
Under review as submission to TMLR

Deformation Robust Roto-Scale-Translation Equivariant
CNNs

Anonymous authors
Paper under double-blind review

Abstract

Incorporating group symmetry directly into the learning process has proved to be an effec-
tive guideline for model design. By producing features that are guaranteed to transform
covariantly to the group actions on the inputs, group-equivariant convolutional neural net-
works (G-CNNs) achieve significantly improved generalization performance in learning tasks
with intrinsic symmetry. General theory and practical implementation of G-CNNs have been
studied for planar images under either rotation or scaling transformation, but only individu-
ally. We present, in this paper, a roto-scale-translation equivariant CNN (RST -CNN), that
is guaranteed to achieve equivariance jointly over these three groups via coupled group con-
volutions. Moreover, as symmetry transformations in reality are rarely perfect and typically
subject to input deformation, we provide a stability analysis of the equivariance of repre-
sentation to input distortion, which motivates the truncated expansion of the convolutional
filters under (pre-fixed) low-frequency spatial modes. The resulting model provably achieves
deformation-robust RST equivariance, i.e., the RST symmetry is still “approximately”
preserved when the transformation is “contaminated” by a nuisance data deformation, a
property that is especially important for out-of-distribution generalization. Numerical ex-
periments on MNIST, Fashion-MNIST, and STL-10 demonstrate that the proposed model
yields remarkable gains over prior arts, especially in the small data regime where both
rotation and scaling variations are present within the data.

1 Introduction

Symmetry is ubiquitous in machine learning. For instance, in image classification, the class label of an image
remains the same when the image is spatially translated. Convolutional neural networks (CNNs) through
spatial weight sharing achieve built-in translation-equivariance, i.e., a shift of the input leads to a correspond-
ing shift of the output, a property that improves the generalization performance and sample complexity of
the model for computer vision tasks with translation symmetry, such as image classification Krizhevsky et al.
(2012), object detection Ren et al. (2015), and segmentation Long et al. (2015); Ronneberger et al. (2015).

Inspired by the standard CNNs, researchers in recent years have developed both theoretical foundations
and practical implementations of group equivariant CNNs (G-CNNs), i.e., generalized CNN models that
guarantee a desired transformation on layer-wise features under a given input group transformation, for
signals defined on Euclidean spaces Cohen & Welling (2016; 2017); Worrall et al. (2017); Weiler et al.
(2018b;a); Worrall & Welling (2019); Sosnovik et al. (2020); Cheng et al. (2019); Zhu et al. (2019); Weiler
& Cesa (2019); Hoogeboom et al. (2018); Zhou et al. (2017); Worrall & Brostow (2018); Kanazawa et al.
(2014); Xu et al. (2014); Marcos et al. (2018), manifolds Cohen et al. (2018; 2019); Kondor et al. (2018);
Defferrard et al. (2020), point clouds Thomas et al. (2018); Chen et al. (2021); Zhao et al. (2020), and graphs
Kondor (2018); Anderson et al. (2019); Keriven & Peyré (2019). In particular, equivariant CNNs for either
rotation Weiler & Cesa (2019); Cheng et al. (2019); Hoogeboom et al. (2018); Worrall et al. (2017); Zhou
et al. (2017); Marcos et al. (2017); Weiler et al. (2018b) or scaling Kanazawa et al. (2014); Marcos et al.
(2018); Xu et al. (2014); Worrall & Welling (2019); Sosnovik et al. (2020); Zhu et al. (2019); Sosnovik et al.
(2021) transforms on 2D inputs have been well studied separately, and their advantage has been empirically
verified in settings where the data have rich variance in either rotation or scale individually.
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However, for many vision tasks, it is beneficial for a model to simultaneously incorporate translation, rotation,
and scaling symmetry directly into its representation. For example, a self-driving vehicle is required to
recognize and locate pedestrians, objects, and road signs under random translation (e.g., moving pedestrians),
rotation (e.g., tilted road signs), and scaling (e.g., close and distant objects) Bojarski et al. (2016). Moreover,
in realistic settings, symmetry transformations are rarely perfect; for instance, a tilted stop sign located
faraway can be modeled in reality as if it were transformed through a sequence of translation, rotation and
scaling following a local data deformation, which results from (unavoidable) changing view angle and/or
digitization. It is thus crucial to design roto-scale-translation equivariant CNNs (RST -CNNs) with provably
robust equivariant representation such that the RST symmetry is still “approximately" preserved when
the transformation is “contaminated” by a nuisance data deformation. Such deformation robustness is
especially important for out-of-distribution generalization. However, the design of RST -equivariant CNNs
with theoretically guaranteed deformation robustness is challenging both in theory and in practice due to
the intertwined convolution on the non-compact RST group with infinite Haar measure.

The purpose of this paper is to address both the theoretical and practical aspects of constructing deformation
robust RST -CNNs, which, to the best of our knowledge, have not been jointly studied in the computer vision
community. Specifically, our contribution is three-fold:

1. We propose roto-scale-translation equivariant CNNs with joint convolutions over the space R2, the
rotation group SO(2), and the scaling group S, which is shown to be sufficient and necessary for
equivariance with respect to the regular representation of the group RST .

2. We provide a stability analysis of the proposed model, guaranteeing its ability to achieve equivariant
representations that are robust to nuisance data deformation.

3. Numerical experiments are conducted to demonstrate the superior (both in-distribution and out-of-
distribution) generalization performance of our proposed model for vision tasks with intrinsic RST
symmetry, especially in the small data regime.

2 Related Works

Group-equivariant CNNs (G-CNNs). Since its introduction by Cohen and Welling Cohen & Welling
(2016), a variety of works on G-CNNs have been conducted that consistently demonstrate the benefits of
bringing equivariance prior into network designs. Based on the idea proposed in Cohen & Welling (2016)
for discrete symmetry groups, G-CNNs with group convolutions which achieve equivariance under regular
representations of the group have been studied for the 2D (and 3D) roto-translation group SE(2) (and
SE(3)) Weiler & Cesa (2019); Cheng et al. (2019); Hoogeboom et al. (2018); Worrall et al. (2017); Zhou
et al. (2017); Marcos et al. (2017); Weiler et al. (2018b); Worrall & Brostow (2018), scaling-translation group
Kanazawa et al. (2014); Marcos et al. (2018); Xu et al. (2014); Worrall & Welling (2019); Sosnovik et al.
(2020); Zhu et al. (2019); Sosnovik et al. (2021), rotation SO(3) on the sphere Cohen et al. (2018); Kondor
et al. (2018); Defferrard et al. (2020), and permutation on graphs Kondor (2018); Anderson et al. (2019);
Keriven & Peyré (2019). Polar transformer networks Esteves et al. (2017) generalizes group-equivariance
to rotation and dilation. B-spline CNNs Bekkers (2020) and LieConv Finzi et al. (2020) generalize group
convolutions to arbitrary Lie groups on generic spatial data, albeit achieving slightly inferior performance
compared to G-CNNs specialized for Euclidean inputs Finzi et al. (2020). Steerable CNNs further generalize
the network design to realize equivariance under induced representations of the symmetry group Cohen &
Welling (2017); Weiler et al. (2018a); Weiler & Cesa (2019); Cohen et al. (2019), and the general theory has
been summarized in Cohen et al. (2019) for homogeneous spaces.

Representation robustness to input deformations. Input deformations typically introduce noticeable
yet uninformative variability within the data. Models that are robust to data deformation are thus favorable
for many vision applications. The scattering transform network Bruna & Mallat (2013); Mallat (2010; 2012),
a multilayer feature encoder defined by average pooling of wavelet modulus coefficients, has been proved to
be stable to both input noise and nuisance deformation. Using group convolutions, scattering transform
has also been extended in Oyallon & Mallat (2015); Sifre & Mallat (2013) to produce rotation/translation-
invariant features. Despite being a pioneering mathematical model, the scattering network uses pre-fixed
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wavelet transforms in the model, and is thus non-adaptive to the data. Stability and invariance have also
been studied in Bietti & Mairal (2017; 2019) for convolutional kernel networks Mairal (2016); Mairal et al.
(2014). DCFNet Qiu et al. (2018) combines the regularity of a pre-fixed filter basis and the trainability of the
expansion coefficients, achieving both representation stability and data adaptivity. The idea is later adopted
in Cheng et al. (2019) and Zhu et al. (2019) in building deformation robust models that are equivariant to
either rotation or scaling individually.

Despite the growing body of literature in G-CNNs, to the best of our knowledge, no G-CNNs have been
specifically designed to simultaneously achieve roto-scale-translation equivariance. More importantly, no
stability analysis has been conducted to quantify and promote robustness of such equivariant model to
nuisance input deformation.

3 Roto-Scale-Translation Equivariant CNNs

We first explain, in Section 3.1 , the definition of groups, group representations, and group-equivariance,
which serves as a background for constructing RST -CNNs in Section 3.2.

3.1 Preliminaries

Group. A group is a set G equipped with a binary operator · : G × G → G, satisfying associativity and
the existence of an identity e as well as an inverse element g−1 for all g ∈ G. In this paper, we consider in
particular the roto-scale-translation group RST = (SO(2)×R)nR2 = {(η, β, v) : η ∈ [0, 2π], β ∈ R, v ∈ R2},
with the group multiplication

(η, β, v) · (θ, α, u) = (θ + η, α+ β, v +Rη2βu), (1)

where Rηu is a counterclockwise rotation (around the origin) by angle η applied to a point u ∈ R2.

