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Abstract

A learner aims to minimize a function f by repeatedly querying a distributed oracle that provides
noisy gradient evaluations. At the same time, the learner seeks to hide arg min f from a malicious
eavesdropper that observes the learner’s queries. This paper considers the problem of covert or
learner-private optimization, where the learner has to dynamically choose between learning and
obfuscation by exploiting the stochasticity. The problem of controlling the stochastic gradient
algorithm for covert optimization is modeled as a Markov decision process, and we show that the
dynamic programming operator has a supermodular structure implying that the optimal policy has a
monotone threshold structure. A computationally efficient policy gradient algorithm is proposed to
search for the optimal querying policy without knowledge of the transition probabilities. As a practical
application, our methods are demonstrated on a hate speech classification task in a federated setting
where an eavesdropper can use the optimal weights to generate toxic content, which is more easily
misclassified. Numerical results show that when the learner uses the optimal policy, an eavesdropper
can only achieve a validation accuracy of 52% with no information and 69% when it has a public
dataset with 10% positive samples compared to 83% when the learner employs a greedy policy.

1 Introduction

1.1 Main Results
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Figure 1: To achieve covert opti-
mization, we propose controlling
the SGD by a policy gradient algo-
rithm that exploits the policy struc-
ture.

A learner aims to minimize a function f by querying an oracle repeatedly. At
times k = 0, 1, . . ., the learner sends a query qk to the oracle, and the oracle
responds with a noisy gradient evaluation rk. Ideally, the learner would use this
noisy gradient in a stochastic gradient algorithm to update its estimate of the
minimizer, x̂k as: x̂k+1 = x̂k−µk rk, where µk is the step size and pose the next
query as qk+1 = x̂k+1. However, the learner seeks to hide the arg min f from
an eavesdropper. The eavesdropper observes the sequence of queries (qk) but
does not observe the responses from the oracle. The eavesdropper is passive and
does not directly affect the queries or the responses. How can the learner perform
stochastic gradient descent to learn arg min f but hide it from the eavesdropper?

Our approach is to control the stochastic gradient descent (SGD) using another
stochastic gradient algorithm, namely a structured policy gradient algorithm
(SPGA) that solves a resource allocation Markov decision process. The following
two-step cross-coupled stochastic gradient algorithm summarizes our approach:

Stochastic Gradient Descent: x̂k+1 = x̂k − µkG(rk, yk, qk),
Query using Policy from SPGA: qk+1 ∼ P (ν(yk+1), x̂k+1),

(1)

where k is the time index, µk is the step size, qk is the query and yk is the system
state. G is a function that updates the estimate based on the noisy response, rk

(for ex. G can be 0 when obfuscating and the noisy gradient rk otherwise). P is
the transition probability kernel from the policy gradient, which decides whether
to learn or obfuscate. The first equation updates the learner’s arg min estimate,
x̂k, and the second equation computes the next query qk+1 using a policy ν.
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Contributions:

• This paper proposes a framework for the learner to dynamically query the oracle by solving a Markov decision
process (MDP) to exploit the inherent stochasticity, making learning more robust and achieving covertness.
Structural results are proven in Theorem 2 and Theorem 3, which show that the optimal policy has a threshold
structure (Fig. 1(a)) which enables the use of efficient policy search methods. This framework can be extended
to meta-learning problems like controlling learning for energy efficiency and quality control.

• A policy gradient algorithm which finds the optimal stationary policy solving the MDP controls the stochastic
gradient descent as described by (1) and shown in Fig. 1(b). The policy gradient algorithm is linear time due
to the threshold nature of the optimal policy and does not need knowledge of the transition probabilities. The
policy gradient algorithm runs on a faster time scale and can adapt to changes in the system.

• The methods are demonstrated on a novel application, covert federated learning (FL) on a text classification
task using large language model embeddings. Our key numerical results are summarized in Table 1. It is
shown that compared to a greedy policy when the learner is using the optimal policy, the optimal weights of
that the eavesdroppers estimates do not generalize well, in both the scenarios discussed in detail later 1.

• This paper considers two practicalities: a stochastic oracle and an optimization queue. A stochastic oracle
with different noise levels can model a non-i.i.d. client distribution in FL, and an optimization queue can
model repeated optimization tasks like machine unlearning and distribution shifts. Theorem 1 characterizes
the number of successful updates required for convergence, and Lemma 1 analyzes the stability of the queue.

1.2 Motivation and Related Works

The main application of covert stochastic optimization is in a distributed optimization where the central learner queries
a distributed oracle and receives gradient evaluations using which it optimizes f . Such a distributed oracle is part of
federated learning where deep learning models are optimized on mobile devices using distributed datasets (McMahan
et al., 2017) and pricing optimization where customers are surveyed (Delahaye et al., 2017). In distributed optimization,
the eavesdropper can pretend as a local worker of the distributed oracle and obtain the queries posed (but not the
aggregated responses). The eavesdropper can infer the local minima by observing the queries. These estimates can be
used for malicious intent or competitive advantage since obtaining reliable, balanced, labeled datasets is expensive.
As an example, in hate speech classification in a federated setting (Meskys et al., 2019; Narayan et al., 2022), a hate
speech peddler can pretend as a client and observe the trajectory of the learner to obtain the optimal weights minimizing
the loss function. Using these optimal weights for discrimination, the eavesdropper can train a generator network to
generate hate speech which will not be detected (Hartvigsen et al., 2022; Wang et al., 2018).

Learner-private or covert optimization: The problem of protecting the optimization process from eavesdropping
adversaries is examined in recent literature (Xu et al., 2021a; Tsitsiklis et al., 2021; Xu, 2018; Xu et al., 2021b).
Tsitsiklis et al. (2021); Xu et al. (2021b;a) to obtain (L, δ)-type privacy bounds on the number of queries required to
achieve a given level of learner-privacy and optimize with and without noise. The current state of art (Xu et al., 2021a)
in covert optimization dealt with convex functions in a noisy setting. Although there is extensive work in deriving the

1A greedy policy poses learning queries until all the required successful updates are done to the model and then starts posing obfuscating queries.

Scenario 1
Eavesdropper has no toxic samples

Scenario 2
Eavesdropper has toxic samples

Type of Policy Eavesdropper accuracy Learner accuracy Eavesdropper accuracy Learner accuracy
Greedy 0.83 0.84 0.83 0.82
Optimal 0.52 0.81 0.69 0.81

Table 1: The optimal policy to our MDP formulation achieves covertness: The eavesdropper’s accuracy is reduced
significantly in comparison to a greedy policy (-31%) even when the eavesdropper has samples to validate the queries
(-14%). The learner’s accuracy remains comparable in both the scenarios with a maximum difference of 3%.
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theoretical proportion of queries needed for covert optimization, practically implementing covert optimization has not
been dealt with. In contrast, our work considers a non-convex noisy setting with the problem of posing learning queries
given a desired level of privacy. We want to schedule M model updates in N queries and obfuscate otherwise, ideally
learning when the noise of the oracle is expected to be less. Theoretical bounds are difficult to derive for a non-convex
case, but we empirically show our formulation achieves covertness. The premise and the approach of this work aligns
with the hiding optimal policies in reinforcement learning when actions are visible (Liu et al., 2021; Pan et al., 2019;
Dethise et al., 2019) and dynamically preserving privacy while traversing a graph (Erturk & Xu, 2020) 2.

Motivation for stochastic oracle and optimization queue: An important application of covert optimization is in
federated learning, which is deployed in various machine learning tasks to improve the privacy of dataset owners and
communication efficiency (Heusel et al., 2017; Chen et al., 2022a). FL involves non-i.i.d. data distribution across clients
and time-varying client participation and data contribution which motivate a dynamic stochastic oracle (Karimireddy
et al., 2020; Jhunjhunwala et al., 2022; Doan et al., 2020; Chen et al., 2022b). Similar to recent work in a setup with
Markovian noise in FL (Sun et al., 2018; Rodio et al., 2023), we model the noise levels of the oracle following a discrete
Markov chain, and exploit the Markovian nature of the oracle’s stochasticity to query dynamically. An optimization
queue for training tasks is motivated by active learning where the learner waits for training data to be annotated and
performs optimization once there is enough annotated data (Bachman et al., 2017; Wu et al., 2020). Optimization also
needs to be done due to purging client’s data, training in new contexts, distributional shifts, or by the design of the
learning algorithm (Tripp et al., 2020; Cai et al., 2021; Mallick et al., 2022; Ginart et al., 2019; Sekhari et al., 2021).

