et al. (2022) 85.4 ± 0.4 79.0 ± 0.0 70.5 ± 0.4 44.3 ± 0.2 69.8
ERM + FRR-L
Default Addepalli et al. (2023) 85.7 ± 0.1 76.6 ± 0.2 68.4 ± 0.2 44.2 ± 0.1 68.73
RGD (Ours) 87.6 ± 0.3 78.6 ± 0.3 69.8 ± 0.2 46.00 ± 0.0 70.48
ERM + FRR
Default Addepalli et al. (2023) 87.5 ± 0.1 77.6 ± 0.3 69.4 ± 0.1 45.1 ± 0.1 69.90
RGD (Ours) 88.2 ± 0.2 78.6 ± 0.3 69.8 ± 0.2 45.8 ± 0.0 70.60

years, breakthroughs such as MIRO (Cha et al., 2022) and FRR (Addepalli et al., 2023) have pushed the
problem further by significantly improving the benchmarks. We show that integrating our proposed approach
RGD with these approaches (specifically FRR) significantly improves performance (an average of +0.7%).
Table 7 illustrates the accuracy performance numbers of a few baseline methods and our proposed approach. A
more comprehensive comparison with additional baselines such as IRM (Arjovsky et al., 2019), CORAL (Sun
& Saenko, 2016), MTL (Blanchard et al., 2021), SagNet (Nam et al., 2021), and many more in the Table 24.
We further depict the environment-wise breakdown of the accuracy of each of the baseline algorithms in
Appendix D.9.

4.6 Meta-Learning

Table 8: Results on meta-learning datasets. We report the Worst-K% performance as well to help study the
performance distribution over all tasks.

Algorithm Worst 10% Worst 20% Worst 30% Worst 40% Worst 50% Overall
Omniglot 5-way 1-shot
MAML 91.71 ± 0.73 94.16 ± 0.50 95.41 ± 0.39 96.22 ± 0.32 96.76 ± 0.27 98.38 ± 0.17

MAML + RGD 92.14 ± 0.84 94.54 ± 0.53 95.72 ± 0.40 96.46 ± 0.33 96.90 ± 0.27 98.45 ± 0.17

Omniglot 20-way 1-shot
MAML 84.33 ± 0.40 85.86 ± 0.29 86.92 ± 0.26 87.73 ± 0.24 88.42 ± 0.22 91.28 ± 0.22

MAML + RGD 86.61 ± 0.36 88.09 ± 0.28 89.09 ± 0.24 89.87 ± 0.23 90.50 ± 0.21 93.01 ± 0.20

miniImageNet 5-way 1-shot
MAML 30.94 ± 0.70 34.52 ± 0.62 36.93 ± 0.57 38.94 ± 0.55 40.68 ± 0.53 48.86 ± 0.62

MAML + RGD 33.33 ± 0.90 36.67 ± 0.65 39.12 ± 0.59 41.20 ± 0.56 42.96 ± 0.55 51.21 ± 0.63

In meta-learning, the goal is to learn representations that generalize effectively to new tasks, even when
provided with limited examples. However, task heterogeneity poses a significant challenge. Some tasks may
be inherently simpler to learn, leading models to prioritize these and neglect the more difficult, less frequent
tasks. While Empirical Risk Minimization (ERM) may perform well on common tasks, its performance
can deteriorate drastically on rare and challenging ones. This necessitates a mechanism for re-weighting
tasks to ensure balanced learning. Building upon the experimental results of Kumar et al. (2023), we make
comparisons with our MAML + RGD approach as the proposed variant. We evaluate RGD not only based on
the average performance across tasks but also on the Worst-K% of tasks in a fixed task pool. Our experiments
on various benchmarks, including Omniglot 5-way 1-shot, Omniglot 20-way 1-shot, and miniImageNet 5-way
1-shot, demonstrate significant improvements in the Worst-K% metric (Table 8). For example, on Omniglot
20-way 1-shot, our proposed reweighting scheme improves overall performance by 1.83% and the Worst-10%
performance by 2.28%. Similarly, on the challenging miniImageNet 5-way 1-shot benchmark, we achieve a
substantial improvement of approximately 3% across the board. Further results in this domain are discussed
in Appendix D.8.
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5 Conclusion and Future Work

We introduced a re-weighted gradient descent (RGD) technique that effectively boosts the performance of deep
learning across a wide range of tasks and domains. It is simple to implement and can be seamlessly integrated
into existing algorithms with just two lines of code change. Our algorithm is derived from Kullback-Leibler
distributionally robust optimization, a known method for improving model generalization.

One potential avenue for future research is to theoretically understand the weight clipping in our algorithm.
While weight clipping can help us withstand benign outliers, we believe it is not the best way to handle
a large number of systematic or adversarial corruptions. In the future, we plan to develop variants of
RGD that can tolerate adversarial corruptions in the training data, while simultaneously improving the model
generalization. Additionally, we plan to evaluate our technique on large-scale tasks, such as fine-tuning Large
Language Models (LLMs) and other foundation models. This will help us better understand the usefulness
and limitations of our approach.

Ethical Statement and Broader Impact

Our proposed approach is compatible with any learning objective expressed as an expectation over samples.
We showcased its effectiveness with various loss functions, including Mean Square Error, Cross Entropy,
and others, outperforming previous state-of-the-art methods considerably. Implementing our approach is
straightforward, and it has broad applicability across domains such as Natural Language Processing (NLP),
Vision, and Time Series data. This paper presents work whose goal is to advance the field of Machine
Learning. There are many potential societal consequences of our work, none which we feel must be specifically
highlighted here.

References
Sravanti Addepalli, Anshul Nasery, Venkatesh Babu Radhakrishnan, Praneeth Netrapalli, and Prateek Jain.
Feature reconstruction from outputs can mitigate simplicity bias in neural networks. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.net/forum?id=
zH9GcZ3ZGXu.

Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 35, pp. 6679–6687, 2021.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-algorithm
and applications. Theory of computing, 8(1):121–164, 2012.

Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization, volume 28. Princeton
university press, 2009.

Aharon Ben-Tal, Dick Den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. Robust
solutions of optimization problems affected by uncertain probabilities. Management Science, 59(2):341–357,
2013.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings
of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Gilles Blanchard, Aniket Anand Deshmukh, Ürun Dogan, Gyemin Lee, and Clayton Scott. Domain gen-
eralization by marginal transfer learning. The Journal of Machine Learning Research, 22(1):46–100,
2021.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018. URL http://github.com/google/jax.

12

https://openreview.net/forum?id=zH9GcZ3ZGXu
https://openreview.net/forum?id=zH9GcZ3ZGXu
http://github.com/google/jax


Under review as submission to TMLR

Stefan Braun, Daniel Neil, and Shih-Chii Liu. A curriculum learning method for improved noise robustness
in automatic speech recognition. In 2017 25th European Signal Processing Conference (EUSIPCO), pp.
548–552. IEEE, 2017.

Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

Thibault Castells, Philippe Weinzaepfel, and Jerome Revaud. Superloss: A generic loss for robust curriculum
learning. Advances in Neural Information Processing Systems, 33:4308–4319, 2020.

Olivier Catoni and Ilaria Giulini. Dimension-free pac-bayesian bounds for the estimation of the mean of a
random vector. arXiv preprint arXiv:1802.04308, 2018.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and Sungrae
Park. Swad: Domain generalization by seeking flat minima. Advances in Neural Information Processing
Systems, 34:22405–22418, 2021.

Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain generalization by mutual-information
regularization with pre-trained models. In European conference on computer vision, pp. 440–457. Springer,
2022.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic minority
over-sampling technique. Journal of artificial intelligence research, 16:321–357, 2002.

Xinlei Chen and Abhinav Gupta. Webly supervised learning of convolutional networks. In Proceedings of the
IEEE international conference on computer vision, pp. 1431–1439, 2015.

Liam Collins, Aryan Mokhtari, and Sanjay Shakkottai. Task-robust model-agnostic meta-learning. Advances
in Neural Information Processing Systems, 33:18860–18871, 2020.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on effective
number of samples. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 9268–9277, 2019.

Fernando De La Torre and Michael J Black. A framework for robust subspace learning. International Journal
of Computer Vision, 54(1):117–142, 2003.

John Duchi and Hongseok Namkoong. Learning models with uniform performance via distributionally robust
optimization. arXiv preprint arXiv:1810.08750, 2018.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of machine learning research, 12(7), 2011.

John C Duchi, Peter W Glynn, and Hongseok Namkoong. Statistics of robust optimization: A generalized
empirical likelihood approach. Mathematics of Operations Research, 46(3):946–969, 2021a.

John C Duchi, Peter W Glynn, and Hongseok Namkoong. Statistics of robust optimization: A generalized
empirical likelihood approach. Mathematics of Operations Research, 46(3):946–969, 2021b.

Ayoub El Hanchi, David Stephens, and Chris Maddison. Stochastic reweighted gradient descent. In
International Conference on Machine Learning, pp. 8359–8374. PMLR, 2022.

Yanbo Fan, Ran He, Jian Liang, and Baogang Hu. Self-paced learning: An implicit regularization perspective.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

Louis Faury, Ugo Tanielian, Elvis Dohmatob, Elena Smirnova, and Flavian Vasile. Distributionally robust
counterfactual risk minimization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 3850–3857, 2020.

Lucas Fidon, Michael Aertsen, Thomas Deprest, Doaa Emam, Frédéric Guffens, Nada Mufti, Esther Van Els-
lander, Ernst Schwartz, Michael Ebner, Daniela Prayer, et al. Distributionally robust deep learning using
hardness weighted sampling. arXiv preprint arXiv:2001.02658, 2020.

