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ABSTRACT

Boosting has garnered significant interest across both machine learning and sta-
tistical communities. Traditional boosting algorithms, designed for fully ob-
served random samples, often struggle with real-world problems, particularly with
interval-censored data. This type of data is common in survival analysis and time-
to-event studies where exact event times are unobserved but fall within known
intervals. Effective handling of such data is crucial in fields like medical research,
reliability engineering, and social sciences. In this work, we introduce novel non-
parametric boosting methods for regression and classification tasks with interval-
censored data. Our approaches leverages censoring unbiased transformations to
adjust loss functions and impute transformed responses while maintaining model
accuracy. Implemented via functional gradient descent, these methods ensure
scalability and adaptability. We rigorously establish their theoretical properties,
including optimality and mean squared error trade-offs, offering solid guarantees.
Our proposed methods not only offer a robust framework for enhancing predictive
accuracy in domains where interval-censored data are common but also comple-
ment existing work, expanding the applicability of boosting techniques. Empiri-
cal studies demonstrate robust performance across various finite-sample scenarios,
highlighting the practical utility of our approaches.

1 INTRODUCTION

Boosting (Schapire, 1990; Freund, 1995) is a foundational technique in machine learning, transform-
ing weak learners into strong learners through iterative refinement (Schapire & Freund, 2012). This
iterative nature not only increases predictive accuracy (Quinlan, 1996; Bauer & Kohavi, 1999; Diet-
terich, 2000) but also enhances robustness against overfitting (Bühlmann & Hothorn, 2007; Schapire
& Freund, 2012), making boosting a popular choice for various applications. The AdaBoost algo-
rithm (Freund & Schapire, 1996) was a groundbreaking development and remains a highly effective
off-the-shelf classifier (Breiman, 1998). Subsequent research (Breiman, 1998; 1999; Mason et al.,
1999) revealed that AdaBoost can be viewed as a steepest descent algorithm in a function space de-
fined by base learners. Boosting continued to grow as Friedman et al. (2000) and Friedman (2001)
extended its application to regression and multiclass classification within a broader statistical frame-
work, and it is interpreted as a method of function estimation. In this expanded context, Bühlmann &
Yu (2003) introduced L2Boost, a computationally efficient boosting algorithm that leverages the L2

loss function. More recently, Chen & Guestrin (2016) proposed XGBoost, a scalable and useful tree
boosting system, and Ke et al. (2017) introduced LightGBM, an efficient tree boosting algorithm.

Despite the success of boosting methods, a key limitation persists: traditional boosting algorithms
assume access to a fully observed random sample of data. In many real-world applications, however,
data are incomplete or censored. This issue is particularly pronounced in fields like survival analysis,
where interval-censored data are becoming increasingly prevalent.

1.1 LITERATURE REVIEW

Recent research in boosting has focused on handling incomplete or censored data. Most efforts
have extended boosting methods to accommodate right-censored responses (e.g., Ridgeway, 1999;
Hothorn et al., 2006; Wang & Wang, 2010; Mayr & Schmid, 2014; Bellot & van der Schaar, 2018;
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Yue et al., 2018; Bellot & van der Schaar, 2019; Barnwal et al., 2022; Chen & Yi, 2024) or missing
responses (e.g., Bian et al., 2024a;b). In theses cases, techniques like imputation and weighting are
employed to construct unbiased loss functions for training.

While these approaches have addressed some issues related to incomplete data, a significant gap
remains in handling interval-censored data – where event times are known only to lie within specific
intervals. This scenario, prevalent in survival analysis (e.g., Sun, 2006), is more complex than right
censoring, as the response variable is completely unobserved within the given intervals, posing sub-
stantial challenges for traditional machine learning techniques. Research on interval-censored data
has expanded across various domains. For example, Yao et al. (2021) introduced a survival forest
method utilizing the conditional inference framework, while Cho et al. (2022) developed the inter-
val censored recursive forests method for non-parametric estimation of the survivor functions. Yang
et al. (2024) leveraged the censoring unbiased transformation (Fan & Gijbels, 1994; 1996) to create
tree algorithms specifically designed for interval-censored data. However, these approaches do not
capitalize on the strengths of boosting, which could significantly enhance predictive performance
and robustness.

1.2 OUR CONTRIBUTIONS

We propose a framework that extends boosting methods to address interval-censored data, a crit-
ical yet underexplored problem in machine learning. Our contributions significantly enhance the
applicability of boosting algorithms to complex censoring structures:

• We propose L2Boost-CUT and L2Boost-IMP to extend boosting for interval-censored data.
L2Boost-CUT adjusts the loss function with the censoring unbiased transformation (CUT),
while L2Boost-IMP uses an imputation-based approach leveraging CUT. Both methods
handle interval-censoring flexibly, avoiding restrictive assumptions and enabling predic-
tions of survival time, probability, and status.

• We provide a rigorous theoretical analysis of our methods, evaluating their mean squared
error (MSE), variance, and bias, as well as the connection between the two proposed meth-
ods. Our results demonstrate that by incorporating smoothing splines as base learners, the
proposed framework achieves optimal MSE rates in both regression and classification tasks,
even with interval censoring. These insights extend the understanding of boosting methods,
building upon and generalizing the foundational results from Bühlmann & Yu (2003) for
complete data.

• We validate our methods through extensive experiments on both synthetic and real-world
datasets. Results show that L2Boost-CUT and L2Boost-IMP offer robust and scalable
solutions for handling interval-censored data and enhancing the generalizability of boosting
algorithms.

2 PRELIMINARIES

Let Y denote the survival time of an individual, and let X denote the associated p-dimensional
feature vector, where Y ∈ R+ and X ∈ X , with R+ representing the set of all positive real values
and X denoting the feature space. Our objective is to learn a predictive model f(·) that well predicts
a transformed target variable g(Y ), where g(·) is a user-defined transformation and g(Y ) ∈ Y , with
Y ⊆ R. The choice of g(·) depends on the task of interest. For instance, setting g(Y ) = Y directly
models the survival time; setting g(Y ) = log(Y ) removes the positivity constraint of Y . For binary
classification tasks, we can set g(Y ) = 2I(Y > s)− 1 to predict the survival status at time s, where
s is a prespecified threshold and I(·) is the indicator function.

We define the hypothesis space, F = {f : X → Y}, consisting of real valued functions, and the loss
function L : Y2 → R≥0, which quantifies the error between the predicted and true values, where
R≥0 = R+ ∪ {0}. Let Yd denote Y × . . . × Y ≜ {(y1, . . . , yd) : yj ∈ Y for j = 1, . . . , d} for a
positive integer d. For f ∈ F , define the expected risk, or risk as

R(f) = E{L (Y, f(X))}, (1)
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where the expectation is taken with respect to the joint distribution of X and Y . The goal is to find
the optimal function f∗ that minimizes the risk:

f∗ = argmin
f∈F

R(f),

assuming its existence and uniqueness.

In practice, the joint distribution of X and Y is unknown, and we only have access to a finite sample
of n independent observations of X and Y , say Oc ≜ {{Xi, Yi} : i = 1, . . . , n}. For simplicity,
we use uppercase letters X , Y , Xi and Yi with i = 1, . . . , n to represent both random variables and
their realizations. We “parameterize” the function f(X) as {f(X1), . . . , f(Xn)}. To approximate
f∗, we minimize the empirical risk, which serves as proxy for the expected risk:

f̂c = argmin
f∈F

{
n−1

n∑
i=1

L(Yi, f(Xi))

}
. (2)

In the absence of censoring, where survival times Yi are fully observed for all study subjects, f̂c
can be obtained using a boosting algorithm that iteratively improves base learners. Specifically, the
L2Boost algorithm, a variant of boosting using the L2 loss function, minimizes the empirical risk
via steepest gradient descent to iteratively refine the estimates of f̂c. At iteration t, given the current
estimate f (t−1)(·), the algorithm updates the model by adding an increment term, denoted ĥ(t)(·),
to form the updated estimate f (t)(·):

f (t)(·) = f (t−1)(·) + ĥ(t)(·), (3)

where ĥ(t)(·) is a function mapping from X to Y , called a base learner, determined by

ĥ(t) = argmin
h(t)

[
n−1

n∑
i=1

{
−∂L

(
Yi, f

(t−1)(Xi)
)
− h(t)(Xi)

}2
]
, (4)

with ∂L
(
Yi, f

(t−1)(Xi)
)
≜ ∂L(u,v)

∂v

∣∣∣
u=Yi,v=f(t−1)(Xi)

for i = 1, . . . , n. Here, ĥ(t) in (4) can

be interpreted as the least squares estimate of E
(
− ∂L

(
Yi, f

(t−1)(Xi)
)∣∣Xi

)
. Thus, the L2Boost

algorithm can be seen as repeated least squares fitting of residuals (Friedman, 2001). At a stopping
iteration t̃, determined by a suitable stopping criterion, the final estimator of f is given by

f̂c(·) ≜ f (t̃)(·) = f (0)(·) +
t̃∑

j=1

ĥ(j)(·),

where f (0)(·) is the initial value for f(·).
On the other hand, for classification tasks, particularly when the response g(Y ) is a step function,
e.g., gs(Y ) = 2I(Y > s)−1 for a given s, which maps to the set {−1, 1}, theL2Boost algorithm can
be modified to “L2 Boost with constraints” (L2WCBoost) algorithm (Bühlmann & Yu, 2003). This
modification allows us to handle binary classification problems, where the goal is to approximate
E{gs(Yi)|Xi}, given by E{gs(Yi)|Xi} = 2ps(Xi)− 1 and ps(Xi) ≜ E{I(Yi > s)|Xi}, with f (t)
in (3) revised as:

f (t)(·) = sign
(
f̃ (t)(·)

)
min

(
1,
∣∣∣f̃ (t)(·)∣∣∣) , with f̃ (t)(·) = f (t−1)(·) + ĥ(t)(·), (5)

where sign(u) = −1 if u < 0, 0 if u = 0, and 1 if u > 0. The modification of f̃ (t)(·) with the sign
function, i.e., (5), ensures that the final estimate f (t)(·) stays within the range [−1, 1], which enables
the output to be bounded for binary classification.

3 PROBLEM AND METHODOLOGY

3.1 INTERVAL-CENSORED DATA

Interval censoring occurs when, instead of directly observing the exact survival time Y , we only
observe a pair of time points (L,R) such that Y lies within the interval (L,R], where 0 ≤ L <

3
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R ≤ ∞. Different scenarios arise depending on the values of L and R: L = 0 yields a left-
censored observation; R = ∞ leads to a right censored observation; 0 < L < R < ∞ gives a truly
interval-censored observation; and when L = Y − andR = Y , we have the exact observation, where
Y − ≜ lima→0+(Y − a), with a → 0+ representing a approaching 0 from the positive side. Let
[0, τ ] denote the study period, with τ being finite. Following standard practice for modeling interval-
censored data (e.g., Zhang et al., 2005; Cho et al., 2022), we assume conditionally independent
interval censoring, meaning that given features X , the probability of the survival time Y occurring
before some value y given L = l, R = r, L < Y ≤ R depends only on l < Y ≤ r. Formally,

Pr(Y < y|L = l, R = r, L < Y ≤ R,X) = Pr(Y < y|l < Y ≤ r,X),

for any positive y, l, and r with l < r.

Suppose for subject i = 1, . . . , n, there are M observation times ui,1 < ui,2 < . . . < ui,M <
∞ beyond ui,0 = 0, where M is a random integer, with m denoting its realization. While the
randomness of M does not affect calculations for a given dataset, its presence reflects real-world
data uncertainty with varying numbers of observations. For a dataset with m ≥ 2 and i = 1, . . . , n,
define the censoring indicators for each subject i and interval j as ∆i,j ≜ I(ui,j−1 < Yi ≤ ui,j)

with j = 1, . . . ,m and ∆i,m+1 ≜ I(Yi > ui,m) = 1 −
∑m

j=1 ∆i,j . These indicators reflect
whether the true survival time Yi falls within the corresponding time interval. Let the observed
data for subject i be Oi ≜ {{Xi, ui,j ,∆i,j} : j = 1, . . . ,m}, and let the full observed dataset be
OIC ≜ ∪n

i=1Oi.

