
Under review as submission to TMLR

Causal Reinforcement Learning: A Survey

Anonymous authors
Paper under double-blind review

Abstract

Reinforcement learning is an essential paradigm for solving sequential decision problems
under uncertainty. Despite many remarkable achievements in recent decades, applying rein-
forcement learning methods in the real world remains challenging. One of the main obstacles
is that reinforcement learning agents lack a fundamental understanding of the world and
must therefore learn from scratch through numerous trial-and-error interactions. They may
also face challenges in providing explanations for their decisions and generalizing the ac-
quired knowledge. Causality, however, offers notable advantages by formalizing knowledge
in a systematic manner and harnessing invariance for effective knowledge transfer. This
has led to the emergence of causal reinforcement learning, a subfield of reinforcement learn-
ing that seeks to enhance existing algorithms by incorporating causal relationships into the
learning process. In this survey, we provide a comprehensive review of the literature in
this domain. We begin by introducing basic concepts in causality and reinforcement learn-
ing, and then explain how causality can help address key challenges faced by traditional
reinforcement learning. We categorize and systematically evaluate existing causal reinforce-
ment learning approaches, with a focus on their ability to enhance sample efficiency, advance
generalizability, facilitate knowledge transfer, mitigate spurious correlations, and promote
explainability, fairness, and safety. Lastly, we outline the limitations of current research and
shed light on future directions in this rapidly evolving field.

1 Introduction

“All reasonings concerning matter of fact seem to be founded on the relation of cause and effect. By means
of that relation alone we can go beyond the evidence of our memory and senses."

—David Hume, An Enquiry Concerning Human Understanding.

Humans possess an inherent capacity to grasp the concept of causality from a young age (Wellman, 1992;
Inagaki & Hatano, 1993; Koslowski & Masnick, 2002; Sobel & Sommerville, 2010). This innate understanding
empowers us to recognize that altering specific factors can lead to corresponding outcomes, enabling us to
actively manipulate our surroundings to accomplish desired objectives and acquire fresh insights. A deep
understanding of cause and effect enables us to explain behaviors (Schult & Wellman, 1997), predict future
outcomes (Shultz, 1982), and use counterfactual reasoning to dissect past events (Harris et al., 1996). These
cognitive abilities inherently shape human thought and reasoning (Sloman, 2005; Sloman & Lagnado, 2015;
Pearl, 2009b; Pearl & Mackenzie, 2018), forming the basis for modern society and civilization, as well as
propelling advancements in science and technology (Glymour, 1998).

In the pursuit of developing agents with these crucial abilities, reinforcement learning (RL) (Sutton & Barto,
2018) emerges as a promising path. It involves learning optimal decision-making policies by interacting with
the environment to learn from the outcome of certain behaviors. This property makes RL naturally connected
to causality, as agents can sometimes directly estimate the causal effect for policy-specified interventions.
In fact, many important concerns related to causality become pronounced when we examine real-world
applications of RL.

Consider the scenarios and the questions presented in Figure 1 where the phrases related to causality are
highlighted in orange. In robotic manipulation, RL agents need to understand the effect of altering different
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What is the effect of certain treatments? 
Does receiving the treatment directly 
contribute to the patient's recovery, or 
are other unmeasured factors at play?

Does changing the size of an object affect 
the outcome? What about shape and color? 
Are there any invariants across tasks and 
environments?

What if I hadn’t slowed down? 
Would I cause car accidents if I had 
violated traffic rules or regulations? 

Figure 1: Illustrative examples of causality in reinforcement learning and its impact on decision making.

factors on the outcomes to avoid learning decisions sensitive to irrelevant factors. Moreover, for effective
knowledge transfer, agents are expected to leverage invariance across different tasks and environments. In
medical scenarios, which often involve observational studies, agents should be aware of unobserved con-
founders that may remain hidden in the data generation process, such as socioeconomic status. These
confounders can simultaneously affect treatments and outcomes, introducing bias into decision-making by
erroneously attributing unobserved factors to treatment, resulting in either overestimation or underestima-
tion of the true treatment effect on outcomes. Additionally, in scenarios like autonomous driving, safety
concerns often lead to questions like whether the vehicle would have collided with the leading vehicle if it
hadn’t slowed down. Answering such queries necessitates comparing the factual world and a hypothetical
one in which the vehicle had not slowed down. To address this challenge, agents are expected to utilize the
ability of counterfactual reasoning, which empowers them to envision and gain insights from scenarios absent
from the collected data, thus improving the efficiency of learning safe driving policies.

These examples underscore the potential of incorporating causality into RL, yet the journey is fraught with
challenges. RL agents, lacking a fundamental understanding of the world, typically rely on extensive trial and
error to make rational decisions and understand causal relationships among different factors. They may also
face difficulties in identifying and learning invariant mechanisms from a limited set of environments and tasks.
Moreover, since traditional RL lacks a built-in capacity for modeling causality, agents may be susceptible to
spurious correlations, especially in scenarios involving offline learning and partial observability. Addressing
these problems necessitates a careful investigation of several critical questions: how to formalize these issues,
what assumptions or prior knowledge are required, how to introduce them in a principled manner, and what
are the consequences of making incorrect assumptions. Consequently, in recent years, researchers have been
actively exploring systematic approaches to integrate causality into the realm of reinforcement learning,
giving rise to an emerging field known as causal RL.

Causal RL harnesses the power of causal inference (Pearl, 2009b; Peters et al., 2017), which offers a math-
ematical framework for formalizing the data generation process and reasoning about causality (Schölkopf
et al., 2021; Kaddour et al., 2022). It is an umbrella term for RL approaches that incorporate additional
assumptions or knowledge about the underlying causal model to inform decision-making. Modeling causality
explicitly not only holds the promise of a principled approach to solving complex decision-making problems
but also enhances the transparency and interpretability of the decision-making process. To further elaborate
on the distinctive capabilities of causal RL in addressing the challenges faced by traditional RL, we will delve
into a more detailed discussion spanning sections 3 to 6. Note that causal inference, while powerful, is not
a panacea; its effectiveness depends on the quality of assumptions and domain expertise applied. We will
explore these nuances further in section 7.1 to provide a balanced understanding of the role and limitations
of causal RL in addressing the challenges of traditional RL.

Given the successful application of causal inference in various domains such as computer vision (Lopez-Paz
et al., 2017; Shen et al., 2018; Tang et al., 2020; Wang et al., 2020b), natural language processing (Wu
et al., 2021; Jin et al., 2021; Feder et al., 2022), and recommender systems (Zheng et al., 2021; Zhang
et al., 2021b; Gao et al., 2022), it is reasonable to expect that causal RL would help resolve core challenges
faced by traditional RL methods and tackle new challenges in increasingly complex application scenarios.
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Nevertheless, a significant obstacle lies in the lack of a clear and consistent conceptualization of causal
assumptions and knowledge, as they have been encoded in diverse forms across prior research, tailored to
specific problems and objectives. The use of disparate terminologies and techniques makes it challenging
to understand the essence, implications, limitations, and opportunities of causal RL, particularly for those
new to the realms of causal inference and RL. In light of this, this paper aims to provide a comprehensive
survey of causal RL, consolidating the diverse advancements and contributions within this field, thereby
establishing meaningful connections and fostering a cohesive understanding.

Our main contributions to the field are as follows.

• We present a comprehensive survey of causal RL, exploring fundamental questions such as its defi-
nition, motivations, and its improvements over traditional RL approaches. Additionally, we provide
a clear and concise overview of the foundational concepts in both causality research and RL. To
the best of our knowledge, this is the first comprehensive survey of causal RL in the existing RL
literature 1.

• We identify the key challenges in RL that can be effectively addressed or improved by explicitly
considering causality. To facilitate a deeper understanding of the benefits of incorporating causality-
aware techniques, we propose a problem-oriented taxonomy. Furthermore, we conduct a comparative
analysis of existing causal reinforcement learning approaches, examining their methodologies and
limitations.

• We shed light on promising research directions in causal RL. These include advancing theoretical
analyses, establishing benchmarks, and tackling specific learning problems. As these research topics
gain momentum, they will propel the application of causal RL in real-world scenarios. Hence,
establishing a common ground for discussing these valuable ideas in this burgeoning field is crucial
and will foster its continuous development and success.

2 Background

To better understand causal RL, an emerging field that combines the strengths of causality research and RL,
we start by introducing the fundamentals of and some common concepts relevant to the two research areas.

2.1 A Brief Introduction to Causality

We first discuss how to use mathematical language to describe and study causality. In general, there are
two primary frameworks that researchers use to formalize causality: SCMs (structural causal models) Pearl
(2009a); Glymour et al. (2016) and PO (potential outcome) (Rubin, 1974; Imbens & Rubin, 2015). We focus
on the former in this paper because it provides a graphical methodology that can help researchers abstract
and better understand the data generation process. It is noteworthy that these two frameworks are logically
equivalent, and most assumptions are interchangeable.
Definition 2.1 (Structural Causal Model). An SCM M is represented by a tuple (V, U , F , P (U)), where

• V = {V1, V2, · · · , Vm} is a set of endogenous variables that are of interest in a research problem,

• U = {U1, U2, · · · , Un} is a set of exogenous variables that represent the source of stochasticity in the
model and are determined by external factors that are generally unobservable,

• F = {f1, f2, · · · , fm} is a set of structural equations that assign values to each of the variables in V
such that fi maps PA(Vi) ∪ Ui to Vi, where PA(Vi) ⊆ V\Vi and Ui ⊆ U ,

• P (U) is the joint probability distribution of the exogenous variables in U .
1We note that Schölkopf et al. (2021) and Kaddour et al. (2022) discussed causal RL alongside many other research subjects in

their papers. The former mainly studied the causal representation learning problem, and the latter comprehensively investigated
the field of causal machine learning. The present study, however, focuses on examining the literature on causal RL and provides
a systematic review of the field.
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Figure 2: (a) The SCM and causal graph for the scurvy example, in which consuming fruits helps to prevent
scurvy by influencing the intake of vitamin C. (b) The three basic building blocks of causal graphs.

Structural causal model provides a rigorous framework for examining how relevant features of the world
interact. Each structural equation fi ∈ F specifies the value of an endogenous variable Vi based on an exoge-
nous variable Ui and PA(Vi). These equations establish the causal links between variables and mathemati-
cally characterize the underlying mechanisms of the data generation process. If all Ui ∈ U are independent of
each other, it follows that each endogenous variable Vi ∈ V is independent of all its nondescendants, given its
parents PA(Vi). In this case, we refer to the model as Markovian and PA(Vi) is considered complete, as it
includes all the relevant immediate causes of Vi. This assumption is prevalent in human discourse, probably
because it allows us to omit some causes from PA(Vi) (which are aggregated as exogenous variables and
summarized by probabilities), forming a useful abstraction of the underlying physical processes that might
be overly detailed for practical use (Pearl, 2009b, Chapter 2).

Causal graph. Each SCM M is associated with a causal graph G = {V, E}, where nodes V represent
endogenous variables and edges E represent causal relationships determined by the structural equations.
Specifically, an edge eij ∈ E from node Vj to node Vi exists if the random variable Vj ∈ PA(Vi). In some
cases, there may be causes that are omitted from PA(Vi) but affect more than one variable in V. These
omitted variables are referred to as unobserved confounders. In such cases, exogenous variables are not
independent of each other, which leads to the loss of Markov property. If we explicitly treat such variables as
latent variables and represent them with nodes in the graph, the Markov property is restored (Pearl, 2009b,
Chapter 2). Figure 2a illustrates an SCM and its corresponding causal graph. This example includes three
binary endogenous variables - consumption of fruits, intake of vitamin C, and occurrence of scurvy - along
with the relevant exogenous variables. In this example, the consumption of fruits does not directly protect
the health of sailors from scurvy; instead, it produces an indirect effect by influencing the intake of vitamin
C. Therefore it is not part of the structural equation that determines sailors’ health. Figure 2b introduces
the three fundamental building blocks of the causal graph: chain, fork, and collider. These simple structures
can be combined together to create more complex data generation processes.

Product decomposition involves representing a complex joint probability distribution P (V) as a product
of conditional probability distributions that are easier to model and analyze. By applying the chain rule, we
can always decompose P (V) of n variables V1, · · · , Vn ∈ V as a product of n conditional distributions:

P (V) =
n∏

i=1
P (Vi|V1, · · · , Vi−1).

While this decomposition method is general, it does not consider the causal relationships within the data.
Therefore, predecessor variables V1, · · · , Vi−1 are not necessarily the causes of Vi and the conditional proba-
bility of Vi is not necessarily sensitive to all predecessor variables. Assuming that the data is generated by
a Markovian causal model, the causal Markov condition (Pearl, 2009b, Chapter 1) helps us establish a con-
nection between causation and probabilities, thereby allowing for a more parsimonious decomposition. This
condition states that for every Markovian causal model with a causal graph G, the induced joint distribution
P (V) is Markov relative to G. Specifically, a variable Vi ∈ V is independent of any non-descendants given
its parents PA(Vi) in G. This property enables a structured decomposition along causal directions, which is
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Figure 3: (a) An illustration of the difference between condition and intervention, with Y representing the
health of sailors and X being a discrete variable with three possible values: fruit, juice, or meat. The
marginal probability distribution P (Y ) studies all subgroups within the population, while the conditional
probability distribution P (Y |X = fruit) focuses on the subgroup of sailors who have consumed fruits. In
contrast, the interventional probability distribution P (Y |do(X = fruit)) examines the population in which
all sailors are required to consume fruits. (b) An illustration of counterfactual probabilities, which study
events occurring in an imaginary world (the bottom network), e.g., considering the sick sailors who ate meat
in the factual world (the upper network), would they have stayed healthy if they had consumed fruits?

referred to as the causal factorization (or the disentangled factorization) (Schölkopf et al., 2021):

P (V) =
n∏

i=1
P (Vi|PA(Vi)), (1)

where the (conditional) probability distributions of the form P (Vi|PA(Vi)) are commonly referred to as
causal Markov kernels (Peters et al., 2017) or causal mechanisms (Schölkopf et al., 2021). While equation 1
is not the only method for product decomposition, it is the only one that decomposes P (V) as the product of
causal mechanisms. For further information regarding the product decomposition of semi-Markovian models,
in which the causal graph is acyclic but the exogenous variables are not jointly independent, please refer
to Bareinboim et al. (2022).

Intervention. SCMs not only offer a rigorous mathematical framework for studying causal relationships
but also facilitate the modeling of external interventions. Specifically, an intervention can be encoded as an
alteration of some of the structural equations in M. For example, forcing the variable X = x forms a sub-
model Mx, in which the set of structural equations Fx = {fi : Vi /∈ X} ∪ {X = x}. To predict the outcome
of such an intervention, we simply employ the submodel Mx to compute the new probability distribution.
In addition to directly setting the variables to constant values (known as hard intervention), we can also ma-
nipulate the probability distributions that govern the variables, preserving some of the original dependencies
(known as soft intervention). Many research questions involve estimating the effects of interventions. For
example, preventing scurvy requires identifying effective interventions (e.g., through dietary changes) that
reduce the probability of getting scurvy. To distinguish from conditional probability, researchers introduced
the do-operator, using P (Y |do(X = x)) to denote the intervention probability, meaning the probability
distribution of the outcome variable Y when X is fixed to x. Figure 3a illustrates the difference between
conditional and intervention probabilities. It is noteworthy that a critical distinction between statistical
models and causal models lies in the fact that the former specifies a single probability distribution, while
the latter represents a collection of distributions, one for each possible intervention (including the null in-
tervention). Consequently, causal models can provide a more comprehensive understanding of the world,
potentially enhancing an agent’s robustness against certain distribution shifts (Schölkopf et al., 2021; Thams,
2022).