13



Under review as submission to TMLR

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep
networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
efficiently improving generalization. In International Conference on Learning Representations.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an application
to boosting. Journal of computer and system sciences, 55(1):119–139, 1997.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of statistics, pp.
1189–1232, 2001.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. The journal of
machine learning research, 17(1):2096–2030, 2016.

Santiago Gonzalez and Risto Miikkulainen. Optimizing loss functions through multi-variate taylor polynomial
parameterization. In Proceedings of the Genetic and Evolutionary Computation Conference, pp. 305–313,
2021.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?id=lQdXeXDoWtI.

Ya-Ping Hsieh, Chen Liu, and Volkan Cevher. Finding mixed nash equilibria of generative adversarial
networks. In International Conference on Machine Learning, pp. 2810–2819. PMLR, 2019.

Zhaolin Hu and L Jeff Hong. Kullback-leibler divergence constrained distributionally robust optimization.

Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang. Self-challenging improves cross-domain general-
ization. In European Conference on Computer Vision, pp. 124–140. Springer, 2020.

Anastasia Ivanova and Pierre Ablin. A challenge in reweighting data with bilevel optimization. arXiv preprint
arXiv:2310.17386, 2023.

Andrew Jesson, Nicolas Guizard, Sina Hamidi Ghalehjegh, Damien Goblot, Florian Soudan, and Nicolas
Chapados. Cased: curriculum adaptive sampling for extreme data imbalance. In International conference
on medical image computing and computer-assisted intervention, pp. 639–646. Springer, 2017.

Lu Jiang, Deyu Meng, Teruko Mitamura, and Alexander G Hauptmann. Easy samples first: Self-paced
reranking for zero-example multimedia search. In Proceedings of the 22nd ACM international conference
on Multimedia, pp. 547–556, 2014a.

Lu Jiang, Deyu Meng, Shoou-I Yu, Zhenzhong Lan, Shiguang Shan, and Alexander Hauptmann. Self-paced
learning with diversity. Advances in neural information processing systems, 27, 2014b.

Angelos Katharopoulos and François Fleuret. Not all samples are created equal: Deep learning with importance
sampling. In International conference on machine learning, pp. 2525–2534. PMLR, 2018.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Conference
on Learning Representations (ICLR), San Diega, CA, USA, 2015.

Anastasia Koloskova, Hadrien Hendrikx, and Sebastian U Stich. Revisiting gradient clipping: Stochastic bias
and tight convergence guarantees. In International Conference on Machine Learning, pp. 17343–17363.
PMLR, 2023.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai Zhang,
Remi Le Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). In
International Conference on Machine Learning, pp. 5815–5826. PMLR, 2021.

Abhishek Kumar and Ehsan Amid. Constrained instance and class reweighting for robust learning under
label noise. arXiv preprint arXiv:2111.05428, 2021.

14

https://openreview.net/forum?id=lQdXeXDoWtI


Under review as submission to TMLR

M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models. Advances in
neural information processing systems, 23, 2010.

M Pawan Kumar, Haithem Turki, Dan Preston, and Daphne Koller. Learning specific-class segmentation
from diverse data. In 2011 International conference on computer vision, pp. 1800–1807. IEEE, 2011.

Ramnath Kumar, Tristan Deleu, and Yoshua Bengio. The effect of diversity in meta-learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 37, pp. 8396–8404, 2023.

Henry Lam. Robust sensitivity analysis for stochastic systems. Mathematics of Operations Research, 41(4):
1248–1275, 2016.

Henry Lam. Recovering best statistical guarantees via the empirical divergence-based distributionally robust
optimization. Operations Research, 67(4):1090–1105, 2019.

Quoc V Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and Andrew Y Ng. On optimization
methods for deep learning. In Proceedings of the 28th international conference on international conference
on machine learning, pp. 265–272, 2011.

Yong Jae Lee and Kristen Grauman. Learning the easy things first: Self-paced visual category discovery. In
CVPR 2011, pp. 1721–1728. IEEE, 2011.

Zhaoqi Leng, Mingxing Tan, Chenxi Liu, Ekin Dogus Cubuk, Jay Shi, Shuyang Cheng, and Dragomir
Anguelov. Polyloss: A polynomial expansion perspective of classification loss functions. In International
Conference on Learning Representations.

Changsheng Li, Junchi Yan, Fan Wei, Weishan Dong, Qingshan Liu, and Hongyuan Zha. Self-paced multi-task
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 31, 2017.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-learning for
domain generalization. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018a.

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with adversarial feature
learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5400–5409,
2018b.

Tian Li, Ahmad Beirami, Maziar Sanjabi, and Virginia Smith. Tilted empirical risk minimization. In
International Conference on Learning Representations.

Tian Li, Ahmad Beirami, Maziar Sanjabi, and Virginia Smith. On tilted losses in machine learning: Theory
and applications. Journal of Machine Learning Research, 24:1–79, 2023.

Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao. Deep domain
generalization via conditional invariant adversarial networks. In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 624–639, 2018c.

Junwei Liang, Lu Jiang, Deyu Meng, and Alexander G Hauptmann. Learning to detect concepts from
webly-labeled video data. In IJCAI, volume 1, pp. 3–1, 2016.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection.
In Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017.

Negin Majidi, Ehsan Amid, Hossein Talebi, and Manfred K Warmuth. Exponentiated gradient reweighting
for robust training under label noise and beyond. arXiv preprint arXiv:2104.01493, 2021.

Kushal Majmundar, Sachin Goyal, Praneeth Netrapalli, and Prateek Jain. Met: Masked encoding for tabular
data. arXiv preprint arXiv:2206.08564, 2022.

Aditya Krishna Menon, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar. Can gradient clipping
mitigate label noise? In International Conference on Learning Representations, 2019.

15



Under review as submission to TMLR

Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo. Reducing domain gap
by reducing style bias. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 8690–8699, 2021.

Hongseok Namkoong and John C Duchi. Stochastic gradient methods for distributionally robust optimization
with f-divergences. Advances in neural information processing systems, 29, 2016.

Hongseok Namkoong and John C Duchi. Variance-based regularization with convex objectives. Advances in
neural information processing systems, 30, 2017.

AS Nemirovsky, DB Yudin, and ER DAWSON. Wiley-interscience series in discrete mathematics, 1983.

Anastasia Pentina, Viktoriia Sharmanska, and Christoph H Lampert. Curriculum learning of multiple tasks.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5492–5500, 2015.

Te Pi, Xi Li, Zhongfei Zhang, Deyu Meng, Fei Wu, Jun Xiao, Yueting Zhuang, et al. Self-paced boost learning
for classification. In IJCAI, pp. 1932–1938, 2016.

Qi Qi, Zhishuai Guo, Yi Xu, Rong Jin, and Tianbao Yang. An online method for a class of distributionally
robust optimization with non-convex objectives. Advances in Neural Information Processing Systems, 34:
10067–10080, 2021.

Qi Qi, Jiameng Lyu, Kung-Sik Chan, Er-Wei Bai, and Tianbao Yang. Stochastic constrained DRO with
a complexity independent of sample size. Transactions on Machine Learning Research, 2023a. ISSN
2835-8856. URL https://openreview.net/forum?id=VpaXrBFYZ9.

Qi Qi, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. Attentional-biased stochastic gradient descent.
Transactions on Machine Learning Research, 2023b. ISSN 2835-8856. URL https://openreview.net/
forum?id=B0WYWvVA2r.

Ali Rahimi and Benjamin Recht. Weighted sums of random kitchen sinks: Replacing minimization with
randomization in learning. Advances in neural information processing systems, 21, 2008.

Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples for robust deep
learning. In International conference on machine learning, pp. 4334–4343. PMLR, 2018.

James Requeima, Jonathan Gordon, John Bronskill, Sebastian Nowozin, and Richard E Turner. Fast and
flexible multi-task classification using conditional neural adaptive processes. Advances in Neural Information
Processing Systems, 32, 2019.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747,
2016.

Shiori Sagawa*, Pang Wei Koh*, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust neural
networks. In International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=ryxGuJrFvS.

Otmane Sakhi, Louis Faury, and Flavian Vasile. Improving offline contextual bandits with distributional
robustness. arXiv preprint arXiv:2011.06835, 2020.

Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence results
and optimal averaging schemes. In International conference on machine learning, pp. 71–79. PMLR, 2013.

Alexander Shapiro. Distributionally robust stochastic programming. SIAM Journal on Optimization, 27(4):
2258–2275, 2017.

Yangyang Shi, Martha Larson, and Catholijn M Jonker. Recurrent neural network language model adaptation
with curriculum learning. Computer Speech & Language, 33(1):136–154, 2015.

16

https://openreview.net/forum?id=VpaXrBFYZ9
https://openreview.net/forum?id=B0WYWvVA2r
https://openreview.net/forum?id=B0WYWvVA2r
https://openreview.net/forum?id=ryxGuJrFvS
https://openreview.net/forum?id=ryxGuJrFvS


Under review as submission to TMLR

Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors with online
hard example mining. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 761–769, 2016.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-weight-net:
Learning an explicit mapping for sample weighting. Advances in neural information processing systems, 32,
2019.

Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable distributional robustness with principled
adversarial training. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=Hk6kPgZA-.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Advances in
neural information processing systems, 30, 2017.

Petru Soviany. Curriculum learning with diversity for supervised computer vision tasks. arXiv preprint
arXiv:2009.10625, 2020.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey. International
Journal of Computer Vision, 130(6):1526–1565, 2022.

Valentin I Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. Baby steps: How “less is more” in unsupervised
dependency parsing. 2009.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In European
conference on computer vision, pp. 443–450. Springer, 2016.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International conference on
machine learning, pp. 10347–10357. PMLR, 2021.