1.3 Organization

In Section 2, the problem of minimizing a function while hiding the arg min is modeled as a controlled SGD. In
Section 3, a finite horizon MDP is first formulated where the learner has to perform M successful gradient updates of
the SGD in N total queries to a stochastic oracle. The formulation is extended to an infinite horizon constrained MDP
(CMDP) for cases when the learner performs optimization multiple times, and a policy gradient algorithm is proposed
to search for the optimal policy. Numerical results are demonstrated on a classification task in Section 4 3.
Limitations: The assumption of unbiased responses and the independence of the eavesdropper and oracle might not
hold, especially if the eavesdropper can deploy multiple devices. Due to the lack of data on device participation in FL,
it is difficult to verify the assumption of a Markovian oracle. The assumption on equal priors for both the obfuscating
and learning SGD has not been theoretically verified. The assumption that the learner knows about the eavesdropper’s
dataset distribution might only hold if it is a public dataset or if there are no obvious costly classes.

2 Controlled Stochastic Gradient Descent for Covert Optimization

This section discusses the oracle, the learner, and the eavesdropper and states the assumptions which help in modeling
the problem as a Markov decision process in the next section. The following is assumed about the oracle O:

(A1) The oracle is a function f : D → R, where D ⊆ Rd is a compact set 4. f belongs to a function class F whose
functions are bounded from below (by f∗), are continously differentiable and have derivatives which are L-Lipschitz
continous , i.e. |∇f(z)−∇f(x)| ≤ L|z − x|,∀x, z ∈ D, where∇f indicates the gradient of f .

At time k, for a query qk ∈ D, the oracle returns a noisy evaluation rk of∇f at qk with added noise ηk,

rk(qk) = ∇f(qk) + ηk. (2)

(A2) The noise terms are assumed to be unbiased and have a bounded variance such that E [ηk] = 0, E [⟨∇f(qk), ηk⟩] =
0 and, E

[
||r2

k||
]
≤ σ2

k. σk is a constant that the oracle returns along the response, rk
5.

2Distinction from differential privacy: Differential privacy Lee et al. (2021); Dimitrov et al. (2022); Asi et al. (2021) is concerned with the
problem of preserving the privacy of the local client’s data by mechanisms like adding noise and clipping gradients, whereas learner-private or covert
optimization is used when the central learner is trying to prevent an eavesdropper from freeriding on the optimization process (Tsitsiklis et al., 2021).

3Our results are for a stochastic oracle that returns noisy responses, and the learner rejects specific responses based on thresholds on the noise
levels. A discussion of the same, along with the dataset description, additional experimental results and proofs, are presented in the Appendix.

4f can be an empirical loss function for a training dataset D, f(x; D) =
∑

di∈D
G(x; di), D = {di} where G(·; ·) is a loss function. In FL,

the oracle is a collection of clients acting as a distributed dataset. We drop the (qk) from the response rk(qk) for the rest of the paper.
5There is no assumption of independence on the noise terms (Ghadimi & Lan, 2013). As shown in the numerical experiments, a proxy for σk (ex.

size of the training data in FL) can be returned since the actual σk might not be obtained in practice.
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Assumptions (A1) and (A2) are standard regularity assumptions when analyzing query complexity results of stochastic
gradient algorithms (Ghadimi & Lan, 2013). A point x∗ ∈ D is called a critical point if∇f(x∗) = 0.

The objective of the learner L is to query the oracle and obtain a ϵ-close estimate x̂ such that,

E
(
||∇f(x̂)||2

)
≤ ϵ, (3)

given an initial estimate, x̂0 ∈ D. The learner has knowledge of L from (A1). At time k for query qk the learner
receives (rk, σ

2
k) of (2) and (A2) from the oracle. The learner iteratively queries the oracle with a sequence of queries

q1, q2, . . . and correspondingly updates its estimate x̂1, x̂2, . . . for estimating x̂ such that it achieves its objective (3).

In classical SGD, the learner iteratively updates its estimate based on the gradient evaluations at the previous estimate.
Now, since the queries are visible and the learner has to obfuscate the eavesdropper, the learner can either query using
its true previous estimate or obfuscate the eavesdropper as described later. The learner updates its estimates x̂1, x̂2, . . .
based on whether the posed query qk for learning or not and the received noise statistic σk. A learning query is denoted
by action uk = 1 and an obfuscating query by action uk = 0. The learner chooses a noise constant σ 6 and performs a
controlled SGD with step size µk (= 1/m for mth successful update) such that it updates its estimate only if σ2

k ≤ σ2

and if a learning query was posed, i.e., uk = 1 (1 denotes the indicator function),

x̂k+1 = x̂k − µkrk1
(
σ2

k ≤ σ2)
1 (uk = 1) . (4)

For formulating the MDP in the next section, we need the following definition and theorem, which characterizes the
finite nature of the optimization objective of (3). The proof of the theorem follows by applying the gradient lemma and
standard convergence results to the update step (Bottou, 2004; Ghadimi & Lan, 2013) and is given in the Appendix.

Definition 1. Successful Update: At time k an iteration of (4) is a successful update if 1
(
σ2

k ≤ σ2)
1 (uk = 1) = 1.

Theorem 1. (Required number of successful updates) Learner L querying an oracle O which satisfies assumptions
(A1-2) using a controlled stochastic gradient descent 7 with updates of the form (4), needs to perform M successful
updates (Def. 1) to get ϵ-close to a critical point (3), where

M = O

(
exp

(
Lσ2

ϵ

))
.

If the M successful updates happen at time indices k1, . . . , kM , the learner’s estimate of the critical point, x̂ can be
picked as x̂ki

with probability µki∑M

1
µkj

.

Theorem 1 helps characterize the order of the number of successful gradient updates that need to be done in the total
communication slots available to achieve the learning objective of (3). If the optimization is not one-off, the learner
maintains a queue of optimization tasks where each optimization task requires up to order M successful updates.

The obfuscation strategy used by the learner builds upon the strategy suggested in existing literature (Xu et al., 2021a;
Xu, 2018). The learner queries either using the correct estimates from (4) or queries elsewhere in the domain to
obfuscate the eavesdropper. In order to compute the obfuscating query, we propose that the learner runs a parallel SGD,
which also ensures that the eavesdropper does not gain information from the shape of two trajectories. The obfuscating
queries are generated using a suitably constructed function, H , and running a parallel SGD with an estimate, ẑk,

ẑk+1 = ẑk − µkH(rk, σk, uk). (5)

At time k an eavesdropper E has access to the query sequence, (q1, . . . , qk) which the eavesdropper uses to obtain an
estimate, ẑ for the arg min f . We make the following assumption on the eavesdropper:

(E1) The eavesdropper is assumed to be passive, omnipresent, independent of the oracle, and unaware of the chosen ϵ 8.
6The noise constant σ helps characterize the number of queries required and decide if a received response will be used for learning or not, this is

in principle similar to the controlling communication done in Chen et al. (2022a); Sun et al. (2022). The probability of σk ≤ σ depends on the
oracle state (defined in the next section). Using such a construction our framework enables characterizing a oracle which has varying noise levels.

7The SGD analysis can be extended to algorithms with faster convergence like momentum based Adam (Kingma & Ba, 2017) as is illustrated in
the numerical studies. Besides simplicity, SGD is shown to have better generalizability Zhou et al. (2020); Wilson et al. (2017).

8This is generally not true, especially if the eavesdropper is part of the oracle (for example, in FL), but we take this approximation assuming since
the number of clients is much greater than the single eavesdropper and hence the oracle is still approximately Markovian.
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(E2) Given a sequence ofN queries (q1, q2, . . . , qN ) which the eavesdropper observes, we assume that the eavesdropper
can partition query sequence into two disjoint SGD trajectory sequences I and J 9.