Counterfactual. Counterfactual thinking involves posing hypothetical questions, such as, “Would the
scurvy patient have stayed healthy if they had eaten enough fruit”. This cognitive process allows us to
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retrospectively analyze past events and reason about the potential outcomes of altering certain factors
in the past. This type of thinking helps us gain insights from experiences and identify opportunities for
further improvements. Since counterfactuals involve hypothetical scenarios, collecting counterfactual data is
generally impossible in reality, which is the core difference between it and interventions.

In the context of SCMs, counterfactual variables are often denoted with a subscript, such as YX=x (or Yx

when there is no ambiguity) where X and Y are two sets of variables in V. This notation helps researchers
differentiate counterfactuals from the original variable Y . The key difference between Y and Yx is that the
latter is generated by a submodel Mx in which X is set to x. Figure 3b provides an illustration for evaluating
counterfactuals with the twin network method (Pearl, 2009b, Chapter 7). The two networks represent the
factual and counterfactual (imaginary) world respectively. They are connected by the exogenous variables,
sharing the same structure and variables of interest, except the counterfactual one removes arrows pointing
to the variables corresponding to the hypothetical interventions. Remark that there are many different types
of counterfactual quantities implied by a causal model other than the one shown in this example. In some
scenarios, such as fairness analysis (Carey & Wu, 2022; Plecko & Bareinboim, 2022), we may need to study
nested counterfactuals, e.g., the direct and indirect effects.

Together, correlation, intervention, and counterfactuals form the three rungs of the ladder of causation, also
known as the “Pearl Causal Hierarchy” (Bareinboim et al., 2022), which naturally emerges from an SCM.
This hierarchy involves increasingly refined reasoning tasks, as does the knowledge required to complete these
tasks. In summary, we have provided a concise overview of several fundamental concepts in this section.
For readers interested in delving deeper into the realm of causality, please refer to Appendix A and the
cited references. Subsequent sections will discuss related concepts and techniques within the context of
reinforcement learning.

2.2 A Brief Introduction to Reinforcement Learning

Reinforcement learning studies sequential decision problems. Mathematically, we can formalize these prob-
lems as Markov decision processes.
Definition 2.2 (Markov decision process). An MDP M is specified by a tuple {S, A, P, R, µ0, γ}, where

• S denotes the state space and A denotes the action space,

• P : S×A×S → [0, 1] is the transition probability function that yields the probability of transitioning
into the next states st+1 after taking an action at at the current state st,

• R : S × A → R is the reward function that assigns the immediate reward for taking an action at at
state st,

• µ0 : S → [0, 1] is the probability distribution that specifies the generation of the initial state, and

• γ ∈ [0, 1] denotes the discount factor that accounts for how much future events lose their value as
time passes.

Markov decision processes. In definition 2.2, the decision process starts by sampling an initial state s0
with µ0. An agent takes responsive action using its policy π (a function that maps a state to an action) and
receives a reward from the environment assigned by R. The environment evolves to a new state following P ;
then, the agent senses the new state and repeats interacting with the environment. The goal of an RL agent
is to search for the optimal policy π∗ that maximizes the return (cumulative reward) G0. In particular, at
any timestep t, the return Gt is defined as the sum of discounted future rewards, i.e., Gt =

∑∞
i=0 γiRt+i. A

multi-armed bandit (MAB) is a special type of MDP that focuses on single-step decision-making problems.
On the other hand, a partially observable Markov decision process (POMDP), generalizes the scope of MDPs
by considering partial observability. In a POMDP, the system still operates based on an MDP, but the agent
can only access a partial or incomplete description of the system state, often referred to as the observation
Ot, when making decisions. For example, in a video game, a player may need to deduce the motion of a
dynamic object based on the visual cues displayed on the current screen.
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Value functions. The return Gt evaluates how good an action sequence is. However, in stochastic en-
vironments, the same action sequence can lead to diverse trajectories and consequently, different returns.
Moreover, a stochastic policy π outputs a probability distribution over the action space. Considering these
stochastic factors, the return Gt associated with a policy π becomes a random variable. In order to evaluate
policies under uncertainty, RL introduces the concept of value functions. There are two types of value func-
tions: V π(s) denotes the expected return obtained by following the policy π from state s; Qπ(s, a) denotes
the expected return obtained by performing action a at state s and following the policy π thereafter. The
optimal value functions correspond to the optimal policy π∗ are denoted by V ∗(s) and Q∗(s, a).

Bellman equations. By definition, V π(s) = Eπ[Gt|St = s] and Qπ(s, a) = Eπ[Gt|St = s, At = a]. These
two types of value functions can be expressed in terms of one another. By expanding the return Gt, we can
rewrite value functions in a recursive manner:

V π(s) =
∑
a∈A

π(a|s)
(

R(s, a) + γ
∑
s′∈S

P (s′|s, a)V π(s′)
)

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

∑
a′∈A

π(a′|s′)Qπ(s′, a′).
(2)

When the timestep t is not specified, s and s′ are often used to refer to the states of two adjacent steps. The
above equations are known as the Bellman expectation equations, which establish the connection between
two adjacent steps. Similarly, the Bellman optimality equations relate the optimal value functions:

V ∗(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)
)

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

P (s′|s, a) max
a′∈A

Q∗(s′, a′).
(3)

When the environment (also referred to as the dynamic model or, simply, the model) is known, the learning
problem simplifies into a planning problem that can be solved using dynamic programming techniques based
on the Bellman equations. However, in the realm of RL, the main focus is on unknown environments. In
other words, agents do not possess complete knowledge of the transition function P (s′|s, a) and the reward
function R(s, a). This characteristic brings RL closer to decision-making problems in real-world scenarios.

Categorizing reinforcement learning methods. There are several ways to categorize RL methods.
One approach is based on the agent’s components. Policy-based methods generally focus on optimizing an
explicitly parameterized policy to maximize the return, while value-based methods use collected data to
fit a value function and derive the policy implicitly from it. Actor-critic methods combine both of them,
equipping an agent with both a value function and a policy. Another classification criterion is whether
RL methods use an environmental model. Model-based reinforcement learning (MBRL) methods typically
employ a well-defined environmental model (such as AlphaGo (Silver et al., 2017)) or construct one using
the collected data. The model assists the agent in planning or generating additional training data, thereby
enhancing the learning process. Furthermore, RL can also be divided into on-policy, off-policy, and offline
approaches based on data collection. On-policy RL only utilizes data from the current policy, while off-policy
RL involves data collected by other policies. Offline RL disallows data collection, restricting the agent to
learn from a fixed dataset.

2.3 Causal Reinforcement Learning

Before formally defining causal RL, let us cast a POMDP problem into an SCM M. To do this, we consider
the observation, state, action, and reward at each step to be endogenous variables. The observation, state
transition, and reward functions are then described as deterministic functions with independent exogenous
variables, represented by a set of structural equations F in M. This transformation is always possible using
autoregressive uniformization (Buesing et al., 2019), without imposing any extra constraints. It allows us to
formally discuss causality in RL, including addressing counterfactual queries that cannot be explained by non-
causal methods. Figure 4 presents an illustrative example of this transformation. From this formalization, it
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... ... ... ...

Figure 4: An illustrative example of casting a POMDP problem into an SCM. States are marked with dashed
circles to emphasize that they are latent variables in the POMDP problem, while actions are marked with
hammers as they represent intervention variables controlled by policies.

is straightforward to derive the MDP regime by introducing an additional constraint: Ot = St. In practice,
states and actions may have high dimensionality, and the granularity of the causal model can be adjusted
based on our prior knowledge. While the SCM representation allows us to reason about causality in decision-
making problems and organize causal knowledge in a clear and reusable way, it does not constitute causal
RL on its own. In this paper, we define causal RL as follows.
Definition 2.3 (Causal reinforcement learning). Causal RL is an umbrella term for RL approaches that
incorporate additional assumptions or prior knowledge to analyze and understand the causal mechanisms
underlying actions and their consequences, enabling agents to make more informed and effective decisions.

This definition emphasizes two fundamental aspects that distinguish causal RL from non-causal RL. 1) It
emphasizes a focus on causality, seeking to advance beyond superficial associations or data patterns. To
meet this goal, 2) it necessitates the incorporation of additional assumptions or knowledge that accounts for
the causal relationships inherent in decision-making problems.

The primary objective of RL is to determine the policy π that yields the highest expected return, rather
than inferring the causal effect of a specific intervention. The policy π can be seen as a soft intervention
that preserves the dependence of the action on the state, i.e., do(a ∼ π(·|s)). Different policies result in
varying trajectory distributions. As mentioned earlier, RL is close to causality because on-policy RL can
directly learn the total effects of actions on the outcome from interventional data. However, when we reuse
observational data, as in off-policy/offline RL, the learning problem becomes more intricate, as agents may
suffer from spurious correlations (Zhang et al., 2020b; Deng et al., 2021). Additionally, we may be interested
in certain types of counterfactual quantities other than total effects in causal RL, as they hold the promises
of improving data efficiency and performance (Bareinboim et al., 2015; Buesing et al., 2019; Lu et al., 2020).

We note that there is a lack of clarity and coherence in the existing literature on causal RL, primarily
because causal modeling is more of a mindset than a specific problem setting or solution. Previous work
has explored diverse forms of causal modeling, driven by different prior knowledge and research purposes.
Ideally, a perfect understanding of the data generation process would grant access to the true causal model,
enabling us to answer any correlation, intervention, and even counterfactual inquiries. However, given the
inherent complexity of the world, it is often impractical to access a fully specified SCM. Most of the time, we
can only access data generated by this model. Unfortunately, data alone is generally insufficient to overcome
the knowledge gap. The Causal Hierarchy Theorem (CHT) (Bareinboim et al., 2022) demonstrates that
the ability to address questions at one layer almost never guarantees the ability to address the questions
at higher layers. Fortunately, certain forms of knowledge, such as causal graphs, may provide sufficient
but attainable insights into the underlying model. They can serve as valuable surrogates, enabling us to
identify the quantities of interest as if the SCM were accessible. Note that, inferring an interventional
distribution from the observational distribution and the causal graph may not always be feasible due to
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(a) Generalize to noise or ir-
relevant variables.(a) (b) (c) (d)

(b) Generalize to different
reward assignments.(a) (b) (c) (d)
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(d) Generalize to different
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Figure 5: Different types of generalization problems in reinforcement learning represented by causal graphs.
In these graphs, S and S′ represent states in adjacent time steps, A represents actions, R represents rewards,
N represents irrelevant variables (e.g., background color), G represents goals (e.g., target position), and P
represents physical properties (e.g., mass).

the presence of unobserved confounders. For more information about the identifiability issue, we refer
to Bareinboim et al. (2022). Additionally, in scenarios involving multiple domains, it is often beneficial
to examine invariant factors across these domains, including causal mechanisms, causal structure (causal
graph), and causal representation (high-level variables that capture the causal mechanisms underlying the
data). In cases where prior knowledge about these factors is lacking, we can introduce certain inductive
biases, such as sparsity, independent causal mechanisms, and sparse mechanism shifts, to obtain reasonable
estimates Schölkopf et al. (2021); Sontakke et al. (2021); Huang et al. (2022a;b).

With a solid understanding of the foundational concepts and definitions, we are now well-equipped to explore
the realm of causal reinforcement learning. The upcoming sections delve into four crucial challenges where
causal RL demonstrates its potential: generalizability and knowledge transfer, spurious correlations, sample
efficiency, and considerations beyond return, e.g., explainability, fairness, and safety.

3 Advancing Generalizability and Knowledge Transfer through Causal
Reinforcement Learning

3.1 The Issue of Generalizability in Reinforcement Learning

Generalizability poses a major challenge in the deployment of RL algorithms in real-world applications. It
refers to the ability of a trained policy to perform effectively in new and unseen situations (Kirk et al.,
2022). The issue of training and testing in the same environment has long been a critique faced by the
RL community (Irpan, 2018). While people often expect RL to work reliably in different (but similar)
environments or tasks, traditional RL algorithms are typically designed for solving a single MDP. They
can easily overfit the environment, failing to adapt to minor changes. Even in the same environment, RL
algorithms may produce widely varying results with different random seeds (Zhang et al., 2018a;b), indicating
instability and overfitting. Lanctot et al. (2017) presented an example of overfitting in multi-agent scenarios
in which a well-trained RL agent struggles to adapt when the adversary slightly changes its strategy. A
similar phenomenon was observed by Raghu et al. (2018). Furthermore, considering the non-stationarity
and constant evolution of the real world (Hamadanian et al., 2022), there is a pressing need for robust
RL algorithms that can effectively handle changes. Agents should possess the capability to transfer their
acquired skills across varying situations rather than relearning from scratch.

3.2 How can Causality Help to Improve Generalization and Facilitate Knowledge Transfer?

Some previous studies have shown that data augmentation improves generalization (Lee et al., 2020a; Wang
et al., 2020a; Yarats et al., 2021), particularly for vision-based control. This process involves generating new
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data by randomly shifting, mixing, or perturbing observations, which makes the learned policy more resistant
to irrelevant changes. Another common practice is domain randomization. In sim-to-real reinforcement
learning, researchers randomized the parameters of simulators to facilitate adaptation to reality (Tobin
et al., 2017; Peng et al., 2018). Additionally, some approaches have attempted to incorporate inductive bias
by designing special network structures to improve generalization performance (Kansky et al., 2017; Higgins
et al., 2017; Zambaldi et al., 2019; Raileanu & Fergus, 2021).

While these works have demonstrated empirical success, explaining why certain techniques outperform oth-
ers remains challenging. This knowledge gap hinders our understanding of the underlying factors that drive
successful generalization and the design of algorithms that reliably generalize in real-world scenarios. To
tackle this challenge, it is essential to identify the factors that drive changes. Kirk et al. (2022) proposed
using contextual MDP (CMDP) (Hallak et al., 2015) to formalize generalization problems in RL. A CMDP
resembles a standard MDP but explicitly captures the variability across a set of environments or tasks, which
is determined by contextual variables such as goals, colors, shapes, mass, or the difficulty of game levels.
From a causal perspective, these variabilities can be interpreted as different types of external interventions
in the data generation process (Schölkopf et al., 2021; Thams, 2022). Figure 5 illustrates some examples
of the generalization problems corresponding to different interventions. Previous methods simulate these
interventions during the training phase by augmenting original data or randomizing certain attributes, al-
lowing the model to learn from various domains. By carefully scrutinizing the causal relationships behind
the data, we can gain a better understanding of the sources of generalization ability and provide a more
logical explanation.

More importantly, by making explicit assumptions on what changes and what remains invariant, we can
derive principled methods for effective knowledge transfer and adaptation (Zhang et al., 2015; Gong et al.,
2016). To illustrate this point, let us recall the example discussed in Figure 2a, where we can use X, Y , and
Z to represent fruit consumption, vitamin C intake, and the occurrence of scurvy, respectively. Consider an
intervention on fruit consumption (the variable X), one would have to retrain all modules in a non-causal
factorization such as P (X, Y, Z) = P (Y )P (Z|Y )P (X|Y, Z) due to the change in P (X). In contrast, with
the causal factorization P (X, Y, Z) = P (X)P (Z|X)P (Y |Z), only P (X) needs to be adjusted to fit the new
domain. The intuition behind this example is quite straightforward: altering fruit consumption (P (X)) does
not impact the vitamin C content in specific fruits (P (Z|X = x)) or the likelihood of developing scurvy
conditioned on the amount of vitamin C intake (P (Y |Z = z)). This property is referred to as independent
causal mechanisms (Schölkopf et al., 2021), indicating that the causal generation process comprises stable
and autonomous modules (causal mechanisms) (Pearl, 2009b, Chapter 2) such that changing one does not
affect the others. Building on this concept, the sparse mechanism shift hypothesis (Schölkopf et al., 2021;
Perry et al., 2022) suggests that small changes in the data distribution generally correspond to changes in
only a subset of causal mechanisms. These assumptions provide a basis for designing efficient algorithms
and models for knowledge transfer.