Radu Tudor Ionescu, Bogdan Alexe, Marius Leordeanu, Marius Popescu, Dim P Papadopoulos, and Vittorio
Ferrari. How hard can it be? estimating the difficulty of visual search in an image. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2157–2166, 2016.

Talip Ucar, Ehsan Hajiramezanali, and Lindsay Edwards. Subtab: Subsetting features of tabular data for self-
supervised representation learning. Advances in Neural Information Processing Systems, 34:18853–18865,
2021.

Vladimir N Vapnik. An overview of statistical learning theory. IEEE transactions on neural networks, 10(5):
988–999, 1999.

Vikas Verma, Thang Luong, Kenji Kawaguchi, Hieu Pham, and Quoc Le. Towards domain-agnostic contrastive
learning. In International Conference on Machine Learning, pp. 10530–10541. PMLR, 2021.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge
university press, 2019.

Pei Wang and Nuno Vasconcelos. Towards realistic predictors. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 36–51, 2018.

Yixin Wang, Alp Kucukelbir, and David M Blei. Robust probabilistic modeling with bayesian data reweighting.
In International Conference on Machine Learning, pp. 3646–3655. PMLR, 2017.

Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Improve unsupervised domain adaptation
with mixup training. arXiv preprint arXiv:2001.00677, 2020a.

Yan Yan, Yi Xu, Qihang Lin, Wei Liu, and Tianbao Yang. Optimal epoch stochastic gradient descent ascent
methods for min-max optimization. Advances in Neural Information Processing Systems, 33:5789–5800,
2020b.

17

https://openreview.net/forum?id=Hk6kPgZA-
https://openreview.net/forum?id=Hk6kPgZA-


Under review as submission to TMLR

Min Yang, Linli Xu, Martha White, Dale Schuurmans, and Yao-liang Yu. Relaxed clipping: A global training
method for robust regression and classification. Advances in neural information processing systems, 23,
2010.

Jinsung Yoon, Yao Zhang, James Jordon, and Mihaela van der Schaar. Vime: Extending the success of
self-and semi-supervised learning to tabular domain. Advances in Neural Information Processing Systems,
33:11033–11043, 2020.

Bianca Zadrozny. Learning and evaluating classifiers under sample selection bias. In Proceedings of the
twenty-first international conference on Machine learning, pp. 114, 2004.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615, 2014.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

Runtian Zhai, Chen Dan, Zico Kolter, and Pradeep Ravikumar. Doro: Distributional and outlier robust
optimization. In International Conference on Machine Learning, pp. 12345–12355. PMLR, 2021.

Dingwen Zhang, Deyu Meng, Chao Li, Lu Jiang, Qian Zhao, and Junwei Han. A self-paced multiple-instance
learning framework for co-saliency detection. In Proceedings of the IEEE international conference on
computer vision, pp. 594–602, 2015.

Marvin Zhang, Henrik Marklund, Nikita Dhawan, Abhishek Gupta, Sergey Levine, and Chelsea Finn.
Adaptive risk minimization: Learning to adapt to domain shift. Advances in Neural Information Processing
Systems, 34:23664–23678, 2021.

Zizhao Zhang and Tomas Pfister. Learning fast sample re-weighting without reward data. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 725–734, 2021.

Tianyi Zhou, Shengjie Wang, and Jeffrey Bilmes. Curriculum learning by dynamic instance hardness. Advances
in Neural Information Processing Systems, 33:8602–8613, 2020.

Banghua Zhu, Jiantao Jiao, and Jacob Steinhardt. Generalized resilience and robust statistics. The Annals
of Statistics, 50(4):2256–2283, 2022.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. MiniGPT-4: Enhancing vision-
language understanding with advanced large language models. In The Twelfth International Conference on
Learning Representations, 2024. URL https://openreview.net/forum?id=1tZbq88f27.

Lanyun Zhu, Tianrun Chen, Jianxiong Yin, Simon See, and Jun Liu. Reinforced sample reweighting policy
for semi-supervised learning.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. Aligning books and movies: Towards story-like visual explanations by watching movies and reading
books. In Proceedings of the IEEE international conference on computer vision, pp. 19–27, 2015.

Appendix

Reproducibility Statement

Our proposed loss function is a single line of change. However, one would have to play around with the
learning rate (generally lower than the baseline setting). Our experiments are based on public datasets and
open-source code repositories. The proposed final formulation RGD requires one line of code change.

Suppose the per-sample loss is given. Example code for applying RGD in Jax is shown below.
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import jax. numpy as jnp
import jax

def rgd_e (loss , temp=alpha , reduce =True ):
# alpha >0.

out = loss * jnp.exp(
jnp.clip(jax.lax. stop_gradient (loss), a_min =0, a_max =temp) / (temp + 1)

)
return out.sum () / len(out) if reduce else out

A Extended Related Work

A.1 Per-Sample Reweighting

In this section, we review data reweighting techniques developed outside of the DRO community. The idea
of re-weighting samples can be dated back to the works of Chawla et al. (2002); Zadrozny (2004), which
pre-computed per-sample weights using certain prior knowledge. Recent approaches alleviate the need for
human supervision by dynamically computing the per-sample weights. One of the early works in this category
is AdaBoost, which is a popular boosting algorithm (Freund & Schapire, 1997). Similar to RGD, AdaBoost
uses exponential weighting mechanism to reweight data points. However, AdaBoost is used for learning an
ensemble of weak learners. Whereas, in this work, we are interested in learning a single model that can
achieve better generalization guarantees. Furthermore, AdaBoost is only studied for supervised learning (in
particular, classification and regression). In contrast, RGD can be applied on any learning task. Recent
works of Leng et al.; Lin et al. (2017) showed that certain modifications to standard cross entropy loss - that
involve truncating its Taylor-series expansion - can improve the performance of DNNs. These techniques can
be viewed as performing sample re-weighting. However, these techniques only apply to cross-entropy loss and
are not easily extendable to general learning tasks.

Other approaches based on meta-learning have been proposed for class imbalance and label noise (Shu et al.,
2019; Ren et al., 2018; Gonzalez & Miikkulainen, 2021). Many popular approaches in this line of work
require training a separate neural network for re-weighting the data points (Ren et al., 2018; Shu et al., 2019).
However, these approaches are seldom used in practice as the underlying bi-level optimization problem is
hard to implement (Ivanova & Ablin, 2023). Unlike these approaches, our RGD algorithm does not require
a separate neural network for re-weighting and thus doesn’t add any computational overhead over vanilla
training. Moreover, compared to existing sample re-weighting techniques, our approach applies to various
learning tasks (see Section 4). Another line of work uses a history buffer which stores a snapshot of the
trajectory of each point and facilitates giving more importance to points which leads to more learning in the
model (Zhang & Pfister, 2021). Other approaches, such as Zhu et al., use reinforcement learning to learn
the per-sample weights using a “pretraining-boosting” two-stage MDP curriculum where the agent network
is firstly pre-trained and optimized for deployment in the classification problem. Another line of work has
considered sample re-weighting in the presence of outliers (Kumar et al., 2010; De La Torre & Black, 2003;
Jiang et al., 2014a;b; Wang et al., 2017; Li et al.; 2023). These works down-weight points with high-loss
value. The rationality behind this lies in the idea that these high-loss samples are more likely to be outliers
and, thus, should be ignored during the training process. Finally, works such Castells et al. (2020) propose a
confidence-aware loss proportional to the lowest loss of that sample. They use a threshold (γ) to decide how
practical or important each point is.

An emerging line of work on optimization focuses on designing sample re-weighting for improving the
convergence speed of SGD (Katharopoulos & Fleuret, 2018; El Hanchi et al., 2022) by decreasing the variance
in SGD iterates. Note that in contrast to these works which aim to minimize the ERM objective, we aim to
solve the DRO objective which has better generalization guarantees than ERM in high variance, low sample
complexity regime.
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A.2 Pre-conditioning

Pre-conditioning can usually mean normalization of inputs, batch normalization, or scaling gradients in a
few directions. This section predominantly discusses techniques that focus on scaling gradients in a few
directions. A common technique to improve the training speed in deep learning is using adaptive step-size
optimization methods, such as the Newton method, which takes advantage of the second-order gradients.
However, computing the Hessian matrix is computationally intensive, leading to Quasi-Newton methods:
methods that approximate the value of the Hessian instead of computing them every time Le et al. (2011).
Another popular alternative is to use an element-wise adaptive learning rate, which has shown great promise
in deep learning. Some of the popular techniques here include ADAgrad (Duchi et al., 2011), RMSProp
(Ruder, 2016), ADAdelta (Zeiler, 2012). For instance, ADAgrad is a diagonal pre-conditioning technique
where the pre-conditioning across each dimension is computed as the inverse square root of the norms of
gradients along that dimension accumulated over training. Unfortunately, this accumulation of gradients
makes it susceptible to falling in a saddle point as the scaling factor decreases monotonically.

A.3 Curriculum Learning

Another important research area that has explored data reweighting is Curriculum Learning (CL). CL,
originally introduced by Bengio et al. (2009), is a vast domain focussing on how the model should be taught,
and draws inspiration from how humans learn concepts. For instance, humans generally grasp on to easier
concepts such as basic shapes (triangle, rectangle, etc.) before moving on to learning significantly more
complex structures (heptagram, triquetra, etc.). Curriculum learning strategies have been widely used in
various areas of machine learning and involves finding a way to rank samples, as well as the right pacing
functions for introducing more difficult data in our training. The techniques developed for CL have typically
focused on giving importance to easier samples at the beginning of training, and slowly progressing towards
harder samples (Bengio et al., 2009; Chen & Gupta, 2015; Tudor Ionescu et al., 2016; Pentina et al., 2015;
Shi et al., 2015; Spitkovsky et al., 2009; Zaremba & Sutskever, 2014). In contrast, DRO focuses the learning
on harder samples throughout the training process. That being said, there have also been a class of works in
CL which showed the learning harder examples first, and then moving to easier ones could lead to improved
performance in certain conditions, through Hard Example mining (HEM) or anti-curriculum (Jesson et al.,
2017; Shrivastava et al., 2016; Wang & Vasconcelos, 2018; Zhou et al., 2020; Braun et al., 2017; Pi et al., 2016).
There have been predominantly three classes of CL, and various amalgamations of these in literature (Soviany
et al., 2022).