Group action and representation. Given a group G and a set X , Dg : X → X is called a G-action on
X if Dg is invertible for all g ∈ G, and Dg1 ◦Dg2 = Dg1·g2 , ∀g1, g2 ∈ G, where ◦ denotes map composition.
A G-action Dg is called a G-representation if X is further assumed to be a vector space and Dg is linear for
all g ∈ G. In particular, given an input RGB image x(0)(u, λ) modeled in the continuous setting (i.e., x(0)

is the intensity of the RGB color channel λ ∈ {1, 2, 3} at the pixel location u ∈ R2), a roto-scale-translation
transformation on the image x(0)(u, λ) can be understood as an RST -action (representation) D(0)

g = D
(0)
η,β,v

acting on the input x(0):

[D(0)
η,β,vx

(0)](u, λ) = x(0) (R−η2−β(u− v), λ
)
, (2)

i.e., the transformed image [Dη,β,vx
(0)] is obtained through an η rotation, 2β scaling, and v translation.

Group Equivariance. Let f : X → Y be a map between X and Y, and DXg , DYg be G-actions on X and Y
respectively. The map f is said to be G-equivariant if

f(DXg x) = DYg (f(x)), ∀ g ∈ G, x ∈ X . (3)

A special case of (3) is G-invariance, when DYg is set to IdY , the identity map on Y. For vision tasks where
the output y ∈ Y is known a priori to transform covariantly through DYg to a DXg transformed input, e.g.,
the class label y remains identical for a rotated/rescaled/shifted input x ∈ X , it is beneficial to consider only
G-equivariant models f to reduce the statistical error of the learning method for improved generalization.

3.2 Equivariant Architecture

Since the composition of equivariant maps remains equivariant, to construct an L-layer RST -CNN, we only
need to specify the RST -action D

(l)
η,β,v on each feature space X (l), 0 ≤ l ≤ L, and require the layer-wise

mapping to be equivariant:

x(l)[D(l−1)
η,β,v x

(l−1)] = D
(l)
η,β,vx

(l)[x(l−1)], ∀l ≥ 1, (4)
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where we slightly abuse the notation x(l)[x(l−1)] to denote the l-th layer output given the (l − 1)-th layer
feature x(l−1). In particular, we define D(0)

η,β,v on the input as in (18); for the hidden layers 1 ≤ l ≤ L, we
let X (l) be the feature space consisting of features in the form of x(l)(u, θ, α, λ), where u ∈ R2 is the spatial
position, θ ∈ [0, 2π] is the rotation index, α ∈ R is the scale index, λ ∈ [Ml] := {1, . . . ,Ml} corresponds to
the unstructured channels (similar to the RGB channels of the input), and we define the action D(l)

η,β,v on
X (l) as

[D(l)
η,β,vx

(l)](u, θ, α, λ)

= x(l) (R−η2−β(u− v), θ − η, α− β, λ
)
, ∀l ≥ 1. (5)

We note that (19) corresponds to the regular representation of RST on X (l) Cohen et al. (2019), which is
adopted in this work as its ability to encode any function on the group RST leads typically to better model
expressiveness and stronger generalization performance Weiler & Cesa (2019). The following proposition
outlines the general network architecture to achieve RST -equivariance under the representations D(l)

η,β,v (18)
(19).
Proposition 1. An L-layer feedforward neural network is RST -equivariant under the representations (18)
(19) if and only if the layer-wise operations are defined as (20) and (21):

x(1)[x(0)](u, θ, α, λ) = σ

[∑
λ′

∫
R2
x(0)(u+ u′, λ′)

· 2−2αW
(1)
λ′,λ

(
2−αR−θu′

)
du′ + b(1)(λ)

]
, (6)

x(l)[x(l−1)](u, θ, α, λ)

= σ

[∑
λ′

∫
R2

∫
S1

∫
R
x(l−1)(u+ u′, θ + θ′, α+ α′, λ′)

2−2αW
(l)
λ′,λ

(
2−αR−θu′, θ′, α′

)
dα′dθ′du′ + b(l)(λ)

]
(7)

where σ : R→ R is a pointwise nonlinearity, W (1)
λ′,λ(u) is the spatial convolutional filter in the first layer with

output channel λ and input channel λ′, W (l)
λ′,λ(u, θ, α) is the RST joint convolutional filter for layer l > 1,

and
∫
S1 f(α)dα denotes the normalized S1 integral 1

2π
∫ 2π

0 f(α)dα.

We note that the joint-convolution (21) is the group convolution over RST (whose subgroup SO(2)×R is a
non-compact Lie group acting on R2), which is known to achieve equivariance under regular representations
(19) Cohen et al. (2019). We provide an elementary proof of Proposition 1 in the appendix for completeness.

4 Robust Equivariance to Input Deformation

Proposition 1 details the network architecture to achieve RST -equivariance for images modeled on the
continuous domain R2 undergoing a “perfect" RST -transformation (18). However, in practice, symmetry
transformations are rarely perfect, as they typically suffer from numerous source of input deformation coming
from, for instance, unstable camera position, change of weather, as well as practical issues such as numerical
discretization and truncation (see, for example, Figure 1.) We explain, in this section, how to quantify and
improve the representation stability of the model such that it stays “approximately" RST -equivariant even
if the input transformation is “contaminated" by minute local distortion (see, for instance, Figure 2.)

4.1 Decomposition of Convolutional Filters

In order to quantify the deformation stability of representation equivariance, motivated by Qiu et al. (2018);
Cheng et al. (2019); Zhu et al. (2019), we leverage the geometry of the group RST and decompose the
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Figure 1: RST -transformations in reality, e.g., the blue arrow, are rarely perfect, and they can be modeled
as a composition of input deformation Dτ [cf. (50)] and an exact RST -transformation D(0)

η,β,v.

convolutional filtersW (l)
λ,λ′(u, θ, α) under the separable product of three orthogonal function bases, {ψk(u)}k,

{ϕm(θ)}m, and {ξn(α)}n. In particular, we choose {ϕm}m as the Fourier basis on S1, and set {ψk}k and
{ξn}n to be the eigenfunctions of the Dirichlet Laplacian over, respectively, the unit disk D ⊂ R2 and the
interval Iα = [−1, 1], i.e.,

{
∆ψk = −µkψk in D,

ψk = 0 on ∂D,

{
ξ′′n = −νmξn in Iα
ξn(±1) = 0,

(8)

where µk and ψn are the corresponding eigenvalues.

Remark 1. One has flexibility in choosing the spatial function basis {ψk}k. We consider mainly, in this
work, the rotation-steerable Fourier-Bessel (FB) basis Abramowitz & Stegun (1965) defined in (8), as the
spatial regularity of its low-frequency modes leads to robust equivariance to input deformation in an RST -
CNN, which will be shown in Theorem 2. One can also choose {ψk}k to be the eigenfunctions of Dirichlet
Laplacian over the cell [−1, 1]2 Zhu et al. (2019), i.e., the separable product of the solutions to the 1D
Dirichlet Sturm–Liouville problem, which leads to a similar stability analysis. We denote such basis the
Sturm-Liouvielle (SL) basis, and its efficacy will be compared to FB basis in Section 6.

Since spatial pooling can be modeled as rescaling the convolutional filters in space, we assume the filters
W

(l)
λ′,λ are compactly supported on a rescaled domain as follows

W
(1)
λ′,λ ∈ Cc(2

j1D), W (l)
λ′,λ ∈ Cc(2

jlD × S1 × Iα), (9)

where jl < jl+1 models a sequence of filters with decreasing size. Let ψj,k(u) = 2−2jψk(2−ju) be the rescaled
spatial basis function, and we can decompose W (l)

λ′,λ under {ψjl,k}k, {ϕm}m, {ξn}n into

W
(1)
λ′,λ(u) =

∑
k

a
(1)
λ′,λ(k)ψj1,k(u) (10)

W
(l)
λ′,λ(u, θ, α) =

∑
k,m,n

a
(l)
λ′,λ(k,m, n)ψj1,k(u)ϕm(θ)ξn(α),

where a(l)
λ′,λ are the expansion coefficients of the filters. We explain, in Section 4.2, the effect of a(l)

λ,λ′ on the
stability of the RST -equivariant representation to input deformation.
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4.2 Stability under Input Deformation

First, in order to gauge the distance between different inputs and features, we define the layer-wise feature
norm as ∥∥∥x(0)

∥∥∥2
= 1
M0

M0∑
λ=1

∫
R2
|x(0)(u, λ)|2du, (11)

∥∥∥x(l)
∥∥∥2

= sup
α

1
Ml

Ml∑
λ=1

∫∫
S1×R2

|x(l)(u, θ, α, λ)|2dudθ,

for l ≥ 1, i.e., the norm is a combination of an L2-norm over the roto-translation group SE(2) ∼= S1 × R2

and an L∞-norm over the scaling group S ∼= R.

We next define the spatial deformation of an input image. Given a C2 vector field τ : R2 → R2, the spatial
deformation Dτ on x(0) is defined as

Dτx
(0)(u, λ) = x(0)(ρ(u), λ), (12)

where ρ(u) = u− τ(u). Thus τ(u) is understood as the local image distortion (at pixel location u), and Dτ

is the identity map if τ(u) ≡ 0, i.e., not input distortion.