3.3 Causal Reinforcement Learning for Improving Generalizability

Generalization involves various settings. Zero-shot generalization entails the agent solely acquiring knowledge
in training environments and then being evaluated in unseen scenarios. While this setting is appealing, it is
often impractical in real-world scenarios. Alternatively, we may allow agents to receive additional training
in target domains, categorized as transfer RL (Zhu et al., 2020), multitask RL (Vithayathil Varghese &
Mahmoud, 2020), lifelong RL (Khetarpal et al., 2022), among others. omprehend the essential capabilities
required for generalization and the expected outcomes of learning algorithms, causal RL explicitly considers
the factors that govern changes in distribution. This section, therefore, categorizes existing causal RL
approaches for generalization based on specific factors of change. The representative works are shown in
Table 1. Furthermore, we also label the problem settings for these approaches, including offline, online,
offline-to-online, and imitation learning. In cases where an approach employs online training augmented by
offline datasets, it is labeled as online∗. To be self-contained, we offer a concise overview of the environments
and tasks in Appendix B.
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Table 1: Selected methods utilizing causality to improve generalizability.

Category Paper Techniques Settings Environments or Tasks

Irrelevant
variables

Zhang et al. (2020a) Causal representation learning online Toy 2

Cart-pole (dm_control)
Cheetah (dm_control)

Bica et al. (2021b) Causal representation learning imitation OpenAI Gym
MIMIC III

Wang et al. (2022) Causal dynamics learning online∗ Chemical
Manipulation (robosuite)

Saengkyongam et al. (2022) Causal representation learning offline Toy
Ding et al. (2022) Causal discovery online Manipulation (Not accessible)

Unlock (Minigrid)
Crash (highway-env)

Dynamics

Sontakke et al. (2021) Causal representation learning offline-to-online Manipulation (CausalWolrd)
Lee et al. (2021) Intervention

Domain randomization
online Manipulation (Isaac Gym)

Zhu et al. (2021) Counterfactual reasoning online Manipulation (CausalWolrd)
Guo et al. (2022b) Mediation analysis online Pendulum (OpenAI Gym)

Locomotion (OpenAI Gym)

Tasks Eghbal-zadeh et al. (2021) Causal representation learning online Contextual-Gridworld
Pitis et al. (2022) Counterfactual reasoning offline Spriteworld

Pong (Roboschool)
Manipulation (OpenAI)

Dynamics
and Tasks

Zhang & Bareinboim (2017) Causal bound 3 online∗ Toy
Dasgupta et al. (2018) Meta learning online Toy
Nair et al. (2019) Causal induction 4 online Light
Huang et al. (2022a) Causal dynamics learning online Cart Pole (OpenAI Gym)

Pong (OpenAI Gym)
Others Zhu et al. (2022b) Causal discovery

Causal dynamics learning
offline Toy

Inverted Pendulum (OpenAI Gym)

3.3.1 Generalize to Different Environments

First, we consider how to generalize to different environments. From a causal perspective, different en-
vironments share most of the causal mechanisms but differ in certain modules, resulting from different
interventions in the state or observation variables. Building on the causal relationships within these vari-
ables, we can categorize existing approaches into two main groups: generalization to irrelevant variables and
generalization to varying dynamics.

To enhance the ability to generalize to irrelevant factors, RL agents must examine the causality to identify
the invariance in the data generation process. Zhang et al. (2020a) investigated the problem of generaliz-
ing to diverse observation spaces within the block MDP framework, such as robots equipped with different
types of cameras and sensors, which is a common scenario in reality. In the block MDP framework, the
observation space may be infinite, but we can uniquely determine the state (finite but unobservable) given
the observation. The authors proposed using invariant prediction to learn the causal representation that
generalizes to unseen observations. Similarly, Bica et al. (2021b) introduced invariant causal imitation learn-
ing, which learns the imitation policy based on invariant causal representation across multiple environments.
Wang et al. (2022) studied the causal dynamics learning problem, which attempts to eliminate irrelevant
variables and unnecessary dependencies so that policy learning will not be affected by these nuisance factors.
Saengkyongam et al. (2022) focused on the offline contextual bandit problems. Their proposed approach
involves iteratively assessing the invariance condition for various subsets of variables to learn an optimal
invariant policy. The algorithm begins by generating a sample dataset using an initial policy and then
tests the invariance of each subset across different environments. If a subset is found to be invariant, an

2The term “toy” refers to simple, synthetically constructed datasets or simulation environments that are used to experimen-
tally verify findings. It is not a concrete environment or task. We use this term consistently throughout the paper.

3When the causal effect is unidentifiable, we can resort to set identification (partial identification), deriving its upper and
lower bounds, which allows us to assess the robustness of our estimates against unobserved confounding.

4Causal induction involves the process of extracting abstract causal variables from high-dimensional, low-level pixel repre-
sentations, followed by recovering the underlying causal graph.
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optimal policy within that subset is learned through off-policy optimization. The experimental results sug-
gest that invariance is crucial for obtaining distributionally robust policies, particularly in the presence of
unobserved confounders. Ding et al. (2022) proposed an approach to address the generalization problem
in goal-conditioned reinforcement learning (GCRL). Their method involves treating the causal graph as a
latent variable and optimizing it using a variational likelihood maximization procedure. This method trains
agents to discover causal relationships and learn a causality-aware policy that is robust against changes in
irrelevant variables.

Generalizing to new dynamics is a complex issue that involves different types of variations. These variations
may include changes in physical properties (e.g., gravitational acceleration), disparities between the simula-
tion environment and reality, and alternations in the range of attribute values, etc. Sontakke et al. (2021)
proposed training RL agents to infer and categorize causal factors in the environment with experimental
behavior learned in a self-supervised manner. These behaviors can help the agent to extract discrete causal
representations from collected trajectories, which can be applicable to unseen environments, empowering the
agent to effectively generalize to unseen contexts. Lee et al. (2021) proposed an approach that conducts
interventions to identify relevant state variables for successful robotic manipulation, i.e., the features that
causally influence the outcome. The robot exhibited excellent sim-to-real generalizability after training with
domain randomization on the identified features. Zhu et al. (2021) developed an algorithm to improve the
ability of agents to generalize to rarely seen or unseen object properties. This algorithm models the envi-
ronmental dynamics with SCMs, allowing the agent to generate counterfactual trajectories about objects
with different attribute values, which leads to improved generalizability. Guo et al. (2022b) investigated
the unsupervised dynamics generalization problem, which allows the learned model to generalize to new
environments. The authors approached this challenge by leveraging the intuition that data originating from
the same trajectory or similar environments should have similar properties (hidden variables encoded from
trajectory segments) that lead to similar causal effects. To measure similarity, they employed conditional
direct effects in mediation analysis. The experimental results show that the learned model performs well in
new environmental dynamics.

3.3.2 Generalize to Different Tasks

Another important topic is how to generalize to different tasks. In the SCM framework, different tasks are
created by altering the structural equation of the reward variable or its parent nodes on the causal graph.
These tasks have the same underlying environmental dynamics, but the rewards are assigned differently.

Eghbal-zadeh et al. (2021) introduced causal contextual RL, where agents aim to learn adaptive policies
that can effectively adapt to new tasks defined by contextual variables. The authors proposed a contextual
attention module that enables agents to incorporate disentangled features as contextual factors, leading to
improved generalization compared to non-causal agents. In order to make RL more effective in complex,
multi-object environments, Pitis et al. (2022) suggested factorizing the state-action space into separate local
subsets. This approach allows for learning the causal dynamic model as well as generating counterfactual
transitions in a more efficient manner. By training agents on counterfactual data, the proposed algorithm
exhibits improved generalization to out-of-distribution tasks.

Furthermore, in reality, generalization may involve changes in both the environmental dynamics and the
task. Several studies have explored this problem from a causal viewpoint. Zhang & Bareinboim (2017)
investigated knowledge transfer across bandit agents in scenarios where causal effects are unidentifiable. The
proposed strategy combines two steps: deriving the upper and lower bounds of causal effects using structural
knowledge and then incorporating these bounds in a dynamic allocation procedure to guide the search
toward more promising actions in new bandit problems. The results indicated that this strategy dominates
previously known algorithms and achieves faster convergence rates. Dasgupta et al. (2018) explored whether
the ability to perform causal reasoning emerges from meta-learning on a simple domain with five variables.
The experimental results suggested that the agents demonstrated the ability to conduct interventions and
make sophisticated counterfactual predictions. These emergent abilities can effectively generalize to new
causal structures. Nair et al. (2019) studied the causal induction problem with visual observation. They
incorporated attention mechanisms into the agent to generate a causal graph based on visual observations
and use it to make informed decisions. The experiments demonstrated that the agent effectively generalizes to
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new tasks and environments with unknown causal structures. More recently, Huang et al. (2022c) proposed
AdaRL, a novel framework for adaptive RL that learns a latent representation with domain-shared and
domain-specific components across multiple source domains. The latent representation is then used in
policy optimization. This framework allows for efficient policy adaptation to new environments, tasks, or
observations, by estimating new domain-specific parameters using a small number of samples.

3.3.3 Other Generalization Problems

In offline RL, the agent can only learn from pre-collected datasets. In this setting, agents may encounter
previously unseen state-action pairs during the testing phase, leading to the distributional shift issue (Levine
et al., 2020). Most existing approaches mitigate this issue through conservative or pessimistic learning (Fu-
jimoto et al., 2019; Kumar et al., 2020; Yang et al., 2021b), rarely considering generalization to new states.
Zhu et al. (2022b) proposed a solution to generalize to unseen states. They recovered the causal structure
from offline data by using causal discovery techniques, and then employ an offline MBRL algorithm to learn
from the causal model. The experimental results suggested that the causal world model exhibits better
generalization performance than a traditional world model, and effectively facilitates offline policy learning.

At the end of this section, it is worth noting that in the field of causal inference, there exists a closely
related concept known as transportability. Specifically, transportability focuses on extrapolating experimen-
tal findings across domains, i.e., transferring causal effects learned in experimental studies to new domains
(populations/environments) in which only observational studies are feasible. Researchers have developed
graphical methods and a complete algorithmic program to address this challenge (Pearl & Bareinboim,
2014). Given sufficient structured knowledge (which can qualitatively determine the differences between the
two populations), this algorithmic program can help us determine whether the causal effects of the target
population can be inferred from the experimental findings of the source population. Furthermore, it can
elucidate what experimental and observational findings from the two populations are essential for such an
inference. This setting has received limited attention in the causal RL literature, whereas many studies
focus on settings that allow experiments (online data collection) to be conducted in multiple domains or use
observational data to enhance online learning. Note that this problem is a very prevalent and important
aspect of scientific investigations. As researchers in both fields engage in more active knowledge exchange,
we believe new and valuable research directions will emerge. For further information on transportability,
please refer to Pearl & Bareinboim (2014); Bareinboim & Pearl (2016).

4 Addressing Spurious Correlations through Causal Reinforcement Learning

4.1 The Issue of Spurious Correlation in Reinforcement Learning

Making reliable decisions based solely on data is inherently challenging, as correlation does not necessarily
imply causation. It is important to recognize the presence of spurious correlations, which are deceptive
associations between two variables that may appear causally related but are not. These spurious correlations
introduce undesired bias to the learning problem, posing a significant challenge in various machine learning
applications. Here are a few illustrative examples of this phenomenon.

• In recommendation systems, user behavior and preferences are often influenced by conformity, which
refers to the tendency of individuals to align with larger groups or social norms. Users may feel
inclined to conform to popular trends or recommendations. Ignoring the impact of conformity can
lead to an overestimation of a user’s preference for certain items (Gao et al., 2022);

• In image classification, when dogs frequently appear alongside grass in the training set, the classifier
may incorrectly label an image of grass as a dog. This misclassification arises because the model
relies on the background (the irrelevant factors) rather than focusing on the specific pixels that
correspond to dogs (the actual causal) (Zhang et al., 2021a; Wang et al., 2021c).

• When determining the ranking of tweets, the use of gender icons in tweets is usually not causally
related to the number of likes; their statistical correlation comes from the topic, as it influences both
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Figure 6: Causal graphs illustrating the two types of spurious correlations, with examples from real-world
applications.

the choice of icon and the audience. Therefore, it is not appropriate to determine the ranking by
gender icons (Feder et al., 2022).

If we want to apply RL in real-world scenarios, it is important to be mindful of spurious correlations, especially
when the agent is working with biased data. For instance, when optimizing long-term user satisfaction
in multiple-round recommendations, there is often a spurious correlation between exposure and clicks in
adjacent timesteps. This is because they are both influenced by item popularity. From another perspective,
when we observe a click, it may depend on user preference or item popularity, which creates a spurious
correlation between the two factors. In both scenarios, agents may make incorrect predictions or decisions,
such as only recommending popular items (a suboptimal policy for both the system and the user), and
this can further cause filter bubbles. In a nutshell, if the agent learns a spurious correlation between two
variables, it may mistakenly believe that changing one will affect the other. This misunderstanding can lead
to suboptimal or even harmful behavior in real-world decision-making problems.

4.2 How can Causality Help to Address Spurious Correlations?

The non-causal approaches lack a language for systematically discussing spurious correlations. From the
causal perspective, spurious correlations arise when the data generation process involves unobserved con-
founders (common cause) or when a collider node (common effect) serves as the condition. The former leads
to confounding bias, while the latter results in selection bias. See Figure 6 for a visual interpretation of these
phenomena. Causal graphs enable us to trace the source of spurious correlations by closely scrutinizing the
data generation process. To eliminate the bias induced by spurious correlations, it is necessary to make
decisions regarding causality instead of statistical correlations. This is where causal reasoning comes in: It
provides principled tools to analyze and deal with confounding and selective bias (Pearl, 2009b; Bareinboim
et al., 2014; Glymour et al., 2016; Bareinboim et al., 2022), helping RL agents accurately estimate the causal
effects in decision-making problems.

One may assume that on-policy RL is immune to spurious correlations since it directly learns causal effects of
the form p(r|s, do(a)) from interventional data. However, it is important to note that understanding the effect
of an action on the outcome alone is insufficient for comprehending the complete data generation process.
The influence of different covariates on the outcome also plays a crucial role. For example, in personalized
recommendation systems, the covariates can be divided into relevant and spurious features. If the training
environment consistently pairs the clicked items with specific values of spurious features (e.g., clickbait in
textual features), the agent may unintentionally learn a policy based on these spurious features. When the
feature distribution changes in the test environment, the agent may make erroneous decisions (Gao et al.,
2022). This example demonstrates the prevalence of spurious correlations in real-world decision-making
problems. Demystifying the causal relationships helps resolve such challenges.

4.3 Causal Reinforcement Learning for Addressing Spurious Correlations

Based on the underlying causal structure of the decision-making problem, spurious correlations can manifest
in two distinct types: confounding bias arising from fork structures, and selective bias arising from collider
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Table 2: Selected methods utilizing causality to address spurious correlations.