Vanilla CL: The vanilla CL usually involves a pre-defined notion of hardness. For example, Bengio et al.
(2009) used geometric shapes to clearly differentiate easy and hard samples. Others such as Spitkovsky et al.
(2009) exploited the length of sequences as a signal for difficulty.

Self-Paced Learning (SPCL): This differs from the vanilla CL with respect to the evaluation of difficulty. This
concept of “difficulty” is not known beforehand and is measured repeatedly during training. Works such as
Kumar et al. (2010) used the likelihood of the prediction to rank the samples. Other works such as Lee &
Grauman (2011) used objectness as a measure to define the training schedule.

Balanced Curriculum (BCL): In addition to prior works such as vanilla CL and SPCL, balanced curriculum
approaches come with an added condition of diversity within a batch. These constraints (on classes, image
regions, etc.) help the model learn robust features and not overfit to the spurious correlations of the easy
samples (Zhang et al., 2015; Soviany, 2020).

In this work, we will resort to only describing few works which focus on instance level reweighting of data
points (Kumar et al., 2010; Li et al., 2017; Kumar et al., 2011; Pi et al., 2016; Liang et al., 2016; Fan et al.,
2017; Li et al., 2017). Most of these works (Kumar et al., 2011; Fan et al., 2017) follow a binary weighting
mechanism of {0, 1} to decide whether the model should learn using the current sample or not. Others such
as Li et al. (2017); Pi et al. (2016); Liang et al. (2016) are more continuous in the weighing mechanism
and generally give higher weights to samples with lower losses. This makes them fundamentally different
from RGD attempts to achieve in this work. RGD attempts to focus more heavily on the harder samples
throughout training and does so using a simple closed form expression of the loss.
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A.4 Comparison with existing KL-DRO optimization approaches

In this section, we discuss a few more aspects of the related work that weren’t discussed in the main paper.
We specifically focus on prior works that developed algorithms for KL divergence based DRO. The earliest
work on KL-DRO dates back to 2013 by Hu & Hong. However, it was only recently that these works have
become widespread in deep learning. The RECOVER algorithm by Qi et al. (2021) was one of the early
works to scale KL-DRO to deep neural networks. It attempted to solve the non-convex DRO problem
with a duality-free stochastic method by formulating the min-max formulation into an equivalent stochastic
compositional problem. ABSGD (Qi et al., 2023b) and SCDRO (Qi et al., 2023a) improved upon RECOVER
by designing more efficient algorithms. However, the performance of these algorithms on large-scale models
and datasets is not rigorously studied, as the Imagenet-LT, iNaturalist experiments conducted in these works
started from a pre-trained network and only finetuned the last layer. In contrast, in this work, we learn the
entire ViT-S model from scratch and show improved generalization.

B Proofs of Section 3

B.1 Proof of Proposition 3.1

Proposition B.1. Consider DRO with KL-divergence-based uncertainty set. Assume that the data set (zi)ni=1
is comprised of unique points (i.e, no repeated data points). Then minθ∈Θ R̂D,n can be rewritten as

min
θ∈Θ

1
γ

logE
P̂data

[eγ`(z;θ)],

for some constant γ > 0 that is independent of θ.

Proof. Recall the empirical DRO risk R̂D,n(θ) is defined as

R̂D,n(θ) := sup
P ′:D(P ′||P̂data)≤ρ

EP ′ [`(z, θ)]

Using Lagrangian duality, we rewrite R̂D,n(θ) as

sup
P ′:D(P ′||P̂data)≤ρ

EP ′ [`(z, θ)] = sup
P ′

inf
β>0

EP ′ [`(z, θ)]− β(D(P ′||P̂data)− ρ)

(a)= sup
P ′

inf
β>0

EP ′ [`(z, θ)]− β(EP ′ [log dP ′] + logn− ρ),

where (a) follows from our choice of divergence, and the fact that the data points {zi}ni=1 are all unique (i.e,
no repetitions). Observe that the objective in the last expression is concave in P ′ and linear in β. So the
max-min problem above is concave-convex. Using Lagrangian duality to swap the order of min and max, we
get

sup
P ′:D(P ′||P̂data)≤ρ

EP ′ [`(z, θ)] = inf
β>0

sup
P ′

EP ′ [`(z, θ)]− β(EP ′ [log dP ′] + logn− ρ).

This shows that minimizing R̂D,n is equivalent to the following problem

inf
β>0,θ∈Θ

sup
P ′

EP ′ [`(z, θ)]− β(EP ′ [log dP ′] + logn− ρ).

For any fixed β, θ, the inner supremum is attained at a P ′ that satisfies (see Theorem 1 of Hsieh et al. (2019))

P ′(z) ∝ exp (`(z, θ)/β) .

This can be derived using the following first order optimality condition: ∀z, `(z, θ)− β logP ′(z)− β = c for
some constant c. Substituting this in the previous equation, we get the following equivalent optimization
problem

inf
β>0

inf
θ∈Θ

β logEP ′ [e`(z,θ)/β ]− β(logn− ρ).

Letting γ−1 be the minimizer of the outer minimization problem, we get the required result.
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B.2 Proof of Proposition 3.2

Proof. Note that whenever `(z; ) is convex, so is f(θ) := E
z∼P̂data

exp(γ`(z; )). It is easy to check that the
function f and the constraint set Θ satisfy the conditions in Shamir & Zhang (2013, Theorem 2). From this,
we conclude that:

EθT
f(θT )− inf

θ∈Θ
f(θ) = O

(
log T√
T

)
(3)

The proof of equation 3 for the step size sequence ηt = C√
t
follows from the statement of Shamir & Zhang (2013,

Theorem 2). The case of the constant step-size ηt = C√
T
follows by a simple modification of the proof of Shamir

& Zhang (2013, Theorem 2) where we substitute the appearance of 1/
√
t due to the step size with 1/

√
T .

We now convert the guarantees in Equation 3 to guarantees in terms of log f(θ). Let θ∗ ∈ arg infθ∈Θ f(θ). By
our assupmption, `(z; ) is bounded above and below. So log f(θT )− log f(θ∗) ≤ C̄(f(θT )− f(θ∗)) for some
C̄. Combining this with equation 3, we conclude the statement of the proposition.

B.3 Other Divergences

χ2-divergence. Consider χ2-divergence which is defined as

D(P ′||P ) = EP

[(
dP ′

dP
− 1
)2
]
.

We now follow a similar argument as in the proof of Proposition 3.1 to derive an equivalent expression for the
DRO objective. We have

sup
P ′:D(P ′||P̂data)≤ρ

EP ′ [`(z, θ)] = sup
P ′

inf
β>0

EP ′ [`(z, θ)]− β(D(P ′||P̂data)− ρ)

(a)= sup
P ′

inf
β>0

EP ′ [`(z, θ)]− β(EP ′ [dP ′/dP̂data]− 1− ρ)

(b)= sup
P ′

inf
β>0

EP ′ [`(z, θ)]− β(nEP ′ [dP ′]− 1− ρ)

(c)= inf
β>0

sup
P ′

EP ′ [`(z, θ)]− β(nEP ′ [dP ′]− 1− ρ),

where (a), (b) follow from the definition of the divergence and (c) follows from Lagrangian duality. Now,
consider the DRO optimization problem

sup
P ′:D(P ′||P̂data)≤ρ

EP ′ [`(z, θ)] = inf
β>0,θ∈Θ

sup
P ′

EP ′ [`(z, θ)]− β(nEP ′ [dP ′]− 1− ρ).

Suppose the loss ` is positive. For any fixed θ, β, the inner supremum in the above optimization problem is
attained at a P ′ that satisfies

P ′(z) ∝ (`(z, θ)/βn+ 1) .
This follows from the first order optimality conditions. This gives rise to the re-weighting scheme g(x) = x+ τ ,
for some appropriately chosen τ .

Reverse KL divergence. The reverse KL-divergence is defined as

D(P ′||P ) = EP
[
− log dP

′

dP

]
.

Using similar arguments as above, we can rewrite the DRO optimization problem as

sup
P ′:D(P ′||P̂data)≤ρ

EP ′ [`(z, θ)] = inf
β>0,θ∈Θ

sup
P ′

EP ′ [`(z, θ)] + β(EP [log dP ′]− logn− ρ).
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For any fixed θ, β, the inner supremum in the above optimization problem is attained at a P ′ that satisfies

P ′(z) ∝ 1
τ − `(z, θ) ,

for some appropriate τ . This gives rise to the re-weighting scheme g(x) = 1/(τ − x). We call this algorithm
RGD-RevKL. In practice, we modify this re-weighting function

It can be implemented using the following pseudocode in Jax.

import jax. numpy as jnp
import jax

def rgd_t (loss , temp=alpha , reduce =True ):
# alpha >0.

out = loss * (1 -
jnp.clip(jax.lax. stop_gradient (loss), a_min =0, a_max =temp) / (temp + 1))** ( -1)

return out.sum () / len(out) if reduce else out

C Choice of divergence in RGD

RGD-RevKL is a more aggressive weighing scheme in comparison to RGD. This is fairly simple to show
if you re-write both the reweighting techniques using Taylor series expansion. RGD-RevKL multiplies
the loss l with (1 + l + l2 + . . . ). Whereas, RGD multiplies the loss l with (1 + l + l2/2! + l3/3! + . . . ).
RGD-RevKL is a more aggressive weighing scheme than RGD, and the choice between the two schemes
should depend on the problem. Some preliminary results on the class imbalance setting is depicted in Table 9.
For RGD-χ2 g(u) = u+ τ , we also clip u to be min(u, τ). Similarly, for RGD-RevKL, g(u) = 1

τ−u , we set
τ = 1 and clipped u as min(u, t)/(t + 1) where for all practical purposes - t has a similar grid search and
function as τ from other divergences.