For each subject i, we identify the interval (Li, Ri] containing Yi by finding the index ji ∈
{1, . . . ,m} such that ui,ji−1 ≤ Yi ≤ ui,ji , with Li = ui,ji−1, Ri = ui,ji . The sequence
{{Li, Ri} : i = 1, . . . , n} is then ordered in increasing order and the distinct values are denoted as
v1 < v2 < . . . < vmv

.

3.2 BOOSTING LEARNING WITH INTERVAL-CENSORED DATA

We define an adjusted loss function L∗(Oi, f(Xi)) that retains the same expected value as the orig-
inal loss function L(g(Yi), f(Xi)):

E{L∗(Oi, f(Xi))} = E{L(g(Yi), f(Xi))}. (6)

This means that minimizing the expected adjusted loss E{L∗(Oi, f(Xi))} is equivalent to mini-
mizing the original risk function R(f) defined in (1), treating Yi as if it were not interval censored
but available. Here, we focus on the L2 loss function, expressed as:

L (g(Yi), f(Xi)) =
1

2
{g(Yi)}2 − g(Yi)f(Xi) +

1

2
{f(Xi)}2. (7)

For k = 1, 2, we adjust the powers of {g(Yi)}k using the following transformation:

Ỹk(Oi) ≜
m∑
j=1

∆i,jE
(
{g(Yi)}k

∣∣∆i,j = 1, Xi

)
, (8)

where

E
(
{g(Yi)}k

∣∣∆i,j = 1, Xi

)
=

1

S(ui,j |Xi)− S(ui,j−1|Xi)

∫ ui,j

ui,j−1

{g(y)}kdS(y|Xi) (9)

for j = 1, . . . ,m, and S(y|Xi) represents the conditional survivor function of Yi given Xi.

We propose a modified version for (7), called the censoring unbiased transformation (CUT)-based
L2 loss function, given by

LCUT (Oi, f(Xi)) =
1

2
Ỹ2(Oi)− Ỹ1(Oi)f(Xi) +

1

2
{f(Xi)}2. (10)

Proposition 1. For the proposed CUT-based loss function (10), we have

E{LCUT(Oi, f(Xi))} = E{L(Yi, f(Xi))}.

4
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This proposition ensures the validity of the CUT-based loss function (10), as it leads to the same
risk (1) as that of the original loss function. Consequently, (2) can be implemented with the loss
function replaced by (10), where for k = 1, 2, Ỹk(Oi) in (8) is replaced by its estimate, denoted
Ŷk(Oi), that is derived from replacing S(y|Xi) with its estimate (to be described in Section 3.3).
Let L̂(Oi, f(Xi)) denote the resulting estimate of (10), and let f̂CUT

n denote a resulting estimate of
(2) with L(Yi, f(Xi)) replaced by L̂(Oi, f(Xi)).

Algorithm 1 outlines a pseudo-code for obtaining f̂CUT
n . The code will be publicly available on

GitHub after acceptance. The algorithm modifies the usual L2Boost algorithm (Bühlmann & Yu,
2003) for (2), with the initial L2 loss function L(·, ·) replaced by the L̂(·, ·), which directly applies
to interval-censored data. Alternatively, one may employ the usual L2Boost algorithm, but replace
unobserved Yi with Ŷ1(Oi). Specifically, (12) on Line 7 of Algorithm 1 is replaced by∣∣∣∣∣n−1

n∑
i=1

L
(
Ŷ1(Oi), f

(t̃)(Xi)
)
− n−1

n∑
i=1

L
(
Ŷ1(Oi), f

(t̃−1)(Xi)
)∣∣∣∣∣ ≤ η,

together with replacing L̂ (Oi, ·) on Lines 3 and 4 of Algorithm 1 by L
(
Ŷ1(Oi), ·

)
. We refer

to these two algorithms as L2Boost-CUT and L2Boost-IMP, respectively, with “IMP” reflecting the
imputation nature of the latter algorithm. The estimator from the L2Boost-IMP algorithm is denoted
f̂ IMP
n .

These two algorithms differ in their approach to interval-censored data. The L2Boost-CUT method
adjusts the loss function so its expectation recovers that of the original L2 loss L, as required in (6),
whereas the L2Boost-IMP method preserves the functional form of the original loss L but replaces
its first argument with the transformed response Ỹ1(Oi) in (8). Therefore, their loss functions are
distinct:

LCUT(Oi, f(Xi)) ̸= L(Ỹ1(Oi), f(Xi)).

The risk from L2Boost-CUT satisfies Proposition 1 (proved in Appendix D), but this property does
not hold for L2Boost-IMP. Nevertheless, due to the linear derivative of the L2 loss in its first argu-
ment, the following connection emerges:

∂L̂
(
Oi, f

(t−1)(Xi)
)
= ∂L

(
Ŷ1(Xi), f

(t−1)(Xi)
)
= Ŷ1(Xi)− f (t−1)(Xi). (11)

This leads to closely related increment terms in both methods, and as such, L2Boost-CUT and
L2Boost-IMP mainly differ in the stopping criterion, suggesting that they often yield similar results,
as observed in the experiment results in Section 5 and Appendix G. Further discussions on these
two methods are provided in Appendices E.3.

3.3 BASE LEARNERS AND SURVIVOR FUNCTION

To outline the key steps in Algorithm 1, we begin with notation related to the base learners

at each iteration. For iteration t = 1, 2, . . ., let h⃗(t) =
(
ĥ(t)(X1), . . . , ĥ

(t)(Xn)
)⊤

, where

ĥ(t) is the base learner at iteration t, defined in Line 4 of Algorithm 1. For k = 1, 2, let

Y⃗k =
(
Ŷk(O1), . . . , Ŷk(On)

)⊤
, where Ŷk(Oi) represents the estimated (8), with approximated

(9) satisfying E
{
Ŷk(Oi)

}
= E

(
Y k
i

)
. For f (t−1)(·) in Line 5 of Algorithm 1, we define

f⃗ (t−1) =
(
f (t−1)(X1), . . . , f

(t−1)(Xn)
)⊤

, and compute the residuals:

u⃗(t−1) = Y⃗1 − f⃗ (t−1). (13)
Algorithm 1 iteratively updates the base learners that map X to Y for each iteration. In our imple-
mentation, we use linear smoothers (Buja et al., 1989), focus particularly on smoothing splines, as in
Bühlmann & Yu (2003). Linear smoothers are versatile, covering a wide range of function classes,
including least squares, regression splines, kernels, and many others.

At each iteration, the residuals u⃗(t−1) are smoothed using a smoother matrix, represented by a n×n
matrix Ψ, which transforms the residuals into the updated base learner:

h⃗(t) = Ψu⃗(t−1). (14)

5
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Algorithm 1 L2Boost-CUT

1: Take f (0) = argminh

[
n−1

∑n
i=1

{
Ŷ1(Oi)− h(Xi)

}2
]

and set η = n−w for a given w ≥ 1;

2: for iteration t with t = 1, 2, . . . do
3: (i) calculate ∂L̂

(
Oi, f

(t−1)(Xi)
)
≜ ∂L̂(u,v)

∂v

∣∣∣
u=Oi,v=f(t−1)(Xi)

for i = 1, . . . , n;

4: (ii) find ĥ(t) = argminh(t)

[
n−1

∑n
i=1

{
−∂L̂

(
Oi, f

(t−1)(Xi)
)
− h(t)(Xi)

}2
]
;

5: (iii) for regression tasks, update f (t)(Xi) as (3) for i = 1, . . . , n;
6: for classification tasks, update f (t)(Xi) as (5) for i = 1, . . . , n;
7: if at iteration t̃,∣∣∣∣∣n−1

n∑
i=1

L̂
(
Oi, f

(t̃)(Xi)
)
− n−1

n∑
i=1

L̂
(
Oi, f

(t̃−1)(Xi)
)∣∣∣∣∣ ≤ η (12)

8: then stop iteration and define the final estimator as f̂CUT
n (·) = f (t̃−1)(·)

9: end if
10: end for

Here, Ψ is determined by the chosen linear smoother, which may depend on features but not on
u⃗(t−1) (Hastie et al., 2009, Chapter 5.4.1). We provide further details on smoothing splines in
Appendix B.

The execution of Algorithm 1 requires calculations of Ỹk(Oi) in (9), which hinges on consistently
estimating the conditional survivor function S(y|Xi); here S(y|Xi) is interpreted as S(y|Xi = xi)
for any realization xi of Xi; similar considerations apply for functions of Xi or conditioning on
Xi throughout the paper. While an estimator of S(y|Xi) with a faster convergence rate yield a
more efficient estimator f̂CUT

n , consistency suffices to ensure the validity of our methods. Instead
of pursuing faster convergence through parametric approaches, which are vulnerable to model mis-
specification, we prioritize robustness by opting for the interval censored recursive forests (ICRF)
method (Cho et al., 2022), whose consistency has been established by Cho et al. (2022). ICRF is a
tree-based, nonparametric method designed for estimating survivor functions for interval-censored
data. It serves as a component within our framework for developing boosting methods for regression
and classification with interval-censored data, aiming to predict a transformed target variable g(Y )
described in Section 2. Further details on this estimation are provided in Appendix C.

4 THEORETICAL RESULTS

Assuming consistent estimation of S(y|Xi), we now develop theoretical guarantees for the proposed
method, both in regression and classification contexts, with the proofs deferred to Appendix D.

4.1 REGRESSION

Consider the regression model
g(Yi) = ϕ(Xi) + ϵi for i = 1, . . . , n, (15)

where ϵi are independent and identically distributed with E(ϵi) = 0 and var(ϵi) = σ2 < ∞,
ϕ(·) is an unknown smooth function that can be linear or nonlinear, and g(·) is a user-specified
transformation, as discussed in Section 2. In survival analysis, g(u) = log(u) is usually taken.

At iteration t = 1, 2, . . ., the L2Boost-CUT and L2Boost-IMP methods map the interval-censored
data OIC (described in Section 3.1) to f⃗ (t), following Algorithm 1. For k = 1, 2, we first utilize
(8) and ICRF to construct Y⃗k from OIC, then apply the conventional L2Boost method (described
in Section 2) to

{{
Xi, Ŷ 1(Oi)

}
: i = 1, . . . , n

}
. Specifically, for Y⃗1 defined in Section 3.3, these

procedures can be formulated as:
f⃗ (t) = B(t)Y⃗1, (16)

6
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where B(t) represents an n × n matrix that transforms Y⃗1 to f⃗ (t) at each given t. The following
proposition shows that B(t) can be represented in terms of the smoother matrix Ψ.

Proposition 2. For t = 1, 2, . . ., let B(t) denote the L2Boost-CUT or L2Boost-IMP operator at
iteration t. Let Ψ represent the smoother matrix for the chosen linear smoother. Then, B(t) ≜
I − (I −Ψ)t+1 for t = 1, 2, . . ., where I is the n× n identity matrix.

Next, we examine the averaged mean squared error (MSE) for using f (t) (defined in Line 5 of
Algorithm 1) to predict ϕ in (15), similar to Bühlmann & Yu (2003). The MSE is defined as

MSE(t,Ψ;ϕ) = n−1
n∑

i=1

E

[{
f (t)(Xi)− ϕ(Xi)

}2
]
, (17)

where MSE(t,Ψ;ϕ) depends on Ψ via (16) and the expectation is taken with respect to the joint
distribution for the random variables in OIC defined in Section 3.1. Here, ϕ(Xi) is treated as constant
for each realization of Xi. Let

var(t,Ψ) ≜ n−1
n∑

i=1

var
{
f (t)(Xi)

}
and bias2(t,Ψ;ϕ) ≜ n−1

n∑
i=1

[
E
{
f (t)(Xi)

}
− ϕ(Xi)

]2
(18)

denote the averaged variance and the averaged squared bias for using f (t) to predict ϕ, respectively.