Category Paper Techniques Settings Environments or Tasks

Confounding bias

Zhang et al. (2020b) Causal graph 5 imitation Toy
Kumor et al. (2021) Causal graph imitation Toy
Swamy et al. (2022) Instrumental variables imitation Lunar Lander (OpenAI Gym)

Locomotion (PyBullet Gym)
Namkoong et al. (2020) Sensitivity analysis offline Toy
Bennett et al. (2021) Proxy variables offline Toy
Lu & Lobato (2018) Backdoor adjustment offline Pendulum (OpenAI Gym)

Cart Pole (OpenAI Gym)
MNIST

Zhang & Bareinboim (2019) Causal bound
Sensitivity analysis

online∗ Toy

Rezende et al. (2020) Backdoor adjustment offline Toy
MiniPacman
3D Maze (Unity)

Zhang & Bareinboim (2020) Causal graph
Causal bound

online∗ Toy

Wang et al. (2021b) Frontdoor adjustment
Backdoor adjustment

online∗ -

Liao et al. (2021) Instrumental variables offline -
Guo et al. (2022a) Instrumental variables offline -
Gasse et al. (2023) Backdoor adjustment online∗ Toy
Pace et al. (2023) Causal graph offline Sepsis

HiRID
Yang et al. (2022a) Causal graph online Toy

Cart Pole (OpenAI Gym)
Lunar Lander (OpenAI Gym)

Zhang & Bareinboim (2022b) Causal graph online∗ Toy
Selection bias Bai et al. (2021) Inverse probability weighting online Manipulation (OpenAI)

Deng et al. (2021) Causal graph offline D4RL

structures (as depicted by Figure 6). Accordingly, we categorize existing methods into two groups. Addition-
ally, to be self-contained, we incorporate studies on imitation learning (IL) and off-policy evaluation (OPE),
given their close relevance to policy learning in RL. The representative works are shown in Table 2.

4.3.1 Addressing Confounding Bias

We start by introducing an important technique in causal inference named do-calculus (Pearl, 1995). It is an
axiomatic system that enables us to replace probability formulas containing the do operator with ordinary
conditional probabilities. The do-calculus includes three axiom schemas that provide graphical criteria
for making certain substitutions. It has been proven to be complete for identifying causal effects (Huang &
Valtorta, 2006; Shpitser & Pearl, 2006). Derived from the do-calculus, the backdoor and frontdoor adjustment
are two widely used methods for eliminating confounding bias Glymour et al. (2016); Bareinboim et al. (2022).
The key intuition is to block spurious correlations between the treatment and outcome variables that pass
through the confounders. In situations where unobserved confounding exists, it is still possible to identify
the causal effect of interest if observed proxy variables for the confounder are available (Miao et al., 2018;
Ghassami et al., 2023). Another popular approach for addressing unobserved confounding is to identify and
employ instrumental variables (Angrist et al., 1996; Baiocchi et al., 2014). An instrumental variable, denoted
as I, must satisfy three conditions: 1) I is a cause of T (the treatment variable); 2) I affects Y (the outcome
variable) only through T ; and 3) The effect of I on Y is unconfounded. Since the instrumental variable I
influences Y only through T , and this effect is unconfounded, we can indirectly estimate the effect of T on Y
through the effect of the instrumental variable Z on Y . Furthermore, we can evaluate the robustness of the
estimated causal effect against unobserved confounding by varying the strength of the confounder’s effect,
which is referred to as sensitivity analysis (Díaz & van der Laan, 2013; Kuang et al., 2020).

5Causal graph as a technique refers to using causal graphs to describe the data generation process, and designing graphical
criteria for determining properties such as identifiability or developing algorithms based on causal graphs.
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Zhang et al. (2020b) studied a single-step imitation learning problem using a combination of demonstration
data and structural knowledge about the data-generating process. They proposed a graphical criterion for
determining the feasibility of imitation learning in the presence of unobserved confounders and a practical
procedure for estimating valid imitating policies with confounded expert data. This approach was then
extended to the sequential setting in a subsequent paper (Kumor et al., 2021). Swamy et al. (2022) de-
signed an algorithm for imitation learning with corrupted data. They proposed to use instrumental variable
regression (Stock & Trebbi, 2003) to resolve the spurious correlations caused by unobserved confounding.

Several research focused on the OPE problem, which seeks to estimate the performance of policies using
data generated by different policies. For example, Namkoong et al. (2020) conducted sensitivity analyses on
OPE methods under unobserved confounding. They derived worst-case bounds on the performance of an
evaluation policy and proposed an efficient procedure for estimating these bounds with statistical consistency,
allowing for a reliable selection of policies. Bennett et al. (2021), on the other hand, proposed a new estimator
for OPE in infinite-horizon RL. The authors established the identifiability of the policy value from off-policy
data by employing a latent variable model for states and actions (which can be seen as proxy variables
for the unobserved confounders). The authors further presented a strategy for estimating the stationary
distribution ratio using proxies, which is then utilized for policy evaluation.

Lu & Lobato (2018) introduced a novel approach called deconfounding RL, aiming to learn effective policies
from historical data affected by unobserved factors. Their method begins by estimating a latent-variable
model using observational data, which identifies latent confounders and assesses their impact on actions and
rewards. Then these confounders are utilized in backdoor adjustment to address confounding bias, enabling
the policy to be optimized based on a deconfounding model. Experimental results demonstrate the method’s
superiority over traditional RL approaches when applied to observational data with confounders. Liao et al.
(2021) also focused on the offline setting. They found that RL practitioners often encounter unobserved
confounding in medical scenarios, but there are some common sources of instrumental variables, including
preferences, distance to specialty care providers, and genetic variants (Baiocchi et al., 2014). Therefore, they
proposed an efficient algorithm to recover the transition dynamics from observational data using instrumen-
tal variables, and employ a planning algorithm, such as value iteration, to search for the optimal policy.
Similarly, Guo et al. (2022a) embraced a comparable approach when tackling the POMDP problem. They
addressed the estimation of the transfer kernel by framing it as a series of confounded regression problems
that can be solved by selecting suitable instrumental variables. After constructing confidence regions for
the model parameters, the final policy can be derived using a pessimistic planning method within these
regions. Wang et al. (2021b), on the other hand, studied how confounded observational data can facilitate
exploration during online learning. They proposed the deconfounded optimistic value iteration algorithm,
which combines observational and interventional data to update the value function estimates. This algorithm
effectively handles confounding bias by leveraging backdoor and frontdoor adjustment, achieving a smaller
regret than the optimal online-only algorithm. Gasse et al. (2023) studied MBRL for POMDP problems.
Specifically, They used ideas from the do-calculus framework to formulate model learning as a causal infer-
ence problem. They introduced a novel method to learn a latent-based causal transition model capable of
explaining both interventional and observational regimes. By utilizing the latent variable, they were able to
recover the standard transition model, which, in turn, facilitated the training of RL agents using simulated
transitions. While the majority of existing research focuses on addressing identifiable hidden confounding,
such as using instrumental or backdoor variables, hidden confounding is possibly non-identifiable in some
real-world scenarios. Pace et al. (2023) showed that even in such scenarios, a careful analysis from a causal
perspective can still contribute to significant improvements in policy learning. Specifically, they proposed
a new type of uncertainty known as “delphic uncertainty”, which, in contrast to the widely studied epis-
temic uncertainty and aleatoric uncertainty, quantifies the variability across world models compatible with
the observational data. They devised an offline RL algorithm that incorporates this uncertainty as a Bell-
man penalty. Their algorithm demonstrates effectiveness in reducing non-identifiable confounding bias on
two medical datasets. Yang et al. (2022a) proposed the causal inference Q-network algorithm to address
confounding bias arising from various types of observational interferences, such as Gaussian noise and obser-
vation black-out. The authors began by analyzing the impact of these interferences on the decision-making
process using causal graphs. They then devised a novel algorithm that incorporates the interference label
to learn the relationship between interfered observations and Q-values in order to maximize rewards in the
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Figure 7: Causal graphs illustrating the confounded MDP (left) discussed in Wang et al. (2021b) and a DTR
with two stages of treatments (right). The relationship between these two settings can be derived easily. If
none of the unobserved confounders {Zt} are influenced by the states {St}, we can aggregate them into a
global confounder Z. Let Y denotes the outcome of treatments in a DTR, and let X and T represent the
covariates and treatments, respectively. By decomposing the states into covariates and treatments at each
step (e.g., s2 = {X1, T1, X2}), a confounded MDP reduces to a DTR.

presence of observational interference. The model learns to infer the interference label and adjusts the policy
accordingly. Experimental results demonstrate the algorithm’s improved resilience and robustness against
different types of interferences. Rezende et al. (2020) discussed the application of partial models in RL, a
model-based approach that does not require modeling the complete (and usually high-dimensional) obser-
vation. They showed that the causal correctness of a partial model can be influenced by behavior policies,
leading to an overestimation of the rewards associated with suboptimal actions. To address this issue, the
authors proposed a simple yet effective solution. Since we have full control of the agent’s computational
graph, we can choose any node situated between the internal state and the produced action as a backdoor
variable, e.g., the intended action. By applying backdoor adjustment, we can ensure the causal correctness
of partial models.

A less familiar but highly important research topic for RL researchers is dynamic treatment regimes
(DTRs) (Murphy, 2003). Closely related to the fields of biostatistics, epidemiology, and clinical medicine,
this topic focuses on determining personalized treatment strategies, including dosing or treatment planning.
It aims to maximize the long-term clinical outcome and can be mathematically modeled as an MDP with
a global confounder, as depicted in Figure 7. In real-world medical scenarios, global confounders such as
genetic characteristics and lifestyle often exist but may not be observed or recorded due to various reasons.
When applying RL to learn DTRs, we must properly handle the confounders; thus, it is highly relevant to
the topic discussed in this section.

Zhang & Bareinboim (2019) considered a setting in which causal effect is not identifiable. They proposed
an online learning algorithm to solve DTRs by combining confounded observational data. Their algorithm
hinges on sensitivity analyses and incorporates causal bounds to accelerate the learning process. This online
learning setting has gained popularity as it allows for conducting sequential and adaptive experimentation
to maximize the outcome variable. However, a significant challenge arises when dealing with a vast space of
covariates and treatments, where online learning algorithms may result in unacceptable regret. To address
this challenge, Zhang & Bareinboim (2020) proposed an efficient procedure that leverages the structural
knowledge encoded in the causal graph to reduce the dimensionality of the candidate policy space. By
exploiting the sparsity of the graph, where certain covariates are affected by only a small subset of treatments,
the proposed method exponentially reduces the dimensionality of the learning problem. The experimental
results consistently demonstrate that the proposed method outperforms state-of-the-art (SOTA) methods in
terms of performance. More recently, Zhang & Bareinboim (2022b) further explored the challenge of policy
space with mixed scopes, i.e., the agent has to optimize over candidate policies with varying state-action
spaces. This becomes particularly crucial in medical domains such as cancer, HIV, and depression, where
finding the optimal combination of treatments is essential for achieving desired outcomes. To tackle this
issue, the authors propose a novel method that utilizes causal graphs to identify the maximal sets of variables
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that are causally related to each other. These sets are then utilized to parameterize SCMs, enabling the
representation of different interventional distributions using a minimal set of components, thereby enhancing
the efficiency of the learning process.

A notable trend that emerges from the above literature is the combination of observational and experimental
data from diverse sources, commonly referred to as data fusion (Bareinboim et al., 2022). This idea has been
proven to be effective in addressing complex problems related to reasoning and decision-making (Zhang &
Bareinboim, 2019; Lee et al., 2020b; Correa et al., 2021; Zhang et al., 2022b; Gasse et al., 2023). It represents
an important research direction in causal inference and may have profound implications for reinforcement
learning. In reinforcement learning, agents often have access to both observational and experimental data,
e.g., augmenting online learning with confounded observational data collected by other policies. As a result,
data fusion introduces new challenges and holds promising potential for the research community.

4.3.2 Addressing Selection Bias

Selective bias occurs when data samples fail to represent the target population. For example, selective bias
arises when researchers seek to understand the effect of a certain drug on curing a disease by investigating
patients in a selected hospital. This is because those patients may differ significantly from the population
regarding their residence, wealth, and social status, making them unrepresentative.

Bai et al. (2021) investigated the selective bias associated with using hindsight experience replay (HER)
in goal-conditioned reinforcement learning (GCRL) problems. In particular, HER relabels the goal of each
collected trajectory and computes new rewards, thereby allowing the agent to learn from failure experiences
—— instances where it failed to reach the original goal but succeeded in reaching the relabeled one. How-
ever, the relabeled target distribution may not accurately represent the original target distribution. This
discrepancy can misguide agents trained with HER, leading them to mistakenly believe that repeating deci-
sions made in the failure experience will result in high rewards. To address this issue, the authors proposed
to use inverse probability weighting, a technique in causal inference, to assign appropriate weights to the
rewards computed for the relabeled goals. By reweighting the samples, the agent can mitigate the selection
bias induced by HER and effectively learn from a balanced mixture of successful and unsuccessful outcomes,
ultimately enhancing the overall performance. Deng et al. (2021) examined the offline RL problem through
the lens of selective bias. In the offline setting, agents are vulnerable to the spurious correlation between
uncertainty and decision-making, which can result in learning suboptimal policies. Taking a causal perspec-
tive, the empirical return is the outcome of both uncertainty and actual return. Since it is infeasible to
reduce uncertainty by acquiring more data in the offline setting, an agent might mistakenly assume a causal
relationship between uncertainty and actual return. As a result, it may favor policies that achieve high
returns by chance (high uncertainty). To address this issue, the authors propose quantifying uncertainty and
using it as a penalty term in the learning process. The results show that this method outperforms various
baselines that do not consider spurious correlations in the offline setting.

In general, a standard reinforcement learning setup allows agents to learn from the same environment on
which they will be tested, so issues related to sample representativeness are often not a primary concern.
However, as discussed above, specific algorithmic choices or offline learning can introduce selection bias.
Overall, this issue remains relatively underexplored in reinforcement learning. In the realm of causal infer-
ence, substantial efforts have been dedicated to addressing the challenge of selection bias. For instance, the
graphical conditions proposed by Bareinboim et al. (2014) offer a method for assessing the recoverability of
certain conditional probabilities and causal effects from data affected by selection bias. These efforts provide
valuable tools for further investigations into this issue in reinforcement learning.

In summary, this section presents some instances of spurious correlations in reinforcement learning and the
causal RL methods to solve these problems. A careful reader may notice the subtle connection between
spurious correlation and generalization. For instance, we can treat unobserved confounders as contextual
variables and create new domains by applying external interventions to these variables. In such cases,
policies that exhibit strong generalization (robust to different contexts) tend to be less sensitive to spurious
correlations, and vice versa. Therefore, the distributional robustness framework designed for generalization
may also serve as a tool to mitigate spurious correlations under certain conditions (Ding et al., 2023).
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Table 3: Selected methods utilizing causality to optimize sample efficiency.