(E3) In the absence of any additional information, the eavesdropper uses a proportional sampling estimator (Xu, 2018).

Given an equal prior over disjoint intervals, an eavesdropper using a proportional sampling estimator calculates
the posterior probability of the minima lying in an interval proportional to the number of queries observed in the
interval. Since this work considers two disjoint SGD trajectories, the eavesdropper’s posterior probability of the minima
belonging to one of the SGD trajectories given equal priors is proportional to the number of queries in the trajectories,

Definition 2. Proportional sampling estimator: If the eavesdropper (with assumptions E1-2) observes queries
belonging to two SGD trajectory sequences I and J and has equal prior over both of them, then the eavesdropper’s
posterior belief of the learner’s true estimate x̂ belonging to I is given by, PI

∆= P(x̂ ∈ I|(q1, q2, . . . , qN )) = |I|
|I|+|J| .

Let K∗ be defined as K∗ = arg max
K∈{I,J}

PK and B[−1] retrieve the last item of the sequence B. After N observed queries,

the eavesdropper’s maximum a posteriori estimate, ẑ of the learner’s true estimate, x̂, is given by,

ẑ = (qk|qk ∈ K∗, k = 1, . . . , N)[−1]. (6)

An eavesdropper using a proportional sampling estimator with an estimate of the form (6) can be obfuscated by ensuring
a) that the eavesdropper has equal priors over the two trajectory and b) that the majority of the queries posed are
obfuscating 10. Rather than posing the learning queries randomly, we formulate an MDP in the next section, which
exploits the stochasticity of the oracle for optimally scheduling the queries.

3 Controlling the Stochastic Gradient Descent using a Markov decision process

This section formulates a Markov decision process that the learner L solves to obtain a policy to dynamically choose
between posing a learning or an obfuscating query. The MDP is formulated for a finite horizon and infinite horizon
case, and we prove structural results characterizing the monotone threshold structure of the optimal policy.

3.1 Finite Horizon Markov Decision Process

In the finite horizon case where the learner wants to optimize once and needs M successful updates (obtained from
Theorem 1 or chosen suitably) to achieve (3) withN(> M) queries. Such a formulation helps model covert optimization
of the current literature for a one-off FL task or a series of training tasks carried out one after the other.

The state space S is an augmented state space of the oracle state space SO and the learner state space SL. The oracle
is modeled to have W oracle states, SO = {1, 2, . . .W}. The learner state space has M states, SL = {1, 2, . . . ,M}
which denote the number of successful updates left to be evaluated by the learner. The augmented state space is
S = SO × SL. The state space variables with n queries remaining (out of N ) is denoted by yn = (yO

n , y
L
n ). As

described in the obfuscation strategy, the learner can query either to learn using (4) or to obfuscate using (5), the action
space is U = {0 = obfuscate, 1 = learn}. un denotes the action when n queries are remaining .

g : SO × U → [0, 1] denotes the probability of a successful update of (4) and is dependent on yO
n and action un,

g(yO
n , un) = P

(
σ2

n ≤ σ2 | yO
n

)
1 (un = 1). The learner state reduces by one if there is a successful update of (4),

hence the transition probability between two states of the state space S is given by,

P(yn−1|yn, un) = P(yO
n−1|yO

n )
(
g(yO

n , un)1(yL
n−1 = yL

n − 1) +(1− g(yO
n , un))1(yL

n−1 = yL
n )
)
.

With n queries left, for action, un, the learner incurs a privacy cost, c(un, y
O
n ) which accounts for the increase in the

useful information known to the eavesdropper. At the end of N queries, the learner incurs a terminal learning cost l(yL
0 )

which penalizes the remaining number of successful updates yL
0 . The following assumptions are made about the MDP:

9The parameter space is high dimensional, and it is assumed that SGD trajectories do not intersect. The final weights used in production can be
transmitted in a secure fashion (using a much costlier, less efficient communication (Xu et al., 2023; Kairouz et al., 2021)).

10This can be extended to obfuscating with multiple intervals by using auxiliary trajectories and obfuscating by choosing uniformly between those.
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(M1) The rows of the probability transition matrix between two states of the oracle are assumed to be first-order
stochastic dominance orderable (Eq. (1) of Ngo & Krishnamurthy (2009)), i.e.,

∑
k≥l P(yO

n+1 = k|yO
n = j) ≤∑

P(yO
n+1 = k|yO

n = i) ∀ i > j, l = 1, . . . ,W . This is a restatement of the assumption that an oracle in a better state
is more likely to stay in a better state, which is found to be empirically true for most computer networks.

(M2) c(·, ·) is chosen to decrease in u and also decrease in oracle cost yO to incentivize learning when the oracle is in a
good state. The learner does not incur a privacy cost when it does not learn, i.e., c(0, yO) = 0.

(M3) l(·) is increasing in yL
0 , integer convex 11, l(yL

0 + 2)− l(yL
0 + 1) > l(yL

0 + 1)− l(yL
0 ) and l(0) = 0.

(M4) With n queries remaining, the learner has information on yn, and the eavesdropper does not have any informa-
tion 12.

The objective for the finite horizon MDP can be formulated as minimizing the state action cost function Qn(y, u),

Vn(y) = min
u∈U

Qn(y, u), (7)

where, Qn(y, u) = c(un, y
O) +

∑
y′∈S P (y′|y, un)Vn−1(y′) and Vn(y) is the value function with n queries remaining

and V0(y) = l(yL
0 ). The optimal decision rule is given by, u∗

n(y) = arg minu∈UQn(y, u). The optimal policy ν∗ is the
sequence of optimal decision rules, ν∗(y) =

(
u∗

N (y), u∗
N−1(y), . . . , u∗

1(y)
)
.

3.2 Infinite Horizon Constrained Markov Decision Process

This subsection formulates the infinite horizon constrained MDP (CMDP), highlights the key differences from the finite
horizon case, introduces the optimization queue, and proves its stability. The CMDP formulation minimizes the average
privacy cost while satisfying a constraint on the average learning cost. An optimization queue helps model the learner
performing optimization repeatedly, which is needed for purging specific data, distributional shifts, and active learning.

Optimization Queue: The learner maintains a queue with the number of successful updates it needs to make of length
yL

n at time n. In contrast to the finite horizon case, the learner receives new requests and extends its queue. At time n,
yE

n new successful updates required are added to the queue. yE
n is an i.i.d. random variable with P(En = M) = δ,

P(En = 0) = 1− δ and E(En) = δM 13. In order to ensure the queue is stable, we pose conditions on the success
function g, the learning cost l, and the learning constraint Λ in Lemma 1.

The state space for the new arrivals to the queue is SE = {0,M}. Also, the learner state is denumerable, SL =
{0, 1, . . . }. The oracle state space, SO is the same as before. The state space is now, S = SO × SL × SE . The state
variables at time n (n denotes the time index for deciding this section) are given by yn = (yO

n , y
L
n , y

E
n ).

The transition probability now has to incorporate the queue arrival, with the same g as before and can be written as,

P(yn+1|yn, un) = P(yO
n+1|yO

n )P(yE
n+1)

(
g(yO

n , un)1(yL
n+1 = yL

n + yE
n − 1)

+(1− g(yO
n , un))1(yL

n+1 = yL
n + yE

n )
)
.

(8)

The learning cost in the infinite horizon case is redefined as l(un, y
O
n ) and is decreasing in un and increasing in yO

n which
contrasts with c. The learning cost does not depend on yL

n except when yL
n = 0, l(un, y

O
n ) = 0 ∀un ∈ U , yO

n ∈ SO.
The privacy cost c(un, y

O
n ), assumptions (M1-2), and the action space U are the same as the finite horizon case.

In the infinite horizon case, a stationary policy is a map from the state space to the action space, ν : S → U . Hence the
policy generates actions, ν = (u1, u2, . . . ). Let T denote the space of all stationary policies. The average privacy cost
and the average learning cost, respectively, are,

Cy0(ν) = lim sup
N→∞

1
N

Eν

[
N∑

n=1
c(un, y

O
n ) | y0

]
, Ly0(ν) = lim sup

N→∞

1
N

Eν

[
N∑

n=1
l(un, y

O
n ) | y0

]
.