Proposition 3. MSE(t,Ψ;ϕ) in (17) can be decomposed into the sum of var(t,Ψ) and bias2(t,Ψ;ϕ)
in (18):

MSE(t,Ψ;ϕ) = var(t,Ψ) + bias2(t,Ψ;ϕ).

Let ϕ⃗ denote the vector (ϕ(X1), . . . , ϕ(Xn))
⊤. Assume that the smoother matrix Ψ is real, symmet-

ric, and has eigenvalues {λ1, . . . , λn} with corresponding normalized eigenvectors {Q1, . . . , Qn}.
LetQ denote the matrix withQl being the lth column for l = 1, . . . , n, and let µ = (µ1, . . . , µn)

⊤ ≜
Q⊤ϕ⃗ be the function vector in the linear space spanned by the eigenvectors of Ψ. Let O be a
collection of random variables, drawn from the same distributions as the elements of Oi, and let
σ̂2 = var

{
Ŷ1(O)

}
.

Proposition 4. Assume regularity condition (C1) in Appendix A. Then var(t,Ψ) and bias2(t,Ψ;ϕ)
in (18) can be, respectively, simplified as

var(t,Ψ) = σ̂2n−1
n∑

l=1

{
1− (1− λl)

t+1
}2

and bias2(t,Ψ;ϕ) = n−1
n∑

l=1

µ2
l (1− λl)

2t+2.

These results align with Proposition 3 in Bühlmann & Yu (2003), and show that the iteration index
t can be interpreted as a “smoothing parameter” that balances the bias–variance trade-offs. As t
increases, the averaged squared bias decreases exponentially, while the averaged variance grows
exponentially.
Corollary 1. Assume the regularity condition in Proposition 4. If λl ∈ {0, 1} for l = 1, . . . , n, then
B(t) = Ψ for t = 1, 2 . . ..

This corollary implies that in special cases, such as when the smoother has eigenvalues of 0 or 1 (e.g.,
projection smoothers (Hastie et al., 2009, Chapter 5.4), like least squares, polynomial regression,
and regression splines (Buja et al., 1989)), the L2Boost-CUT algorithm ceases to provide additional
boosting to learners.
Proposition 5. Assume the regularity condition in Proposition 4 and condition (C2) in Appendix
A. Then, as the number of boosting iterations t increases, bias2(t,Ψ;ϕ) decays exponentially and
var(t,Ψ) exhibits an exponential increase, yielding

lim
t→∞

MSE(t,Ψ;ϕ) = σ̂2.

Similar to Theorem 1(a) of Bühlmann & Yu (2003), this proposition implies that running the
L2Boost-CUT and L2Boost-IMP algorithms infinitely is generally not beneficial: the MSE will
not decrease below σ̂2, and excessive boosting lead to overfitting.

7
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Proposition 6. Assume the regularity conditions in Proposition 5 and condition (C3) in Appendix
A. Then there exists a positive integer t0, such that MSE(t0,Ψ;ϕ) is strictly smaller than σ̂2.

This result, complementary to Theorem 1(b) of Bühlmann & Yu (2003), shows that in contrast to
condition (C2), when a stronger condition (C3) holds, the L2Boost-CUT and L2Boost-IMP algo-
rithms can achieve an MSE smaller than σ̂2, even with a finite number of iterations.
Theorem 1. Assume the regularity conditions in Proposition 6 and condition (C4) in Appendix A.
Then for m0 ≥ 2 in condition (C4), the first ⌊m0⌋ iterations of the L2Boost-CUT algorithm (i.e.,
Algorithm 1) improve the MSE over the unboosted base learner algorithm (i.e., linear smoothers),
where ⌊·⌋ is the floor function.

Condition (C4) basically requires base learners to be weak (see Appendix A for details). This
theorem suggests that the L2Boost-CUT and L2Boost-IMP algorithms consistently outperform an
unboosted weak learner. This result complements Theorem 1(c) in Bühlmann & Yu (2003).

Theorem 2. Let ϵ̂i ≜ Ŷ1(Oi) − E
{
Ŷ1(Oi)

}
. Assume the regularity conditions in Proposition 5

and condition (C5) in Appendix A. Then for a positive constant q, there exists a positive constant C
that is functionally independent of t (but may be dependent on q and n) such that as t→ ∞,

n−1
n∑

i=1

E
[{
f (t)(Xi)− ϕ(Xi)

}q]
= E (ϵ̂qi ) +O(exp(−Ct)). (19)

For q = 2, Theorem 2 directly yields Proposition 5. In the following development, we may write
the iteration index t as tn to stress its dependence on the sample size n.

Theorem 3. Assume regularity conditions (C6) and (C7) in Appendix A. If base learner ĥ(t) is the
smoothing spline learner of degree r and degrees of freedom df , and ϕ(·) ∈ W(v,2)(X ) with v ≥ r,
then there exists an optimal number of iterations tn = O

(
n2r/(2v+1)

)
such that f (tn) achieves

the minimax-optimal rate, O
(
n−2v/(2v+1)

)
, for the function class W(v,2)(X ) in terms of MSE, as

defined in (17).

Theorem 3 shows that the L2Boost-CUT and L2Boost-IMP algorithms achieve minimax optimality
with a smoothing spline learner under condition (C6) for one-dimensional feature Xi. Even if the
base learner has smoothness order r < v, the algorithms still adapt to higher-order smoothness v,
attaining the optimal MSE rate O

(
n−2v/(2v+1)

)
asymptotically, similar to L2Boost in Bühlmann

& Yu (2003). When paired with a smoothing spline learner, the L2Boost-CUT and L2Boost-IMP
algorithms can adapt to any vth-order smoothness of W(v,2)(X ). For example, with a cubic smooth-
ing spline (r = 2) and v = 2, f (tn) can achieve the optimal MSE rate of n−4/5 by selecting
tn = O

(
n4/5

)
. While traditional cubic smoothing splines can also reach this MSE rate, they may

be prone to overfitting. The exponential bias–variance trade-offs of L2Boost-CUT and L2Boost-
IMP, as shown in Proposition 4, lead to a flatter MSE curve after approaching the optimal MSE
value, improving its robustness against overfitting. For higher-order smoothness, such as v exceed-
ing r with v = 3, f (tn) can attain an optimal MSE rate of n−6/7 with tn = O

(
n4/7

)
. While the

L2Boost-CUT and L2Boost-IMP algorithms can also adapt to functions with lower-order smooth-
ness (v < r), this adaptability may not provide additional gains in such scenarios, as noted by
Bühlmann & Yu (2003).

4.2 CLASSIFICATION

In classification tasks, the goal is to estimate the probability P (Yi > s) for given time s in order to
determine a predicted value for new features. In this instance, we define g(Yi) = 2I(Yi > s)−1 for a
given s, and let gs(Yi) denote it to stress the dependence on s. At iteration t, L2Boost-CUT provides
an estimate, denoted f (t)s , for E{gs(Yi)|Xi} = 2ps(Xi) − 1, where ps(Xi) ≜ E{I(Yi > s)|Xi}.
Here, f (t)s represents f (t) in Algorithm 1 with the dependence on s explicitly spelled out.

In line with Bühlmann & Yu (2003), estimating 2ps(Xi) − 1 can be loosely regarded as analogous
to (15):

gs(Yi) = 2ps(Xi)− 1 + ϵi for i = 1, . . . , n,

8
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where the noise term ϵi has E(ϵi) = 0 and var(ϵi) = 4ps(Xi){1− ps(Xi)}. Because the variances
var(ϵi) for i = 1, . . . , n are upper bounded by 1, Theorem 3 can be modified to give the optimal
MSE rates for using the L2Boost-CUT and L2Boost-IMP methods to estimate ps(·).
Theorem 4. Assume regularity conditions (C6) and (C7) in Appendix A. If the base learner is a
smoothing spline learner of degree r and degrees of freedom d, and ps(·) belongs to W(v,2)(X )
with v ≥ r, then there exists tn = O

(
n2r/(2v+1)

)
such that f (tn) achieves the minimax-optimal

rate, O
(
n−2v/(2v+1)

)
, which minimizes MSE as defined in (17).

Next, similar to Bühlmann & Yu (2003), we define the averaged Bayes risk (BR) for fixed s:

BRs = n−1
n∑

i=1

Pr {sign (2ps(Xi)− 1) ̸= gs(Yi)} .

Theorem 5. Assume the regularity conditions in Theorem 4 hold. Then there exists tn =
O
(
n2r/(2v+1)

)
such that

n−1
n∑

i=1

Pr
(
f (tn)s (Xi) ̸= gs(Yi)

)
− BRs = O

(
n−v/(2v+1)

)
.

Theorem 5 shows that, for L2Boost-CUT and L2Boost-IMP, the difference between the empirical
misclassification rate and BR is of order O

(
n−v/(2v+1)

)
, which approaches 0 as n→ ∞.

5 EXPERIMENTS AND DATA ANALYSES

Experimental setup. Each experimental setup involves conducting 300 experiments with a sample
size n. For i = 1, . . . , n, let Xi = (X1,i, . . . , Xp,i)

⊤, where the Xl,i are independently drawn
from the uniform distribution over [0, 1] for l = 1, . . . , p and i = 1, . . . , n. The responses Yi are
then independently generated from an accelerated failure time (AFT) model (Sun, 2006), given by
(15), where g(u) = log(u), and the error terms ϵi are independently generated from either a normal
distributionN(0, σ2) with variance σ2 or the logistic distribution with location and scale parameters
set as 0 and 1/8, respectively. For i = 1, . . . , n, we generatemmonitoring times independently from
a uniform distribution over [0, τ ], and then order them as ui,1 < ui,2 < . . . < ui,m. We set n = 500,
σ = 0.25, p = 1, τ = 6, m = 3, and ϕ(Xi) = β0|Xi − 0.5|+ β1X

3
i + β2 sin(πXi), with β0 = 1,

β1 = 0.8, and β2 = 0.8.

Learning methods and evaluation metrics. We analyze synthetic data using the proposed
L2Boost-CUT (CUT) and L2Boost-IMP (IMP) methods, as opposed to three other methods: the
oracle (O) method uses the oracle dataset OTR

O ≜ {{ϕ(Xi), Xi} : i = 1, . . . , n1} with true values
of ϕ(Xi), the reference (R) method uses the complete dataset OTR

C ≜ {{Yi, Xi} : i = 1, . . . , n1},
and the naive (N) method employs a surrogate response Ỹi ≜ 1

2 (Li + Ri) if Ri < ∞ and Ỹi ≜ Li

otherwise, together with Xi. While the O and R methods require full data availability - unrealis-
tic in real-world applications - they provide upper performance bounds under ideal, fully informed
conditions. This, in turn, benchmarks how our methods perform in realistic settings.

Synthetic data are split into training and test datasets in a 4 : 1 ratio. We assess the performance of
each method using sample-based maximum absolute error (SMaxAE), sample-based mean squared
error (SMSqE), and sample-based Kendall’s τ (SKDT), for regression tasks, along with sensitivity
and specificity for classification tasks. Details are provided in Appendix F.1.