The deformation stability of the equivariant representation can be quantified in terms of (53) after we make
the following three mild assumptions on the model and the input distortion Dτ :

(A1): The nonlinearity σ : R → R is non-expansive, i.e., |σ(x) − σ(y)| ≤ |x − y|, ∀x, y ∈ R. For instance,
the rectified linear unit (ReLU) satisfies this assumption.

(A2): The convolutional filters are bounded in the following sense: Al ≤ 1,∀l ≥ 1, where

A1 := πmax
{

sup
λ

∑
λ′

‖a(1)
λ′,λ‖FB,

M0

M1
sup
λ′

∑
λ′

‖a(1)
λ′,λ‖FB

}
Al := πmax

{
sup
λ

∑
λ′

∑
n

‖a(l)
λ′,λ(·, n)‖FB,

2Ml−1

Ml

∑
n

sup
λ′

∑
λ

‖a(l)
λ′,λ(·, n)‖FB

}
, ∀l > 1, (13)

in which the FB-norm ‖ · ‖FB of a sequence {a(k)}k≥0 and double sequence {b(k,m)}k,m≥0 is the weighted
l2-norm defined as

‖a‖2
FB =

∑
k

µka(k)2, ‖b‖2
FB =

∑
k

∑
m

µkb(k,m)2, (14)

µk being the eigenvalues defined in (8).

(A3): The local input distortion is small:

|∇τ |∞ := sup
u
‖∇τ(u)‖ < 1/5, (15)

where ‖ · ‖ is the operator norm.

Theorem 2 below quantifies the deformation stability of the equivariant representation in an RST -CNN
under the assumptions (A1)-(A3):
Theorem 1. Let D(l)

η,β,v, 0 ≤ l ≤ L, be the RST group actions defined in (18)(19), and let Dτ be a small
input deformation define in (50). If an RST -CNN satisfies the assumptions (A1)-(A3), we have, for any
L, ∥∥∥x(L)[D(0)

η,β,v ◦Dτx
(0)]−D(L)

η,β,vx
(L)[x(0)]

∥∥∥
≤ 2β+1 (4L|∇τ |∞ + 2−jL |τ |∞

)
‖x(0)‖. (16)
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Figure 2: Approximate RST -equivariance in the presence of nuisance input deformation Dτ .

The proof of Theorem 2 is deferred to the Appendix. An important message from Theorem 2 is that as long
as (A1)-(A3) are satisfied, the model stays approximately RST -equivariant, i.e., x(L)[D(0)

η,β,v ◦ Dτx
(0)] ≈

D
(L)
η,β,vx

(L)[x(0)], even with the presence of non-zero (yet small) input deformation Dτ (see, e.g., Figure 2.)
Remark 2. The fact that the right hand side of (52) grows exponentially with β is inevitable, as it comes
naturally from the definition of the norm (53): if an image is spatially rescaled by 2β without correspondingly
scaling the color range (i.e., pixel intensity), its L2-norm is enlarged by 2β.
Remark 3. According to the definition of the FB-norm (49), the main assumption (A2) can be facilitated by
truncating the filter expansion (10) to include only low-frequency (small µk) components. The implementation
detail of such truncated filter expansion will be explained in detail in Section 5.

5 Implementation Details

We next discuss the implementation details of the RST -CNN outlined in Proposition 1.

Discretization. To implement RST -CNN in practice, we first need to discretize the features x(l) modeled
originally under the continuous setting. First, the input signal x(0)(u, λ) is discretized on a uniform grid into
a 3D array of shape [M0, H0,W0], where H0,W0,M0, respectively, are the height, width, and the number
of the unstructured channels of the input (e.g., M0 = 3 for RGB images.) For l ≥ 1, the rotation group
S1 is uniformly discretized into Nr points; the scaling group S ∼= R1, unlike S1, is unbounded, and thus
features x(l) are computed and stored only on a truncated scale interval I = [−T, T ] ⊂ R, which is uniformly
discretized into Ns points. The feature x(l) is therefore stored as a 5D array of shape [Ml, Nr, Ns, Hl,Wl].

Filter expansion. The analysis in Section 4 suggests that robust RST -equivariance is achieved if the con-
volutional filters are expanded with only the first K low-frequency spatial modes {ψk}Kk=1. More specifically,
the first K spatial basis functions as well as their rotated and rescaled versions {2−2αψk(2−αR−θu′)}k,θ,α,u′
are sampled on a uniform grid of size L × L and stored as an array of size [K,Nr, Ns, L, L], which is fixed
during training. The expansion coefficients a(l)

λ′,λ, on the other hand, are the trainable parameters of the
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model, which are used together with the fixed basis to linearly expand the filters. The resulting filters
{2−2αW

(1)
λ′,λ(2−αR−θu′)}λ′,λ,θ,α,u′ and {2−2αW

(l)
λ′,λ(2−αR−θu′, θ′, α′)}λ′,λ,θ,θ′,α,α′,u′ are stored, respectively,

as tensors of size [M0,M1, Nr, Ns, L, L] and [Ml−1,Ml, Nr, Lθ, Ns, Lα, L, L], where Lα is the number of grid
points sampling the interval Iα in (8), and Lθ is the number of grid points sampling S1 on which the integral∫
S1 dθ in (21) is performed.

Remark 4. The number Lα measures the support Iα (8) of the convolutional filters in scale, which cor-
responds to the amount of “inter-scale" information transfer when performing the convolution over scale∫
R(· · · )dα′ in (21). It is typically chosen to be a small number (e.g., 1 or 2) to avoid the “boundary leakage
effect" Worrall & Welling (2019); Sosnovik et al. (2020); Zhu et al. (2019), as one needs to pad unknown
values beyond the truncated scale channel [−T, T ] during convolution (21) when Lα > 1. The number Lθ,
on the other hand, corresponds to the “inter-rotation" information transfer when performing the convolution
over the rotation group

∫
S1(· · · )dθ′ in (21); it does not have to be small since periodic-padding of known

values is adopted when conducting integrals on S1 with no “boundary leakage effect". We only require Lθ to
divide Nr such that

∫
S1(· · · )dθ′ is computed on a (potentially) coarser grid (of size Lθ) compared to the finer

grid (of size Nr) on which we discretize the rotation channel of the feature x(l).

Discrete convolution. After generating, in the previous step, the discrete joint convolutional filters to-
gether with their rotated and rescaled versions, the continuous convolutions in Proposition 1 can be efficiently
implemented using regular 2D discrete convolutions.

More specifically, let x(0)(u, λ) be an input image of shape [M0, H0,W0]. A total ofNr×Ns discrete 2D convo-
lutions with the rotated and rescaled filters {2−2αψk(2−αR−θu′)}k,θ,α,u′ , i.e., replacing the spatial integrals in
(21) by summations, are conducted to obtain the first-layer feature x(1)(u, θ, α, λ) of size [M1, Nr, Ns, H1,W1].
For the subsequent layers, given a feature x(l−1)(u, θ, α, λ) of shape [Ml−1, Nr, Ns, Hl−1,Wl−1] and the joint
filters F (l) = {2−2αW

(l)
λ′,λ(2−αR−θu′, θ′, α′)}λ′,λ,θ,θ′,α,α′,u′ of size [Ml−1,Ml, Nr, Lθ, Ns, Lα, L, L], the next-

layer feature x(l) is computed in the following way: for each lα ∈ [0, Lα − 1] and lθ ∈ [0, Lθ − 1], we shift
the signal x(l−1) in the scale channel by lα and in the rotation channel by lθNr/Lθ, which is then convolved
with the filter F [:, :, :, lθ, :, lα, :, :] (after proper reshaping and combining adjacent dimensions) to produce an
output array of shape [Ml, Nr, Ns, Hl,Wl]. The l-th layer feature map x(l)(u, θ, α, λ) is then computed as
the sum of the Lθ × Lα tensors obtained by iterating over lθ ∈ [0, Lθ − 1] and lα ∈ [0, Lα − 1].

Group pooling. For learning tasks where the outputs are supposed to remain unchanged to RST -
transformed inputs, e.g., image classification, a max-pooling over the entire group RST is performed on
the last-layer feature x(L)(u, θ, α, λ) of shape [ML, Nr, Ns, HL,ML] to produce an RST -invariant 1D output
of length ML. We only perform the RST group-pooling in the last layer without explicit mention.

6 Numerical Experiments

We conduct numerical experiments, in this section, to demonstrate:

• The proposed model indeed achieves robust RST -equivariance under realist settings.

• RST -CNN yields remarkable gains over prior arts in vision tasks with intrinsic RST -symmetry,
especially in the small data regime.

Software implementation of the experiments is included in the supplementary materials.

6.1 Data Sets and Models

We conduct the experiments on the Rotated-and-Scaled MNIST (RS-MNIST), Rotated-and-Scaled Fashion-
MNIST (RS-Fashion), as well as the STL-10 data sets Coates et al. (2011b).

RS-MNIST and RS-Fashion are constructed through randomly rotating (by an angle uniformly distributed
on [0, 2π]) as well as rescaling (by a uniformly random factor from [0.3, 1]) the original MNIST LeCun et al.
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(a) Equivariance error, K = 5. (b) Equivariance error, K = 10.

Figure 3: Layer-wise equivariance error (17) of the RST -CNN. Convolutional filters with varying number Lα
of “inter-scale" channels are constructed from K low-frequency spatial modes {ψk}Kk=1. The error is smaller
when K decreases, verifying our theoretical analysis Theorem 2.