Our search space and clipping involved the same grid search space as our RGD algorithm as described in the
reproducibility statement.

Table 9: Test Accuracy of ResNet-32 on Long-Tailed CIFAR-10, and CIFAR-100 dataset.

Dataset CIFAR-10 CIFAR-100
Loss / Imbalance Factor 200 100 50 20 10 1 Avg. 200 100 50 20 10 1 Avg.
Cross Entropy (CE)
Default 65.98 70.36 74.81 82.23 86.39 92.89 78.78 34.84 38.32 43.85 51.14 55.71 70.50 49.06
RGD-RevKL (Ours) 64.16 72.56 77.86 83.88 86.84 92.99 79.72 36.22 39.87 43.74 51.86 56.9 70.80 49.90
RGD-χ2 (Ours) 67.16 72.20 77.93 84.7 86.90 93.00 80.32 35.96 39.70 43.88 51.29 56.92 70.73 49.75
RGD (Ours) 67.90 73.75 79.63 85.44 88.00 93.27 81.33 38.62 41.89 46.40 53.48 58.5 71.30 51.70

D Additional Experimental Results and Missing Details

This section provides additional experimental results and details that are missing in the main paper. The
search space and hyperparameters tuned in our experiments of are depicted in Appendix D.1

D.1 Hyperparameter Tuning

In this section, we describe the common hyperparameter tuning space used across all experiments in our
paper unless otherwise mentioned. The two parameters we tune were τ and lr. We use a simple grid search
for τ in the order of [1, 3, 5, 7, 9] across the experiments where the scaling factor (γ) is by default set as 1

τ+1 .
This allowed our loss to be bounded between 0,1 and helped fairly compare RGD-χ2and RGD. The lr was
tuned by a proxy of lr_mult where we scaled the learning rate by a fraction in the range [0.5, 1.5]. The effect
of these hyperparameters (τ , γ) is further depicted in Section 4.2.
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Figure 2: Figure illustrating Distributionally Robust Optimization (DRO). In contrast to ERM which learns
a model that minimizes expected loss over original data distribution, DRO learns a model that performs well
simultaneously on several perturbed versions of the original data distribution.

D.1.1 Existing KL-DRO techniques

For TERM, we use the batch (non-hierarchical) version (as shown in Algorithm 1 of Li et al. (2023)) -
requiring two degrees of hyperparameters (tilting coefficient t and the learning rate (lr)). For the tilting
coefficient, we use a search space of Li et al.: {0.2, 0.5, 1, 3, 5}. For the learning rate, we use a lr multiplier to
the baseline run as {0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3}. For the stochastic version of TERM, which is identical to
ABSGD (Qi et al., 2023b) baseline - requires an additional coefficient of moving average (β). We use a grid
search space of {0.25, 0.5, 0.75} for tuning β, and tune the learning rate in a similar fashion to TERM. We
also tune λ (similar to the tilting coefficient of TERM) in the search space {1, 3, 5, 7}.

D.2 Toy Experiments

In this section, we perform a simple experiment to better understand the robustness properties of our proposed
approach.

Linear Regression with rare features: We consider a linear regression problem where the covariates x are
sampled from the set {h(0), . . . h(9)}. Here h(·) is a one-hot encoder that maps its inputs to a 10-dimensional
vector. The label y is generated according to the following linear model: y = xT θ∗, where θ∗ ∈ R10 is the
regression vector which is sampled from a standard normal distribution. We construct an imbalanced dataset
of tuples {(xi, yi)}ni=1 by taking 50 occurrences of the covariates {h(0) . . . h(4)} and only one occurrence of
the remaining five covariates. We consider two algorithms for learning the unknown parameter vector θ∗: (i)
SGD on the mean squared error in predictions (MSE) (ii) RGD on the MSE loss. We set the step size to be
4 for both algorithms and plot the evolution of MSE and the Euclidean distance between the iterates (θ)
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Feature 1

Feature 2

Decision boundary 
of Current Model

RGD upweighs 
misclassified 

points

Figure 3: Figure illustrating the intuitive idea behind the working of RGD in the binary classification setting.
RGD upweights the points which have high losses - points which have been misclassified by the model.

and the true parameter (θ∗) (Figure 4). It can be seen that our method achieves better performance due to
prioritization of samples with higher loss, which corresponds to rare directions in the dataset.

0 10 20 30 40 50
Epoch (it)

0.000

0.005

0.010

0.015

0.020

0.025

M
SE

Default
RGD

(a) MSE loss convergence

0 10 20 30 40 50
Epoch (it)

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

<
* ,

go
od

>
2

Default
RGD

(b) L2 Distance (Frequent feature)

0 10 20 30 40 50
Epoch (it)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

<
* ,

ba
d

>
2

Default
RGD

(c) L2 Distance (Rare feature)

Figure 4: Figure 4(a) showing the convergence of SGD, RGD algorithms for estimating the linear regression
parameter. The L2 distance between the iterates (θ) and the true parameter θ∗ is studied in Figures 4(b)
and 4(c). Specifically, Figure 4(b) depicts the squared error in the frequently appearing directions, where
all the techniques perform equally well. However, when it comes to learning rare directions, our proposed
approach is much better (Figure 4(c)).

D.3 Comparisons against Sharpness Aware Minimization

Below we compare with Sharpness-Aware Minimization (SAM) (Foret et al.) both from theoretical and
empirical perspectives. From a theoretical perspective, SAM performs robust optimization in the weight
space (that is SAM tries to learn a model that is robust to perturbations of weights). In contrast, RGD
performs robust optimization in the distribution space. So, RGD and SAM are orthogonal to each other
and can potentially be merged together to boost the performance. In Table 10, we compare performance of
various approaches for CIFAR-10 optimization. It can be seen that RGD marginally boosts the performance
of SAM. Although, more thorough experiments are needed to understand the utility of RGD on top of SAM.
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Table 10: Comparison of RGD with SAM. Accuracy performance numbers have been reported over an
average of 5 seeds.

Algorithm SGD SAM SAM + RGD
Accuracy 96.80 ± 0.04 97.31 ± 0.05 97.41 ± 0.09
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Figure 5: Experiment comparing RGD with baseline cross entropy Loss (CE), focal loss and class-balanced
loss using a ResNet-32 backbone. x-axis represents the imbalance factor in the dataset.

D.4 Robustness to Noisy Outliers

To demonstrate that our technique can effectively handle benign outliers, we perform the following experiment.
We randomly flip the labels in CIFAR-10, CIFAR-100 datasets (we vary the proportion of flips from 0% to
40%) and compare the performance of RGD with TERM. The results from this experiment are reported
below in Table 11. Note that existing DRO techniques which do not account for outliers perform poorly in
this experiment, as they upweight the corrupted/mislabeled points. Whereas, RGD which clips the weights
of outliers, achieves the best performance.

Table 11: Results on CIFAR-10 and CIFAR-100 dataset with corrupted labels.

Dataset CIFAR-10 CIFAR-100
Loss 0% 20% 40% Avg. 0% 20% 40% Avg.
Focal Loss 93.03 ± 0.16 86.45 ± 0.19 80.45 ± 0.97 86.64 70.02 ± 0.53 61.87 ± 0.30 54.13 ± 0.40 62.01
D2L 92.02 ± 0.14 87.66 ± 0.40 83.89 ± 0.46 87.86 68.11 ± 0.26 63.48 ± 0.53 51.83 ± 0.33 61.14
Cross Entropy (CE)
Default 92.89 ± 0.32 76.83 ± 2.30 70.77 ± 2.31 80.16 70.50 ± 0.12 50.86 ± 0.27 43.01 ± 1.16 54.79
TERM 92.90 ± 0.09 58.7 ± 39.76 73.17 ± 31.59 74.92 70.42 ± 0.41 63.85 ± 1.40 46.59 ± 22.80 60.29
RGD (Ours) 93.04 ± 0.24 90.69 ± 0.24 88.90 ± 0.15 90.88 71.06 ± 0.22 64.61 ± 0.39 57.17 ± 0.80 64.28

D.5 Class Imbalance Experiments

This section briefly discusses additional results from our experiments on the Class Imbalance domain with
imbalanced CIFAR-10 and CIFAR-100 datasets. It is well known that DRO outputs models with good tail
performance (Duchi & Namkoong, 2018). Since RGD directly solves the DRO objective, our models are also
naturally endowed with this property. To demonstrate this, we extend our experiments on linear regression
to a more realistic image dataset, where some classes appear very rarely in the data set while some appear
very frequently. We use the Long-Tailed CIFAR dataset, where we reduce the number of training samples per
class according to an exponential function as proposed by Cui et al. (2019). We define the imbalance factor
of a dataset as the number of training samples in the largest class divided by the smallest. Similar to the
works of Shu et al. (2019), we use a ResNet-32 architecture for training. Apart from Cross Entropy loss, we
also include Focal Loss (Lin et al., 2017) and Class Balanced Loss (Cui et al., 2019) as additional baselines.
We also experimented with the long-tailed CIFAR-100 dataset and showed that our proposed approach could
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again show significant improvements. Figure 5 illustrates the performance of our approach in comparison to
other state-of-the-art methods. Overall, in comparison to the SOTA approach in this task (Class Balanced
Loss), our proposed approach brings about an improvement of +0.79%. A more comprehensive comparison
with additional state-of-the-art baselines such as L2RW (Ren et al., 2018), and Meta-Weight-Net (Shu et al.,
2019) is illustrated in Table 13. Although these models use additional data as a meta-validation-set, our
proposed approach outperforms L2RW and is roughly competitive with the Meta-Weight-Net model.