11Integer convexity helps prove the structural results and ensures that the learning is prioritized more when the queue is bigger.
12The asymmetry in information can be explained by assumption E1 since the eavesdropper is assumed to be a part of a much larger oracle.
13The construction of yE and the i.i.d. condition is for convenience and we only require that yE is independent of the learner and the oracle state.
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The constrained MDP can then be formulated as,

inf
ν∈T

Cy0(ν) s.t. Ly0(ν) ≤ Λ ∀y0 ∈ S, (9)

where Λ is the constraint on the average learning cost and accounts for delays in learning. Since the optimization queue
can potentially be infinite, to ensure that new optimization tasks at the end get evaluated, we state the following lemma,

Lemma 1. (Queue stability) Let the smallest success probability be gmin = minyO∈SO
g(u = 1, yO). If,

δM

gmin
< 1− Λ

l(0,W ) ,

then every policy satisfying the constraint in (9) induces a stable queue and a recurrent Markov chain.

Lemma 1 ensures that the optimization queue is stable. Since the policy of always transmitting satisfies the constraint,
the space of policies that induce a recurrent Markov chain is non-empty.

3.3 Structural Results

This subsection proves structural results for the optimal policy solving the MDP and the CMDP. The threshold structure
of the optimal policy substantially reduces the search space and is used in devising the structured policy gradient
algorithm. The following theorem proves that the optimal policy, ν∗ solving the finite horizon MDP of (7) has a
threshold structure with respect to the learner state, yL

n .

Theorem 2. (Nature of optimal policy ν∗) The optimal policy solving the finite horizon MDP of (7) with assumptions
(M1-3) is deterministic and monotonically increasing in the learner state, yL.

Since the action space consists of 2 actions, a monotonically increasing policy is a threshold policy (Fig. 1(a)),

ν∗(yn) =
{

0 = obfuscate, yL
n < χ(yO

n )
1 = learn, otherwise

,

where χ(yO) is an oracle state dependent threshold and parametrizes the policy. The proof of Theorem 2 is in the
Appendix and follows from Lemma 2, supermodularity, and assumptions on the cost and transition probability matrix 14.

In order to characterize the structure of the optimal policy solving the CMDP, we first study an unconstrained Lagrangian
average cost MDP with the instantaneous cost, w(u, yO;λ) = c(u, yO) +λl(u, yO), where λ is the Lagrange multiplier.
The average Lagrangian cost for a policy ν is then given by,

Jy0(ν, λ) = lim sup
N→∞

1
N

Eν

[
N∑

n=1
w(un, y

O
n ;λ) | y0

]
.

The corresponding average Lagrangian cost MDP and optimal stationary policy are,

J∗
y0

(λ) = inf
ν∈T

Jy0(ν, λ),

ν∗
λ = arg inf

ν∈T
Jy0(ν, λ).

(10)

Further, we treat the average Lagrangian cost MDP of (10) as a limiting case of the following discounted Lagrangian
cost MDP when the discounting factor, β goes to 1,

Jβ
y0

(ν, β, λ) = lim sup
N→∞

Eν

[
N∑

n=1
βnw(un, y

O
n ;λ) | y0

]
(11)

Theorem 2 can then be extended to show that the optimal policy of (11) has a threshold structure in terms of the learner
state, yL

n . The average Lagrangian cost MDP of (10) is a limit of the discounted Lagrangian cost MDPs (11) with an

14Incidentally, it can also be shown that the policy is threshold in the number of queries remaining n but this result has been skipped since .
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appropriate sequence of discount factors (βn) converging to 1, and therefore has a threshold policy. The existence of a
stationary policy for (10) is shown in previous work Ngo & Krishnamurthy (2010); Sennott (1989) and is discussed in
Appendix B.4. Hence we directly state a corollary from Sennott (1989) as a theorem, which shows that the stationary
queuing policy for the CMDP in (9) is a randomized mixture of optimal policies for two average Lagrangian cost MDPs.

Theorem 3. (Existence of randomized stationary policy) (Sennott, 1993) There exists an optimal stationary policy
solving the CMDP of (9), which is a randomized mixture of optimal policies of two average Lagrangian cost MDPs,

ν∗ = pν∗
λ1

+ (1− p)ν∗
λ2
, (12)

where ν∗
λ1

and ν∗
λ2

are optimal policies for average Lagrangian cost MDPs of the form (10).

Because of Theorem 3, the optimal policy solving the CMDP is a randomized mixture of two threshold policies and
will also have a threshold structure. A threshold policy of the form of (12) has two threshold levels (denoted by ϕ1 for
transition from action 0 to randomized action and ϕ2 for randomized action to action 1) can be written as,

ν∗(y) =


0, yL < ϕ1

1 w.p. p, ϕ1 ≤ yL < ϕ2

1, ϕ2 ≤ yL

. (13)

We next propose an efficient reinforcement learning algorithm that exploits this structure to learn the optimal stationary
policy for solving the CMDP performing covert optimization.

3.4 Structured Policy Gradient Algorithm

Both the finite horizon and infinite horizon MDPs can be solved using existing techniques of either value iteration
or linear programming, but these methods require knowledge of the transition probabilities. Hence to search for the
optimal policy without the knowledge of the transition probabilities, we propose a policy gradient algorithm.

In order to efficiently find the optimal policy of the form of (13) we use an approximate sigmoidal policy ν̂(y,Θ)
constructed as follows,

ν̂(y,Θ) =
(

h

1 + exp −yL+θ1
τ

+ 1− h
1 + exp −yL+θ2

τ

)
, (14)

where θ1 and θ2 is a parameter which approximates the thresholds, ϕ1 and ϕ2. Parameter τ controls how close the
sigmoidal policy follows a discrete threshold policy. It can be shown that as τ → 0, h→ p, θ1 → ϕ1 and θ2 → ϕ2, the
approximate policy converges to the true policy ν̂(y,Θ)→ ν∗ (Ngo & Krishnamurthy, 2010; Kushner & Yin, 2003).

Algorithm 1 Structured Policy Gradient Algorithm
Input: Initial Policy Parameters Θ0, Perturbation Parameter ω, K Iterations, Step Size κ, Scale Parameter ρ, Learning
cost l, Privacy Cost c
Output: Policy Parameters ΘK

procedure COMPUTESTATIONARYPOLICY(ω,K, κ, ρ)
for n← 1 . . .K do

Γ← Bernoulli( 1
2 ) ▷ 3× |SO||SE | i.i.d. Bernoulli random variables

Θ+
n ← Θn + Γ ∗ ω, Θ−

n ← Θn − Γ ∗ ω, l̂← AVGCOST(l,Θn)
∆̂l← (AVGCOST((l,Θ+

n )− AVGCOST(l,Θ−
n )) , ∆̂c← (AVGCOST((c,Θ+

n )− AVGCOST(c,Θ−
n ))

Θn and ξn using (15)
end for

end procedure
procedure AVGCOST(J,Θ)

ν̂ ← POLICYFROMPARAMETERS(Θ)
Ĵ ← 1

T

∑T
t=1 J(ν̂(yt), yt)

end procedure
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(a) purging client data (b) training on new context

Task 1

ClientsTraining Queue
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Task 2 . . .

. . .
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Eavesdropper

...

size, no. of clients

Figure 2: Learner L either learns from the oracle O (distributed clients) or obfuscates the eavesdropper E based on the
oracle state (number of clients) and the queue state (number of successful training rounds). Learner (central aggregator
in FL) updates its queue state based on the response (size of the training data) and the action taken.

A policy gradient algorithm that finds an optimal policy of the form (12) for solving the CMDP of (9) is now proposed.
For each oracle state, the parameters for the approximate policy of (14) is given by (θ1, θ2, h). The complete set of
policy parameters (total of 3× |SO||SE | parameters) is referred to as, Θ. The procedure is summarized in Algorithm 1.