(1998) and Fashion-MNIST Xiao et al. (2017a) images. The transformed images are zero-padded back to a
size of 28× 28. We upsize the image to 56× 56 for better comparison of the models.

The STL-10 data set has 5,000 training and 8,000 testing RGB images of size 96×96 belonging to 10 different
classes such as cat, deer, and dog. We use this data set to evaluate different models under both in-distribution
(ID) and out-of-distribution (OOD) settings. More specifically, the training set remains unchanged, while
the testing set is either unaltered for ID testing, or randomly rotated (by an angle uniformly distributed on
[−π/2, π/2]) and rescaled (by a factor uniformly distributed on [0.8, 1]) for OOD testing.

We evaluate the performance of the proposed RST -CNN against other models that are equivariant to either
roto-translation (SE(2)) or scale-translation (ST ) of the inputs. The SE(2)-equivariant models consider in
this section include the Rotation Decomposed Convolutional Filters network (RDCF) Cheng et al. (2019)
and the Rotation Equivariant Steerable Network (RESN) Weiler et al. (2018b), which is shown to achieve
best performance among all SE(2)-equivariant CNNs in Weiler & Cesa (2019). The ST -equivariant models
include the Scale Equivariant Vector Field Network (SEVF) Marcos et al. (2018), Scale Equivariant Steerable
Network (SESN) Sosnovik et al. (2020), and Scale Decomposed Convolutional Filters network (SDCF) Zhu
et al. (2019).

6.2 Equivariance Error

We first measure the RST -equivariance error of our proposed model with the presence of discretization
and scale channel truncation. More specifically, we construct a 5-layer RST -CNN with randomly initialized
expansion coefficients a(l)

λ′,λ truncated to K = 5 or K = 10 low-frequency spatial (FB) modes {ψk}Kk=1. The
scale channel is truncated to [−1, 1], which is uniformly discretized into Ns = 9 points; the rotation group
S1 is sampled on a uniform grid of size Nr = 8. The RST equivariance error is computed on random
RS-MNIST images, and measured in a relative L2 sense at the scale α = 0 and rotation θ = 0, with the
RST -action corresponding to the group element (η, β, v) = (−π/2,−0.5, 0), i.e.,∥∥(x(l)[Dη,β,vx

(0)]−Dη,β,vx
(l)[x(0)]

)
(·, α, θ)

∥∥
L2∥∥Dη,β,vx(l)[x(0)](·, α, θ)

∥∥
L2

(17)

We fix Lθ, i.e., the number of the “inter-rotation" channels corresponding to the “coarser" grid of S1 for
discrete S1 integration, to Lθ = 4, and examine the equivariance error induced by the “boundary leakage
effect" with different numbers Lα of the “inter-scale" channels [cf. Remark 4].
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RS-MNIST test accuracy (%) RS-MNIST+ test accuracy (%)

Models Ntr = 2, 000 Ntr = 5, 000 Ntr = 2, 000 Ntr = 5, 000

CNN 80.63± 0.11 87.41± 0.32 89.52± 0.21 93.08± 0.04
SFCNN 85.71± 0.18 89.69± 0.40 90.86± 0.20 93.78± 0.35
SFCNN+ 87.96± 0.05 92.29± 0.10 92.20± 0.09 95.32± 0.09
RDCF 86.79± 0.12 90.46± 0.33 90.40± 0.31 94.84± 0.15
RDCF+ 87.68± 0.52 91.74± 0.37 92.49± 0.28 95.81± 0.11
SEVF 85.76± 0.38 90.29± 0.37 89.97± 0.42 93.47± 0.18
SESN 84.58± 0.29 90.19± 0.39 90.33± 0.30 93.40± 0.29
SDCF 85.62± 0.51 90.40± 0.09 90.14± 0.16 93.47± 0.05

RST -CNN(FB) 89.16± 0.32 93.19± 0.29 92.58± 0.35 96.33± 0.26
RST -CNN(SL) 88.97± 0.17 93.03± 0.20 92.30± 0.19 96.04± 0.11
RST -CNN+(FB) 89.53± 0.27 93.40± 0.26 93.99 ± 0.07 96.53± 0.25
RST -CNN+(SL) 90.26 ± 0.37 93.59 ± 0.06 93.82± 0.25 96.76 ± 0.11

Table 1: Classification accuracy on the RS-MNIST data set. Models are trained on Ntr = 2K or 5K images
with spatial resolution 56×56. A plus sign “+” on the data, i.e., RS-MNIST+, is used to denote the presence
of data augmentation during training. A plus sign “+” on the model, e.g., RDCF+, denotes a larger network
with more “inter-rotation" correlation Lθ = 4 [cf. Section 5]. The mean ± std of the test accuracy over five
independent trials are reported.

Figure 3 displays the equivariance error (17) of the RST -CNN at different layers l ∈ {1, · · · , 5} with varying
Lα ∈ {1, 2, 3}. It can be observed that the equivariance error is inevitable due to numerical discretization and
truncation as the model goes deeper. However, it can be mitigated by choosing a small Lα, i.e., less “inter-
scale" information transfer, to avoid the “boundary leakage effect", or expanding the filters with a small
number K of low-frequency spatial components {ψk}Kk=1, supporting our theoretical analysis Theorem 2.
Due to this finding, we will consider RST -CNNs with Lα = 1 in the following experiments, a practice that
is adopted also in Worrall & Welling (2019); Sosnovik et al. (2020).

6.3 Image Classification

We next demonstrate the superior performance of the proposed RST -CNN in image classification under
settings where a large variation of rotation and scale is present in the test and/or the training data.

6.3.1 RS-MNIST And RS-Fashion

We first benchmark the performance of different models on the RS-MNIST and RS-Fashion data sets. We
generate five independent realizations of the rotated and rescaled data [cf. Secion 6.1], which are split into
Ntr = 5,000 or 2,000 images for training, 2,000 images for validation, and 50,000 images for testing.

For fair comparison among different models, we use a benchmark CNN with three convolutional and two
fully-connected layers as a baseline. Each hidden layer (i.e., the three convolutional and the first fully-
connected layer) is followed by a batch-normalization, and we set the number of output channels of the
hidden layers to [32, 63, 95, 256]. The size of the convolutional filters is set to 7×7 for each layer in the CNN.
All comparing models (those in Table 1-3 without “+" after the name of the model) are built on the same
CNN baseline, and we keep the trainable parameters almost the same (∼500K) by modifying the number
of the unstructured channels. For models that are equivariant to rotation (including SFCNN, RDCF, and
RST -CNN), we set the number Nr of rotation channels to Nr = 8 [cf. Section 5]; for scale-equivariant
models (including SESN, SDCF, and RST -CNN), the number Ns of scale channels is set to Ns = 4.
In addition, for rotation-equivariant CNNs, we also construct larger models (with the number of trainable
parameters∼1.6M) after increasing the “inter-rotation" information transfer [cf. Section 5] by setting Lθ = 4;
we attach a “+" symbol to the end of the model name (e.g., RDCF+) to denote such larger models with
more “inter-rotation". A group max-pooling is performed only after the final convolutional layer to achieve

10
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RS-Fashion test accuracy (%) RS-Fashion+ test accuracy (%)

Models Ntr = 2, 000 Ntr = 5, 000 Ntr = 2, 000 Ntr = 5, 000

CNN 62.71± 0.37 67.91± 0.28 67.92± 0.12 72.41± 0.46
SFCNN 70.80± 0.41 75.80± 0.11 74.10± 0.46 77.76± 0.16
SFCNN+ 71.59± 0.71 76.32± 0.26 76.80± 0.55 80.89± 0.41
RDCF 70.72± 0.10 73.96± 0.19 73.46± 0.10 77.53± 0.11
RDCF+ 71.27± 0.34 75.94± 0.35 76.87± 0.57 80.66± 0.48
SEVF 66.57± 0.32 71.03± 0.31 68.83± 0.52 73.25± 0.22
SESN 66.28± 0.14 72.19± 0.05 69.43± 0.07 75.85± 0.26
SDCF 66.29± 0.23 72.24± 0.23 68.40± 0.05 75.11± 0.18

RST -CNN(FB) 73.31± 0.16 78.64± 0.60 76.43± 0.59 81.93± 0.04
RST -CNN(SL) 72.90± 0.34 78.37± 0.22 76.06± 0.13 80.81± 0.29
RST -CNN+(FB) 74.37± 0.08 79.19± 0.36 80.65 ± 0.31 84.37 ± 0.19
RST -CNN+(SL) 74.68 ± 0.29 79.81 ± 0.06 80.65± 0.46 84.09± 0.09

Table 2: Classification accuracy on the RS-Fashion data set. Models are trained on Ntr = 2K or 5K images
with spatial resolution 56×56. A plus sign “+” on the data, i.e., RS-Fashion+, is used to denote the presence
of data augmentation during training. A plus sign “+” on the model, e.g., RDCF+, denotes a larger network
with more “inter-rotation" correlation Lθ = 4 [cf. Section 5]. The mean ± std of the test accuracy over five
independent trials are reported.

group-invariant representations for classification. Moreover, for RST -CNN, we consider two different spatial
function basis for filter expansion, namely the Fourier-Bessel (FB) basis, and Sturm-Liouville (SL) basis [cf.
Remark 1].