Experiment results. Figure 1 summarizes the SMaxAE, SMSqE, and SKDT values using boxplots
for predicting survival times. The N method produces the largest SMaxAE and SMSqE values yet
the smallest SKDT values, whereas the proposed CUT and IMP methods outperform the N method,
yielding values fairly comparable to those of the R method. Figure 2 displays the sensitivity and
specificity metrics for predicting survival status, where sensitivity plots for s = 4 and specificity
plots for s = 1 are omitted because no corresponding positive and negative cases exist; and the
CUT and IMP methods produce identical lines. The N method produces similar specificity values
but significantly lower sensitivity values compared to the proposed CUT and IMP methods. To
evaluate how the performance of the proposed methods is affected by various factors, including

9
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Figure 1: Experiment results of predicting survival times. The top and bottom rows correspond to
the lognormal AFT and loglogistic AFT models, respectively.
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(a) The lognormal AFT model                                                                 (b) The loglogistic AFT model

Figure 2: Experiment results of predicting survival status.

sample size, data generation model, noise level, and different implementation ways of ICRF, we
conduct additional experiments in Appendix G.

Data analyses. We apply the proposed CUT and IMP methods as well as the N method to analyze
two datasets, Signal Tandmobiel® data and Bangkok HIV data, whose details are included in Ap-
pendix F.4. In addition, we implement a procedure (denoted COX) based on the Cox model, though
its results are not directly comparable to those three methods. Details are provided in Appendix G.2.
Figure 3 reports boxplots for the values of exp

{
f̂∗(Xi)

}
, where f̂∗(Xi) represents an estimate

from a method. Clearly, both the CUT and IMP methods yield comparable estimates, while the N
method produces smaller estimates. The results from COX appear to be closer to those from the two
proposed methods than those from the N method.
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15

20

25

30

COX N CUT IMP

va
lu

e

(b) Bangkok HIV data.

Figure 3: Boxplots of data analysis results.

6 DISCUSSION

In this paper, we introduce the boosting algorithms tailored for interval-censored data. These meth-
ods offer the flexibility in predicting various survival outcomes, including survival times, survival
probabilities, and survival status at specified time points. Further discussions, including computa-
tional complexity and extensions, are included in Appendix E. Like all methods, the validity of our
approaches depends on certain conditions, as outlined in Appendix A. For example, using smoother
matrices that fail to meet these conditions may compromise their effectiveness. Condition (C4) states
the importance of employing weak learners as the base learner. Using overly strong base learners
could violate this assumption and negatively impact the performance. Our methods inherently de-
pend on estimation of the survivor function, which typically utilizes ICRF. While this ensures robust
and consistent estimation, it requires additional computational cost as shown in Appendix E.2 and
Table F.1 in Appendix F.3. This computational cost reflects the price paid to achieve the method-
ological robustness that our approach offers.
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APPENDICES: TECHNICAL DETAILS AND ADDITIONAL EXPERIMENT
RESULTS

A REGULARITY CONDITIONS

(C1) The smoother matrix Ψ is real and symmetric having eigenvalues {λ1, . . . , λn} and corre-
sponding normalized eigenvectors {Q1, . . . , Qn}, with Q⊤

i Qi = 1 for i = 1, . . . , n.
(C2) The eigenvalues λk satisfy 0 < λk ≤ 1 for k = 1, . . . , n.
(C3) For at least one k where k = 1, . . . , n, λk < 1.
(C4) There exists m0 ≥ 2 such that for all k with λk < 1,

µ2
k/σ̂

2 > 1/(1− λk)
m0 − 1.

(C5) For ϵ̂ defined in Theorem 2, E (ϵ̂q) <∞ for q = 1, 2, . . ..
(C6) The feature X is one-dimensional and bounded pointwisely. That is, there exist finite

constants, xl and xu, such that xl ≤ X(ω) ≤ xu for all ω.
(C7) There exists a positive constant B such that for all n,

supX∈[xl,xu] inf1≤i≤n |X −Xi|
inf1≤i̸=j≤n |Xi −Xj |

≤ B.

Conditions (C1) - (C3) and (C5) - (C7) are also considered by Bühlmann & Yu (2003) to establish
the theoretical properties for L2Boost. The smoother matrix Ψ, which satisfies conditions (C1)
and (C2), includes projection smoothers, as discussed in Corollary 1 below, as well as shrinking
smoothers (Hastie et al., 2009, Chapter 5.4), such as smoothing splines introduced in Appendix B.
To clarify further, shrinking smoothers also satisfy condition (C3), whereas projection smoothers
do not. Condition (C4) encompasses the condition in Theorem 1(c) of Bühlmann & Yu (2003) as a
special case. It can be interpreted as follows: a large value on the left-hand side suggests that ϕ(·)
is relatively complex compared to the estimated noise level σ̂2, while a small value on the right-
hand side implies that λk is small, which indicates that the learner either applies strong shrinkage or
smoothing in the kth eigenvector direction, or is inherently weak in that direction. Condition (C7)
holds for the uniform design.

B REVIEW OF SMOOTHING SPLINES

To introduce smoothing splines, we start with considering the simple case where the features Xi is
one-dimensional. For X ⊆ R, let

W(v,2)(X ) =

{
g : X → R

∣∣∣∣ g is differentiable up to order v and
∫
x∈X

{
g(v)(x)

}2

dx <∞

}
denote a Sobolev space of the vth-order smoothed functions defined over X , where v is a positive
integer.

Let r be a positive integer. At iteration t in Algorithm 1, we find a smoothing spline learner of
degree r, denoted ĥ(t), by solving the penalized least squares problem:

ĥ(t) = argmin
h(t)∈W(v,2)(X )

[
n−1

n∑
i=1

{
−∂L̂

(
Oi, f

(t−1)(Xi)
)
− h(t)(Xi)

}2

+ λ

∫
x∈X

{
h(t)(r)(x)

}2

dx

]
,

(B.1)
where h(t)(r) represents the rth order derivative of h(t), and λ is a tuning parameter. Here, the
dependence of ĥ(t) on the tuning parameter λ, smoothness degree r, and v is suppressed in the
notation.

Taking v = r = 2 often offers a viable way to handle practical problems, yielding cubic smooth-
ing splines (Hastie et al., 2009). Varying λ varies from 0 to ∞ accommodates different forms
of ĥ(t). Setting λ = 0 imposes no penalty in (B.1) and ĥ(t) is a natural spline that interpolates
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(
Xi,−∂L̂

(
Oi, f

(t−1)(Xi)
))

for i = 1, . . . , n; taking λ = ∞ leads ĥ(t) in (B.1) to be the rth
order polynomials if v ≥ r (Wang, 2011). The larger λ is, the weaker base learner is. Though
the value of λ is crucial to the success of the learning process, it is difficult to decide an optimal
or reasonable value for λ when using smoothing splines. In applications, instead of setting a value
for λ directly, we often determine λ by fixing a more interpreable parameter, degrees of freedom,
defined as df ≜ Trace(Ψ), which is monotone in λ (Hastie et al., 2009, p. 158).

Though we start with the infinite dimensional space W(v,2)(X ), ĥ(t) in (B.1) is showed to be a natu-
ral polynomial splines with knots at all distinctXi for i = 1, . . . , n (Eubank, 1988), which belongs to
a finite dimensional space (Hastie et al., 2009, Chapter 5.4; Wang, 2011). Let {Nl(·) : l = 1, . . . , n}
denote a set of n second-order differentiable basis functions for the family of natural splines, and
let N and Ω denote matrices with the (i, l) entry equaling Nl(Xi) and

∫
x∈X N

′′
i (x)N

′′
l (x)dx, re-

spectively. Let θ̂l denote the lth element of
(
N⊤N + λΩ

)−1
N⊤u⃗(t−1). Further, assuming the Xi

are all distinct for i = 1, . . . , n, Hastie et al. (2009, Chapter 5.4) showed that ĥ(t) in (B.1) with
v = r = 2 can be written as

ĥ(t) =

n∑
l=1

Nlθ̂l.

That is, the cubic smoothing spline with a pre-specified λ is a linear smoother with Ψ in (14) equaling
N
(
N⊤N + λΩ

)−1
N⊤ (Hastie et al., 2009).

Next, we consider the general case where X ⊆ Rp, for which we may employ (B.1) elementwisely
to update a base learner in a manner similar to Bühlmann & Yu (2003). Specifically, at iteration t,
consider each component Xl,i of Xi ≜ (X1,i, . . . , Xp,i)

⊤, we employ the smoothing spline with
the selected feature Xl̂t,i

, where l̂t ∈ {1, . . . , p} is determined by

l̂t = argmin
1≤l≤p

n∑
i=1

{
−∂L̂

(
Oi, f

(t−1)(Xi)
)
− ĥ

(t)
l (Xl,i)

}2

.

Here, ĥ(t)l (Xl,i) is the smoothing spline as in (B.1) obtained from replacing Xi in (B.1) with the
feature Xl,i.

C ESTIMATION WITH INTERVAL CENSORED RECURSIVE FORESTS

Here, we describe our estimation detail with the interval censored recursive forests algorithm. Let T
and D denote the total number of iteration and the number of bootstrap samples. We now describe
the estimation procedure as follows.

Step 1. We set an initial estimate for S(y|Xi), denoted Ŝ(0)(y|Xi). A simple way is to set
Ŝ(0)(y|Xi) to be the nonparametric maximum likelihood estimate (NPMLE) of uncon-
ditional survivor function of Yi, denoted Ŝ(y) (Turnbull, 1976). Then for i = 1, . . . , n, we
employ the kernel smoothing technique to obtain a smoothed estimate of S(y|Xi), denoted
by λ̃(0)(y|Xi). That is,

λ̃(0)(y|Xi) = 1 +

∫ y

0

∫
R+

1

h
Kh(s− v)dŜ(0)(v|Xi)ds,

where Kh(·) is a kernel function with bandwidth h > 0.

Step 2. At iteration t, we draw D independent bootstrap samples with size ⌈0.95n⌉ from OIC,
denoted as O(t)

1 , . . . ,O(t)
D , where ⌈·⌉ is the ceiling function; and keep OIC\O(t)

d as the
out-of-bag sample for d = 1, . . . , D, denote them as OOOB,(t)

1 , . . . ,OOOB,(t)
D . For each

bootstrap sample O(t)
d with d = 1, . . . , D, we build a tree using two-sample testing rules

for interval-censored data based on the conditional survivor function Ŝ(t−1)
d (y|Xi), say the

generalized Wilcoxon’s rank sum (GWRS) test or the generalized logrank (GLR) test (Cho
et al., 2022).
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Specifically, at each node, we randomly pick ⌈√p⌉ features, and then we find the optimal
cutoff suggested by GWRS or GLR. Let L(t)

d denote the total number of terminal nodes of
the resulting tree for the dth bootstrap sample at iteration t. For l = 1, . . . , L

(t)
d , let A(t)

d,l

denote the lth terminal node in the dth tree. At the lth terminal node of the tree, we estimate
the survival probabilities for each node, denoted Ŝ(t)

d,l

(
y|A(t)

d,l

)
, using the quasi-honest or

exploitative approaches. The quasi-honesty approach employs the NPMLE based on raw
interval-censored data, whereas the exploitative approach averages the estimates of the con-
ditional survivor function from iteration t− 1 (Cho et al., 2022). The exploitative approach
is computationally efficient, while the estimator obtained from the quasi-honesty approach
exhibits uniform consistency, provided regularity conditions (Cho et al., 2022). However,
the finite sample performance of these two approaches does not always outperform the
other (Cho et al., 2022).

To presume some degree of smoothness in the true survivor function, Ŝ(t)
d,l (·) is further

smoothed as λ̃(t)d,l(·) using the kernel-smoothing technique, yielding a smoothed estimate of
the conditional survivor function λ̃(y|Xi) (Cho et al., 2022).

Step 3. Calculate the conditional survivor function for the dth tree and its smoothed version as

Ŝ
(t)
d (y|Xi) =

L
(t)
d∑

l=1

Ŝ
(t)
d,l

(
y|A(t)

d,l

)
I
(
Xi ∈ A

(t)
d,l

)
and

λ̃
(t)
d (y|Xi) =

L
(t)
d∑

l=1

λ̃
(t)
d,l

(
y|A(t)

d,l

)
I
(
Xi ∈ A

(t)
d,l

)
.