Category Paper Techniques Settings Environments or Tasks

Representation Learning

Sontakke et al. (2021) Causal representation learning offline to online Manipulation (CausalWorld)
Lee et al. (2021) Intervention

Domain randomization
online Manipulation (Isaac Gym)

Huang et al. (2022b) Causal dynamics learning online∗ Car Racing (OpenAI Gym)
VizDoom

Wang et al. (2022) Causal dynamics learning online∗ Chemical
Manipulation (robosuite)

Directed Exploration Seitzer et al. (2021) Intervention online Manipulation (OpenAI)

Data Augmentation

Buesing et al. (2019) Counterfactual reasoning online Sokoban
Lu et al. (2020) Counterfactual reasoning online Cart Pole (OpenAI Gym)

MIMIC-III
Pitis et al. (2020) Counterfactual reasoning offline Spriteworld

Pong (Roboschool)
Manipulation (OpenAI)

Zhu et al. (2021) Counterfactual reasoning online Manipulation (CausalWorld)

However, by comparison, causal RL methods for addressing generalization and spurious correlation may not
share the same focus and techniques. The former is usually performance-oriented, focusing on how well a
learned policy performs on new domains. In contrast, the latter is more focused on identifying the causal
effects of interest rather than dealing with the distributional shifts associated with confounding variables.
Technically, research on spurious correlations often introduces structural assumptions (e.g., causal graphs)
and employs causal inference techniques like backdoor/frontdoor adjustments to eliminate biases. In recent
years, there has been an interesting trend (Zhang et al., 2021a; Cui & Athey, 2022; Ding et al., 2023) in
exploring the intersection of the two research fields, which has the potential to offer valuable insights and
techniques to researchers in both fields.

5 Enhancing Sample Efficiency through Causal Reinforcement Learning

5.1 The Issue of Sample Efficiency in Reinforcement Learning

In RL, training data is typically not provided before interacting with the environment. Unlike supervised
and unsupervised learning methods that directly learn from a fixed dataset, an RL agent needs to actively
gather data to optimize its policy towards achieving the highest return. An effective RL algorithm should
be able to master the optimal policy with as few experiences as possible (in other words, it need to be
sample-efficient). Current methods often require collecting millions of samples to succeed in even simple
tasks, let alone more complicated environments and reward mechanisms. For example, AlphaGo Zero was
trained over roughly 3×107 games of self-play (Silver et al., 2017); OpenAI’s Rubik’s Cube robot took nearly
104 years of simulation experience (OpenAI et al., 2019). This inefficiency entails a high training cost and
prevents the use of RL techniques for solving real-world decision-making problems. Therefore, the sample
efficiency issue is a core challenge in RL, necessitating the development of RL algorithms that can save time
and computational resources. In this section, in addition to examining sample-efficient algorithms that are
designed to minimize regret in online learning, we also cover a number of approaches related to knowledge
transfer. These methods require only a small number of samples from the target domain to converge after
pre-training on the source domains, thus indirectly enhancing the sample efficiency within the target domain.

5.2 Causal Reinforcement Learning for Addressing Sample Inefficienty

Sample efficiency has been extensively explored in RL literature (Kakade, 2003; Osband et al., 2013; Grande
et al., 2014; Yu, 2018) and causality offers some valuable principles for designing sample-efficient RL al-
gorithms. Accordingly, we can organize existing research into three main lines: representation learning,
directed exploration, and data augmentation. The representative works are shown in Table 3.
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5.2.1 Representation Learning for Sample Efficiency

A good representation of the environment can be beneficial for sample-efficient RL. By providing a compact
and informative representation of the environment, an RL agent can learn more effectively with fewer samples.
This is because a good representation can help the agent identify important features of the environment and
abstract away unnecessary details, allowing the agent to make better use of its experiences.

Motivated by the principle of independent causal mechanisms (Schölkopf et al., 2021), Sontakke et al. (2021)
argue that the information in an observed trajectory is the sum of information “injected” by different causes.
Thus, when learning in multiple environments with different physical properties, if the collected trajectories
are well-clustered, it suggests that there may be only a single causal feature that differs among these trajec-
tories, such as the mass, size, or shape of an object. Based on this idea, they employ clustering performance
to induce experimental behavior and use clustering results as a surrogate for causal representation. With the
state augmented by these representations, the learned policies exhibit outstanding zero-shot generalization
ability and require only a small number of training samples to converge in new environments.

Figure 8: An illustration of a state transition between
adjacent time steps. (Left) No abstraction. All vari-
ables are fully connected. (Middle) An irrelevant co-
variate S1 is removed but the rest are still fully con-
nected. (Right) Only the causal edges are preserved.

Another way to improve sample efficiency through
representations is state abstraction. Lee et al. (2021)
assumed the availability of an environmental model
and used causal reasoning to identify relevant con-
text variables. Specifically, the proposed method
conducts interventions to alter one context variable
at a time and observes the causal influence on the
outcome. This approach effectively reduces the di-
mensionality of the state space and simplifies the
learning problem. However, in many scenarios, di-
rect intervention may not be feasible. Some non-
causal approaches (Jong & Stone, 2005; Zhang et al.,
2022a) achieve abstraction by aggregating states
that yield the same reward sequence. While these
approaches help reduce the dimensionality of the state space, they still suffer from redundant dependencies
and are vulnerable to spurious correlations. In contrast, causal relationships in the real world are typically
sparse and stable(Schölkopf et al., 2021; Huang et al., 2022a), leading to more effective abstraction. See
Figure 8 for a comparison between these two types of abstraction.

When observations involve high-dimensional and low-level data, causal representation learning helps identify
the relevant high-level concepts for the given tasks. Therefore, many causal RL approaches are motivated
by the idea that exploiting the true causal structure of the problem will reduce the complexity of learning,
and thus improve sample efficiency. For example, Huang et al. (2022b) introduced a method to learn action-
sufficient state representations from data collected by a random policy. These representations consist of a
minimal set of state variables that contain sufficient information for decision-making. Wang et al. (2022),
on the other hand, studied task-independent state abstraction which only omits action-irrelevant variables
that neither change with actions nor influence actions’ results, identified through independence tests based
on conditional mutual information. Their approach includes variables that are potentially useful for future
tasks rather than being restricted to a particular training task.

5.2.2 Directed Exploration for Sample Efficiency

While a good representation of the environment is beneficial, it is not necessarily sufficient for sample efficient
RL (Du et al., 2020). To improve sample efficiency, researchers have been studying various exploration
strategies (Yang et al., 2022b). Some research has drawn inspiration from developmental psychology (Ryan &
Deci, 2000; Barto, 2013) and used intrinsic motivation to motivate agents to explore unknown environments
efficiently (Pathak et al., 2017; Burda et al., 2022). This can be done by giving bonuses to exploratory
behaviors that discover novel or uncertain states. However, from a causal perspective, it is important to
note that not all regions of high uncertainty are equally important. Those regions which establish a causal
relationship with the task’s success are more worthy of exploration.
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Figure 9: An example of counterfactual data augmentation following the counterfactual reasoning procedure:
abduction, action, and prediction. The outcome of this procedure is then used to augment the training data
observed in the factual world.

Seitzer et al. (2021) studied the problem of directed exploration in robotic manipulation tasks, where the
agent must physically interact with the target object to generate valuable data before acquiring complex
manipulation skills such as object relocation. The authors proposed a method to quantify the causal influence
of actions on the object and incorporated it into the exploration process to guide the agent. Experimental
results demonstrate that the proposed method significantly improves the sample efficiency across various
robotic manipulation tasks. On the other hand, Sontakke et al. (2021) introduced a method to learn self-
supervised experiments based on the principle of independent causal mechanisms. This method utilizes the
concept of One-Factor-at-A-Time (OFAT), wherein good experimental behavior should examine one factor
at a time while keeping others constant. The rationale behind this approach is that altering only one causal
factor should yield less information compared to changing multiple factors simultaneously. Consequently,
the learning problem of experimental behavior can be reformulated as minimizing the amount of information
contained in the generated data (also referred to as maximizing “causal curiosity”). Empirical results show
that RL agents pre-trained with causal curiosity exhibit improved efficiency in solving new tasks.

5.2.3 Data Augmentation for Sample Efficiency

Data augmentation is a common machine learning technique aimed at improving algorithm performance by
generating additional training data. Counterfactual data augmentation is a causality-based approach that
uses a causal model to imitate the environment and generate data that is unobserved in the real world. This
is particularly useful for RL problems because collecting large amounts of real-world data is often difficult or
expensive. By simulating diverse counterfactual scenarios, RL agents can determine the effects of different
actions without interacting with the environment, resulting in sample-efficient learning.

The implementation of counterfactual data augmentation follows a counterfactual reasoning procedure 6 that
consists of three steps (Pearl, 2009a, Chapter 7), as demonstrated in Figure 9:

6This procedure intuitively elucidates the computational process for evaluating counterfactual statements based on available
evidence. Nonetheless, it is not always feasible in practice. Abduction necessitates access to the distribution of exogenous
variables, while action and prediction require knowledge about the underlying functional relationships. In the causal inference
literature, extensive research has been dedicated to investigating the combination of qualitative assumptions and data to identify
counterfactual distributions. For more details, please refer to Shpitser & Pearl (2007); Correa et al. (2021); Zhang et al. (2022b).
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1. Abduction is about using observed data to infer the values of the exogenous variables U ;

2. Action involves modifying the structural equations of the variables of interest in the SCM; and

3. Prediction uses the modified SCM to generate counterfactual data by plugging the exogenous
variables back into the equations for computation.

While traditional model-based reinforcement learning (MBRL) methods (Wang et al., 2019; Luo et al., 2022)
can also generate samples by fitting a probabilistic density model, they lack the capability to effectively model
exogenous variables. This limitation can lead to under-fitting when dealing with complex distributions
of exogenous variables (Buesing et al., 2019). In contrast, counterfactual data augmentation explicitly
incorporates exogenous variables using the SCM framework. From a Bayesian perspective, traditional MBRL
approaches implicitly rely on a fixed prior, such as the Gaussian distribution, for exogenous variables, whereas
counterfactual data augmentation leverages additional information (evidence) from the collected data to
estimate the posterior distribution of exogenous variables. Consequently, counterfactual data generation
holds promise in producing high-quality training data, potentially leading to improved policy evaluation and
optimization.

Buesing et al. (2019) proposed the counterfactually-guided policy search (CF-GPS) algorithm, designed to
search for the optimal policies in POMDPs. They framed model-based POMDP problems using SCMs.
The proposed algorithm evaluates the outcome of counterfactual actions based on real experience, thereby
improving the utilization of experience data. In a similar vein, Lu et al. (2020) proposed a sample-efficient
RL algorithm based on the SCM framework. Their objective was to address issues related to mechanism
heterogeneity and data scarcity. Their approach empowers agents to evaluate the potential consequences of
counterfactual actions, thereby circumventing the need for actual exploration and alleviating biases arising
from limited experience. Pitis et al. (2020) presented a novel framework that leverages a locally factored
dynamics model to generate counterfactual transitions for RL agents. Specifically, the term “locally factored”
indicates that the state-action space can be partitioned into a disjoint union of local subsets, each has its
own causal structure. This locally factored approach allows for an exponential reduction in the sample
complexity of training a dynamics model and enables reliable generalization to unseen states and actions.
More recently, Zhu et al. (2021) proposed a novel approach to overcome the limitations of existing MBRL
methods in the context of robotic manipulation tasks. These tasks are particularly challenging due to the
diversity of object properties and the risk of robot damage. The proposed method uses SCMs to capture
the underlying environmental dynamics and generate counterfactual episodes involving rarely seen or unseen
objects. Experimental results demonstrate superior sample efficiency, requiring fewer environment steps to
converge compared to existing MBRL algorithms.

6 Promoting Explainability, Fairness, and Safety with Causal Reinforcement
Learning

In general, the primary objective of RL is to maximize returns. However, with the increasing integration of
RL-based automated decision systems into our daily lives, it becomes imperative to examine the interactions
between RL agents and humans, as well as their potential societal implications. In this section, we explore
causal RL methods that aim to address and alleviate challenges related to explainability, fairness, and safety.
The representative works are shown in Table 4.

6.1 Explainability

6.1.1 Explainability in Reinforcement Learning

Explainability in RL refers to the ability to understand and interpret the decisions made by an RL agent. It
is important to both researchers and general users. Explanations reflect the knowledge learned by the agent,
facilitating in-depth understanding. They also allow researchers to participate efficiently in the design and
continual optimization of an algorithm. Furthermore, explanations unveil the internal logic of the decision-
making process. When agents outperform humans, we can extract valuable insights from these explanations
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Table 4: Selected methods utilizing causality for goals beyond maximizing returns.

Category Paper Techniques Settings Environments or Tasks

Explainability

Foerster et al. (2018) Counterfactual online StarCraft
Madumal et al. (2020) Counterfactual reasoning online OpenAI Gym

StarCraft
Bica et al. (2021a) Counterfactual reasoning imitation Toy

MIMIC-III
Mesnard et al. (2021) Counterfactual reasoning online Toy

Key-to-Door (Not accessible)
Interleaving (Not accessible)

Tsirtsis et al. (2021) Counterfactual reasoning online Toy
Therapy

Triantafyllou et al. (2022) Counterfactual reasoning online Goofspiel (Not accessible)
Herlau & Larsen (2022) Mediation analysis online Toy

DoorKey (Not accessible)

Fairness
Zhang & Bareinboim (2018) Counterfactual reasoning

Mediation analysis
offline Toy

Huang et al. (2022c) Causal graph
Causal reasoning

online Toy

Balakrishnan et al. (2022) Causal graph
Counterfactual reasoning

online Toy

Safety Hart & Knoll (2020) Counterfactual reasoning offline BARK-ML
Everitt et al. (2021) Causal graph online -

to inform human practice within a specific domain. For general users, explanations provide a rationale behind
each decision, thereby enhancing their comprehension of intelligent agents and instilling greater confidence
in the agent’s capabilities.

6.1.2 Explainable Reinforcement Learning with Causality

Explainable RL methods can be broadly categorized into two groups: post hoc and intrinsic ap-
proaches (Puiutta & Veith, 2020; Heuillet et al., 2021). Post hoc explanations are provided after the model
execution, whereas intrinsic approaches inherently possess transparency. Post hoc explanations, such as
the saliency map approach (Greydanus et al., 2018; Mott et al., 2019), often rely on correlations. How-
ever, as we mentioned earlier, conclusions drawn based on correlations may be unreliable and fail to answer
causal questions. On the other hand, intrinsic explanations can be achieved using interpretable algorithms,
such as linear regression or decision trees, but the limited modeling capacity of these algorithms may prove
insufficient in explaining complex behaviors (Puiutta & Veith, 2020).

In contrast, humans possess an innate and powerful ability to explain the connections between different events
through a “mental causal model (Sloman, 2005)”. This cognitive ability enables us to employ causal language
in our everyday interactions, using phrases such as “because,” “therefore,” and “if only.” By harnessing causal
relationships, we acquire natural and flexible explanations that do not rely on specific algorithms or models,
thereby greatly facilitating efficient communication and collaboration. Drawing inspiration from human
cognition, we can integrate causality into RL to provide explanations that enable agents to articulate their
decisions and comprehension of the environment and tasks using causal language. Furthermore, in cases
when the agent makes mistakes, we can respond with tailored solutions guided by causal insights.

One way to generate explanations is to use the concept of counterfactuals such as exploring the minimal
changes necessary to produce a different outcome. The term “counterfactual” is popular in multi-agent
reinforcement learning (MARL). For example, Foerster et al. (2018) proposed a method named counterfactual
multi-agent policy gradients for efficiently learning decentralized policies in cooperative multi-agent systems.
More precisely, counterfactuals help resolve the challenge of multi-agent credit assignment so that agents
and humans can better understand the contribution of individual behavior to the team. Some subsequent
studies followed the same idea (Su et al., 2020; Zhou et al., 2022). These approaches did not perform the
complete counterfactual reasoning procedure as shown in Figure 9, missing the critical step of abduction,
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which offers opportunities for further enhancements. More recently, Triantafyllou et al. (2022) established
a connection between Dec-POMDPs and SCM, enabling them to investigate the credit assignment problem
in MARL using causal language. They proposed to formalize the notion of responsibility attribution based
on actual causality, as defined by counterfactuals, which is a significant stride in developing a rigorous
framework that supports accountable MARL research. Mesnard et al. (2021), on the other hand, studied
the temporal credit assignment problem, i.e., measuring an action’s influence on future rewards. Inspired by
the concept of counterfactuals from causality theory, the authors proposed conditioning value functions on
future events, which separate the influence of actions on future rewards from the effects of other sources of
stochasticity. This approach not only facilitates explainable credit assignment but also reduces the variance
of policy gradient estimates.