We use the Adam optimizer Kingma & Ba (2014) to train all models for 60 epochs with the batch size set
to 128. We set the initial learning rate to 0.01, which is scheduled to decrease tenfold after 30 epochs. We
conduct the experiments in 4 different settings, where the number Ntr of training samples is either 2,000 or
5,000, and the models are trained with or without RST data augmentation.

We report the mean ± std of the test accuracy after five independent trials in Table 1 and Table 2, where, for
example, RS-MNIST (or RS-MNIST+) denotes models are trained on the RS-MNIST data set without (or
with) data augmentation. It is clear from Table 1 and Table 2 that RST -CNN has superior generalization
capability compared to other models with approximately the same trainable parameters, especially in the
small data regime. Furthermore, RST -CNN+ with more inter-rotation correlation (i.e., Lθ = 4) has further
improved performance, achieving the best accuracy among all methods. It can also be observed that neither
of the two spatial basis functions (i.e., FB and SL) has significant advantage over the other. The preferred
choice of the basis for filter expansion could depend on experimental settings including sample size, the
number of filters, original data characteristics and the presence (or lack thereof) of data augmentation.

6.3.2 STL-10

Finally, we use the STL-10 data set as an example to showcase both ID and OOD generalization capacity of
the proposed RST -CNN. As explained in Section 6.1, the training set remains unaltered, while the testing
set is either (a) unchanged for ID testing, or (b) randomly rotated and rescaled for OOD testing. All models
are built on a ResNet He et al. (2016) with 16 layers as the baseline, and we keep the number of trainable
parameters almost the same for comparing networks. A group max-pooling is performed after the final
residual block to achieve invariant representations.

Similar to the idea of Sosnovik et al. (2020); Zhu et al. (2019), the data set is augmented (without rotation
and rescaling) during training by randomly cropping a 12 pixel zero-padded image. Furthermore, random
horizontal flipping and Cutout DeVries & Taylor (2017) with 32 pixels are applied to the cropped image. We
train all models for 1000 epochs with a batch size of 64, using an SGD optimizer with Nesterov momentum
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Models ID Accuracy (%) OOD Accuracy (%)

ResNet-16 82.66± 0.53 37.63± 1.95
SFCNN 83.84± 0.67 51.28± 2.29
RDCF 83.66± 0.57 51.12± 4.21
SESN 83.79± 0.24 47.26± 0.63
SDCF 83.83± 0.41 43.60± 0.87

RST -CNN 84.08 ± 0.11 58.31 ± 3.62

Table 3: Test accuracy on the STL-10 data set for both in-distribution (ID) and out-of-distribution (OOD)
settings.

set to 0.9 and weight decay set to 5× 10−4. Learning rate starts at 0.1, and is scheduled to decrease tenfold
after 300, 400, 600, and 800 epochs.

The mean ± std after three independent trials of both ID and OOD test accuracy is displayed in Table 3.
It can be observed that the proposed RST -CNN significantly outperforms all comparing models, especially
for OOD generalization, demonstrating further its advantage in computer vision where both rotation and
scale transformations are intrinsic symmetries of the learning task.

7 Conclusion

In this paper, we have proposed the roto-scale-translation equivariant CNN (RST -CNN), which is able to
achieve equivariance jointly over these three groups. Through truncated expansion of the joint convolutional
filters under pre-fixed low-frequency spatial modes, which is motivated by a rigorous stability analysis of
the representation, the proposed model provably attains deformation robust equivariance, i.e., the features
stay “approximately" equivariant even if the RST transformation is “contaminated" by nuisance input
distortion, a property that is crucial for out-of-distribution model generalization. Experiments on vision
tasks with intrinsic RST symmetry are conducted to demonstrate the improved generalization capability of
our proposed model under both in-distribution and out-of-distribution setting, especially in the small data
regime.

One limitation of the current work is that we have considered deformation robust neural networks that are
equivariant to only the regular representation of the group RST . Such models have empirically proved to
exhibit stronger generalization performance because of their ability to encode any function on the group.
However, regular representation requires high dimensional feature spaces, and the memory consumption
(mainly from storing intermediate features) of the proposed RST -CNN is Nr ×Ns times that of a regular
CNN with the same number of unstructured channels. For future work, we will extend the idea in this
paper to construct deformation robust steerable RST -CNNs with reduced model size and efficient network
implementation.
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A Appendix

B Proof of Proposition 1

We first recall for an input RGB image x(0)(u, λ), a roto-scale-translation transformation on this image can
be understood as an RST -action (representation) D(0)

g = D
(0)
η,β,v on x(0).

[D(0)
η,β,vx

(0)](u, λ) = x(0) (R−η2−β(u− v), λ
)
. (18)

For the hidden layers 1 ≤ l ≤ L, the action D
(l)
η,β,v on the space X (l) consisting of features in the form of

x(l)(u, θ, α, λ) is defined as

[D(l)
η,β,vx

(l)](u, θ, α, λ) = x(l) (R−η2−β(u− v), θ − η, α− β, λ
)
, ∀l ≥ 1. (19)

We restate below Proposition 1 of the paper that outlines the general network architecture to achieve RST -
equivariance under the representations D(l)

η,β,v, 0 ≤ l ≤ L.
Proposition 1. An L-layer feedforward neural network is RST -equivariant under the representations (18)
(19) if and only if the layer-wise operations are defined as (20) and (21):

x(1)[x(0)](u, θ, α, λ) = σ

[∑
λ′

∫
R2
x(0)(u+ u′, λ′) · 2−2αW

(1)
λ′,λ

(
2−αR−θu′

)
du′ + b(1)(λ)

]
, (20)

x(l)[x(l−1)](u, θ, α, λ) = σ

[∑
λ′

∫
R2

∫
S1

∫
R
x(l−1)(u+ u′, θ + θ′, α+ α′, λ′)

· 2−2αW
(l)
λ′,λ

(
2−αR−θu′, θ′, α′

)
dα′dθ′du′ + b(l)(λ)

]
(21)

where σ : R→ R is a pointwise nonlinearity, W (1)
λ′,λ(u) is the spatial convolutional filter in the first layer with

output channel λ and input channel λ′, W (l)
λ′,λ(u, θ, α) is the RST joint convolutional filter for layer l > 1,

and
∫
S1 f(α)dα denotes the normalized S1 integral 1

2π
∫ 2π

0 f(α)dα.

B.1 Sufficient Part of the Proof of Proposition 1

Proof. We first prove the sufficient part of Proposition 1. That is, given the layer-wise definition of the
L-layer feedforward neural network (20) and (21), RST -equivariance under the regular representation (18)
(19) can be achieved, i.e.,

x(l)[D(l−1)
η,β,v x

(l−1)] = D
(l)
η,β,vx

(l)[x(l−1)], ∀l ≥ 1. (22)

Indeed, for the first layer, i.e., l = 1, we write the LHS of (22) as

x(1)[D(0)
η,β,vx

(0)](u, θ, α, λ) = σ

(∑
λ′

∫
R2

2−2αD
(0)
η,β,vx

(0)(u+ u′, λ′)W (1)
λ′,λ(2−αR−θu′)du′ + b(1)(λ)

)

= σ

(∑
λ′

∫
R2

2−2αx(0) (R−η2−β(u+ u′ − v), λ′
)
W

(1)
λ′,λ(2−αR−θu′)du′ + b(1)(λ)

)
, (23)
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The RHS of (22) when l = 1 is

D
(1)
η,β,vx

(1)[x(0)](u, θ, α, λ) = x(1)[x(0)]
(
R−η2−β(u− v), θ − η, α− β, λ

)
= σ

(∑
λ′

∫
R2

2−2(α−β)x(0) (R−η2−β(u− v) + ũ, λ′
)
W

(1)
λ′,λ(2−(α−β)Rη−θũ)dũ+ b(1)(λ)

)

= σ

(∑
λ′

∫
R2

2−2α22βx(0) (R−η2−β(u− v) + 2−βR−ηu′, λ′
)
W

(1)
λ′,λ(2−αR−θu′)2−2βdu′ + b(1)(λ)

)
(24)

= σ

(∑
λ′

∫
R2

2−2αx(0) (R−η2−β(u+ u′ − v), λ′
)
W

(1)
λ′,λ(2−αR−θu′)du′ + b(1)(λ)

)
, (25)

where (24) uses the change of variable u′ = 2−βR−ηũ. Thus (23) and (25) implies that (22) holds valid for
l = 1.

For l > 1, with the definition of the l-th layer operation (21), the LHS of (22) becomes

x(l)[D(l−1)
η,β,v x

(l−1)](u, θ, α, λ)

=σ
(∑

λ′

∫ ∫ ∫
2−2αD

(l−1)
η,β,v x

(l−1) (u+ u′, θ + θ′, α+ α′, λ′)W (l)
λ′,λ

(
2−αR−θu′, θ′, α′

)
dα′dθ′du′ + b(l)(λ)

)
(26)

=σ
(∑

λ′

∫ ∫ ∫
2−2αx(l−1) (R−η2−β(u+ u′ − v), θ + θ′ − η, α+ α′ − β, λ′

)
·W (l)

λ′,λ

(
2−αR−θu′, θ′, α′

)
dα′dθ′du′ + b(l)(λ)

)
. (27)

On the other hand, the RHS of (22) is

D
(l)
η,β,vx

(l)[x(l−1)](u, θ, α, λ)

=x(l)[x(l−1)]
(
R−η2−β(u− v), θ − η, α− β, λ

)
(28)

=σ
(∑

λ′

∫ ∫ ∫
2−2(α−β)x(l−1) (R−η2−β(u− v) + ũ, θ − η + θ′, α− β + α′, λ′

)
·W (l)

λ′λ

(
2−(α−β)Rη−θũ, θ

′, α′
)
dα′dθ′dũ+ b(l)(λ)

)
(29)

=σ
(∑

λ′

∫ ∫ ∫
2−2α22βx(l−1) (R−η2−β(u− v) +R−η2−βu′, θ − η + θ′, α− β + α′, λ′

)
·W (l)

λ′,λ

(
2−αR−θu′, θ′, α′

)
2−2βdα′dθ′dũ+ b(l)(λ)

)
, (30)

where the last equation again uses the same change of variable. Equation (27) combined with (30) implies
that (22) holds true for all l > 1.