Calculate the out-of-bag error as the integrated mean squared error (IMSE)

ϵ
(t)
d ≜

1

nOOB

nOOB∑
i=1

1

τ − (Ri ∧ τ) + (Li ∧ τ)

×

{∫ Li∧τ

0

(
1− λ̃

(t)
d (s|Xi)

)2
ds+

∫ Ri∧τ

Ri

(
λ̃
(t)
d (s|Xi)

)2
ds

}
,

where nOOB = n− ⌈0.95n⌉ denote the sample size of OOOB,(t)
d , and a ∧ b ≜ min(a, b).

Step 4. Averaging the corresponding quantities over D trees, we obtain that

Ŝ(t)(y|Xi) =
1

D

D∑
d=1

Ŝ
(t)
d (y|Xi), λ̃

(t)(y|Xi) =
1

D

D∑
d=1

λ̃
(k)
d (y|Xi), and ϵ(t) =

1

D

D∑
d=1

ϵ
(t)
d .

Then the final estimate of S(y|Xi) is determined as λ̃(y|Xi) = λ̃
(topt)
d (y|Xi), with kopt =

argmin1≤t≤T ϵ
(t).

Step 5. We approximate
∫ uj

uj−1
{g(y)}kdS(y|Xi) in (9) as

mv−1∑
l=1

{g(vl)}k
{
λ̃(vl+1|Xi)− λ̃(vl|Xi)

}
I(uj−1 ≤ vl−1 < vl ≤ uj).
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D PROOFS OF THEORETICAL RESULTS

Proof of Proposition 1.

E{LCUT(Oi, f(Xi))} = E

[
1

2
Ỹ2(Oi)− Ỹ1(Oi)f(Xi) +

1

2
{f(Xi)}2

]
=

1

2
E
{
Ỹ2(Oi)

}
− E

{
Ỹ1(Oi)f(Xi)

}
+

1

2
E
[
{f(Xi)}2

]
=

1

2
E

m+1∑
j=1

∆i,jE
[
{g(Yi)}2|∆i,j = 1, Xi

]
− E

f(Xi)

m+1∑
j=1

∆i,jE {g(Yi)|∆i,j = 1, Xi}

+
1

2
E
[
{f(Xi)}2

]
=

1

2
E
(
E
[
{g(Yi)}2|Xi

])
− E [f(Xi)E {g(Yi)|Xi}] + E

[
1

2
{f(Xi)}2

]
= E

(
1

2
E
[
{g(Yi)}2|Xi

])
− E [E {f(Xi)g(Yi)|Xi}] + E

[
1

2
{f(Xi)}2

]
= E

[
1

2
{g(Yi)}2

]
− E {f(Xi)g(Yi)}+ E

[
1

2
{f(Xi)}2

]
= E{L(Yi, f(Xi))},

where the first step uses (10), the third step is due to (8), the fourth and six steps come from the law
of total expectation, the fifth step is from the the property of conditional expectation, and the last
step uses (7).

To prove Proposition 2 - 6, Corollary 1, and Theorems 1 - 5, we adapt the techniques of Bühlmann
& Yu (2003) with modifications tailored to our specific setup.

Proof of Proposition 2. For f⃗ (0) in Line 1 of Algorithm 1, we choose Ψ such that

f⃗ (0) = ΨY⃗1. (D.1)

By (13), we obtain that for t = 1, 2, . . .,

u⃗(t−1) = Y⃗1 − f⃗ (t−1)

= Y⃗1 −
(
f⃗ (t) − h⃗(t)

)
= Y⃗1 − f⃗ (t) +Ψu⃗(t−1)

= u⃗(t) +Ψu⃗(t−1),

where the second step is due to Line 5 of Algorithm 1, the third step comes from (14), and the last
step is due to (13). Therefore,

u⃗(t) = (I −Ψ)u⃗(t−1). (D.2)

Recursively applying (D.2), we have that for t = 1, 2 . . .,

u⃗(t−1) = (I −Ψ)t−1u⃗(0)

= (I −Ψ)t−1
(
Y⃗1 − f⃗ (0)

)
= (I −Ψ)t−1

(
Y⃗1 −ΨY⃗1

)
= (I −Ψ)tY⃗1, (D.3)

where the second step uses (13) and the third step is due to (D.1).
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Recursively applying Line 5 of Algorithm 1, we have that for t = 1, 2 . . .,

f⃗ (t) = f⃗ (0) +

t∑
j=1

h⃗(j)

= ΨY⃗1 +

t∑
j=1

Ψ(I −Ψ)j Y⃗1

=

t∑
j=0

Ψ(I −Ψ)j Y⃗1

=
{
I − (I −Ψ)t+1

}
Y⃗1,

where the second step uses (14), (D.1), and (D.3); and the last step comes from the fact that for a
symmetric matrix A with (I −A) being invertible,

∑t
j=0A

j = (I −A)−1
(
I −At+1

)
, which may

be derived using the same reasoning for geometric series.

Therefore, by (16), we may set that B(t) = I − (I −Ψ)t+1.

Proof of Proposition 3. We examine the MSE in (17):

MSE(t,Ψ;ϕ) = n−1
n∑

i=1

E

[{
f (t)(Xi)− ϕ(Xi)

}2
]

= n−1
n∑

i=1

(
var
{
f (t)(Xi)− ϕ(Xi)

}
+
[
E
{
f (t)(Xi)− ϕ(Xi)

}]2)

= n−1
n∑

i=1

[
var
(
f (t)(Xi)

)
+
{
E
(
f (t)(Xi)

)
− ϕ(Xi)

}2
]

= n−1
n∑

i=1

var
(
f (t)(Xi)

)
+ n−1

n∑
i=1

{
E
(
f (t)(Xi)

)
− ϕ(Xi)

}2

,

where the second step comes from the property that E(U2) = var(U) + {E(U)}2 for any random
variable U , and the third step dues to the fact ϕ(Xi) is taken as a constant.

To prove Proposition 4, we use the following basic properties of matrices.

Lemma 1. Let A and B be two symmetric matrices of the same dimension. Let I be the identity
matrix of the same dimension as A. Then the following results hold:

(a). A+B and A−B are symmetric matrices;

(b). Ak is symmetric for any integer k;

(c). If A has eigenvalues {λ1, . . . , λn} and corresponding normalized eigenvectors
{Q1, . . . , Qn}. Then

(i). for any positive integer k, the eigenvalues ofAk are {λk1 , . . . , λkn} with {Q1, . . . , Qn}
being the corresponding eigenvectors;

(ii). the eigenvalues of A + I are {λ1 + 1, . . . , λn + 1} with {Q1, . . . , Qn} being the
corresponding eigenvectors;

(iii). the eigenvalues of −A are {−λ1, . . . ,−λn} with {Q1, . . . , Qn} being the correspond-
ing eigenvectors.

Proof of Proposition 4. Assume that Ψ is symmetric with eigenvalues {λ1, . . . , λn} and corre-
sponding normalized eigenvectors {Q1, . . . , Qn}. By Proposition 2 together with Lemma 1, we
have that B(t) is also symmetric, and its eigenvalues are

{
1− (1− λ1)

t+1, . . . , 1− (1− λn)
t+1
}
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with corresponding eigenvectors {Q1, . . . , Qn}. Consequently, we can decompose B(t) using or-
thonormal diagonalization as

B(t) = QΛ(t)Q−1, (D.4)

where Λ(t) ≜ diag
{
1− (1− λk)

t+1 : k = 1, . . . , n
}

and the matrixQ ≜ (Q1, . . . , Qn) is orthonor-
mal, satisfying QQ⊤ = Q⊤Q = I and Q−1 = Q⊤.

Next, we examine the variance in (18):

var(t,Ψ) = n−1
n∑

i=1

var
{
f (t)(Xi)

}
= n−1tr

{
cov

(
f⃗ (t)
)}

= n−1tr
{

cov
(
B(t)Y⃗1

)}
= n−1tr

{
B(t)cov

(
Y⃗1

)(
B(t)

)⊤}
= n−1tr

{
QΛ(t)Q−1σ̂2I

(
QΛ(t)Q−1

)⊤}
= σ̂2n−1tr

(
Q diag

[{
1− (1− λk)

t+1
}2

: k = 1, . . . , n
]
Q⊤
)

= σ̂2n−1
n∑

k=1

{
1− (1− λk)

t+1
}2
, (D.5)

where the second step follows from the definition of the trace of the covariance matrix, the third step
is from (16), the fourth step applies the property of scaling the covariance matrix when multiplied
by a constant matrix, the fifth step uses (D.4) and the definition of σ̂2, the sixth step is derived from
the properties of the trace and the fact that Q⊤Q = I , and the final step follows from the matrix
product with a diagonal matrix and Q⊤Q = I .

Finally, we examine the squared bias, given in (18):

bias2(t,Ψ;ϕ) = n−1
n∑

i=1

[
E
{
f (t)(Xi)

}
− ϕ(Xi)

]2
= n−1

{
E
(
B(t)Y⃗1

)
− ϕ⃗

}⊤ {
E
(
B(t)Y⃗1

)
− ϕ⃗

}
= n−1

{(
B(t) − I

)
ϕ⃗
}⊤ {(

B(t) − I
)
− ϕ⃗

}
= n−1

[{
Q
(
Λ(t) − I

)
Q−1

}
ϕ⃗
]⊤ [{

Q
(
Λ(t) − I

)
Q−1

}
ϕ⃗
]

= n−1ϕ⃗ ⊤Q
(
Λ(t) − I

)⊤ (
Λ(t) − I

)
Q⊤ϕ⃗

= n−1ϕ⃗ ⊤Q diag
{
(1− λl)

2t+2 : l = 1, . . . , n
}
Q⊤ϕ⃗

= n−1
n∑

l=1

µ2
l (1− λl)

2t+2, (D.6)

where the second step is due to (16), the third step is due to E
{
Ŷ1(Oi)

}
= E (Yi) = ϕ(Xi), the

fourth step uses (D.4), the fifth step comes from Q⊤Q = I and Q−1 = Q⊤, and the last step is due
to definition of µ, given before Proposition 4.

Proof of Corollary 1. This corollary follows directly from using the properties of diagonal matrices
that have entries either 0 or 1.

Proof of Proposition 5. By condition (C2), 0 ≤ (1 − λl) < 1, and thus, bias2(t,Ψ;ϕ) in (D.6) de-
cays exponentially with increasing t and var(t,Ψ) in (D.5) exhibits an exponentially small increase
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as t increases. Further, by (D.5), we have that

lim
t→∞

var(t,Ψ) = lim
t→∞

σ̂2n−1
n∑

l=1

{
1− (1− λl)

t+1
}2

= σ̂2n−1
n∑

l=1

{
1− lim

t→∞
(1− λl)

t+1
}2

= σ̂2n−1
n∑

l=1

1

= σ̂2,

and by (D.6), we obtain that

lim
t→∞

bias2(t,Ψ;ϕ) = lim
t→∞

n−1
n∑

l=1

µ2
l (1− λl)

2t+2

= n−1
n∑

l=1

µ2
l lim
t→∞

(1− λl)
2t+2

= n−1
n∑

l=1

µ2
l 0

= 0.

Therefore, by Proposition 3,

lim
t→∞

MSE(t,Ψ;ϕ) = lim
t→∞

var(t,Ψ) + lim
t→∞

bias2(t,Ψ;ϕ)

= σ̂2.

Proof of Proposition 6. By propositions 3 and 4, we obtain that

MSE(t,Ψ;ϕ) = σ̂2n−1
n∑

l=1

{
1− (1− λl)

t+1
}2

+ n−1
n∑

l=1

µ2
l (1− λl)

2t+2.