Table 12 depicts the accuracy metric of models on various levels of the imbalance factor. From Table 12, we
show that our proposed approach RGD outperforms other baselines such as Focal Loss and Class Balanced
Loss by +0.79%. Furthermore, when models are trained on additional data, either by fine-tuning or by
using a meta-learning framework to learn weights (such as Meta-Weight-Net and L2RW), we show that
our proposed approach is competitively similar (-0.22%). Table 13 illustrates this analysis further. The
performance metrics of the baseline approaches were taken from Shu et al. (2019). Additional comparisons
against other losses, such as cross-entropy with label smoothing and large margin softmax loss, are shown in
Table 14.

For prior KL-DRO benchmarks such as TERM, we perform a grid-search where we tune the tilting coefficient
(t) in the space {0.1, 0.3, 0.5, 0.7, 1, 2, 5}. Furthermore, we also tune the learning rate in the space [5e− 3, 1].
Furthermore, for ABSGD, we replicate the baseline numbers from their paper which performs the same setup
of experiments as us.

Table 12: Test Accuracy of ResNet-32 on Long-Tailed CIFAR-10, and CIFAR-100 dataset.

Dataset CIFAR-10 CIFAR-100
Loss / Imbalance Factor 200 100 50 20 10 1 Avg. 200 100 50 20 10 1 Avg.
Focal Loss Lin et al. (2017) 65.29 70.38 76.71 82.76 86.66 93.03 79.14 35.62 38.41 44.32 51.95 55.78 70.52 49.43
Class Balanced Loss Cui et al. (2019) 68.89 74.57 79.27 84.36 87.49 92.89 81.25 36.23 39.60 45.32 52.59 57.99 70.50 50.21
Cross Entropy (CE)
Default 65.98 70.36 74.81 82.23 86.39 92.89 78.78 34.84 38.32 43.85 51.14 55.71 70.50 49.06
RGD-RevKL (Ours) 64.16 72.56 77.86 83.88 86.84 92.99 79.72 36.22 39.87 43.74 51.86 56.9 70.80 49.90
RGD (Ours) 67.90 73.75 79.63 85.44 88.00 93.27 81.33 38.62 41.89 46.40 53.48 58.5 71.30 51.70

Table 13: Test Accuracy of ResNet-32 on Long-Tailed CIFAR-10, and CIFAR-100 dataset. We use the symbol
? to denote approaches that use additional data (as the meta-dataset). We use underline symbol to depict
performances which are second-best across baselines. Our experiments show that we can get competitively
similar performance to such models as well without training a second neural network.

Dataset CIFAR-10 CIFAR-100
Loss / Imbalance Factor 200 100 50 20 10 1 Avg. 200 100 50 20 10 1 Avg.
Fine-tuning ? 66.08 71.33 77.42 83.37 86.42 93.23 79.64 38.22 41.83 46.40 52.11 57.44 70.72 51.12
L2RW Ren et al. (2018) ? 66.51 74.16 78.93 82.12 85.19 89.25 77.69 33.38 40.23 44.44 51.64 53.73 64.11 47.92
Meta-Weight-Net Shu et al. (2019) ? 68.91 75.21 80.06 84.94 87.84 92.66 81.60 37.91 42.09 46.74 54.37 58.46 70.37 51.65
Cross Entropy (CE)
Default 65.98 70.36 74.81 82.23 86.39 92.89 78.78 34.84 38.32 43.85 51.14 55.71 70.50 49.06
RGD-RevKL (Ours) 64.16 72.56 77.86 83.88 86.84 92.99 79.72 36.22 39.87 43.74 51.86 56.9 70.80 49.90
RGD (Ours) 67.90 73.75 79.63 85.44 88.00 93.27 81.33 38.62 41.89 46.40 53.48 58.5 71.30 51.70

Table 14: Additional Ablation study comparing with Label smoothing and Large Margin Softmax Loss. Test
Accuracy of ResNet-32 on Long-Tailed CIFAR-10, and CIFAR-100 dataset.

Dataset CIFAR-10 CIFAR-100
Loss / Imbalance Factor 200 100 50 20 10 1 Avg. 200 100 50 20 10 1 Avg.
Cross Entropy (CE)
+ Label Smoothing 61.22 73.80 77.95 84.40 86.96 92.18 79.42 37.14 41.05 44.76 50.67 57.74 70.97 50.39
+ Large Margin Softmax (LMS) 68.67 72.78 78.84 85.23 88.26 92.75 81.09 36.77 40.38 45.24 51.25 56.9 71.01 50.26
RGD (Ours) 67.90 73.75 79.63 85.44 88.00 93.27 81.33 38.62 41.89 46.40 53.48 58.5 71.30 51.70
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D.6 Vanilla Classification

This section briefly discusses a few additional results from our experiments on standard supervised learning
(in particular vanilla classification). Table 15 depicts the performance of our other variant RGD-RevKL in
comparison to the baseline approach.

EfficientNet finetuning. We also show fine-tuning improvements of EfficientNet-v2-l over various tasks
such as Cars and Food101 as depicted in Table 16. In these experiments, we take a pre-trained EfficientNet
backbone and fine-tune it for various tasks.

DieT-S for ImageNet-1K classification. Similarly, we also report that RGD boosts the performance
of the baseline DeiT-S model by 0.1% when trained from scratch on the Imagenet-1K benchmark as depicted
in Table 16. Note that similar to our setup in ViT-S on Imagenet-1K benchmark, we perform no tuning, and
simply use τ = 1, and same learning rate as baseline.

MLP for classification. We also demonstrate that our proposed approach is simple and shows significant
improvements, not only for SOTA approaches but also basic MLP procedures as depicted in Table 18, Table 19,
and Table 20. These tables help showcase that the simple addition of our proposed approach does show
significant improvements of +2.77% (in accuracy) on multi-class and +1.77% (in AUROC) on binary class
tasks respectively.

Table 15: Additional Ablation study to showcase the gain achieved by using RGD for various tasks in GLUE
benchmark for bert-base-uncased.

bert-base-uncased MNLI QQP QNLI SST-2 MRPC RTE COLA Avg

Default 81.33 89.62 87.93 90.63 89.55 67.19 54.53 80.11
RGD-RevKL (Ours) 82.97 89.87 90.79 91.28 88.54 71.23 59.28 81.97

RGD (Ours) 83.06 91.06 90.35 91.78 88.28 71.48 58.56 82.05

Table 16: Ablation study to showcase the gain achieved by using RGD for various tasks in Vision benchmarks
for ViT-S on Imagenet-1K, DeiT-S on Imagenet-1K and EfficientNet-v2-l on Finetuning tasks.

Imagenet-1K (ViT-S) Imagenet-1K (DeiT-S) Cars-FineTuning Food101-FineTuning

Default 78.1 80.05 92.03 92.65
RGD (Ours) 79.0 80.13 92.62 92.75

MiniGPT Pre-training. We extend our work to large-scale tasks in NLP such as LLM pre-training which
has become more prevalent over the recent years. Our experiments on miniGPT pre-training, as illustrated in
this section, showcase the efficacy of our approach in these settings. miniGPT (Zhu et al., 2024) is a minimal
implementation of a decoder-only transformer language model. We consider a 6 layer model and train on the
lm1B small dataset which has 1B tokens. We trained for 100K steps with a batch size of 256. We used the
default learning rate of 0.0016 for the baseline. For RGD, we fix the clipping threshold to 1 and tune the
learning rate. We achieved 1% improvement on the eval log-perplexity score. Table 17 illustrates our results
in this setting.

D.7 Tabular Classification

This section discusses a few additional results from our experiments on Tabular classification. Table 21
depicts our proposed approach’s accuracy compared to other baselines on multi-class tabular datasets. Our
method outperforms previous SOTA in this problem by +1.27%. Furthermore, Table 22 illustrates the
AUROC score of our proposed approach in comparison to state-of-the-art baselines on binary-class tabular
datasets. Our approach shows an improvement of +1.5% in this setting as well. The performance metrics of
the baseline approaches were taken from Majmundar et al. (2022).
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Table 17: Results on standard Lm1b pre-training task with miniGPT. Off-the-hat addition of RGD leads to
improvements of evaluation log-perplexity by 1%.

Dataset Lm1b eval Perplexity

Default 2.9218
RGD (Ours) 2.8979

Table 18: Results on standard multi-class tabular datasets (Accuracy): The bottom partition shows results of
our method with RGD loss. We show that the addition of our proposed approach significantly outperforms
the base MLP model.

Algorithm FMNIST CIFAR10 MNIST CovType Avg.
Default Majmundar et al. (2022) 87.62 16.50 96.95 65.47 66.64
RGD-RevKL (Ours) 88.52 20.31 97.86 68.81 68.875
RGD (Ours) 89.03 21.32 97.57 69.73 69.41

Table 19: Results on standard binary-class tabular datasets (Accuracy): The bottom partition shows results
of our method with RGD loss. We show that the addition of our proposed approach significantly outperforms
the base MLP model.

Algorithm Obesity Income Criteo Thyroid Avg.
Default 58.1 84.36 74.28 50 66.69
RGD-RevKL (Ours) 59.12 84.5 75.06 57.3 69
RGD (Ours) 58.83 85.5 75.87 56.04 69.1

Table 20: Results on standard binary-class tabular datasets (AUROC): The bottom partition shows results of
our method with RGD loss. We show that the addition of our proposed approach significantly outperforms
the base MLP model.