Madumal et al. (2020) used theories from cognitive science to explain how humans understand the world
through causal relationships and how these relationships can help us understand and explain the behavior
of RL agents. They presented an approach that integrates an SCM into reinforcement learning and used the
learned model to generate explanations of behavior based on counterfactual analysis. For example, when
quiring why a Starcraft II agent builds supply depots instead of barracks (a typical counterfactual query),
the agent can respond by explaining that constructing supply depots is more desirable, as it helps increase
the number of destroyed units and buildings. To evaluate the proposed approach, a study was conducted
involving 120 participants. The results demonstrate that the causality-based explanations outperformed
other explanation models in terms of understanding, explanation satisfaction, and trust. Bica et al. (2021a)
proposed an innovative approach to gain insights into expert decision processes by integrating counterfactual
reasoning into batch inverse reinforcement learning. Their method focuses on learning explanations of expert
decisions by modeling their reward function based on preferences with respect to counterfactual outcomes.
This framework is particularly helpful in real-world scenarios where active experimentation may not be
feasible. Tsirtsis et al. (2021) conducted a study on the identification of optimal counterfactual explanations 7

for a sequential decision process. They approached this problem by formulating it as a constrained search
problem and devised a polynomial time algorithm based on dynamic programming to find the solution.
Specifically, this problem requires the algorithm to use a causal model of the environment to search for
another sequence of actions that differs from the observed sequence of actions by a specified number of
actions. The study conducted by Herlau & Larsen (2022) explores the application of mediation analysis in
RL. The proposed method focuses on training an RL agent to optimize natural indirect effects, which allows
for identifying critical decision points. For instance, in the task of unlocking a door, the agent can effectively
recognize the event of acquiring a key. By leveraging mediation analysis, the agent can acquire a concise
and interpretable causal model, enhancing its overall performance and explanatory capabilities.

6.2 Fairness

6.2.1 Fairness in Reinforcement Learning

In addition to explainability, we also want agents to align with human values and avoid potential harm
to human society, with fairness being a key consideration. As machine learning applications continue to
permeate various aspects of our daily lives, fairness is increasingly recognized as a significant concern by
business owners, general users, and policymakers (Carey & Wu, 2022). In real-world scenarios, fairness
concerns often exhibit a dynamic nature (Gajane et al., 2022), involving multiple decision rounds. For
example, resource allocation and college admissions can be modeled as MDPs (D’Amour et al., 2020),
wherein actions have cumulative effects on the population, leading to dynamic changes in fairness. Ignoring
this dynamic nature of a system may lead to unintended consequences, e.g., exacerbating the disparity
between advantaged and disadvantaged groups (Liu et al., 2018; Creager et al., 2020; D’Amour et al., 2020).
In decision-making problems like these, RL agents should strive to genuinely benefit humans and promote
social good, avoiding any form of discrimination or harm towards specific individuals or groups.

7Remark that the term “counterfactual explanation” is commonly used in the field of explainability. It refers to a broad
range of methods that offer explanations by analyzing the changes that could result from altering the inputs to a model in a
particular way. These methods do not necessarily imply causality. For further details, please refer to Verma et al. (2022).
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6.2.2 Fair Reinforcement Learning with Causality

When considering the application of reinforcement learning to solve fairness-aware decision-making problems,
it is crucial to first examine the available prior knowledge. Detailed causal modeling allows us to characterize
and understand the intricate interplay between decision-making and environmental dynamics (Zhang et al.,
2020c; Tang et al., 2023). Specifically, we can determine what observable variables and latent factors are
involved in a specific problem and how they affect (long-term) fairness. For example, Balakrishnan et al.
(2022) used causal graphs to study fairness principles in decision-making problems. They encoded these
principles into causal, non-causal and utility components, and analyzed the relationship between different
causal paths and fairness. The author then turned fairness measures into constraints to enforce certain
fairness principles, thereby framing fair policy learning into a constrained optimization problem.

To ensure fairness and prevent discrimination, it is sometimes necessary to consider counterfactual reason-
ing (Plecko & Bareinboim, 2022; Pearl & Mackenzie, 2018, Chapter 9). For example, in Carson v. Bethlehem
Steel Corporation (1996) 8, the ruling stated that the core of discrimination issues lies in determining whether
an individual or a group would have been treated differently by altering only the sensitive attribute (e.g., sex,
age, and race) while keeping other factors constant. This is apparently a counterfactual statement. Zhang
& Bareinboim (2018) introduced the SCM framework in fair decision-making problems, which provides re-
searchers with a formal language to discuss fairness issues, particularly regarding counterfactual queries.
Based on the causal language, the authors propose counterfactual direct effects, indirect effects, and spuri-
ous effects, which correspond to different types of discrimination. Further, the authors derived the causal
explanation formula, which quantitatively analyzes and explains the observed disparities of decisions and
helps us to examine the influence of discrimination within the decision-making process. Huang et al. (2022c)
studied fairness in recommendation scenarios, focusing on the contextual bandits problem. They employed
causal graphs to formally analyze the fairness concerns related to this problem, introducing a concept known
as counterfactual individual fairness. Specifically, this concept involves evaluating the expected reward an
individual would have received if placed in a different sensitive group. They designed an algorithm that esti-
mates the fairness discrepancy using do-calculus. The experimental results demonstrate that their proposed
approach not only enhances fairness but also maintains good recommendation performance.

Various types of fairness measures have been studied extensively in fairness literature. However, as high-
lighted by Kusner et al. (2017) and Zhang & Bareinboim (2018), fairness measures built upon correla-
tions (Zafar et al., 2015; Wen et al., 2021), e.g., demographic parity and equal opportunity, do not explicitly
differentiate the mechanisms through which sensitive attributes or other factors influence outcomes, which
may increase discrimination in certain scenarios. Plecko & Bareinboim (2022) proposed a framework for
fairness analysis through a causal lens, relating the observed changes to the unobservable causal mecha-
nisms. They articulated a principled framework to quantify and decompose fairness measures, as well as the
interplay between these measures when examining fairness from a population to an individual level. The
authors also provided insightful illustrations of these concepts using a range of examples. Finally, we note
that there has been a growing body of research papers investigating the intersection of causality and fair
decision-making in recent years (Nabi et al., 2019; Creager et al., 2020; Zhang et al., 2020c; Tang et al.,
2023; Plecko & Bareinboim, 2023), but how to apply causal reinforcement learning techniques to solve such
problems remains to be further explored.

6.3 Safety

6.3.1 Safety in Reinforcement Learning

Safety is a crucial concern in RL (Garcıa & Fernández, 2015; Gu et al., 2022). RL agents may sometimes
act unexpectedly, especially when faced with unseen situations. This issue poses a significant risk in safety-
critical applications, such as healthcare or autonomous vehicles, where even a single error could have severe
consequences. Additionally, RL agents may prioritize higher returns over their own safety, known as the
agent safety problem (Fulton & Platzer, 2018; Beard & Baheri, 2022). For instance, in domains like robotic
control, agents may sacrifice their lifespan for a higher mission completion rate. Addressing these safety

8https://caselaw.findlaw.com/us-7th-circuit/1304532.html
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Figure 10: A schematic diagram illustrating the integration of causality into the reinforcement learning
process. The numbered edges represent some key components: 1) Abstraction and extraction of causal
representations from raw observations; 2) Directed exploration guided by causal knowledge; 3) Fusing (pos-
sibly confounded) data; 4) Incorporating causal assumptions or knowledge from humans. 5) Providing
causality-based explanations; 6) Generalization and knowledge transfer; 7) Learning causal world models; 8)
Counterfactual data generation; 9) Planning with world models; 10) Enhanced training of policies and value
functions with causal reasoning.

concerns and developing robust methods to ensure safe decision-making in RL are vital for the practical
deployment of RL systems in real-world applications.

6.3.2 Safe Reinforcement Learning with Causality

Safe RL problems are typically formulated as constrained MDPs (Altman, 1995; 1999), which extend MDPs
by incorporating an additional constraint set to express various safety concerns. Existing methods primarily
focus on preventing constraint violations (Achiam et al., 2017; Chow et al., 2017), and seldom explicitly
considering causality. Causal inference provides some valuable tools for studying safety. As an example,
Hart & Knoll (2020) investigated the safety issue relates to autonomous driving. Researchers can conduct
counterfactual policy evaluations before deploying any policy to the real world by utilizing counterfactual
reasoning. The experimental results show that their method demonstrated a high success rate while signifi-
cantly reducing the collision rate. On the other hand, Everitt et al. (2021) studied a critical concern known
as reward tampering, which refers to the potential for RL agents to manipulate their reward signals. This
manipulation can lead to unintended consequences and undermine the effectiveness of the learning process,
thus posing a potential safety threat. In this paper, the authors presented a set of design principles aimed
at developing RL agents that are robust against reward tampering, ensuring their behavior remains aligned
with the intended objectives. To establish these design principles, the authors developed a causal framework
supported by causal graphs, which provide a precise and intuitive understanding of the reward tampering
issue. In summary, incorporating causality helps identify potential safety threats, develop preventive so-
lutions, and trace the causes behind unexpected outcomes, thereby preventing RL agents from repeatedly
breaching safety constraints. As a result, RL methods and systems can be employed safely and responsibly,
reducing the risk of catastrophic consequences.

We summarize the core ideas discussed spanning sections 3 to 6 by presenting Figure 10. This schematic
diagram captures the various approaches to integrating causality into the reinforcement learning process,
highlighting the key components and their interactions. As we conclude this section, we recognize that while
significant progress has been made in the field of causal RL, there remain important yet underexplored
avenues for future research and development. Many open problems persist within the four core challenges
we have discussed. In the final section of this paper, we turn our attention to the limitations and future
directions of causal RL. By examining these aspects, we aim to inspire future studies and contribute to the
continued advancement of causal RL, paving the way for new breakthroughs and applications.

26



Under review as submission to TMLR

7 Limitations and Future Directions

7.1 Limitations

So far, we have demonstrated that causal RL methods hold great promise in enhancing the decision-making
capabilities of RL agents by enabling them to understand and leverage causal relationships. However, it
is crucial to acknowledge the limitations associated with these methods. In this part, we will outline the
limitations that researchers and practitioners may encounter when employing causal RL techniques.

One of the foremost limitations lies in the requirement for domain knowledge. Many causal RL methods
heavily rely on causal graphs, thus, making accurate causal assumptions is of significance. For example, when
dealing with unobserved confounding, the use of proxy variables and instrumental variables may introduce
additional risks (Martens et al., 2006; Sainani, 2018; Cui et al., 2023). An inaccurate representation of the
variables of interest through proxies can introduce new confounding or other forms of biases. In terms of
instrumental variables, meeting all the rigorous conditions in its definition or establishing and validating
these conditions in practical scenarios can be highly challenging. These limitations highlight the importance
of carefully considering the underlying assumptions and the potential risks associated with the lack of
knowledge.

In some real-world scenarios, the raw data is often unstructured, such as images and textual data. The causal
variables involved in the data generation process may remain unknown, necessitating the development of
approaches to extract causal representations from high-dimensional raw data. However, the presence of
unobserved confounders may complicate the representation learning process. Learning a causal model in
a latent space is generally infeasible without sufficient domain knowledge. Effectively extracting causal
representations thus relies on making certain assumptions (Schölkopf et al., 2021). Learning a causally
correct model with limited prior knowledge poses a significant challenge (Rezende et al., 2020). In certain
scenarios, acquiring a causal model can be more demanding than directly learning the optimal policies, which
may offset the sample efficiency gains.

Moreover, scaling causal RL to complex environments presents a significant challenge due to increased
computational costs and model complexity. For example, the algorithm proposed by Sontakke et al. (2021)
exhibits exponential growth in complexity. To simplify the learning problem, Buesing et al. (2019) assumed
access to the true transition function and reward function in their experiments, which significantly limits the
practical applicability of the proposed method.

When focusing on generalizability, we observe additional limitations. Many causal RL methods aimed
at generalizability adopt causal representation learning or dynamics learning. These approaches generally
require learning from multi-domain data or allowing for explicit interventions in environmental components
to simulate the generation of interventional data. The quality and granularity of the learned representations
closely rely on which distributional shifts, interventions or relevant signals are available (Schölkopf et al.,
2021), while agents often have access to only a limited number of domains in reality.

Lastly, it is important to acknowledge the limitations associated with counterfactual reasoning. Obtaining
accurate and reliable counterfactual estimates often requires making strong assumptions about the underly-
ing causal structure (Shpitser & Pearl, 2007; Correa et al., 2021; Zhang et al., 2022b), as counterfactuals, by
definition, cannot be directly observed. Some counterfactual quantities are almost never identifiable while
some are identifiable under certain assumptions, such as the effect of treatment on the treated (ETT) (Pearl,
2009b, Chapter 11). Furthermore, the computational complexity of counterfactual reasoning can be a bot-
tleneck, especially when dealing with high-dimensional state and action spaces. This complexity can hinder
real-time decision-making in complex tasks, which remains an ongoing challenge.

7.2 Causal Learning in Reinforcement Learning

In section 3.3 and section 5.2, we explained how causal dynamics learning - a class of methods closely related
to MBRL - can improve generalizability and sample efficiency (Wang et al., 2022; Huang et al., 2022b). These
methods focus on understanding the cause-and-effect relationships between variables and the process that
generates these variables. Instead of using complex, redundant connections, to model the data generation
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Table 5: The three components of causal learning.

Available information Targets to identify Typical questions
Causal representation learning Observations Causal variables

(representation)
What factors account for the
change in position?

Causal discovery Causal variables Causal graph Does mass determine the change in
position of an object?

Causal mechanisms learning Causal graph Causal mechanisms How mass determine the change in
position of an object?

process, these methods prefer a sparse, modular style. As a result, they are more efficient and stable than
traditional model-based methods and allow RL agents to adapt quickly to unseen environments or tasks.
However, we may not have perfect knowledge of the causal variables in reality. Sometimes, we must deal
with high-dimensional and unstructured data like visual information. In this case, RL agents need to be able
to extract causal representations from raw data (Schölkopf et al., 2021). Depending on the tasks of interest,
causal representations can take various forms, ranging from abstract concepts like emotions and preferences
to more concrete entities such as physical objects.