B.2 Necessary Part of the Proof of Proposition 1

Proof. We first note that a general feedforward neural network propagating through the feature spaces X (l)

has the following form: when l = 1,

x(1)[x(0)](u, θ, α, λ) = σ

(∑
λ′

∫
R2
x(0)(u+ u′)W (1)(u′, λ′, u, θ, α, λ)du′ + b(1)(λ)

)
, (31)
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and, for l > 1,

x(l)[x(l−1)](u, θ, α, λ) = σ

(∑
λ′

∫
R2

∫
S1

∫
R
x(l−1)(u+ u′, θ + θ′, α+ α′, λ′)

·W (l)(u′, θ′, α′, λ′, u, θ, α, λ)dα′dθ′du′ + b(l)(λ)
)
. (32)

To prove the necessary part of Proposition 1, we want to verify that RST -equivariance (22) implies that the
weight matrices W (l) in (31) and (32) take the special convolutional form in (20) and (21).

Indeed, when l = 1, the RHS of (22) under the operation (31) is

D
(1)
η,β,vx

(1)[x(0)](u, θ, α, λ) (33)

=x(1)[x(0)]
(
R−η2−β(u− v), θ − η, α− β, λ

)
(34)

=σ
(∑

λ′

∫
x(0)(R−η2−β(u− v) + ũ, λ′)W (1)(ũ, λ′, R−η2−β(u− v), θ − η, α− β, λ)dũ+ b(1)(λ)

)
(35)

=σ
(∑

λ′

∫
2−2βx(0)(R−η2−β(u+ u′ − v), λ′)

·W (1) (R−η2−βu′, λ′, R−η2−β(u− v), θ − η, α− β, λ
)
du′ + b(1)(λ)

)
, (36)

with change of variable similar to the sufficient part. For the RHS, we have

x(1)[D(0)
η,β,vx

(0)]](u, θ, α, λ) (37)

=σ
(∑

λ′

∫
D

(1)
η,β,vx

(0)(u+ u′, λ′)W (1)(u′, λ′, u, θ, α, λ)du′ + b(1)(λ)
)

(38)

=σ
(∑

λ′

∫
x(0)(R−η2−β(u+ u′ − v), λ′)W (1)(u′, λ′, u, θ, α, λ)du′ + b(1)(λ)

)
(39)

Hence, for (22) to hold when l = 1, we need

W (1)(u′, λ′, u, θ, α, λ) = 2−2βW (1)(R−η2−βu′, λ′, R−η2−β(u− v), θ − η, α− β, λ), (40)

For all u, θ, α, λ, u′, λ′, v, η, β. Keeping u, θ, α, λ, u′, λ′, η, β fixed while varying v in (40), we deduce
that W (1)(u′, λ′, u, θ, α, λ) does not depend on the third variable u. Hence W (1)(u′, λ′, u, θ, α, λ) =
W (1)(u′, λ′, 0, θ, α, λ),∀u ∈ R2. Further define W (1)

λ,λ′(u′) as

W
(1)
λ,λ′(u

′) = W (1)(u′, λ′, 0, 0, 0, λ). (41)

Therefore, for any fixed u′, λ′, u, θ, α, λ, setting β = α, η = θ in (40) yields

W (1)(u′, λ′, u, θ, α, λ) = W (1)(R−θ2−αu′, λ′, R−θ2−α(u− v), θ − θ, α− α, λ)2−2α (42)

= W (1)(R−θ2−αu′, λ′, 0, 0, 0, λ)2−2α = W
(1)
λ,λ′(R−θ2

−αu′)2−2α (43)

Hence (31) has the special form (20).

For the subsequent layers l > 1, a similar argument yields

W (l)(u′, θ′, α′, λ′, u, θ, α, λ) = W (l)(R−η2−βu′, θ′, α′, λ′, R−η2−β(u− v), θ − η, α− β, λ)2−2β , (44)

for all u, θ, α, λ, u′, θ′, α′, λ′, v, η, β. Similarly, we can keep u, θ, α, λ, u′, θ′, α′, λ′, η, β fixed while varying v in
(44), which implies that W (l)(u′, θ′, α′, λ′, u, θ, α, λ) does not depend on the fifth variable u. Again, let us
define

W
(l)
λ,λ′(u

′, θ′, α′) = W (l)(u′, θ′, α′, λ′, 0, 0, 0, λ). (45)
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For any given u′, θ′, α′, λ′, u, θ, α, λ, setting β = α, η = θ leads us to

W (l)(u′, θ′, α′, λ′, u, θ, α, λ) = W (l)(R−θ2−αu′, θ′, α′, λ′, R−θ2−α(u− v), 0, 0, λ)2−2α

=W (l)(R−θ2−αu′, θ′, α′, λ′, 0, 0, 0, λ)2−2α = W
(l)
λ′,λ(2−αu′, θ′ − θ, α′ − α), (46)

which implies that (32) can be written in the form of (21). This concludes the proof of Proposition 1.

C Proof of Theorem 2

We prove, in this section, the deformation stability of the RST -CNN (Theorem 2 of the paper) under the
following three assumptions:

(A1): The pointwise nonlinearity σ : R→ R is non-expansive, i.e., |σ(x)− σ(y)| ≤ |x− y|, ∀x, y ∈ R.

(A2): The convolutional filters are bounded in the following sense: Al ≤ 1,∀l ≥ 1, where

A1 := πmax
{

sup
λ

∑
λ′

‖a(1)
λ′,λ‖FB,

M0

M1
sup
λ′

∑
λ′

‖a(1)
λ′,λ‖FB

}
(47)

Al := πmax
{

sup
λ

∑
λ′

∑
n

‖a(l)
λ′,λ(·, n)‖FB,

2Ml−1

Ml

∑
n

sup
λ′

∑
λ

‖a(l)
λ′,λ(·, n)‖FB

}
, ∀l > 1, (48)

in which the FB-norm ‖ · ‖FB of a sequence {a(k)}k≥0 and double sequence {b(k,m)}k,m≥0 is the weighted
l2-norm defined as

‖a‖2
FB =

∑
k

µka(k)2, ‖b‖2
FB =

∑
k

∑
m

µkb(k,m)2, (49)

with µk being the eigenvalues of the Dirichlet Laplacian on a unit disk.

(A3): The input distortion is small. More specifically, let

Dτx
(0)(u, λ) = x(0)(ρ(u), λ), and Dτx

(l)(u, θ, α, λ) = x(l)(ρ(u), θ, α, λ), l ≥ 1, (50)

where ρ(u) = u− τ(u), and τ : R2 → R2 is a C2 local (spatial) distortion. We assume

|∇τ |∞ := sup
u
‖∇τ(u)‖ < 1/5, (51)

with ‖ · ‖ being the operator norm.

We repeat below Theorem 2 of the paper that quantifies the deformation stability of the equivariant repre-
sentation in an RST -CNN under the assumptions (A1)-(A3):

Theorem 2. Let D(l)
η,β,v, 0 ≤ l ≤ L, be the RST group actions defined in (18)(19), and let Dτ be a small

input deformation define in (50). If an RST -CNN satisfies the assumptions (A1)-(A3), we have, for any
L, ∥∥∥x(L)[D(0)

η,β,v ◦Dτx
(0)]−D(L)

η,β,vx
(L)[x(0)]

∥∥∥ ≤ 2β+1 (4L|∇τ |∞ + 2−jL |τ |∞
)
‖x(0)‖, (52)

where the layer-wise feature norm is defined as as

∥∥∥x(0)
∥∥∥2

= 1
M0

M0∑
λ=1

∫
R2
|x(0)(u, λ)|2du,

∥∥∥x(l)
∥∥∥2

= sup
α

1
Ml

Ml∑
λ=1

∫∫
S1×R2

|x(l)(u, θ, α, λ)|2dudθ, ∀l ≥ 1

(53)
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The proof of Theorem 2 follows the similar steps in Zhu et al. (2019). More specifically, we aim to establish
the following two propositions that show the layer-wise non-expansiveness of the model (Proposition 2) and
quantify the perturbation of equivariance with the presence of layer-wise spatial deformation Dτ (Proposi-
tion 3).
Proposition 2. Under (A1) and (A2), an RST -CNN satisfies:

(a) For any l ≥ 1, the l-th layer mapping x(l)[·] defined in (21) is non-expansive, i.e.,

‖x(l)[x1]− x(l)[x2]‖ ≤ ‖x1 − x2‖, ∀x1, x2. (54)

(b) Let x(l)
0 (u, θ, α, λ) be the l-th layer output given a zero input x(0)(u, λ) = 0, then x

(l)
0 (u, θ, α, λ)

depends only on λ, i.e., x(l)
0 (u, θ, α, λ) = x

(l)
0 (λ).