Algorithm Obesity Income Criteo Thyroid Avg.
MLP 52.3 89.39 79.82 62.3 70.95
RGD-RevKL (Ours) 54.31 91.1 79.85 62.25 71.88
RGD (Ours) 55.96 90.8 80.1 64 72.72
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Table 21: Results on standard multi-class tabular datasets (Accuracy): The bottom partition shows results of
our method with RGD loss. We show that the addition of our proposed approach significantly outperforms
existing methods, as well as SOTA.

Algorithm FMNIST CIFAR10 MNIST CovType Avg.
MLP 87.62 16.50 96.95 65.47 66.64
RF Breiman (2001) 88.43 42.73 97.62 71.37 75.04
GBDT Friedman (2001) 88.71 45.7 100 72.96 76.84
RF-G Rahimi & Recht (2008) 89.84 29.32 97.65 71.57 72.10
MET-R Majmundar et al. (2022) 88.84 28.94 97.44 69.68 71.23
VIME Yoon et al. (2020) 80.36 34.00 95.77 62.80 68.23
DACL+ Verma et al. (2021) 81.40 39.70 91.40 64.23 69.18
SubTab Ucar et al. (2021) 87.59 39.34 98.31 42.36 66.90
TabNet Arik & Pfister (2021) 88.18 33.75 96.63 65.13 70.92
MET Majmundar et al. (2022) 91.68 47.82 99.19 76.71 78.85
MET-S
Default Majmundar et al. (2022) 90.94 48.00 99.01 74.11 78.02
RGD-RevKL (Ours) 91.12 49.17 99.28 79.41 79.75
RGD (Ours) 91.54 49.54 99.69 79.72 80.12

Table 22: Results on standard binary-class tabular datasets (AUROC): The bottom partition shows results of
our method with RGD loss. We show that the addition of our proposed approach significantly outperforms
existing methods, as well as SOTA.

Algorithm Obesity Income Criteo Thyroid Avg.
MLP 52.3 89.39 79.82 62.3 70.95
RF Breiman (2001) 64.36 91.53 77.57 99.62 83.27
GBDT Friedman (2001) 64.4 92.5 78.77 99.34 83.75
RF-G Rahimi & Recht (2008) 54.45 90.09 80.32 52.65 69.37
MET-R Majmundar et al. (2022) 53.2 83.54 79.17 82.03 74.49
VIME Yoon et al. (2020) 57.27 87.37 74.28 94.87 78.45
DACL+ Verma et al. (2021) 61.18 89.01 75.32 86.63 78.04
SubTab Ucar et al. (2021) 64.92 88.95 76.57 88.93 79.00
TabNet Arik & Pfister (2021) 69.40 77.30 80.91 96.98 81.15
MET-S
Default Majmundar et al. (2022) 71.84 93.85 86.17 99.81 87.92
RGD-RevKL (Ours) 76.23 93.90 86.92 99.82 89.22
RGD (Ours) 76.87 93.96 86.98 99.92 89.43
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Table 23: Results on meta-learning datasets. We report the Worst-K% performance as well to help study the
performance distribution over all tasks. Overall, we expect our reweighting scheme to give more importance
to those tasks which are difficult and rare. We show that the addition of our proposed approach significantly
outperforms existing methods as shown in Omniglot 5-way 1-shot, as well as miniImageNet 5-way 1-shot
setting.

Algorithm Worst 10% Worst 20% Worst 30% Worst 40% Worst 50% Overall

Omniglot 5-way 1-shot
MAML 91.71 ± 0.73 94.16 ± 0.50 95.41 ± 0.39 96.22 ± 0.32 96.76 ± 0.27 98.38 ± 0.17

Reptile 82.78 ± 0.85 86.22 ± 0.64 88.33 ± 0.54 89.79 ± 0.48 90.93 ± 0.43 94.64 ± 0.32

Protonet 88.72 ± 0.99 92.24 ± 0.70 93.95 ± 0.54 95.06 ± 0.44 95.79 ± 0.38 97.82 ± 0.23

Matching Networks 79.70 ± 0.95 84.01 ± 0.78 86.78 ± 0.68 88.83 ± 0.62 90.41 ± 0.56 94.71 ± 0.39

MAML + RGD 92.14 ± 0.84 94.54 ± 0.53 95.72 ± 0.40 96.46 ± 0.33 96.90 ± 0.27 98.45 ± 0.17

Omniglot 20-way 1-shot
MAML 84.33 ± 0.40 85.86 ± 0.29 86.92 ± 0.26 87.73 ± 0.24 88.42 ± 0.22 91.28 ± 0.22

Reptile 83.13 ± 0.42 84.71 ± 0.31 85.77 ± 0.26 86.60 ± 0.24 87.30 ± 0.23 90.09 ± 0.22

Protonet 87.19 ± 0.33 88.71 ± 0.27 89.73 ± 0.24 90.54 ± 0.23 91.20 ± 0.22 93.72 ± 0.20

Matching Networks 62.82 ± 0.60 65.50 ± 0.48 67.25 ± 0.42 68.61 ± 0.39 69.75 ± 0.37 74.62 ± 0.38

MAML + RGD 86.61 ± 0.36 88.09 ± 0.28 89.09 ± 0.24 89.87 ± 0.23 90.50 ± 0.21 93.01 ± 0.20

miniImageNet 5-way 1-shot
MAML 30.94 ± 0.70 34.52 ± 0.62 36.93 ± 0.57 38.94 ± 0.55 40.68 ± 0.53 48.86 ± 0.62

Reptile 25.37 ± 0.74 28.59 ± 0.59 30.71 ± 0.52 32.52 ± 0.50 34.11 ± 0.48 41.42 ± 0.56

Protonet 30.93 ± 0.76 34.62 ± 0.65 37.06 ± 0.58 38.94 ± 0.54 40.66 ± 0.52 48.56 ± 0.60

Matching Networks 27.19 ± 0.68 30.42 ± 0.57 32.64 ± 0.52 34.45 ± 0.50 36.10 ± 0.49 43.84 ± 0.58

MAML + RGD 33.33 ± 0.90 36.67 ± 0.65 39.12 ± 0.59 41.20 ± 0.56 42.96 ± 0.55 51.21 ± 0.63

D.8 Meta-Learning

This section discusses some additional results from our experiments in the meta-learning domain. Table 23
depicts a complete table and comparison of our proposed approach on the MAML baseline compared to others.
Overall, we notice improvement across the board, especially in the outliers, as shown in the Worst-k% metrics.
Note that although our RGD has been applied on MAML (Finn et al., 2017) in our current experiments,
our approach is analogous to the model and can be extended to other meta-learning techniques such as
Protonet (Snell et al., 2017), CNAPs (Requeima et al., 2019), etc. as well. The performance metrics of the
baseline approaches were taken from (Kumar et al., 2023).

D.9 DomainBed

D.9.1 DomainBed Benchmark

In this section, we describe the DomainBed benchmark, a challenging benchmark used to study the out-of-
domain generalization capabilities of our model. To briefly explain, consider the dataset PACS, which consists
of Photos, Art, cartoons, and sketches of the same set of classes (for instance, dogs and cats, amongst others).
The goal of the task is to learn from three of these domains and evaluate the performance of the left-out
domain (similar to a k-fold cross-validation). By doing so, we can assess the out-of-domain generalization
performance of our models. In general, the metric used in this domain involves taking an average of the
performance of the different k-fold splits. More information about this benchmark is available at Gulrajani &
Lopez-Paz (2021).
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Table 24: Results on DomainBed (Model selection: training-domain validation set): The bottom partition
shows results of our method with RGD loss. In both cases, with (top) and without (bottom) fixed linear
layer, the proposed approach outperforms existing methods, as well as SOTA.

Algorithm PACS VLCS OfficeHome DomainNet Avg.
ERM Gulrajani & Lopez-Paz (2021) 85.5 ± 0.1 77.5 ± 0.4 66.5 ± 0.2 40.9 ± 0.1 67.6
IRM Arjovsky et al. (2019) 83.5 ± 0.8 78.5 ± 0.5 64.3 ± 2.2 33.9 ± 2.8 65.1
GroupDRO Sagawa* et al. (2020) 84.4 ± 0.8 76.7 ± 0.6 66.0 ± 0.7 33.3 ± 0.2 65.1
Mixup Yan et al. (2020a) 84.6 ± 0.6 77.4 ± 0.6 68.1 ± 0.3 39.2 ± 0.1 67.33
MLDG Li et al. (2018a) 84.9 ± 1.0 77.2 ± 0.4 66.8 ± 0.6 41.2 ± 0.1 67.53
CORAL Sun & Saenko (2016) 86.2± 0.3 78.8± 0.6 68.7± 0.3 41.5 ± 0.1 68.8
MMD Li et al. (2018b) 84.6 ± 0.5 77.5 ± 0.9 66.3 ± 0.1 23.4 ± 9.5 62.95
DANN Ganin et al. (2016) 83.6 ± 0.4 78.6 ± 0.4 65.9 ± 0.6 38.3 ± 0.1 66.6
CDANN Li et al. (2018c) 82.6 ± 0.9 77.5 ± 0.1 65.8 ± 1.3 38.3 ± 0.3 66.05
MTL Blanchard et al. (2021) 84.6 ± 0.5 77.2 ± 0.4 66.4 ± 0.5 40.6 ± 0.1 67.2
SagNet Nam et al. (2021) 86.3 ± 0.2 77.8 ± 0.5 68.1 ± 0.1 40.3 ± 0.1 68.13
ARM Zhang et al. (2021) 85.1 ± 0.4 77.6 ± 0.3 64.8 ± 0.3 35.5 ± 0.2 65.75
VREx Krueger et al. (2021) 84.9 ± 0.6 78.3 ± 0.2 66.4 ± 0.6 33.6 ± 2.9 65.8
RSC Huang et al. (2020) 85.2 ± 0.9 77.1 ± 0.5 65.5 ± 0.9 38.9 ± 0.5 66.68
MIRO Cha et al. (2022) 85.4 ± 0.4 79.0 ± 0.0 70.5 ± 0.4 44.3 ± 0.2 69.8
ERM + FRR-L
Default Addepalli et al. (2023) 85.7 ± 0.1 76.6 ± 0.2 68.4 ± 0.2 44.2 ± 0.1 68.73
RGD-RevKL (Ours) 87.2 ± 0.3 78.6 ± 0.3 69.4 ± 0.2 45.8 ± 0.0 70.25
RGD (Ours) 87.6 ± 0.3 78.6 ± 0.3 69.8 ± 0.2 46.0 ± 0.0 70.48
ERM + FRR
Default Addepalli et al. (2023) 87.5 ± 0.1 77.6 ± 0.3 69.4 ± 0.1 45.1 ± 0.1 69.9
RGD-RevKL (Ours) 87.6 ± 0.3 78.1 ± 0.1 69.9 ± 0.1 45.8 ± 0.0 70.35
RGD (Ours) 88.2 ± 0.2 78.6 ± 0.3 69.8 ± 0.2 45.8 ± 0.0 70.6
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Table 25: Out-of-domain accuracies (%) on PACS.