Considering this as a function of t only, with other quantities treated as fixed, we consider the
function:

ψ(u) ≜ σ̂2n−1
n∑

l=1

{
1− (1− λl)

u+1
}2

+ n−1
n∑

l=1

µ2
l (1− λl)

2u+2,

which equals

ψ(u) = σ̂2n−1
n∑

l=1

{
1− 2(1− λl)

u+1 + (1− λl)
2u+2

}
+ n−1

n∑
l=1

µ2
l (1− λl)

2u+2

= n−1
n∑

l=1

{(
σ̂2 + µ2

l

)
(1− λl)

u+1 − 2σ̂2
}
(1− λl)

u+1 + σ̂2

= n−1
n∑

k:λk<1

{(
σ̂2 + µ2

k

)
(1− λk)

u+1 − 2σ̂2
}
(1− λk)

u+1 + σ̂2. (D.7)

By condition (C3), there exists at least one k such that λk < 1. Considering all those k such that
λk < 1, we let k1, . . . , kn0

denote them, where n0 ≤ n. For j = 1, . . . , n0,

lim
u→∞

{(
σ̂2 + µ2

kj

) (
1− λkj

)u+1 − 2σ̂2
}
= −2σ̂2,

leading to
lim
u→∞

{(
σ̂2 + µ2

kj

) (
1− λkj

)u+1 − 2σ̂2
}
< −σ̂2.
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Therefore, for j = 1, . . . , n0, there exists uj such that(
σ̂2 + µ2

kj

) (
1− λkj

)uj+1 − 2σ̂2 < −σ̂2. (D.8)

Letting t0 = max(u1, . . . , un0
), (D.8) yields that for j = 1, . . . , n0,(
σ̂2 + µ2

kj

) (
1− λkj

)t0+1 − 2σ̂2 < −σ̂2.

Therefore, (D.7) leads to

ψ(u) < −n−1
n0∑
j=1

σ̂2(1− λkj
)t0+1 + σ̂2 < σ̂2,

and the conclusion follows.

Proof of Theorem 1. We calculate the derivative of ψ(u) in (D.7):

ψ′(u) = 2n−1
n∑

k:λk<1

{(
σ̂2 + µ2

k

)
(1− λk)

u+1 − σ̂2
}
(1− λk)

u+1 log(1− λk).

Now consider those k with λk < 1, condition (C4) leads to
(
σ̂2 + µ2

k

)
(1− λk)

m0 > σ̂2. Since for
any u ∈ (0,m0 − 1), (1− λk)

m0 < (1− λk)
u+1, which yields that

(
σ̂2 + µ2

k

)
(1− λk)

u+1 > σ̂2

for any u ∈ (0,m0 − 1). Therefore, ψ′(u) < 0 for all u ∈ (0,m0 − 1). ψ(u) is decreasing over
(0,m0 − 1). By the continuity of ψ(u) over [0,m0 − 1], we have that ψ(0) > ψ(1) > . . . >
ψ(m0 − 1), suggesting that the first ⌊m0 − 1⌋ iterations of the L2Boost-CUT algorithm improves
the MSE over the unboosted base learner algorithm (i.e., corresponding to ψ(0)).

Proof of Theorem 2. For a vector u, we use (u)i, {u}i, or [u]i to denote its ith element. For
i = 1, . . . , n, let b(t)(Xi) ≜ E

{
f (t)(Xi)

}
− ϕ(Xi) denote the bias term for subject i. Let

ϵ⃗ = (ϵ̂1, . . . , ϵ̂n).

We examine the summands of the left-hand side of (19):

E
[{
f (t)(Xi)− ϕ(Xi)

}q]
= E

([
f (t)(Xi)− E

{
f (t)(Xi)

}
+ E

{
f (t)(Xi)

}
− ϕ(Xi)

]q)
= E

(
q∑

l=0

(
q

l

)[
E
{
f (t)(Xi)

}
− ϕ(Xi)

]l [
f (t)(Xi)− E

{
f (t)(Xi)

}]q−l
)

= E

(
q∑

l=0

(
q

l

){
b(t)(Xi)

}l [(
B(t)Ŷ1

)
i
− E

{(
B(t)Ŷ1

)
i

}]q−l
)

= E

[
q∑

l=0

(
q

l

){
b(t)(Xi)

}q {(
B(t)ϵ⃗

)
i

}q−l
]

=

q∑
l=0

(
q

l

){
b(t)(Xi)

}l

E

[{(
B(t)ϵ⃗

)
i

}q−l
]

=

q∑
l=0

(
q

l

){
b(t)(Xi)

}l

E
{([{

I − (I −Ψ)t+1
}
ϵ⃗
]
i

)q−l
}

=

q∑
l=0

(
q

l

){
b(t)(Xi)

}l

E
([{

ϵ⃗− (I −Ψ)t+1ϵ⃗
}
i

]q−l
)
, (D.9)

where the third step is due to (16); the fourth step is due to the definition of ϵ̂i; the fifth step is
derived under assumption that Xi is treated as a constant; and the sixth step is due to Proposition 2.
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Then, we examine b(t)(Xi):

b(t)(Xi) = E
{
f (t)(Xi)

}
− ϕ(Xi)

=
{
E
(
B(t)Y⃗1

)
− ϕ⃗

}
i

=
{(
B(t) − I

)
ϕ⃗
}
i

=
[{
Q
(
Λ(t) − I

)
Q−1

}
ϕ⃗
]
i

=
[
Q diag

{
−(λl − 1)t+1 : l = 1, . . . , n

}
Q⊤ϕ⃗

]
i

= −
n∑

k=1

Qik(λk − 1)t+1µk

= O (exp(−Cbt)) as t→ ∞, (D.10)

for some positive constant Cb, where the second step is due to (16), the third step is due to
E
{
Ŷ1(Oi)

}
= E (Yi) = ϕ(Xi), the fourth step is from (D.4), the fifth step comes from the

definition of Λ(t), and the six step comes from the definition of µ = Q⊤u⃗, with Qik representing
the (i, k)th element of Q.

Next, we examine E
([{

ϵ⃗− (I −Ψ)t+1ϵ⃗
}
i

]q−l
)

:

E
([{

ϵ⃗− (I −Ψ)t+1ϵ⃗
}
i

]q−l
)

= E

(
q−l∑
k=0

(
q − l

k

)
ϵ̂ki
{
(I −Ψ)t+1ϵ⃗

}q−l−k

i

)

= E

(
q−l∑
k=0

(
q − l

k

)
ϵ̂ki

[{
Qdiag(1− λj : j = 1, . . . , n)Q−1

}t+1
ϵ⃗
]q−l−k

i

)

= E

(
q−l∑
k=0

(
q − l

k

)
ϵ̂ki
[
Qdiag

{
(1− λj)

t+1 : j = 1, . . . , n
}
Q−1ϵ⃗

]q−l−k

i

)

= E

q−l∑
k=0

(
q − l

k

)
ϵ̂ki


n∑

j=1

Qij(1− λj)
t+1

(
n∑

u=1

Q−1
ju ϵ̂u

)
q−l−k


= E(ϵ̂q−l

i ) +O (exp(−Cqt)) as t→ ∞ (D.11)

for some positive constant Cq .

Combining (D.9) with (D.10) and (D.11) yields

n−1
n∑

i=1

E
[{
f (t)(Xi)− ϕ(Xi)

}q]
= n−1

n∑
i=1

q∑
l=0

(
q

l

)
{O (exp(−Cbt))}l

{
E(ϵ̂q−l

i ) +O (exp(−Cqt))
}

= E(ϵ̂qi ) +O (exp(−Ct))
for some positive constant C.

Proof of Theorem 3. Let Ψ denote the smoother matrix for the smoothing spline of degree r and
degrees of freedom df (equivalently expressed in terms of tuning parameter λ). Given the tuning
parameter λ, the eigenvalues of Ψ are arranged in decreasing order and are written as:

λ1 = . . . = λr = 1, λl =
ql,n

λ+ ql,n
for l = r + 1, . . . , n, (D.12)
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where ql,n depends on Ω defined in Section 3.3 (Utreras, 1983; Bühlmann & Yu, 2003; Hastie et al.,
2009).

By condition (C7), Utreras (1988) showed that for large n, there exists a finite positive constant a0
such that

ql,n ≈ a0l
−2r. (D.13)

For f ∈ W(v)
2 [a, b], there exists a finite positive constant M such that

n−1
n∑

l=r+1

µ2
l l

2v ≤M. (D.14)

Let λ̃ = λ/a0. Then by (D.13), the λl for l = r + 1, . . . , n in (D.12) are

λl ≈
l−2r

λ̃+ l−2r
=

1

λ̃l2r + 1
. (D.15)

Then (D.6) can be bounded by

bias2(t,Ψ;ϕ) = n−1
n∑

l=r+1

µ2
l (1− λl)

2t+2

≈ n−1
n∑

l=r+1

µ2
l l

2v

(
1− 1

λ̃l2r + 1

)2t+2

l−2v

≤

{
max

l=r+1,...,n

(
1− 1

λ̃l2r + 1

)2t+2

l−2v

}
n−1

n∑
l=r+1

µ2
l l

2v

≤M

{
max

l=r+1,...,n

(
1− 1

λ̃l2r + 1

)2t+2

l−2v

}
≜M max

l=r+1,...,n
exp {η(l)}, (D.16)

with

η(l) = (2t+ 2) log

(
1− 1

λ̃l2r + 1

)
− 2v log(l), (D.17)

where the second step uses (D.15), and the fourth step uses (D.14). Taking the derivative of (D.17)
yields

η′(l) =
2r(2t+ 2)

l(λ̃l2r + 1)
− 2v

l

=
2r

l(λ̃l2r + 1)

{
2t+ 2− v(λ̃l2r + 1)

r

}
.

Now, consider any positive integer n1 with r < n1 ≤ n, and

t ≥ {v(λ̃n2r1 + 1)}/(2r)− 1. (D.18)

Then η′(l) ≥ 0 for any 0 < l ≤ n1, therefore, η(l) is increasing and so is exp{η(l)} for 0 < l ≤ n1.
Therefore, for any r < l ≤ n1, we have that

exp{η(l)} ≤ exp{η(n1)}

=

(
1− 1

λ̃n2r1 + 1

)2t+2

n−2v
1

≤
(
1− 1

λ̃n2r + 1

)2t+2

n−2v
1 . (D.19)
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Applying (D.19) to (D.16) gives that for n1 and t in (D.18), and t ≥ {v(λ̃n2r
1 + 1)}/(2r) − 1, we

have that

bias2(t,Ψ;ϕ) ≤M

(
1− 1

λ̃n2r + 1

)2t+2

n−2v
1

≤Mn−2v
1 as n1 → ∞, (D.20)

and hence, bias2(t,Ψ;ϕ) is of order O
(
n−2v
1

)
as n1 → ∞.

Now we examine (D.5). For any n1 in (D.18), by (D.12),

var(t,Ψ) =
σ̂2

n

[
r +

n∑
l=r+1

{
1− (1− λl)

t+1
}2]

≤ σ̂2n1
n

+
σ̂2

n

n∑
l=n1+1

{
1− (1− λl)

t+1
}2

= O
(n1
n

)
+
σ̂2

n

n∑
l=n1+1

{
1− (1− λl)

t+1
}2
. (D.21)

By Bernoulli’s inequality that (1− a)b ≥ 1− ab for a ≤ 1 and b ≥ 0, we obtain that
1− (1− λl)

t+1 ≤ 1− {1− λl(t+ 1)} = λl(t+ 1).