Our policy gradient algorithm updates the parameter estimates Θn using (15) by taking an approximate gradient of the
average costs, the constraint in (9) and ξn which updates using (15). The parameters which are updated are chosen
randomly using a vector Γ, the components of which have an i.i.d. Bernoulli distribution. These chosen parameters
are perturbed by +ω and −ω and the approximate gradient of the privacy and learning cost is denoted by ∆c and ∆l,
respectively. The approximate gradients of these costs are computed using a finite difference method on the approximate
costs. The approximate average costs are computed by interacting with the Markovian oracle for T timesteps. The
approximate average learning cost is denoted by l̂. κ and ρ are suitably chosen step and scale parameters 15.

Θn+1 = Θn − κ
(

∆c+ ∆l ×max
[
0, ξn + ρ

(
l̂ − Λ

)])
ξn+1 = max

[(
1− κ

ρ
ξn

)
, ξn + κ

(
l̂ − Λ

)] (15)

The SPGA algorithm can run on a faster time scale by interacting with the system parallel to the SGD and updating the
stationary policy parameters, Θ. The stationary policy controls the query posed and updates the SGD estimate in (1).
The computational complexity for the SPGA algorithm described here is O(|S|), i.e., the algorithm is linear in the state
space and hence significantly more scalable than standard policy gradient methods (Kushner & Yin, 2003).

4 Hate speech classification in a federated setting

We now present a novel application of the covert optimization framework in designing a robust hate speech classifier
illustrated in Figure 2. The task of the learner L is to minimize a classification loss function (f(x)) and simultaneously
hide the optimal classifier (neural network) parameters (arg min f(x)) from an eavesdropper (E).

State Space: In our federated setting, the oracle state, yO denotes the number of clients participating in each
communication round, and more clients indicate a better state. Client participation is assumed to be Markovian since
it is more general than i.i.d. participation and is closer to a real-world scenario (Sun et al., 2018; Rodio et al., 2023).
Although the stochastic aspect of the oracle is modeled on client participation and the quantity of the training data,
it can also be modeled with respect to the quality. For example, in hate speech detection and similar applications,
unintended bias based on characteristics like race, gender, etc. often occurs (Dixon et al., 2018). If the oracle is based
on how diverse the training data is, we can train when the available data is good enough and obfuscate otherwise using
costs related to biased classification (Viswanath et al., 2022). The learner state, yL, denotes the number of remaining
successful gradient updates. The learner decides the total number of required successful gradient updates based on

15The step size is constant if we want the SPGA to track change in the underlying system without convergence guarantees and decreasing otherwise.
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convergence criteria, like the one in Theorem 1. A successful gradient update is done if the number of available
training data is above a threshold, similar to communication skipping using system parameters in Sun et al. (2022);
Mishchenko et al. (2022). This is a proxy for the threshold of σ in (A2) since an exact noise bound is difficult to obtain
in practice. The optimization queue receives new arrivals, yE for model retraining due to client requests for unlearning
their data, data distribution shifts, and active learning (Bachman et al., 2017; Sekhari et al., 2021; Cai et al., 2021). The
timescale for practical federated training ranges from a few hours to a few days (Hard et al., 2019). In the hate speech
classification, model retraining requests due to a shift in context is on a slower time scale, but purging requests for a
client’s data can be made every few hours. All devices, including the ones not participating in the training round can
make such a request ensuring yE is independent of yO (E1).

Action Space: Using labeled datasets, GANs can be trained to generate hate speech (Lin et al., 2017; de Masson d’
Autume et al., 2019). But since access to labeled data is difficult, an eavesdropper E can use the optimal weights
as discriminator weights to train a generator (Wang et al., 2018). The action space, U , sends the correct learning
neural network parameters or the obfuscating parameters. We discuss in the next section how to generate obfuscating
parameters under two different eavesdroppers’ information scenarios.

Costs: Although for this paper, only a majority of queries need to be obfuscating, in general, the more learning
queries an eavesdropper knows, the higher probability of the eavesdropper figuring out the optimal weights. Hence the
eavesdropper can generate hate speech and misinformation which are semantically more coherent (measured by metrics
of readability and perplexity (Carrasco-Farré, 2022; Mimno et al., 2011)) and can be spread easily (Viswanath et al.,
2022). Hence the privacy cost in the MDP can be associated with metrics of the spread of malicious content, including
prevalance (Wang et al., 2021), and contagion spread rates (Davani et al., 2021; Lawson et al., 2023). Analogously, the
learning cost l can be associated with the same set of costs since malicious content will go unclassified if the classifier
does not achieve the desired accuracy. For delays in forgetting a client’s information, the learning cost is analogous to
the value of private information, measured by metrics like Shapeley value (Kleinberg, 2001; Wang et al., 2020). Also,
clients might want to remove their data because they incorrectly annotated it earlier, and keeping the retraining task
in the queue can worsen the real-time accuracy (Davani et al., 2021; Klie et al., 2023). The privacy and learning cost
and the learning constraint, Λ of (9), can be chosen appropriately depending on the maximum ratio of the queries the
learner can afford to expose, which for the proportional sampling estimator is 0.5.

4.1 Numerical Results

For the first experiment, the MDP formulation and structural results are demonstrated on a hate speech classification
task under a federated setting described above. The convergence of the threshold parameters in SPGA is investigated
in the second experiment. It is empirically shown that the optimal policy solving (9) is threshold in the oracle state,
demonstrating that the optimal policy makes the learner learns more when the oracle is good 16. Before discussing
the first numerical study, we explain two scenarios with respect to the information that the eavesdropper has and the
information the learner has about the eavesdropper. The results of the study are then presented under both scenarios.

Scenario 1: Eavesdropper does not have enough data: When the eavesdropper does not have enough data to choose
between the two SGDs, the obfuscating queries can be posed in various ways, for example, by posing noisy queries
sampled randomly from domain D or by doing a mirrored gradient descent using the true queries in (5). Since the
eavesdropper has no information, the prior over the two SGDs is the same 17.

Scenario 2: Eavesdropper has a subset of data, but the learner has information about the subset: In case the
eavesdropper has access to a subset of the data, it can test out both the trajectories on its dataset to see which one has a
smaller empirical loss. Let the dataset of the eavesdropper be D0 ∈ D. If the learner knows D0

18, then it can simulate
an oracle with function f ′(x) = f(x,D0) = 1

|D0|
∑

d∈D0
G(x, d) to obtain noisy gradients, r′

k = ∇f ′(qk) + η′
k where

G is the loss function and η′
k is suitably simulated noise. The obfuscating queries can be obtained using the following

SGD trajectory: ẑk = ẑk−1 − µkr
′
k1 (uk = 0). The weights obtained using the parallel SGD do not generalize well

16Additional benchmark experiments on the MNIST data, dataset preprocessing, the architecture, and assumptions are listed in the Appendix.
17An extension of this scenario is when the learner is trying to obfuscate hyperparameters which are essential to training a neural network (Probst

et al., 2019) from the eavesdropper. The learner can switch between the intended hyperparameter and a suitably chosen obfuscating hyperparameter.
18For example, when the eavesdropper is using a public dataset, accessing a reliable and balanced dataset is otherwise costly. The learner having

incomplete information about the eavesdropper’s dataset is left for future research. The case when the eavesdropper has access to all data is not
relevant since then the eavesdropper can carry out the optimization on its own.
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(a) Eavesdropper with a public dataset having no positive samples.
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(b) Eavesdropper with a dataset having 10% positive samples.

Figure 3: Convergence of validation accuracies for Learner L and Eavesdropper E under greedy and optimal policy. The
optimal policy helps dynamically learn and hide the optimal weights compared to a greedy policy of always learning.

since the empirical loss being minimized is for a subset of the data. This makes the prior over both the SGDs more
balanced since the eavesdropper can no longer take advantage of its dataset. And because the parallel SGD is observed
the majority of the time, then the eavesdropper’s estimate (6) corresponds to the parallel SGD.