(c) Let x(l)
c be the centered version of x(l) after subtracting x(l)

0 , i.e.,

x(0)
c (u, λ) := x(0)(u, λ)− x(0)

0 (λ) = x(0)(u, λ), x(l)
c (u, θ, α, λ) := x(l)(u, θ, α, λ)− x(l)

0 (λ), l ≥ 1,
(55)

then ‖x(l)
c ‖ ≤ ‖x(l−1)

c ‖, ∀l ≥ 1. As a result, ‖x(l)
c ‖ ≤ ‖x(0)

c ‖ = ‖x(0)‖.

Proposition 3. In an RST -CNN satisfying (A1) to (A3), the following statements hold true.

(a) Given any l ≥ 1, ∥∥∥x(l)[Dτx
(l−1)]−Dτx

(l)[x(l−1)]
∥∥∥ ≤ 8|∇τ |∞

∥∥∥x(l−1)
c

∥∥∥ , (56)

where x(l−1)
c is defined in (55)

(b) Given any l ≥ 1, we have ∥∥∥D(l)
η,β,vx

(l)
∥∥∥ = 2β

∥∥∥x(l)
∥∥∥ , (57)

and ∥∥∥x(l)[D(l−1)
η,β,v ◦Dτx

(l−1)]−D(l)
η,β,vDτx

(l)[x(l−1]
∥∥∥ ≤ 2β+3|∇τ |∞

∥∥∥x(l−1)
c

∥∥∥ . (58)

(c) For any l ≥ 1, ∥∥∥x(l)[D(0)
η,β,v ◦Dτx

(l−1)]−D(l)
η,β,vDτx

(l)[x(0]
∥∥∥ ≤ 2β+3l|∇τ |∞

∥∥∥x(0)
c

∥∥∥ . (59)

(d) For any l ≥ 1,∥∥∥D(l)
η,β,vDτx

(l) −D(l)
η,β,vx

(l)
∥∥∥ ≤ 2β+1−jl |τ |∞

∥∥∥x(l−1)
c

∥∥∥ ≤ 2β+1−jl |τ |∞
∥∥∥x(0)

∥∥∥ . (60)

C.1 Proof of Proposition 2

Before proving Proposition 2, we present the following two lemmas that are crucial to bound various norms
of the convolutional filters using their Fourier-Bessle (FB) norm
Lemma 1. Let {ψk}k be the Fourier-Bessel basis on the unit disk D ⊂ R2, and let {ϕm}m be the Fourier
basis on the unit circle S1. Assume that

F (u) =
∑
k

a(k)ψk(u), G(u, θ) =
∑
k

∑
m

b(k,m)ψk(u)ϕm(θ) (61)
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are functions in H1
0 (2jD) and H1

0 (2jD)× L2(S1), respectively. Then∫
|F (u)|du,

∫
|u||∇F (u)|du,

∫
|∇F (u)|du ≤ π‖a‖FB = π

(∑
k

µka(k)2

)1/2

, (62)

∫∫
|G(u, θ)|dudθ,

∫∫
|u||∇uG(u, θ)|dudθ,

∫∫
|∇uG(u)|dudθ ≤ π‖b‖FB = π

∑
k,m

µkb(k,m)2

1/2

.

(63)

The proof of Lemma 1 can be found in Proposition A.1 of Cheng et al. (2019). A direct application of
Lemma 1 leads to the following lemma.
Lemma 2. Let a(l)

λ′,λ(k,m, n) be the coefficients of the filter W (l)
λ′,λ(u, θ, α) (supported on 2jlD×S1× [−1, 1])

under the separable bases {ψjl,k(u)}k, {ϕm(θ)}m and {ξn(α)}n defined in the main paper, and define
W

(l)
λ′,λ,n(u, θ) as

W
(l)
λ′,λ,n(u, θ) :=

∑
k

∑
m

a
(l)
λ′,λ(k,m, n)ψjl,k(u)ϕm(θ). (64)

We have

B
(1)
λ′,λ, C

(1)
λ′,λ, 2

j1D
(1)
λ′,λ ≤ π‖a

(1)
λ′,λ‖FB, B

(l)
λ′,λ,n, C

(l)
λ′,λ,n, 2

jlD
(l)
λ′,λ,n ≤ π‖a

(l)
λ′,λ(·, n)‖FB, ∀l > 1, (65)

where 

B
(1)
λ′,λ :=

∫ ∣∣∣W (1)
λ′,λ(u)

∣∣∣ du, B
(l)
λ′,λ,n :=

∫
S1

∫
R2

∣∣∣W (l)
λ′,λ,n(u, θ)

∣∣∣ dudθ, l > 1,

C
(1)
λ′,λ :=

∫
|u|
∣∣∣∇uW (1)

λ′,λ(u)
∣∣∣ du, C

(l)
λ′,λ,n :=

∫
S1

∫
R2
|u|
∣∣∣∇uW (l)

λ′,λ,n(u, θ)
∣∣∣ dudθ, l > 1,

D
(1)
λ′,λ :=

∫ ∣∣∣∇uW (1)
λ′,λ(u)

∣∣∣ du, D
(l)
λ′,λ,n :=

∫
S1

∫
R2

∣∣∣∇uW (l)
λ′,λ,n(u, θ)

∣∣∣ dudθ, l > 1.

(66)

Hence we have

Bl, Cl, 2jlDl ≤ Al, (67)

where

B1 := max
{

sup
λ

M0∑
λ′=1

B
(1)
λ′,λ,

M0

M1
sup
λ′

M1∑
λ=1

B
(1)
λ′,λ

}
,

C1 := max
{

sup
λ

M0∑
λ′=1

C
(1)
λ′,λ,

M0

M1
sup
λ′

M1∑
λ=1

C
(1)
λ′,λ

}
,

D1 := max
{

sup
λ

M0∑
λ′=1

D
(1)
λ′,λ,

M0

M1
sup
λ′

M1∑
λ=1

D
(1)
λ′,λ

}
,

(68)

and, for l > 1,

Bl := max

sup
λ

Ml−1∑
λ′=1

∑
n

B
(l)
λ′,λ,n,

2Ml−1

Ml

∑
n

Bl,n

 , Bl,n := sup
λ′

Ml∑
λ=1

B
(l)
λ′,λ,n,

Cl := max

sup
λ

Ml−1∑
λ′=1

∑
n

C
(l)
λ′,λ,n,

2Ml−1

Ml

∑
n

Cl,n

 , Cl,n := sup
λ′

Ml∑
λ=1

C
(l)
λ′,λ,n,

Dl := max

sup
λ

Ml−1∑
λ′=1

∑
n

D
(l)
λ′,λ,n,

2Ml−1

Ml

∑
n

Dl,n

 , Dl,n := sup
λ′

Ml∑
λ=1

D
(l)
λ′,λ,n.

(69)
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The bound on Al,∀l ≥ 1, i.e., (A2), therefore implies that

Bl, Cl, 2jlDl ≤ 1, ∀l ≥ 1. (70)

Proof of Lemma 2. Applying Lemma 1 to the filtersW (1)
λ′,λ(u) andW (l)

λ′,λ,n(u, θ) defined in (64) after rescaling
the spatial variable u easily leads to the desired bounds (67). The rest of the lemma follows from the
assumption (A2).

Proof of Proposition 2. To avoid cumbersome notations, we drop the layer index (l) in the filters W (l)
λ′,λ

and b(l), and let M = Ml,M
′ = Ml−1 when the context is clear. The proof of (a) is similar to that of

Proposition 2(a) in Zhu et al. (2019) after a further integration on S1. More specifically, when l = 1, the
definition of B1 in (66) implies that

sup
λ

∑
λ′

B
(1)
λ′,λ ≤ B1, sup

λ′

∑
λ

B
(1)
λ′,λ ≤ B1

M

M ′
(71)

Therefore, given two inputs x1 and x2, we have

∣∣∣(x(1)[x1]− x(1)[x2]
)

(u, θ, α, λ)
∣∣∣2 (72)

=
∣∣∣∣∣σ
(∑

λ′

∫
x1(u+ u′, λ′)Wλ′,λ

(
2−αR−θu′

)
2−2αdu′ + b(λ)

)

−σ

(∑
λ′

∫
x2(u+ u′, λ′)Wλ′,λ

(
2−αR−θu′

)
2−2αdu′ + b(λ)

)∣∣∣∣∣
2

(73)

≤

∣∣∣∣∣∑
λ′

∫
x1(u+ u′, λ′)Wλ′,λ

(
2−αR−θu′

)
2−2αdu′ −

∑
λ′

∫
x2(u+ u′, λ′)Wλ′,λ

(
2−αR−θu′

)
2−2αdu′

∣∣∣∣∣
2

(74)

=
∣∣∣∣∣∑
λ′

∫
(x1 − x2)(u+ u′, λ′)Wλ′,λ

(
2−αR−θu′

)
2−2αdu′

∣∣∣∣∣
2

(75)

≤

(∑
λ′

∫
|(x1 − x2)(u+ u′, λ′)|2

∣∣Wλ′,λ(2−αR−θu′)
∣∣ 2−2αdu′

)∑
λ′

∫ ∣∣Wλ′,λ(2−αR−θu′)
∣∣ 2−2αdu′ (76)

=
(∑

λ′

∫
|(x1 − x2)(u+ u′, λ′)|2

∣∣Wλ′,λ(2−αR−θu′)
∣∣ 2−2αdu′

)(∑
λ′

B
(1)
λ′,λ

)
(77)