Therefore, for t in (D.18), by (D.15), we obtain that

σ̂2

n

n∑
l=n1+1

{
1− (1− λl)

t+1
}2

≤ σ̂2

n

n∑
l=n1+1

λ2l (t+ 1)2

≈ σ̂2(t+ 1)2

n

n∑
l=n1+1

1(
λ̃l2r + 1

)2
≤ σ̂2(t+ 1)2

n

n∑
l=n1+1

1(
λ̃l2r

)2
≤ σ̂2(t+ 1)2

n

∫ ∞

n1

1(
λ̃u2r

)2 du
=
σ̂2(t+ 1)2

λ̃2(4r − 1)

(
n1−4r
1

n

)
≤ O

(n1
n

)
as n1 → ∞. (D.22)

Applying (D.20), (D.21), and (D.22) to Proposition 3, we obtain that

MSE(t,Ψ;ϕ) ≤ O
(n1
n

)
+O

(
n−2v
1

)
as n1 → ∞.

Treating the order as a function of n1, it is minimized as O
(
n−2v/(2v+1)

)
by taking n1 =

O
(
n1/(2v+1)

)
. Therefore, for this n1, t in (D.18) can be taken as tn ≜ O

(
n2r/(2v+1)

)
.

Proof of Theorem 5. By Theorem 2.3 and the discussion on Page 102 of Devroye et al. (1996), we
have that

n−1
n∑

i=1

Pr
(
f (tn)s ̸= Yi

)
− BR ≤ 2

√
MSE(t,Ψ; fs)

= O
(
n−v/(2v+1)

)
as n→ ∞,

where the last step is due to Theorem 4.
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E DISCUSSIONS AND EXTENSIONS

E.1 DISCUSSION OF THE LEARNING RATE FOR L2BOOST AND OUR PROPOSED
ALGORITHMS

In traditional boosting methods, a learning rate, denoted as α̂(t), is introduced to control the contri-
bution of h(t)(·) at each iteration t for t = 1, 2, . . ., scaling how much it corrects the prediction error
of f (t)(·):

f (t)(·) = f (t−1)(·) + α̂(t)ĥ(t)(·),
where

α̂(t) = argmin
α(t)∈R

{
n−1

n∑
i=1

L
(
Yi, f

(t−1)(Xi) + α(t)ĥ(t)(Xi)
)}

.

However, in our algorithms, which are based on the L2 loss function, the learning rate α̂(t) is inher-
ently incorporated within the optimization process for ĥ(t)(·). Specifically, when using the L2 loss,
the minimization problem for α̂(t) simplifies to

α̂(t) = argmin
α(t)∈R

[
n−1

n∑
i=1

{
Yi − f (t−1)(Xi)− α(t)ĥ(t)(Xi)

}2
]
,

which is integrated naturally into the computation of ĥ(t) because of (11):

ĥ(t) = argmin
h(t)

[
n−1

n∑
i=1

{
Yi − f (t−1)(Xi)− h(t)(Xi)

}2
]
.

As a result, Algorithm 1 does not require an explicit learning rate parameter, as α̂(t) is effectively
determined as part of the optimization of ĥ(t).

E.2 COMPUTATIONAL COMPLEXITY

Our proposed L2Boost-CUT method in Algorithm 1 basically comprises two components: ICRF
and boosting. The computational complexity of ICRF is O(nγ), where 1 < γ ≤ 2 (Cho et al.,
2022). For smoothing splines, when implemented efficiently, the complexity can be O(n) (Hastie
et al., 2009, Chapter 5). With t̃ boosting iterations and smoothing splines as the base learner, the
total computational complexity is O(t̃n). Therefore, the overall computational complexity of the
L2Boost-CUT method is O(nγ + t̃n).

E.3 POSSIBLE EXTENSIONS

The L2Boost-CUT framework can be extended to Lq loss functions for handling interval-censored
data, where q > 2 is an integer, and the Lq loss function is given by

L (g(Yi), f(Xi)) ∝ {g(Yi)− f(Xi)}q =

q∑
k=0

(
q

k

)
{g(Yi)}k{−f(Xi)}q−k,

with {g(Yi)}k replaced by its transformed form (8), together with (9). Here, k is extended to take
any value in {1, . . . , q}.

As shown in (11), the linear derivative of the L2 loss with respect to its first argument suggests
closely related increment terms in both L2Boost-CUT and L2Boost-IMP, thus often leading to sim-
ilar results. However, this connection does not hold for the loss function Lq when q ≥ 3. Conse-
quently, the LqBoost-CUT and LqBoost-IMP methods likely yield more different results, where the
LqBoost-IMP method is obtained by replacing the L2 loss in the L2Boost-IMP method with the Lq

loss.

While extending theL2Boost-CUT method to accommodate theLq loss for q ≥ 3 is straightforward,
adapting it to any general loss function to construct an adjusted loss function like LCUT in (10) that
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ensures Proposition 1 holds presents significant challenges, making it difficult to implement. In
contrast, generalizing the L2Boost-IMP method to any loss function is straightforward by using
imputed values determined by the transformed response in (8).

For example, considering widely used loss functions, such as exponential loss function L(u, v) =
exp(−uv) (Schapire & Singer, 1998) and the binomial deviance loss L(u, v) = log{1 +
exp(−2uv)} (Friedman et al., 2000), one may apply the censoring-unbiased transformation (8) to
these loss functions and adapt the proposed methods to enable boosting algorithms like AdaBoost
(Freund & Schapire, 1996) and LogitBoost (Friedman et al., 2000) to handle interval-censored data.
For XGBoost (Chen & Guestrin, 2016), one may replace l(·, ·) in (2) of Chen & Guestrin (2016)
with the transformed unbiased loss function (10). This extension would allow XGBoost to handle
interval-censored data.

While L2Boost-CUT can be extended to boosting frameworks with Lq losses (q ≥ 3) and L2Boost-
IMP can be extended to accommodate any loss function procedurally, establishing theoretical prop-
erties for these extensions is nontrival. Unlike the L2Boost-CUT method, optimal learning rates
would need to be estimated iteratively, complicating updates and disrupting the elegant form of the
boosting operator in Proposition 2. Developing theoretical guarantees for these extensions presents
substantial challenges and remains an open problem.

The principles behind our methods could potentially be adapted to other machine learning frame-
works, such as deep learning or ensemble methods. Exploring this adaptation could be an interest-
ing avenue for future research. Furthermore, while Theorem 1 demonstrates that the L2Boost-CUT
and L2Boost-IMP algorithms consistently outperform unboosted weak learners in terms of MSE,
this result is established under the assumption of weak base learners (as stated in Condition (C4)).
Quantifying the extent of improvement provided by boosting over unboosted learners and investi-
gating how this improvement depends on the form of weak learners, particularly in the context of
interval-censored data, would be valuable directions for further study.

F DETAILS OF EXPERIMENTS AND DATA IN SECTION 5

F.1 DATA SPLITTING AND EVALUATION METRICS

The dataset is divided into OTR ≜ {{Yi, Xi, ϕ(Xi), ui,j} : i = 1, . . . , n1, j = 1, . . . ,m} and
OTE ≜ {{Yi, Xi, ϕ(Xi), ui,j} : i = n1 + 1, . . . , n1 + n2, j = 1, . . . ,m} in a 4 : 1 ratio, where
n1 = 400 and n2 = 100. Take OTR

IC ≜ {{Yi, Xi, ui,j} : i = 1, . . . , n1, j = 1, . . . ,m} as training
data and OTE

IC ≜ {{Xi, ϕ(Xi)} : i = n1 + 1, . . . , n1 + n2} as test data. The training data OTR
IC

are used to estimate f̂c in (2), denoted f̂∗n1
(·), using the proposed methods introduced in Section 2,

while the test data OTE
IC are employed to evaluate the performance of f̂∗n1

(·). For classification tasks,
f̂∗n1

∈ [−1, 1], derived from the L2WCBoost based algorithm.

For regression tasks, the first metric represents the sample-based maximum absolute error
(SMaxAE), defined as the infinity norm of the difference between exponential of the estimate and
exponential of the true function with respect to the sample:∥∥∥f̂∗n1

− ϕ
∥∥∥
∞

= max
Xi:i=n1+1,...,n1+n2

∣∣∣exp{f̂∗n1
(Xi)

}
− exp {ϕ(Xi)}

∣∣∣ ,
and the second metric reports the sample-based mean squared error (SMSqE), defined as:∥∥∥f̂∗n1

− ϕ
∥∥∥
2
= n−1

2

n1+n2∑
i=n1+1

[
exp

{
f̂∗n1

(Xi)
}
− exp {ϕ(Xi)}

]2
.

These two metrics evaluate the discrepancies of f̂∗n1
from its target function ϕ from different per-

spectives. The smaller these metrics, the better the performance of the estimator f̂∗n1
. In addition,

we consider the sample-based Kendall’s τ (SKDT), defined as∥∥∥f̂∗n1
− ϕ

∥∥∥
τ
=

nC − nD

n2(n2 − 1)/2
,
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where nC and nD denote the numbers of concordant and discordant pair, respectively. For i, i′ =
n1 + 1, . . . , n1 + n2, a pair is called concordant if f̂∗n1

(Xi) > f̂∗n1
(Xi′) and ϕ(Xi) > ϕ(Xi′) and

discordant if f̂∗n1
(Xi) ≤ f̂∗n1

(Xi′) and ϕ(Xi) > ϕ(Xi′). This metric evaluates the concordance
between f̂∗n1

and its target function ϕ from a different perspective. The bigger this metric, the better
the performance of the estimator f̂∗n1

.

For classification tasks, we write f̂∗n1
as f̂∗n1,s(Xi) explicitly to show the dependence of the esti-

mates and time s. We predict the true survival status at a time, denoted s, with s = 1, 2, 3, or 4,
based on using whether f̂∗n1,s(Xi) is greater than 0 for i = n1 + 1, . . . , n1 + n2. Specifically, for
i = n1 + 1, . . . , n1 + n2, if f̂∗n1,s(Xi) > 0, we predict the survival status at time s as 1; otherwise,
we predict it as −1. We evaluate classification performance by using the test data OTE

IC calculating
the sensitivity, defined as the proportion of correctly identified positive cases among the true positive
cases, indicated by {i : i = n1 +1, . . . , n1 +n2 and exp{ϕ(Xi)} > s}, and the specificity, defined
as the proportion of correctly identified negative cases among the true negative cases, indicated by
{i : i = n1 + 1, . . . , n1 + n2 and exp{ϕ(Xi)} ≤ s}. Sensitivity and specificity assess classifica-
tion results from different perspectives. The larger these metrics, the better the performance of the
estimator f̂∗n1,s.

F.2 LEARNING METHODS IN EXPERIMENTS

Regardless of the value of n, we set w = 5 for Algorithm 1 as a stopping criterion, and take cubic
smoothing spline as the base learner with r = v = 2 in Section 3.3. Suggested by Theorem 1,
we take weak base learners. Bühlmann & Yu (2003) showed that the shrinkage strategy (Friedman,
2001) can make the base learner weaker by multiplying a small constant u to the smoother matrix Ψ.
In other words, for a small constant u, the linear smoother learner with smoother matrix Ψu = u×Ψ
is weaker than the linear smoother learner with smoother matrix Ψ. Thus, as in Bühlmann & Yu
(2003), we set df = 20, and replace Ψ in (14) with Ψu and u = 0.01. The shrinkage strategy is
equivalent to replacing Line 5 of Algorithm 1 with

f (t+1)(·) = f (t)(·) + uĥ(t+1)(·).

For ICRF, we specify the splitting rule as GWRS, described in Appendix C, adopt an exploitative
survival prediction approach, use a Gaussian kernel with bandwidth h = cn

−1/5
min , and take K = 5

and D = 300. Here, c is the inter-quartile range of the NPMLE, and nmin is the minimum size of
terminal nodes set to 6.