Algorithm A C P S Avg

CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MASF 82.9 80.5 95.0 72.3 82.7
DMG 82.6 78.1 94.5 78.3 83.4
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
MetaReg 87.2 79.2 97.6 70.3 83.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.7
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
I-Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.7
VREx 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
Mixstyle 86.8 ± 0.5 79.0 ± 1.4 96.6 ± 0.1 78.5 ± 2.3 85.2
ER 87.5 79.3 98.3 76.3 85.3
pAdaIN 85.8 81.1 97.2 77.4 85.4
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
EISNet 86.6 81.5 97.1 78.1 85.8
CORAL 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3
DSON 87.0 80.6 96.0 82.9 86.6

ERM + FRR-L

Default 83.2 ± 0.3 79.8 ± 0.4 95.9 ± 0.3 83.5 ± 0.4 85.7
RGD-RevKL 88.7 ± 0.5 83.0 ± 0.5 97.8 ± 0.1 79.4 ± 1.0 87.2
RGD 88.4 ± 0.3 83.3 ± 0.8 97.5 ± 0.3 81.1 ± 0.5 87.6

ERM + FRR

Default 86.8 ± 0.3 82.2 ± 0.4 96.4 ± 0.1 84.5 ± 0.2 87.5
RGD-RevKL 87.7 ± 0.8 84.0 ± 0.6 97.6 ± 0.1 81.2 ± 0.5 87.6
RGD 88.8 ± 0.3 84.0 ± 0.8 97.7 ± 0.1 82.4 ± 0.6 88.2

D.9.2 Additional Results

In this section, we briefly discuss additional results from our DomainBed experiments. Table 24 depicts a
complete table and comparison of our proposed approach to a multitude of state-of-the-art approaches in this
field. Furthermore, we also show that our proposed approach outperforms previous SOTA by +0.7%.

Moreover, we also report the performance improvements when RGD is trained with model weight averaging
methods such as SWAD Cha et al. (2021). Table 29 depicts the performance improvements of RGD over
SWAD.

Furthermore, we also present the per-environment breakdown of our approach in various datasets in Table 25,
Table 26, Table 27, and Table 28 for PACS, VLCS, OfficeHome, and DomainNet respectively. The performance
metrics of the baseline approaches were taken from Gulrajani & Lopez-Paz (2021).

33



Under review as submission to TMLR

Table 26: Out-of-domain accuracies (%) on VLCS.

Algorithm C L S V Avg

GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
RSC 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
I-Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
Mixstyle 98.6 ± 0.3 64.5 ± 1.1 72.6 ± 0.5 75.7 ± 1.7 77.9
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.6
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8

ERM + FRR-L

Default 97.1 ± 0.2 63.3 ± 0.3 72.0 ± 0.3 74.3 ± 0.3 76.6
RGD-RevKL 98.8 ± 0.1 64.8 ± 0.2 73.9 ± 0.2 77.0 ± 1.1 78.6
RGD 98.9 ± 0 64.9 ± 0.4 73.2 ± 0.4 77.5 ± 0.6 78.6

ERM + FRR

Default 96.7 ± 0.6 65.2 ± 0.8 73.4 ± 0.1 75.6 ± 0.4 77.6
RGD-RevKL 98.3 ± 0.1 64.5 ± 0.2 72.3 ± 0.1 77.2 ± 0.3 78.1
RGD 97.1 ± 0.5 65.4 ± 0.8 74.3 ± 0.1 77.5 ± 0.3 78.6

D.10 Convergence of RGD and additional costs

Convergence in extreme class imbalance setting: In the extreme class imbalance setting, we note
that uniform sampling for mini-batch generation + RGD re-weighting (as done in Algorithm 1) would be
slower to converge than using importance sampling for mini-batch generation. This is because the former
tends to have higher variance. But this is easily fixable in Algorithm 1. We simply update the mini-batch
generation step with importance sampling; that is, we select point ‘i’ with probability proportional to its
weight exp(`i) (instead of uniform sampling that is currently done). The main reason for not considering this
in this work is our desire to illustrate the generality of our approach and its applicability to a wide variety
of learning tasks, without focusing too much on the class imbalance task. We believe this generality and
simplicity is what makes our method quite attractive to the practitioner as showcased in some of experiments
including Natural Language Processing, Image Classification, Tabular Classification, Distribution Shifts, and
Meta-learning. Furthermore, Figure 6 illustrates the convergence plots of miniGPT pre-training and ViT-S
on Imagenet-1K. Overall, we note similar stable training convergence on both, while RGD is able to focus
more heavily on harder samples and reach a better minima.

Additional costs of RGD: Furthermore, we note that RGD poses NO additional cost over standard
approaches. The approach is a simple modification of the loss with a closed-form function with O(1)
complexity, and without any changes in architecture, training regime, etc.
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Table 27: Out-of-domain accuracies (%) on OfficeHome.

Algorithm A C P R Avg

Mixstyle 51.1 ± 0.3 53.2 ± 0.4 68.2 ± 0.7 69.2 ± 0.6 60.4
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.7
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.4
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
I-Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7

ERM + FRR-L

Default 64.4 ± 0.1 55.6 ± 0.5 76.5 ± 0.2 77.5 ± 0.2 68.4
RGD-RevKL 64.2 ± 0.3 55.9 ± 0.5 77.6 ± 0.2 79.9 ± 0.3 69.4
RGD 64.5 ± 0.3 56.9 ± 0.5 77.8 ± 0.3 80.0 ± 0.4 69.8

ERM + FRR

Default 64.5 ± 0.2 58.4 ± 0.1 76.6 ± 0.3 78.3 ± 0.1 69.4
RGD-RevKL 65.6 ± 0.3 57.1 ± 0.3 76.8 ± 0.3 80.2 ± 0.2 69.9
RGD 65.6 ± 0.5 56.9 ± 0.3 76.9 ± 0.1 79.7 ± 0.3 69.8

(a) Convergence on miniGPT pretraining (b) Convergence on Imagenet-1K with VIT

Figure 6: Convergence plots of RGD and Default training regime on real-world datasets. Here the orange
line denotes the default training regime, and the green line denotes RGD.
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Table 28: Out-of-domain accuracies (%) on DomainNet.

Algorithm clip info paint quick real sketch Avg

MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
VREx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
Mixstyle 51.9 ± 0.4 13.3 ± 0.2 37.0 ± 0.5 12.3 ± 0.1 46.1 ± 0.3 43.4 ± 0.4 34.0
ARM 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
CDANN 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9
I-Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
SagNet 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
MTL 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
ERM 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MetaReg 59.8 25.6 50.2 11.5 64.6 50.1 43.6
DMG 65.2 22.2 50.0 15.7 59.6 49.0 43.6

ERM + FRR-L

Default 63.6 ± 0.1 20.5 ± 0.0 50.7 ± 0.0 14.6 ± 0.1 63.8 ± 0.1 53.4 ± 0.0 44.2
RGD-RevKL 65.7 ± 0.1 21.9 ± 0.0 52.0 ± 0.1 15.1 ± 0.1 65.2 ± 0.1 54.9 ± 0.1 45.8
RGD 65.8 ± 0.1 22.1 ± 0.0 52.3 ± 0.1 15.1 ± 0.1 65.7 ± 0.0 54.8 ± 0.1 46.0

ERM + FRR

Default 64.3 ± 0.1 21.2 ± 0.3 51.1 ± 0.2 14.9 ± 0.6 64.7 ± 0.1 54.1 ± 0.2 45.1
RGD-RevKL 65.6 ± 0.0 21.9 ± 0.0 52.0 ± 0.1 15.0 ± 0.1 65.5 ± 0.0 54.8 ± 0.1 45.8
RGD 65.6 ± 0.0 21.5 ± 0.0 52.1 ± 0.0 15.0 ± 0.0 65.7 ± 0.0 55.1 ± 0.0 45.8

Table 29: Results on DomainBed (Model selection: training-domain validation set) on the model weight
averaging models such as SWAD Cha et al. (2021): The bottom partition shows results of our method with
RGD loss.

Algorithm PACS VLCS OfficeHome DomainNet Avg.
SWAD
Default Cha et al. (2021) 86.5 ± 1.0 76.0 ± 0.7 66.3 ± 0.2 43.8 ± 0.1 68.15
RGD (Ours) 87.6 ± 0.2 75.4 ± 1.1 67.5 ± 0.3 44.0 ± 0.1 68.63
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