The complete process of learning a causal model from raw data is known as causal learning (Peters et al.,
2017). It is different from causal reasoning (Imbens & Rubin, 2015; Glymour et al., 2016), which only
focuses on estimating specific causal effects given the causal model. Causal learning involves extracting causal
representation, discovering causal relationships, and learning causal mechanisms. Table 5 briefly summarizes
their characteristics. All three of these components are significant and deserve further investigation. A great
deal of research has been done on causal discovery (Spirtes et al., 2000; Pearl, 2009b; Peters et al., 2017;
Vowels et al., 2022), a process of recovering the causal structure of a set of variables from data, particularly
concerning conditional independence tests (Spirtes et al., 2000; Sun et al., 2007; Hoyer et al., 2008; Zhang
et al., 2011). Under certain assumptions, such as faithfulness, algorithms can identify the Markov equivalence
class of the underlying causal graph from observational data. It is very difficult to uniquely identify a causal
graph from observational data without strong assumptions about the data generation process. Therefore,
some research efforts in causal inference have been done on partially identifiable causal graphs, such as
maximally oriented partially directed acyclic graphs (MPDAGs) (Meek, 1995; Perkovic et al., 2017; Perkovic,
2020). With additional background knowledge, we can identify more causal directions, going beyond Markov
equivalence classes. Nonetheless, there remains a dearth of research on effectively leveraging these partially
directed graphs to address research challenges in reinforcement learning. This represents a promising area
for future exploration. In addition, combining RL with causal discovery empowers an agent to actively
gather interventional data from the environment to recover the underlying causal structure. This opens up
an intriguing research direction that focuses on exploring methods for leveraging interventional data, or a
combination of observational and interventional data, to facilitate efficient causal discovery (Addanki et al.,
2020; Jaber et al., 2020; Brouillard et al., 2020; Zhu et al., 2022a).

As for causal representation learning (Schölkopf et al., 2021; Wang & Jordan, 2022; Shen et al., 2022), one
possible solution is to learn latent factors from high-dimensional observations using autoencoders (Yang
et al., 2021a; Eghbal-zadeh et al., 2021; Tran et al., 2022). These methods can approximatively recover
causal representations and structures by virtue of carefully designed constraint terms. This idea inherently
embeds an SCM into the learner, implicitly binding causal discovery and causal mechanisms learning in one
solution. Additionally, in scenarios involving multiple environments or tasks, causal representations can also
be derived through techniques like mining invariance (Zhang et al., 2020a; Bica et al., 2021b; Saengkyongam
et al., 2022) or clustering trajectories from diverse domains (Sontakke et al., 2021). However, determining the
optimal number and granularity of causal variables remains challenging, as the optimal causal representations
often depend on the specific task.

Overall, causal learning in RL is an underexplored problem and has the potential to advance the RL com-
munity. Additionally, RL techniques show promise in contributing to the field of causal learning. As we
delve deeper into the connections between these two fields, an exchange of insights can nurture reciprocal
benefits, propelling both fields forward (Zhu et al., 2022a).
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7.3 Causality-aware Multitask and Meta Reinforcement Learning

Multitask reinforcement learning (Parisotto et al., 2015; Teh et al., 2017; D’Eramo et al., 2020; Vithay-
athil Varghese & Mahmoud, 2020) focuses on simultaneously learning multiple tasks by sharing knowledge
and leveraging synergies across tasks. This scenario commonly arises in robot manipulation, where a robot
needs to acquire various skills, such as reaching, grasping, and pushing. Meta-learning (Duan et al., 2016;
Finn et al., 2017; Gupta et al., 2018; Xu et al., 2018), on the other hand, involves training on a task dis-
tribution to gain the ability to adapt quickly to a new task. Impressive results have been achieved without
explicitly considering causality, leading to the question: Is training a high-capacity model on a diverse range
of tasks sufficient to generalize to new tasks? Recent research empirically validates this hypothesis, as
large pre-trained models on diverse datasets have demonstrated remarkable performance in tasks requiring
few-shot learning or even zero-shot generalization ability (Brown et al., 2020; Wei et al., 2021).

As shown in Figure 5, different tasks are essentially different interventions in the data generation pro-
cess (Schölkopf et al., 2021), so it is not surprising that models trained on multiple tasks can achieve excellent
generalizability – they implicitly learn the causal relationships governing the data generation process of these
tasks. Dasgupta et al. (2018) provide compelling evidence for this proposition. Their study demonstrates
that the capability of causal inference may emerge from large-scale meta-RL. Nonetheless, testing all possible
interventions and their combinations in real-world scenarios is impractical. This is where causal modeling
comes into play. As discussed in the previous section, causal models enable the explicit incorporation of prior
knowledge, helping agents to align their understanding of the world with human cognition. Moreover, causal
relationships facilitate problem abstraction (Wang et al., 2022), thereby eliminating the need of testing irrel-
evant interventions. Additionally, agents that organize their knowledge using causal structures benefit from
the stability of causal relationships. While non-causal agents would require finetuning the whole model for
even a slightly changed task, a causality-aware agent would only need to adjust a few modules (Huang et al.,
2022a), exhibiting a stronger knowledge transfer ability. These properties may also contribute to lifelong (or
continual) learning (Xie & Finn, 2022; Khetarpal et al., 2022), allowing for fast adaptation to new tasks that
arise in sequence.

7.4 Human-in-the-loop Learning and Reinforcement Learning from Human Feedback

Human-in-the-loop learning (HiLL) (Mosqueira-Rey et al., 2022) is a form of machine learning in which
humans actively participate in the development cycle of machine learning models or algorithms. This can
involve providing labels, preferences, or other types of feedback. When the data or task being learned
is complex or requires high levels of cognition, HiLL often produces better results because humans can
provide valuable insights or knowledge to the model that it may be difficult for the model to learn on its
own (Mosqueira-Rey et al., 2022; Zhang & Bareinboim, 2022a).

In the context of RL, HiLL typically involves incorporating human expertise into the MDP to replace the
reward function that provides feedback signals. This approach allows us to train RL agents with the help
of human knowledge and values, alleviating the challenges associated with defining a sophisticated reward
function (Zhang & Bareinboim, 2022a). This idea is closely related to RLHF (Reinforcement Learning from
Human Feedback) (Christiano et al., 2017), a concept that has gained increasing attention recently in the
training of large language models (Ziegler et al., 2020; Glaese et al., 2022; Ouyang et al., 2022), where human
instructors provide rewards (or penalties) to a model to encourage (or discourage) certain behaviors. From
a causal perspective, humans can provide machine learning models with a strong understanding of causality
based on their knowledge of the world, which can help filter out behaviors that may lead to negative outcomes.
However, it is important to note that humans and machines may have different observations or perceptions of
the world, and non-causal-aware RL agents may be influenced by confounding variables (Gasse et al., 2023).
In addition, we often need to consider the issue of limited budgets, as our goal is to provide meaningful
feedback to RL agents at the lowest possible cost. Finally, in addition to scalar feedback, we may also
provide more informative feedback to agents in the form of counterfactuals (Karalus & Lindner, 2022).
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7.5 Theoretical Advances in Causal Reinforcement Learning

Theoretical research in causal RL has mainly concentrated on the MAB problem. Lattimore et al. (2016)
first introduced the causal bandit problem, where interventions are treated as arms, and their impact on the
reward and other observable covariates is associated with a known causal graph. Unlike contextual bandits,
in this setting, the observations occur after each intervention is made. Using the structural knowledge from
the causal model, the agent can efficiently identify good interventions, achieving strictly better regret than
algorithms that lack causal information. Sen et al. (2017) further considered incorporating prior knowledge
about the strength of interventions. Since different arms (interventions) share the same causal graph, samples
from one arm can inform us about the expected value of other arms. The authors demonstrated significant
theoretical and practical improvements by leveraging such information leakage.

However, these works only focused on intervening in a single node on the causal graph, where causal effects
propagate only to the first-order neighbors of the intervened node. Yabe et al. (2018) generalize this setting
by studying an arbitrary set of interventions, allowing for causal effects to propagate throughout the causal
graph. Lee & Bareinboim (2018) also investigated the scenario of pulling arms in a combinatorial manner.
They showed that considering all interventable variables as one arm may lead to a suboptimal policy, and
the structural information can be used to identify the minimal intervention set that is worth intervening in.
Lu et al. (2021) improved the naïve bounds derived in Lattimore et al. (2016), devising algorithms for causal
bandit problems with sublinear cumulative regret bounds. Nair et al. (2021) study the causal bandit problem
with budget constraints. In this setting, there is a trade-off between the more economical observational arm
(i.e., no interventions on the causal graph) and the high-cost interventional arms. While the observational
arm is less rewarding, it offers valuable information for studying other arms at a significantly lower cost.
More recently, Kroon et al. (2022) introduced the concept of “separating set” from causal discovery to
causal bandit problems, which renders a target variable independent of a context variable when conditioned
upon. By utilizing this separating set, the authors developed a bandit algorithm that does not rely on the
assumption of prior causal knowledge. On the other hand, Bilodeau et al. (2022) studied the adaptivity
issue concerning the d-separator, i.e., whether an algorithm can perform nearly as well as an algorithm with
oracle knowledge of the presence or absence of a d-separator.

In comparison to the fruitful results achieved in causal bandit problems, there have been relatively few at-
tempts in the context of MDP problems. As discussed in Section 4.3, some studies focused on DTRs (Zhang
& Bareinboim, 2019; 2020), which can be modeled as an MDP with a global confounder variable. Addition-
ally, there have been some investigations into confounded MDP (Zhang & Bareinboim, 2016; Wang et al.,
2021b), which extend the concept of DTR by admitting the presence of unobserved confounders at each
time step. In the theory of causal RL, aside from understanding how causal information, especially causal
graphs, enhance the regret bounds, the identifiability of causal effects (Zhang et al., 2020b; Lu et al., 2022)
and structure (Huang et al., 2022a) are also of great interest. While existing research provides valuable
insights into the theoretical foundations of causal RL, further theoretical advancements are necessary. In
addition to helping us comprehend the reasons behind the success of existing causal RL methods, we also
hope that future theoretical advances will pave the way for designing novel and effective approaches that are
both interpretable and robust for real-world applications.

7.6 Benchmarking Causal Reinforcement Learning

In RL, we are typically interested in the efficiency and convergence of the algorithm. Atari 2600 Games
and Mujoco locomotion tasks (Brockman et al., 2016) are commonly used as benchmarks for discrete and
continuous control problems. There are also experimental environments that evaluate the generalizability
and robustness of RL, such as Procgen (Cobbe et al., 2020). Some benchmarks focus on multitask learning,
meta-learning, and curriculum learning for reinforcement learning, such as RLBench (James et al., 2019),
Meta-World (Yu et al., 2021), Alchemy (Wang et al., 2021a), and Causal-World Ahmed et al. (2022). Among
them, Causal-World offers a wide range of robotic manipulation tasks that share a common attribute set
and structure. In these tasks, the robot is required to construct a goal shape using the provided building
blocks. One notable feature of this benchmark is its provision of interfaces that allow manual modification
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of object attributes such as size, mass, and color. This enables researchers to intervene in these attributes
and generate a series of tasks with consistent causal structures.

Since causal RL is not limited to a particular type of problem, evaluation metrics may vary depending on the
specific mission. While existing experimental environments have provided good benchmarks for evaluating
algorithms with various metrics, the underlying data generation processes in these environments often remain
opaque, concealed within game simulators or physics engines. This lack of transparency makes it difficult
for researchers to fully understand the causal mechanisms behind the problems they are attempting to solve,
hindering the development of the field. Recently, Ke et al. (2021) proposed a new set of environments focusing
on causal discovery in visual-based RL, allowing researchers to specify the causal graph and customize its
complexity. Nevertheless, as we demonstrated in sections 5 to 6, a large portion of the existing research
still relies on toy environments to evaluate the effectiveness of algorithms. Furthermore, in addition to the
previously mentioned properties, a good benchmark should consider the multiple factors comprehensively, as
discussed in section 6. Thus, developing a comprehensive benchmark for assessing the performance of causal
RL methods remains an ongoing challenge.

7.7 Real-world Causal Reinforcement Learning

Finally, it is worth noting that the practical implementation of causal RL in real-world applications remains
limited. To make it more widely applicable, we must carefully examine the challenges posed by reality.
Dulac-Arnold et al. (2020; 2021) identified nine critical challenges that are holding back the use of RL in the
real world: limited samples; unknown and large delays; high-dimensional input; safety constraints; partial
observability; multi-objective or unspecified reward functions; low latencies; offline learning; and the need
for explainability.

We have discussed some of these issues throughout this paper, many of which are related to ignorance of
causality. For instance, the challenge of learning from limited samples corresponds to the sample efficiency
issue discussed in section 5.2. Learning from high-dimensional inputs and multiple reward functions relates to
the generalization problem outlined in section 3.3. Offline learning raises concerns about spurious correlations
(section 4.3), and security and explainability are covered in section 6.

Although causal models offer promising solutions to these real-world challenges, current experimental envi-
ronments often fall short of meeting the research needs. As discussed in section 7.6, popular benchmarks
are often treated as black boxes, and researchers have limited access to and understanding of the causal
mechanisms by which these black boxes generate data. This lack of transparency significantly hinders the
development of this research field. In order to facilitate the widespread adoption and application of causal
RL, it is crucial to address these limitations and cultivate a culture of causal thinking.

8 Conclusion

In summary, Causal RL holds promise for tackling complex decision-making problems under uncertainty.
It represents an understudied yet significant research direction. By explicitly integrating assumptions or
knowledge about the causal relationship underlying the data generation process, causal RL algorithms can
learn optimal policies more efficiently and make more informed decisions. In this survey, we aimed to clarify
the terminologies and concepts related to causal RL and to establish connections between existing work.
We proposed a problem-oriented taxonomy and systematically discussed and analyzed the latest advances
in causal RL, focusing on how they address the four critical challenges facing RL.

While there is still much work to be done in this field, the results to date are encouraging. They suggest
that causal RL has the potential to significantly improve the performance of RL systems in a wide range of
problems. Here, we summarize the key conclusions of this survey.

• Causal RL is an emerging branch of RL that emphasizes understanding and utilizing causality to
make better decisions (section 2.3).
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• Causal modeling has the potential to enhance generalization (section 3.3) and sample efficiency
(section 5.2), yet it comes with fundamental challenges and limitations that require careful consid-
eration (section 7.1). With limited causal information, RL agents may need to learn about causal
representation and environmental dynamics from raw data (section 7.2).

• Causal effects and relationships are identifiable under certain conditions (section 2.3 and section 7.5),
enabling agents to effectively utilize observational data. Furthermore, multitask learning and meta-
learning may help facilitate causal learning (section 7.3) In turn, harnessing causality can enhance
the ability to transfer knowledge and effectively address a wide range of tasks (section 3.3).

• Correlation does not imply causation. Spurious correlations can lead to a distorted understanding
of the environment and task, resulting in suboptimal policies (section 4.3). In addition to employ-
ing causal reasoning techniques, leveraging human understanding of causality may further enhance
reinforcement learning (section 7.4).

• In real-world applications, performance is not the only concern. Factors such as explainability,
fairness, and security, must also be considered (section 6). Current benchmarks call for increased
transparency and a comprehensive, multi-faceted evaluation protocol for reinforcement learning (sec-
tion 7.6), which has significant implications for advancing real-world applications of causal reinforce-
ment learning (section 7.7).

We hope this survey will help establish connections between existing work in causal reinforcement learning,
inspire further exploration and development, and provide a common ground and comprehensive resource for
those looking to learn more about this exciting field.
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A Supplementary Introduction to Causality

A.1 Mediation analysis

Mediation is a causal concept that closely relates to counterfactuals. The goal of mediation analysis is to
examine the direct or indirect effects of a treatment variable 9 X on an outcome variable Y , mediated by a
third variable M (referred to as the mediator). To illustrate, let’s consider the direct effect of different food
consumption on preventing scurvy (See Figure3). In a counterfactual world, if we prevent changes in the
mediator variable M (e.g., vitamin C intake), then whatever changes the outcome variable Y (e.g., whether a
sailor gets scurvy) can only be attributed to changes in the treatment variable X (e.g., the food consumed),
allowing us to establish the observed effect as a direct effect of X on Y . It is worth noting that, in cases like
this, the statistical language can only provide the conditioning operator, which merely shifts our attention
to individuals with equal values of M . On the other hand, the do-operator precisely captures the concept
of keeping the mediator M unchanged. These two operations lead to fundamentally different results, and
conflating them can yield opposite conclusions (Pearl & Mackenzie, 2018, Chapter 9). In summary, such
analyses are crucial for understanding the potential causal mechanisms and paths in complex systems, with
applications spanning various fields including psychology, sociology, and epidemiology (Carey & Wu, 2022).