F.3 COMPUTING TIME COMPARISON

To access computational complexity, we record the computing time for one experiment by applying
the five methods to synthetic data generated from the lognormal AFT model with σ = 0.25 in
Section 5. Computing times (in second) are reported in Table F.1 for three sample sizes, where we
separately display computing time for implementing ICRF from that for unbiased transformation
and boosting (UT + B). The implementation of the proposed methods requires a lot longer time than
that for the O, R, and N methods, as expected.

Size
Method O R N CUT IMP

ICRF UT + B ICRF UT + B
500 1.037 0.969 1.053 493.462 3.262 494.319 2.611

1000 2.200 2.190 2.148 2633.012 11.058 2668.756 7.935
1500 4.671 4.756 4.564 8709.231 18.440 8725.549 14.509

Table F.1: Computing times in second using a cluster with 1 node and 1 ntasks-per-node, where UT
and B represent the procedure corresponding to unbiased transformation and boosting, respectively.

F.4 SIGNAL TANDMOBIEL® DATA AND BANGKOK HIV DATA
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The Signal Tandmobiel® data arose from a longitudinal prospective oral health study, conducted in
the Flanders region of Belgium from 1996 to 2001. This study initially sampled 4,430 first-year
primary school children who underwent annual dental examinations performed by trained dentists.
Further details can be found in Vanobbergen et al. (2000). Our analysis focuses on a subset of the
data with 3737 subjects, whose features were fully observed, specifically examining the emergence
times of the permanent upper left first premolars (tooth 24 in European dental notation). Following
Komárek & Lesaffre (2009), we define the origin time at age 5, as permanent teeth do not emerge
before this age. The response variable Yi represents the emergence times of tooth 24 since age 5.
Because the dental examinations take place annually, the observed Yi is inherently interval censored
by design. Among the participants, 1611 children are right-censored and others are truly interval-
censored. The features are defined as follows: Xi1 = 0 if the child is a girl and 1 otherwise;Xi2 = 0
if the primary predecessor was sound, and 1 if it was decayed, missing due to caries, or filled; and
Xi3 represents the scaled age at which the child started brushing teeth.

To measure the incidence of Human Immunodeficiency Virus (HIV) infection and identify associ-
ated risk factors to guide prevention efforts, the Bangkok Metropolitan Administration conducted
a cohort study (Vanichseni et al., 2001) in Bangkok from 1995 to 1998. The study enrolled 1124
participants who were HIV negative at the time of enrollment. These participants were repeatedly
tested for HIV at approximately four-month intervals over the study period. The response variable
Yi represents the time when a participant first tested positive for HIV. Of the participants, 991 were
right-censored, meaning they never tested positive during the study period, while the remaining
were interval-censored, meaning the exact time of seroconversion is only known to occur between
two testing intervals. The features are defined as follows: Xi1 = 0 if the participant is a female and
1 otherwise; Xi2 = 0 if the participant had a history of injecting drug use and 1 otherwise; and Xi3

represents the scaled age at enrollment.

G ADDITIONAL EXPERIMENTS

To comprehensively evaluate the performance of the proposed methods, here we conduct additional
experiments to examine how their effectiveness may be influenced by various factors, including
sample size, data generation model, noise level, and different implementation ways of ICRF. The
details are presented as follows.

G.1 ALTERNATIVE SAMPLE SIZE AND DATA GENERATION MODEL

To assess how the sample size may affect the performance of our methods, we conduct additional
experiments in the same way as in Section 5 but replace n = 500 by n = 1000. Results of predicting
survival times are reported in Figure G.1, which demonstrate the same patterns observed for Figure
1.
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Figure G.1: Experiment results of SMaxAE (left), SMSqE (middle), and SKDT (right) for predicting
survival times with n = 1000, for the lognormal AFT model with σ = 0.25. O, R, N, CUT, and IMP
represent the oracle, reference, naive, CUT, and IMP methods, respectively, as described in Section
5.

In contrast to the experiment setup in Section 5, we take p = 5, τ = 12, m = 5, ϕ(Xi) =
β0|X1,i − 0.5| + β1X

3
3,i + β2 sin(πX5,i), with β0 = 1, β1 = 0.8, and β2 = 0.8, where X2,i

and X4,i are inactive input variables for model (15), but they are still involved in the boosting
procedure. Figure G.2 summarizes the values of regression metrics, SMaxAE, SMSqE, and SKDT,
across 300 experiments for predicting survival times. The N method results in the largest SMSqE
yet the smallest SKDT, though the SMaxAE for the N and proposed methods are similar. Figure G.3
reports the values for two classification metrics, sensitivity and specificity, across 300 experiments,
for predicting survival status. The N method produces the worst results at s = 2 and s = 3, with
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the lowest specificity at s = 4. In contrast, the proposed methods only show reduced sensitivity at
s = 4.

1

2

3

O R N CUT IMP

S
M

ax
A

E

0.0

0.2

0.4

0.6

0.8

O R N CUT IMP

S
M

S
qE

0.5
0.6
0.7
0.8
0.9

O R N CUT IMP

S
K

D
T

1

2

3

4

O R N CUT IMP

S
M

ax
A

E

0.0

0.2

0.4

0.6

O R N CUT IMP

S
M

S
qE

0.4

0.6

0.8

O R N CUT IMP

S
K

D
T

Figure G.2: Experiment results of SMaxAE (left), SMSqE (middle), and SKDT (right) for pre-
dicting survival times with different survival models. The top and bottom rows correspond to the
lognormal AFT and loglogistic AFT models, respectively. O, R, N, CUT, and IMP represent the
oracle, reference, naive, CUT, and IMP methods, respectively, as described in Section 5.
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(a) The lognormal AFT model                                                                 (b) The loglogistic AFT model

Figure G.3: Experiment results of predicting survival status with different survival models. O, R,
N, CUT, and IMP represent the oracle, reference, naive, CUT, and IMP methods, respectively, as
described in Section 5. Specificity plots for s = 1 are omitted because no negative cases exist.

G.2 NOISE LEVEL COMPARISON AND COX MODEL

To access the sensitivity of our methods to the noise level of data, in addition to σ = 0.25 considered
in Section 5 for model (15) with ϵ ∼ N(0, σ2), we further consider σ = 0.5, 1, or 1.5. Increasing σ
makes survival times more variable, thus spanning over a wider interval. Consequently, τ is set as
15, 80, or 100 to generate interval-censored survival times. The results are reported in Figure G.4 in
the same manner as for Figure 1 in Section 5. The O, R, N, CUT and IMP methods reveal the same
patterns as those observed in Figure 1. The N method performs the worst, the O method performs the
best, and our proposed CUT and IMP methods outperform the N method. When the noise level σ is
more substantial, the differences between our methods and the N method are considerably enlarged,
and the performance of our methods becomes very close to, or nearly the same as, that of the O and
R methods.

We further consider two additional methods here. The first method, denoted as YAO, employs
an existing ensemble approach for interval-censored data: the conditional inference survival forest
method proposed by (Yao et al., 2021), where predicted survival times are provided by the R package
ICcforest. The results from the YAO method are in good agreement with those produced from our
proposed CUT and IMP methods. However, the SKDT values from the YAO method appear slightly
more variable than those from our methods.

In the second method, denoted as COX, we manipulate the synthetic data to create right-censored
data {{Ỹi,∆i, Xi} : i = 1, . . . , n}, with pseudo-survival time Ỹi defined as in Section 5 and an
artificially introduced right-censoring indicator ∆i. Here, we consider the best-case scenario where
no subject is censored, with ∆i set to 1 for all i = 1, . . . , n. We then fit the data with the Cox
model, where predicted survival times are taken as the medians of the estimated survival functions
by extracting the “median” column of the survfit.coxph object in the R package survival. While
the results from the COX method are not directly comparable to the other six methods, which are
primarily nonparametric-based, it is interesting that the COX method can sometimes outperform the
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R method, especially when σ is small with value 0.25, as shown by the SMaxAE and SKDT values.
However, when σ is large with value 0.5, 1 or 1.5, the COX method does not outperform the O and
R methods or our proposed CUT and IMP methods, as shown by the SMaxAE and SMSqE values.
Nevertheless, its SKDT values remain better than other methods, except for the O method; this may
be attributed to the absence of censoring in the COX method. Suggested by the SMSqE values, the
COX method can even perform worse than the N method when σ is not small.
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Figure G.4: Experiment results of SMaxAE (left), SMSqE (middle), and SKDT (right), for predict-
ing survival times with varying noise levels. From the top to bottom, the four rows correspond to
the lognormal AFT model with σ = 0.25, 0.5, 1, and 1.5, respectively. COX is the procedure of
fitting the Cox model to pseudo-survival times; YAO represent the method of Yao et al. (2021); O,
R, N, CUT, and IMP represent the oracle, reference, naive, CUT, and IMP methods, respectively, as
described in Section 5.

G.3 SURVIVAL FUNCTION ESTIMATOR COMPARISON

As detailed in Appendix C, the implementation of our methods employs ICRF to provide consistent
estimation of the survivor function, and we take K = 5 and D = 300 to run experiments in Section
5 (as well as those additional experiments in Appendix G). To see how different choices of K and
D may affect the performance of the proposed methods, here we implement the CUT method to
synthetic data generated in Section 5 using ICRF with different values of K and D, where we set
K = 1 and D = 1; K = 1 and D = 100; K = 1 and D = 300; and K = 3 and D = 300; and we
denote the resulting CUT methods CUT1, CUT2, CUT3, and CUT4, respectively. In addition, we
implement ICRF using quasi-honest survival prediction method, as discussed in Appendix C, and
the comprehensive greedy algorithm (Breiman, 2001), respectively denoted as CUT5 and CUT6.
We report the results in Figure G.5 in the same manner as for Figure 1. The results demonstrate that
the CUT method with K = 5 and D = 300 (the one with heading CUT in Figure G.5) tends to
perform the best, although all other methods produce fairly close results.

H CONVERGENCE ANALYSIS OF EXPERIMENTS

This Appendix assesses the convergence of the proposed methods. For f ∈ F , let R̂(f) denote the
approximation of the empirical risk function. In Figures H.1 - H.3, we plot the values of R̂

(
f (t)
)

and R̂
(
f
(t)
s

)
against the number of iterations t for the experiments in Section 5. The results clearly
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Figure G.5: Experiment results of SMaxAE (left), SMSqE (middle), and SKDT (right) for predicting
survival times with varying ICRF estimators.

show that R̂
(
f (t)
)

and R̂
(
f
(t)
s

)
approach zero as t increases, confirming the convergence of the

proposed algorithms.
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Figure H.1: Predicting survival times: Plots of R̂
(
f
(t)
s

)
versus the number of iterations. The top

to bottom rows correspond to the lognormal AFT and loglogistic AFT models in Section 5, respec-
tively. From left to right, the columns represent the O, R, N, CUT, and IMP methods, respectively.
Here, O, R, N, CUT, and IMP represent the oracle, reference, naive, CUT, and IMP methods, re-
spectively, as described in Section 5.
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Figure H.2: Predicting survival status – the lognormal AFT model in Section 5: Plots of R̂
(
f
(t)
s

)
versus the number of iterations. From top to bottom, each row corresponds to s = 1, 2, 3, and 4,
respectively. From left to right, the columns correspond to the O, R, N, CUT, and IMP methods,
respectively. Here, O, R, N, CUT, and IMP represent the oracle, reference, naive, CUT, and IMP
methods, respectively, as described in Section 5.
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Figure H.3: Predicting survival status – the loglogistic AFT model in Section 5: Plots of R̂
(
f
(t)
s

)
versus the number of iterations. From top to bottom, each row corresponds to s = 1, 2, 3, and 4,
respectively. From left to right, the columns correspond to the O, R, N, CUT, and IMP methods,
respectively. Here, O, R, N, CUT, and IMP represent the oracle, reference, naive, CUT, and IMP
methods, respectively, as described in Section 5.
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