4.2 Demonstration of MDP framework on Covert Optimization in Hate Speech classification

A hate speech classification task is considered where an extended version of a pre-trained BERT (Devlin et al., 2019;
Turc et al., 2019) model is fine-trained on a labeled dataset to classify textual data as toxic or not 19. A federated setting
with 20 clients whose data is non-overlapping is considered. Each client has 5443 training samples and 1443 validation
samples. For the experimental results, we consider N = 45 communication rounds (or queries) and M = 16 successful
model updates (which is around ∼ 34% of the total queries). To demonstrate the versatility of our formulation, we
use the FedAvg algorithm, where the learner aggregates the weights of the individual clients rather than the weight
updates (McMahan et al., 2017). The experiment is done with 10 random seeds to obtain error bounds. A threshold
on the noise bound (σ) is approximated with the threshold on the number of data points, i.e., the learner discards any
communication round when less than 1/4 of the entire dataset is available for training20. The underlying Markov chain
of the device participation has three states, i.e. either W1 = 1/4, W2 = 1/2 or W3 = 1/1 of the devices participating in
any communication round. Each device can contribute any number of data points out of the available datapoints, and
for the chosen criteria, the success function empirically comes out to be g(yO, 1) = [0.1, 0.43, 0.95]. The transition
probabilities between the oracle states is given by PO = [0.8 0.2 0; 0.3 0.5 0.2; 0 0.2 0.8]. The empirical success
function The privacy cost, c is taken to be 0.3, 0.8, 1.8 for the respective oracle states and the learning cost, l to be 0.621.
Since this is a finite horizon MDP, the learner can use linear programming or value iteration to find an optimal policy if
it has empirical estimates of the transition probabilities using past data or can use the SPGA algorithm and interact with
the system to find a stationary sub-optimal policy 22. We show our results using a stationary policy obtained by using
the SPGA algorithm, hence the learner does not know P(yn+1|yn, un).

19The dataset used was made public by Jigsaw AI and can be found here. Hate speech classification is still an open problem and the achieved
accuracy is barely satisfactory but our aim was to show the application of our formulation. Our source code can be found on this anonymized link.

20Recent work in federated learning has proposed skipping training rounds when the distributed oracle is not good enough leading to less
communication rounds and better convergence rates (Chen et al., 2018; Sun et al., 2022; Mishchenko et al., 2022).

21The choice of the cost is done by interacting with the system and seeing the average proportion of queries obfuscated using the stationary policy
as shown in Appendix A.4.3. This cost can also be tuned in an online fashion based on the number of slots available, the learner’s preference, and the
percentage of queries the learner can afford to expose hence enabling practical realizability of previous work on covert optimization Xu et al. (2021a).

22The SPGA algorithm does not need the SGD or FedAvg to run rather it just needs data on how many clients are participating and how many data
points are available to characterize the state of the system and successful response, hence this algorithm can be run in the background of the actual
algorithm, and both of them form a two-time scale Markovian system with the time indices denoted by n and k respectively.
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Figure 3(a) shows the convergence of the aggregated validation accuracies for the learner and the eavesdropper under
Scenario 1 under a greedy and stationary policy. The loss function considered is the binary cross entropy loss function,
and the accuracy is the validation accuracy score. The eavesdropper accuracy is calculated using a balanced validation
dataset of size 2886. It can be seen that although the learner’s accuracy, on average goes up to 0.85, the eavesdropper’s
accuracy goes up to 0.52. Figure 3(b) is for Scenario 2 with an eavesdropper with an imbalanced dataset of 10% toxic
(one of the two classes) examples. This dataset is assumed to be public, and the learner has complete access to it, which
it uses to obfuscate the eavesdropper. In Figure 3(b), it is evident that the obfuscation achieved is lesser than when the
eavesdropper had no toxic samples since the eavesdropper is able to achieve an accuracy of around 69%, explained by
the fact that the obfuscating parameters are trained on a sample of the entire dataset. Although, in both cases, when the
learner uses a greedy policy, the eavesdropper’s accuracy is at par with the learner’s accuracy. This demonstrates how
using the optimal policy, the learner can prevent an eavesdropper from learning the optimal weights of the classifier.

4.2.1 Convergence of SPGA algorithm and numerical structural result
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Figure 4: Convergence of threshold parameters in Alg. 1
for different oracle states. The optimal policy incentivizes
learning more when the oracle is in a better state.

The convergence of Algorithm 1 to the true threshold pa-
rameters is investigated next. In addition to the previously
defined parameters, a learning constraint Λ = 0.2 is im-
posed on the average learning rates, setting up a CMDP
whose objective is given by (9). The arrival probability
for M = 4 queries is δ = 0.1 23. For calculating the
approximate average cost, we take a sample path of 100
timesteps. The results are averaged over 100 runs. The
convergence of the threshold parameter ϕ2 for different
oracle states with arrival stateE = 0 is plotted in Figure 4
along with the true threshold parameters found by linear
programming. The approximate thresholds, θ2 of the sig-
moidal policy of (14) converge close to the true threshold
parameters, ϕ2 without the knowledge of the transition
probabilities 24. It can be numerically seen that the thresh-
old of optimal policy decreases with increasing oracle
state; that is, the optimal policy is non-increasing in the
oracle state hence the learner poses a learning query more
often when the oracle is in a good state. The parameters
for the SPGA algorithm along with an additional experiment with constant step size is given in Appendix A.6.

5 Conclusion

The problem of covert optimization is studied from a dynamic perspective when the oracle is stochastic, and the learner
receives new optimization requests. The problem is modeled as a Markov decision process, and structural results are
established for the optimal policy. A linear time policy gradient algorithm is proposed, and the application of our
framework is demonstrated in a hate speech classification context. Future work can look at inverse RL techniques
for the eavesdropper to infer the optimal learner policy, and more robust gradient trajectory hiding schemes can be
studied. The problem of covert optimization can be investigated in a decentralized setting where the problem is modeled
as a switching control game with participants switching between learning and obfuscating others. Our suggested
methodology can dynamically control learning in distributed settings for objectives like energy efficiency, client privacy,
and client selection. An eavesdropper with finite memory and an objective of minimizing average learning cost with a
constraint on average privacy cost can be considered. This work’s main broader ethical concerns are a) an increase
in energy consumption to achieve covertness and b) it could help a learner covertly train a classifier for questionable
reasons, e.g., censorship.

23This is slightly different from the theoretical model since it is not possible to simulate an infinite buffer, we consider a length 40 queue, and to
prevent a queue overflow a high learning cost of 100 is imposed in case the queue full. This consideration is similar to previous work on network
queueing using a CMDP approach and does not change the threshold and monotone nature of the policy (Djonin & Krishnamurthy, 2007).

24The threshold for the oracle state 3 converges to a negative value which when plugged into the sigmoidal policy of (14) resemble a threshold
policy with threshold at 0 since the learner state can not be negative.
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A Appendix A: Experimental Parameters and Methodology

A.1 Dataset and Preprocessing

We use Jigsaw’s Unintended Bias in Toxicity Classification dataset for our experimental results. The dataset has ∼ 1.8
million public comments from the Civil Comments platform. The dataset was annotated by human raters for toxic
conversational attributes, mainly rating the toxicity of each text on a scale of 0 to 1 and sub-categorizing for severe
toxicity, obscene, threat, insult, identity attacks, and sexually explicit content. More information about the annotation
process can be found on the Kaggle website for this dataset here. We consider the much simpler task of classifying the
text as toxic or not. The toxicity is scored by human volunteers on a scale of 0 to 1, and we consider a comment toxic if
the toxicity score is greater than 0.5. The original dataset is imbalanced with 1660540 non-toxic samples and 144334
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toxic samples, and for each experimental run, we take a random balanced subset with 144334 toxic and non-toxic
samples. The reason we do this is twofold, a) to reduce the time it takes to train our model and make it feasible to run
the clients concurrently on our machine, and b) to study the accuracy that the eavesdropper achieves on the positive
samples more profoundly. To achieve b), we could also have taken a weighted accuracy function. We preprocess the
data by removing special characters and contracting the word space (for example, replacing “can’t” and “cant” with the
same word).