A.2 Causal discovery and causal reasoning

. In the field of causal inference, there are two primary areas of focus: causal discovery and causal reasoning.
Causal discovery involves inferring the causal relationships between variables of interest (in other words,
identifying the causal graph of the data generation process). Traditional approaches use conditional inde-
pendence tests to infer causal relationships, and recently some studies have been conducted based on large
datasets using deep learning techniques. Glymour et al. (2019) and Vowels et al. (2022) comprehensively
survey the field of causal discovery.

As opposed to causal discovery, causal reasoning investigates how to estimate causal effects, such as in-
tervention probability, given the causal model. Interventions involve actively manipulating the system or
environment, which can be costly and potentially dangerous (e.g., testing a new drug in medical experiments).
Therefore, a core challenge of causal reasoning is how to translate causal effects into estimands that can be
estimated from observational data using statistical methods. Given the causal graph, the identifiability of
causal effects can be determined systematically through the use of do-calculus (Pearl, 1995).

A.3 Causal representation learning

A fundamental limitation of traditional causal inference is that most research starts with the assumption
that causal variables are given, which does not align with the reality of dealing with high-dimensional
and low-level data, such as images, in our daily lives. Causal representation learning (Schölkopf et al.,
2021) is an emerging field dedicated to addressing this challenge. Specifically, causal representation learning
focuses on identifying high-level variables from low-level observations. These high-level variables are not only
descriptive of the observed data but also explanatory of the data generation process, as they capture the
underlying causal mechanisms. By effectively discovering meaningful and interpretable high-level variables,
causal representation learning facilitates causal inference in complex, high-dimensional domains.

B A Brief Introduction to Environments and Tasks

In this section, we briefly introduce the environments and tasks mentioned spanning sections 3 to 6.

9A treatment variable, also known as an intervention variable, refers to a variable that is purposefully manipulated to assess
its impact on one or more outcome variables of interest.
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B.1 Autonomous Driving

BARK-ML: https://github.com/bark-simulator/bark-ml. BARK is an open-source behavior bench-
marking environment. It covers a full variety of real-world, interactive human behaviors for traffic partici-
pants, including Highway, Merging, and Intersection (Unprotected Left Turn).

Crash (highway-env): https://github.com/eleurent/highway-env. The highway-env project gathers
a collection of environments for autonomous driving and tactical decision-making tasks, including Highway,
Merge, Roundabout, Parking, Intersection, and Racetrack. Crash is a modified version by (Ding et al., 2022)
that is not publicly available.

B.2 Classical Control

Cart-pole (dm_control): https://github.com/svikramank/dm_control. Cart-pole is an environment
belonging to the DeepMind Control Suite. It involves swinging up and balancing an unactuated pole by
applying forces to a cart at its base.

Acrobot (OpenAI Gym): https://www.gymlibrary.dev/environments/classic_control/acrobot/.
The Acrobot environment consists of two links connected linearly to form a chain, with one end of the chain
fixed. The goal is to apply torques on the actuated joint to swing the free end of the linear chain above a
given height while starting from the initial state of hanging downwards.

Mountain Car (OpenAI Gym): https://www.gymlibrary.dev/environments/classic_control/
mountain_car/. The Mountain Car MDP is a deterministic MDP that consists of a car placed stochas-
tically at the bottom of a sinusoidal valley, with the only possible actions being the accelerations that can
be applied to the car in either direction. The goal of the MDP is to strategically accelerate the car to reach
the goal state on top of the right hill.

Cart Pole (OpenAI Gym): https://www.gymlibrary.dev/environments/classic_control/cart_
pole/. A pole is attached by an un-actuated joint to a cart, which moves along a frictionless track. The
pendulum is placed upright on the cart and the goal is to balance the pole by applying forces in the left and
right direction on the cart.

Pendulum (OpenAI Gym): https://www.gymlibrary.dev/environments/classic_control/
pendulum/. The system consists of a pendulum attached at one end to a fixed point, and the other end
being free. The pendulum starts in a random position and the goal is to apply torque on the free end to
swing it into an upright position, with its center of gravity right above the fixed point.

Inverted Pendulum (OpenAI Gym): https://www.gymlibrary.dev/environments/mujoco/
inverted_pendulum/. This environment involves a cart that can moved linearly, with a pole fixed on it
at one end and having another end free. The cart can be pushed left or right, and the goal is to balance the
pole on the top of the cart by applying forces on the cart.

B.3 Game

MiniPacman: https://github.com/higgsfield/Imagination-Augmented-Agents. MiniPacman is
played in a 15 × 19 grid-world. Characters, the ghosts and Pacman, move through a maze.

Lunar Lander (OpenAI Gym): https://www.gymlibrary.dev/environments/box2d/lunar_lander/.
This environment is a classic rocket trajectory optimization problem. The landing pad is always at coordi-
nates (0, 0). The coordinates are the first two numbers in the state vector. Landing outside of the landing
pad is possible. Fuel is infinite, so an agent can learn to fly and then land on its first attempt.

Bipedal Walker (OpenAI Gym): https://www.gymlibrary.dev/environments/box2d/bipedal_
walker/. This is a simple 4-joint walker robot environment.

Car Racing (OpenAI Gym): https://www.gymlibrary.dev/environments/box2d/car_racing/. Car
Racing is a top-down racing environment. The generated track is random in every episode. Some indicators
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are shown at the bottom of the window along with the state RGB buffer. From left to right: true speed,
four ABS sensors, steering wheel position, and gyroscope.

Beam Rider (OpenAI Gym): https://www.gymlibrary.dev/environments/atari/beam_rider/. The
agent controls a space-ship that travels forward at a constant speed. The agent can only steer it sideways
between discrete positions. The goal is to destroy enemy ships, avoid their attacks and dodge space debris.

Pong (OpenAI Gym): https://www.gymlibrary.dev/environments/atari/pong/. The agent controls
the right paddle, competing against the left paddle controlled by the computer.

Pong (Roboschool): https://github.com/openai/roboschool. Roboschool is an open-source software
for robot simulation, which is now deprecated. Pong allows for multiplayer training.

Sokoban: https://github.com/mpSchrader/gym-sokoban. This game is a transportation puzzle, where
the player has to push all boxes in the room on the storage locations/ targets. The possibility of making
irreversible mistakes makes these puzzles so challenging especially for RL algorithms.

SC2LE: https://github.com/deepmind/pysc2. SC2LE is a RL environment based on the StarCraft II
game. It is a multi-agent problem with multiple players interacting. This domain poses a grand challenge
raising from the imperfect information, large action and state space, and delayed credit assignment.

VizDoom: https://github.com/Farama-Foundation/ViZDoom. ViZDoom is based on Doom, a 1993
game. It allows developing AI bots that play Doom using only visual information.

B.4 Healthcare

MIMIC-III: https://physionet.org/content/mimiciii/1.4/. MIMIC-III (Johnson et al., 2016) is a
large, freely-available database comprising deidentified health-related data associated with over forty thou-
sand patients who stayed in critical care units of the Beth Israel Deaconess Medical Center between
2001 and 2012. Lu et al. (2020) use the code (https://github.com/aniruddhraghu/sepsisrl) pro-
vided by Raghu et al. (2017) for preprocessing the data and Bica et al. (2021b) open-source their code
on https://github.com/vanderschaarlab/Invariant-Causal-Imitation-Learning/tree/main.

Therapy: https://github.com/Networks-Learning/counterfactual-explanations-mdp/blob/main/
data/therapy/README.md. This dataset contains real data from cognitive behavioral therapy. The data
were collected during a clinical trial with the patients’ written consent A post-processed version of the data
is available upon request from Kristina.Fuhr@med.uni-tuebingen.de.

Sepsis: https://github.com/clinicalml/gumbel-max-scm. This environment, originally developed by
Oberst & Sontag (2019) to simulate intensive care trajectories, is adopted by Pace et al. (2023) to investi-
gate the impact of hidden confounders in offline RL. The state space comprises 4-dimensional normalized
observation vectors (heart rate, systolic blood pressure, oxygenation, and blood glucose levels), and the
discrete action space encompasses three binary treatments (antibiotic, vasopressor, and ventilation). In
addition, the patient’s diabetic status serves as an unobserved binary variable in this environment.

HiRID: https://physionet.org/content/hirid/1.1.1/. The HiRID dataset (Hyland et al., 2020; Fal-
tys et al., 2021), comprising data from over 34,000 patient admissions at the Bern University Hospital’s
Department of Intensive Care Medicine in Switzerland, offers a high-resolution collection of demographic,
physiological, diagnostic, and treatment information. Pace et al. (2023) focused on optimizing fluid and
vasopressor administration to prevent circulatory failure in their research targeted at non-identifiable hidden
confounding in offline RL.

B.5 Robotics

B.5.1 Locomotion

Cheetah (dm_control): https://github.com/svikramank/dm_control. Cheetah is an environment
belonging to the DeepMind Control Suite. It is a running planar bipedal robot.
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OpenAI Gym: https://www.gymlibrary.dev/environments/mujoco/. These environments are built
upon the MuJoCo (Multi-Joint dynamics with Contact) engine. The goal is to make the 3D robots move in
the forward direction by applying torques on the hinges connecting the links of each leg and the torso.

PyBullet Gym: https://github.com/benelot/pybullet-gym. This is an open-source implementation
of OpenAI Gym MuJoCo environments using the Bullet Physics (https://github.com/bulletphysics/
bullet3).

D4RL: https://github.com/Farama-Foundation/D4RL. D4RL is an open-source benchmark for offline
RL. It includes several OpenAI Gym benchmark tasks, such as the Hopper, HalfCheetah, and Walker
environments.

B.5.2 Manipulation

CausalWorld: https://github.com/rr-learning/CausalWorld. CausalWorld is an open-source simula-
tion framework and benchmark for causal structure and transfer learning in a robotic manipulation environ-
ment where tasks range from rather simple to extremely hard. Tasks consist of constructing 3D shapes from
a given set of blocks - inspired by how children learn to build complex structures.

Isaac Gym: https://github.com/NVIDIA-Omniverse/IsaacGymEnvs. Isaac Gym offers a high perfor-
mance learning platform to train policies for wide variety of robotics tasks directly on GPU.

OpenAI: The origin version is developed by OpenAI, known as “Ingredients for robotics research” (https:
//openai.com/research/ingredients-for-robotics-research), and now is maintained by the Farama
Foundation (https://github.com/Farama-Foundation/Gymnasium-Robotics). It contains eight simulated
robotics environments.

robosuite: https://github.com/ARISE-Initiative/robosuite. robosuite is a simulation framework
powered by the MuJoCo physics engine for robot learning. It contains seven robot models, eight grip-
per models, six controller modes, and nine standardized tasks. It also offers a modular design for building
new environments with procedural generation.

B.6 Navigation

Unlock (Minigrid): https://github.com/Farama-Foundation/MiniGrid. The Minigrid library contains
a collection of discrete grid-world environments to conduct research on Reinforcement Learning. Unlock is
task designed by (Ding et al., 2022), which is not publicly available.

Contextual-Gridworld: https://github.com/eghbalz/contextual-gridworld. Agents are trained on
a group of training contexts and are subsequently tested on two distinct sets of testing contexts within this
environment. The objective is to assess the extent to which agents have grasped the causal variables from
the training phase and can accurately deduce and extend to new (test) contexts.

3D Maze (Unity): https://github.com/Harsha-Musunuri/Shaping-Agent-Imagination. This envi-
ronment is built on the Unity3d game development engine. It contains an agent that can move around. The
environment automatically changes to a new view after every episode.

Spriteworld: https://github.com/deepmind/spriteworld. Spriteworld is an environment that consists
of a 2D arena with simple shapes that can be moved freely. The motivation was to provide as much flexibility
for procedurally generating multi-object scenes while retaining as simple an interface as possible.

Taxi: https://www.gymlibrary.dev/environments/toy_text/taxi/. There are four designated locations
in the grid world. When the episode starts, the taxi starts off at a random square and the passenger is at a
random location. The taxi drives to the passenger’s location, picks up the passenger, drives to the passenger’s
destination (another one of the four specified locations), and then drops off the passenger. Once the passenger
is dropped off, the episode ends.
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B.7 Others

Chemical: https://github.com/dido1998/CausalMBRL#chemistry-environment. By allowing arbitrary
causal graphs, this environment facilitates studying complex causal structures of the world. This is illustrated
through simple chemical reactions, where changes in one element’s state can cause changes in the state of
another variable.

Light: https://github.com/StanfordVL/causal_induction. It consists of the light switch environment
for studying visual causal induction, where N switches control N lights, under various causal structures.
Includes common cause, common effect, and causal chain relationships.

MNIST: http://yann.lecun.com/exdb/mnist/. The MNIST dataset contains 70,000 images of handwrit-
ten digits.

52

https://github.com/dido1998/CausalMBRL#chemistry-environment
https://github.com/StanfordVL/causal_induction
http://yann.lecun.com/exdb/mnist/

	Introduction
	Background
	A Brief Introduction to Causality
	A Brief Introduction to Reinforcement Learning
	Causal Reinforcement Learning

	Advancing Generalizability and Knowledge Transfer through Causal Reinforcement Learning
	The Issue of Generalizability in Reinforcement Learning
	How can Causality Help to Improve Generalization and Facilitate Knowledge Transfer?
	Causal Reinforcement Learning for Improving Generalizability
	Generalize to Different Environments
	Generalize to Different Tasks
	Other Generalization Problems


	Addressing Spurious Correlations through Causal Reinforcement Learning
	The Issue of Spurious Correlation in Reinforcement Learning
	How can Causality Help to Address Spurious Correlations?
	Causal Reinforcement Learning for Addressing Spurious Correlations
	Addressing Confounding Bias
	Addressing Selection Bias


	Enhancing Sample Efficiency through Causal Reinforcement Learning
	The Issue of Sample Efficiency in Reinforcement Learning
	Causal Reinforcement Learning for Addressing Sample Inefficienty
	Representation Learning for Sample Efficiency
	Directed Exploration for Sample Efficiency
	Data Augmentation for Sample Efficiency


	Promoting Explainability, Fairness, and Safety with Causal Reinforcement Learning
	Explainability
	Explainability in Reinforcement Learning
	Explainable Reinforcement Learning with Causality

	Fairness
	Fairness in Reinforcement Learning
	Fair Reinforcement Learning with Causality

	Safety
	Safety in Reinforcement Learning
	Safe Reinforcement Learning with Causality


	Limitations and Future Directions
	Limitations
	Causal Learning in Reinforcement Learning
	Causality-aware Multitask and Meta Reinforcement Learning
	Human-in-the-loop Learning and Reinforcement Learning from Human Feedback
	Theoretical Advances in Causal Reinforcement Learning
	Benchmarking Causal Reinforcement Learning
	Real-world Causal Reinforcement Learning

	Conclusion
	Supplementary Introduction to Causality
	Mediation analysis
	Causal discovery and causal reasoning
	Causal representation learning

	A Brief Introduction to Environments and Tasks
	Autonomous Driving
	Classical Control
	Game
	Healthcare
	Robotics
	Locomotion
	Manipulation

	Navigation
	Others