≤B1
∑
λ′

∫
|(x1 − x2)(ũ, λ′)|2

∣∣Wλ′,λ(2−αR−θ (ũ− u))
∣∣ 2−2αdũ (78)

22



Under review as submission to TMLR

Hence, given any α ∈ R, we have

∑
λ

∫
S1

∫
R2

∣∣∣(x(1)[x1]− x(1)[x2]
)

(u, α, θ, λ)
∣∣∣2 dudθ

≤
∑
λ

∫
S1

∫
R2
B1
∑
λ′

∫
|(x1 − x2)(ũ, λ′)|2

∣∣Wλ′,λ(2−αR−θ (ũ− u))
∣∣ 2−2αdũdudθ (79)

=B1
∑
λ′

∫
R2
|(x1 − x2)(ũ, λ′)|2

(∑
λ

∫
S1

∫
R2

∣∣Wλ′,λ(2−αR−θ (ũ− u))
∣∣ 2−2αdudθ

)
dũ (80)

=B1
∑
λ′

∫
|(x1 − x2)(ũ, λ′)|2

(∑
λ

B
(1)
λ′,λ

)
dũ (81)

≤B2
1
M

M ′

∑
λ′

∫
|(x1 − x2)(ũ, λ′)|2 dũ (82)

=B2
1M‖x1 − x2‖2 (83)

≤M‖x1 − x2‖2, (84)

where the last inequality comes from Lemma 2, and (80) makes use of the fact that∫
R2

∣∣W (2−αR−θu)
∣∣ 2−2αdu =

∫
R2
|W (u)|du, ∀α ∈ R, ∀θ ∈ S1, (85)

and
∫
S1 dθ = 1 due to the normalization factor 1/2π in the definition. Therefore, we have

‖x(1)[x1]− x(1)[x2]‖2 = sup
α

1
M

∑
λ

∫∫ ∣∣∣(x(1)[x1]− x(1)[x2]
)

(u, θ, α, λ)
∣∣∣2 dudθ ≤ ‖x1 − x2‖2. (86)

This concludes the proof of (a) for the case l = 1. For the case l > 1, the same technique applies by
considering the joint convolution

∫
S1

∫
R2(· · · )dudθ while making use of (85), and we omit the detail.

For part (b), we use mathematical induction. More specifically, x(0)
0 (u, λ) = 0 by definition. For l = 1,

x
(1)
0 (u, θ, α, λ) = σ(b(1)(λ)). Assuming that x(l−1)

0 (u, θ, α, λ) = x
(l−1)
0 (λ) for some l > 1, we have

x
(l)
0 (u, α, λ)

=σ
(∑

λ′

∫
S1

∫
R2

∫
R
x

(l−1)
0 (u+ u′, θ + θ′, α+ α′, λ′)W (l)

λ′,λ

(
2−αR−θu′, θ′, α′

)
2−2αdα′du′dθ′ + b(l)(λ)

)
(87)

=σ
(∑

λ′

x
(l−1)
0 (λ′)

∫
S1

∫
R2

∫
R
W

(l)
λ′,λ

(
2−αR−θu′, θ′, α′

)
2−2αdα′du′dθ′ + b(l)(λ)

)
(88)

=σ
(∑

λ′

x
(l−1)
0 (λ′)

∫
S1

∫
R2

∫
R
W

(l)
λ′,λ (u′, θ′, α′) dα′du′dθ′ + b(l)(λ)

)
(89)

=x(l)
0 (λ). (90)

To prove part (c): for any l > 1, we have

‖x(l)
c ‖ = ‖x(l) − x(l)

0 ‖ = ‖x(l)[x(l−1)]− x(l)
0 [x(l−1)

0 ]‖ ≤ ‖x(l−1) − x(l−1)
0 ‖ = ‖x(l−1)

c ‖, (91)

where the inequality comes from the layer-wise non-expansiveness (54) in part (a). An easy induction leads
to (c).
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C.2 Proof of Proposition 3

Proof. Just like Proposition 2(a), the proofs of part (a) and part (d), respectively, of Proposition 3 are similar
to those of Proposition 3(a) and Proposition 4 of Zhu et al. (2019). More specifically, making use of (85)
and

∫
S1 dθ = 1 when l = 1, and further taking the integral

∫
S1

∫
R2(· · · )dudθ over S1 ×R2 instead of just R2

when l > 1, we arrive at the following∥∥∥x(l)[Dτx
(l−1)]−Dτx

(l)[x(l−1)]
∥∥∥ ≤ 4(Bl + Cl)|∇τ |∞

∥∥∥x(l−1)
c

∥∥∥ ≤ 4(Bl + Cl)|∇τ |∞
∥∥∥x(0)

∥∥∥ , ∀l ≥ 1, (92)∥∥∥D(l)
η,β,vDτx

(l) −D(l)
η,β,vx

(l)
∥∥∥ ≤ 2β+1|τ |∞Dl

∥∥∥x(l−1)
c

∥∥∥ ≤ 2β+1|τ |∞Dl

∥∥∥x(0)
∥∥∥ , ∀l ≥ 1, (93)

where Bl, Cl, Dl are defined in (68) and (69). Lemma 2 thus implies that∥∥∥x(l)[Dτx
(l−1)]−Dτx

(l)[x(l−1)]
∥∥∥ ≤ 8|∇τ |∞

∥∥∥x(l−1)
c

∥∥∥ ≤ 8|∇τ |∞
∥∥∥x(0)

∥∥∥ , ∀l ≥ 1, (94)∥∥∥D(l)
η,β,vDτx

(l) −D(l)
η,β,vx

(l)
∥∥∥ ≤ 2β+1−jl |τ |∞

∥∥∥x(l−1)
c

∥∥∥ ≤ 2β+1−jl |τ |∞
∥∥∥x(0)

∥∥∥ , ∀l ≥ 1. (95)

For part (b), given any (η, β, v) ∈ S1 × R× R2, we have

‖D(l)
η,β,vx

(l)‖2 = sup
α

1
Ml

∑
λ

∫
S1

∫
R2

∣∣∣D(l)
η,β,vx

(l)(u, θ, α, λ)
∣∣∣2 dudθ (96)

= sup
α

1
Ml

∑
λ

∫
S1

∫
R2

∣∣∣x(l)(2−βR−θ(u− v), θ − η, α− β, λ)
∣∣∣2 dudθ (97)

= sup
α

1
Ml

∑
λ

∫
S1

∫
R2

∣∣∣x(l)(u′, θ − η, α− β, λ)
∣∣∣2 22βdu′dθ (98)

= 22β‖x(l)‖2 (99)

Thus (57) is valid. The second half of part (b) holds since∥∥∥x(l)[D(l)
η,β,v ◦Dτx

(l−1)]−D(l)
η,β,vDτx

(l)[x(l−1)]
∥∥∥

=
∥∥∥D(l)

η,β,vx
(l)[Dτx

(l−1)]−D(l)
η,β,vDτx

(l)[x(l−1)]
∥∥∥ (100)

=2β
∥∥∥x(l)[Dτx

(l−1)]−Dτx
(l)[x(l−1)]

∥∥∥ (101)

≤2β+3|∇τ |∞‖x(l−1)
c ‖, (102)

where the first equality holds because of the RST -equivariance, i.e., Theorem 1, and the second equality
follows from (57).

The proof of part (c) is exactly the same as that of Proposition 3(c) of Zhu et al. (2019). Specifically,
we telescope the inequality (58) while making use of the non-expansiveness of the layer-wise features, i.e.,
Proposition 2(c). The detail is omitted.

C.3 Proof of Theorem 2

Proof. Theorem 2 is a direct consequence of Proposition 3. More specifically,∥∥∥x(L)[D(0)
η,β,v ◦Dτx

(0)]−D(L)
η,β,vx

(L)[x(0)]
∥∥∥

≤
∥∥∥x(L)[D(0)

η,β,v ◦Dτx
(0)]−D(L)

η,β,vDτx
(L)[x(0)]

∥∥∥+
∥∥∥D(L)

η,β,vDτx
(L)[x(0)]−D(L)

η,β,vx
(L)[x(0)]

∥∥∥ (103)

≤2β+3L|∇τ |∞‖x(0)‖+ 2β+1−jL |τ |∞‖x(0)‖ (104)
=2β+1 (4L|∇τ |∞ + 2−jL |τ |∞

)
‖x(0)‖, (105)

where the second inequality comes from Proposition 3(c) and Proposition 3(d). This concludes the proof of
Theorem 2.
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D Reproducibility

D.1 License of Datasets

• MNIST. Creative Commons Attribution-Share Alike 3.0 license LeCun (1998).

• Fashion-MNIST. MIT license Xiao et al. (2017b).

• STL-10. BSD 3-Clause License Coates et al. (2011a).

D.2 Code Implementation

Our code and experiments in our paper are available at https://anonymous.4open.science/r/sesn-6B14.
We specifically include the experiments for MNIST and Fashion-MNIST for this version.

The code is built upon the GitHub repository of the paper Sosnovik et al. (2020) under MIT license
https://github.com/ISosnovik/sesn. For the implementation of Fourier-Bessel bases and Decomposed
Convolutional Filters, we build our code on Zhu et al. (2019). In the submitted files, we keep the names of
the authors of Sosnovik et al. (2020), while our names remain anonymous throughout the repository.
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