A.2 Architecuture, training hyperparameters, and loss functions

Our architecture used for training involves the following layer sequence: A pre-trained BERT layer which outputs a
128-length embedding, a fully connected 128 neurons wide linear layer with ReLU activation, a dropout layer with a
rate of 10−1 and finally, a linear layer classifying the text as hate speech or not. The motivating reason for choosing this
architecture was that this was the standard template in many of the submissions received in the competition. However,
as highlighted before, our approach is both architecture and convergence algorithm-agnostic. We consider the logit
loss function. We use the following hyperparameters for training: learning rate: 10−3, training batch size of 40, and
validation batch size of 20. To demonstrate the versatility of our methods, we optimize our neural network using
Adam (Kingma & Ba, 2017) and run FedAvg (McMahan et al., 2017) instead of FedSGD. Using the preprocessed
training data, we fine-train our model to minimize the binary cross entropy loss (BCE).

A.3 Markov decision process parameters

We consider 20 clients and client participation is simulated using a Markov chain with the states being 5 clients, 10
clients, and 20 clients. In each training round, each participating client chooses between 0 to Nbatches batches. We
perform N = 45 training rounds with M = 20 successful updates. The accuracies are accuracy scores evaluated on the
validation dataset averaged across clients. At any given communication round, we assume that the eavesdropper takes
whatever weight trajectory occupies the majority number of communication rounds up till that round.

A.4 Additional benchmark experiments on MNIST dataset

We further conduct experiments on an image recognition task on the MNIST data in a federated setting to a) benchmark
our methods on a standard dataset and b) study the effect of varying eavesdropper and Markov chain parameters on the
effectiveness of our approach. Also, the image recognition task is more computationally efficient than the hate speech
classification task. We can perform a lot more runs of the experiment (20 runs of the Hate Speech Classification task
took around ∼ 23 hours, whereas, within the same time frame, we could do 1040 runs of the image classification task).

A.4.1 Varying eavesdropper parameters

We use a Markov chain which is identical to Experiment 1. We set M = 30 successful gradient updates out of 120
communication rounds for this task. We report our results for 20 and 50 clients.

Our experimental results are reported in Table 3 and Table 4 and we summarize our key findings below:

• We vary the size of the training data the eavesdropper has compared to the size of a participating client.
We consider three cases: the size of the eavesdropper’s training set is 10%, 40%, or 100% of the size of
the participating client’s size. We observe that as the training size even with the obfuscated weights, the
eavesdropper’s accuracy improves since the eavesdropper can learn on its own just well enough.

• We also vary the number of classes the eavesdropper has more samples of and the proportion of data for these
classes to other classes. We consider three cases: 2, 5, and 8 "good" classes that the eavesdropper composes
99% or 90% of the data. The case when all classes are evenly distributed is also benchmarked against. We
observe that both the number of good classes and a more balanced dataset improve the eavesdropper accuracy.

• We conclude that for the case of a limited information eavesdropper, the optimal policy performs much better
than a greedy policy with the eavesdropper accuracy having a difference of as much as 51% (for the case with
2 good classes which form 99% of the training data with 40% of the size.).
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A.4.2 Results on FedSGD

For completeness, we demonstrate our results on FedSGD as well with 75 successful updates in 240 communication
queries. We summarize our results in Table 2 averaged for 20 experiment runs. The eavesdropper is assumed to have 4
good classes composing 90% of the data and 10% of the training data size. We see that the pattern is similar to the
FedAvg case but with slower convergence, with the average learner accuracy going up to 88% while the eavesdropper is
stalled up to 56% while the learner uses the optimal policy.

A.4.3 Varying Markov chain parameters

0 1 2 3 4

Cost of learning

0.30

0.35

0.40

0.45

0.50

0.55

Av
er

ag
e 

pr
op

or
tio

n 
of

 u
=

1

Figure 5: Empirical results on the effect of the cost of
learning on the average proportion of learning queries.

We consider a setup similar to experiment 1 with
100 clients and fix the eavesdropper parameters to
have 2 good classes composing 99% of the data and
100% of the training data size. The number of ora-
cle states is increased to 7 with the device counts as
[36, 41, 45, 50, 55, 58, 100] and the threshold is set to
1/8th of the dataset. The emperical success probabilities
are found to be [0.01, 0.12, 0.41, 0.75, 0.94, 0.96, 1]. The
probability transition matrix has a structure similar to the
previous one and can be found in the code.

The results are summarized in Table 2 averaged over 30
runs, and we see trends similar to the case with 3 ora-
cle states (the eavesdropper accuracy is much less since
the training data is now distributed over 100 clients so
the eavesdropper data is not big enough) . The possi-
ble reason for the eavesdropper having a better accuracy
in a greedy scheme could be that the weights that the
eavesdropper estimates are optimal and the eavesdropper has more time slots to train.

We also investigate the effect of learning cost, l, on the average number of times action u = 1 (learn) is taken when
using the stationary policy in Fig. 5. This helps illustrate how our learning cost can be chosen to achieve a desired level
of learner-privacy (percentage of queries that should be obfuscated), which are set based on theoretical results (Xu et al.,
2021b). The average cost is calculated over 1000 for different simulation runs. The graph seems piecewise linear with
jumps which could be explained by the nature of the solution of the occupation measure for the MDP, which is a vertex
of a polytope defined by the corresponding linear program and jumps to next vertex with an increase in the instantenous
cost.

A.5 Discussion on an algorithm without any stochastic considerations: random policy

In the controlled SGD setting presented in this paper, the learner discards certain queries which are evaluated unsuccess-
fully according to a chosen noise constant. Controlling for stochasticity helps filter out communication rounds that will
perform poorly due to insufficient clients and training data. When there is an appreciable disparity between the good
and bad states, such filtering leads to a significant performance difference. Additionally, our assumption is more general
than a single noise constant. The learner can control the noise threshold constant, σ, which enables the characterization
of the finite number of updates to optimize f .

FedSGD 7 oracle states

Type of Policy Eavesdropper accuracy Learner accuracy Eavesdropper accuracy Learner accuracy
Greedy 0.89 0.89 0.93 0.88
Optimal 0.56 0.88 0.34 0.88

Table 2: Additional results on MNIST dataset using a) FedSGD and b) 7 oracle states demonstrate versatality of our
framework and robustness to the choice of system parameters respectively.

19



Under review as submission to TMLR

0 500 1000 1500 2000 2500 3000 3500 4000
Iterations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pa
ra

m
et

er
s

2 O = 1
2 O = 2
2 O = 3
2 O = 1
2 O = 2
2 O = 3

Figure 6: Convergence of threshold parameters in Alg. 1 for different oracle states with constant step sizes. This
trajectory for the parameter estimates is more erroneous, has only weak convergence results but can track changes in
the underlying true parameters.

An approach without such considerations is different, it will be equivalent to using a random policy in placing M
learning queries in N total queries. Our approach can solve this task by modifying the SGD update step and updating
the learner state regardless of σk. For a practical setting, such a scheme would still perform better than the random
policy since the obfuscation would be the same, but the learning would be done when the practical parameters, like the
number of clients and data points, are better. In our numerical experiments with the MNIST data, using a random policy
of placing 30 learning queries in 120 communication rounds, the learner obtained a average accuracy of 80.5% against
an accuracy 92.5% obtained using the optimal policy.

A.6 SPGA algorithm parameters and additional experiment

For analysing the convergence of the SPGA algorithm, we choose the step size κn = 0.5
n , the scale parameter as ρ = 20

and the initial constraint parameter as ξ = 10. The initial condition for the learner state is set to be yL = 40 and the
oracle is state yO = 3 when interacting with the system.

In Fig. 6, we also demonstrate how with a constant step size the SPGA algorithm is able to track changes in the
underlying policy parameters. Before iteration 2000 the underlying Markov chain has parameters same as the previous
SPGA experiment except the arrival rate which is 3% for M = 10 updates. After the 2000 iteration, this changes to
M = 4 updates, with an arrival rate of 10%. The success probabilities and the oracle state transition is taken to be,
g = [0.1, 0.6, 0.9] and PO = [0.7 0.2 0.1; 0.3 0.1 0.7; 0.2 0.2 0.7]. The results are averaged over 100 runs. It can be
seen from the figure that even though the convergence is not as close as the decreasing step size, the SPGA algorithm
tracks changes in the system. This effect is more prominently visible for oracle state yO = 1 since the change in the
true parameters is significant.

B Appendix B: Proofs

B.1 Proof of Theorem 1

Proof. We follow standard convergence proving techniques, assumptions A1 and A2, and our definitions to complete
this proof. At every successful update (Def. 1), from (A2) and (4), E[||∇f(x̂km

) + ηk||2] ≤ σ2
k ≤ σ2. Now by the

assumption of smoothness and application of descent lemma, using the descent lemma after m successful updates
at indices k1, . . . , km the sequence xk1 , . . . , xkm is such that (Bottou, 2004; Kushner & Yin, 2003; Ghadimi & Lan,
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E Dataset Parameters E Accuracy L Accuracy
No. of Good Classes Prop. of Training Data Prop. of Good Classes Greedy Policy Optimal Policy Greedy Policy Optimal Policy

2 0.1 0.99 0.857 0.336 0.925 0.832
2 0.1 0.9 0.857 0.725 0.925 0.832
2 0.1 0.2 0.857 0.927 0.925 0.832
2 0.4 0.99 0.859 0.445 0.924 0.815
2 0.4 0.9 0.859 0.907 0.924 0.815
2 0.4 0.2 0.859 0.973 0.924 0.815
2 1 0.99 0.850 0.632 0.930 0.822
2 1 0.9 0.850 0.916 0.930 0.822
2 1 0.2 0.850 0.968 0.930 0.822
5 0.1 0.99 0.843 0.784 0.924 0.817
5 0.1 0.9 0.843 0.900 0.924 0.817
5 0.1 0.5 0.843 0.932 0.924 0.817
5 0.4 0.99 0.834 0.707 0.922 0.819
5 0.4 0.9 0.834 0.920 0.922 0.819
5 0.4 0.5 0.834 0.970 0.922 0.819
5 1 0.99 0.848 0.820 0.926 0.815
5 1 0.9 0.848 0.961 0.926 0.815
5 1 0.5 0.848 0.977 0.926 0.815
8 0.1 0.99 0.830 0.898 0.926 0.819
8 0.1 0.9 0.830 0.957 0.926 0.819
8 0.1 0.8 0.830 0.943 0.926 0.819
8 0.4 0.99 0.868 0.898 0.926 0.809
8 0.4 0.9 0.868 0.936 0.926 0.809
8 0.4 0.8 0.868 0.955 0.926 0.809
8 1 0.99 0.864 0.943 0.931 0.831
8 1 0.9 0.864 0.975 0.931 0.831
8 1 0.8 0.864 0.975 0.931 0.831

Table 3: Additional experiments on the MNIST data with 20 clients showcase how varying different eavesdropper
parameter changes the accuracy the eavesdropper is able to achieve.

2013),

f(x̂km+1) ≤ f(x̂km
) + (∇f(x̂km

))T (x̂km+1 − x̂km
) + L

2 ||x̂km+1 − x̂km
||22

f(x̂km+1) ≤ f(x̂km)− µkm(∇f(x̂km))T (∇f(x̂km) + ηk) + Lµ2
k

2 ||∇f(x̂km) + ηk||22

f(x̂km+1) ≤ f(x̂km
)− µkm

||∇f(x̂km
)||22 + µkm

⟨∇f(x̂km
), ηkm

⟩ +
Lµ2

km

2 σ2

(16)

Taking expectation with respect to ηkm , is E [⟨∇f(x̂km), ηkm⟩] = 0 (A2), bounding ||ηkm ||22 and rearranging the
terms (Ghadimi & Lan, 2013). We also drop the 2 subscript in the L-2 norm.

µkm
E
[
||∇f(x̂km

)||2
]
≤ −f(x̂km+1) + f(x̂km

) +
Lµ2

km

2 σ2

Summing over the M successful gradient updates and assuming the function is lower bounded by f∗,∑
µkmE [∇f(x̂km)] ≤ −f(x̂kM+1) + f(x̂k1) +

MLµ2
km

2 σ2

Now, using the fact that the learner estimate x̂ is chosen as x̂ki
with probability µki∑

µkj

, we can show that

E
[
||∇f(x̂)||2

]
= 1∑

µkj

∑
µkm

E [∇f(x̂km
)]. Substituting this in the above inequality and changing the variable in

the denominator sum, we get,

E
[
||∇f(x̂)||2

]
≤

(
−f∗ + f(x̂k1) +

L
∑
µ2

km

2 σ2

)
1∑
µkm
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E Dataset Parameters E Accuracy L Accuracy

No. of Good Classes Prop. of Training Data Prop. of Good Classes Greedy Policy Optimal Policy Greedy Policy Optimal Policy

2 0.1 0.99 0.861 0.320 0.860 0.840
2 0.1 0.9 0.861 0.611 0.860 0.840
2 0.1 0.2 0.861 0.852 0.860 0.840
2 0.4 0.99 0.884 0.318 0.862 0.830
2 0.4 0.9 0.884 0.734 0.862 0.830
2 0.4 0.2 0.884 0.895 0.862 0.830
2 1 0.99 0.852 0.393 0.859 0.843
2 1 0.9 0.852 0.864 0.859 0.843
2 1 0.2 0.852 0.955 0.859 0.843
5 0.1 0.99 0.875 0.461 0.638 0.838
5 0.1 0.9 0.875 0.655 0.638 0.838
5 0.1 0.5 0.875 0.807 0.638 0.838
5 0.4 0.99 0.843 0.595 0.854 0.833
5 0.4 0.9 0.843 0.795 0.854 0.833
5 0.4 0.5 0.843 0.916 0.854 0.833
5 1 0.99 0.864 0.000 0.857 0.840
5 1 0.9 0.864 0.000 0.857 0.840
5 1 0.5 0.864 0.000 0.857 0.840
8 0.1 0.99 0.868 0.000 0.856 0.839
8 0.1 0.9 0.868 0.000 0.856 0.839
8 0.1 0.8 0.868 0.000 0.856 0.839
8 0.4 0.99 0.841 0.805 0.862 0.832
8 0.4 0.9 0.841 0.916 0.862 0.832
8 0.4 0.8 0.841 0.914 0.862 0.832
8 1 0.99 0.861 0.000 0.853 0.840
8 1 0.9 0.861 0.000 0.853 0.840
8 1 0.8 0.861 0.000 0.853 0.840

Table 4: Additional experiments on the MNIST data with 50 clients showcase how varying different eavesdropper
parameter changes the accuracy the eavesdropper is able to achieve and how our framework can be extended to more
number of clients.

For stepsize of µkm
= 1/m and M successful steps,

min
k∈{k1,...,km}

E
[
||∇f(x̂k)||2

]
= O( Lσ2

logM ).

Hence, for m ≥ c1

(
exp

(
Lσ2

2ϵ

))
, the following estimate,

x̂ = arg min
k∈{k1,...,km}

E
[
||∇f(x̂k)||2

]
(17)

is ϵ-close for some constant c1. Hence there exists M ≤ c2

(
exp

(
Lσ2

2ϵ

))
where c2 > c1 is some constant such that for

m = M (17) is an ϵ-close estimate.

B.2 Proof of Lemma 1

Proof. Let ν be a querying policy satisfying the constraint of (9), then

Λ ≥ lim sup
N→∞

1
N

E

[
N∑

n=1
l(0, yO

n = WO)1(an = 0, yL
n > 0) | y0

]

If lim supN→∞
1
N E

[∑N
n=1 1(yL

n = 0)|y0

]
> 0 then the queue is stable since the queue returns to the state yL

n = 0
infinitely often and hence the Markov chain is also recurrent.
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Otherwise if lim supN→∞
1
N E

[∑N
n=1 1(yL

n = 0)|y0

]
= 0 the stability of the queue can be shown by proving that the

average successful transmissions (denoted by ry0(ν)) under the policy ν is greater than the average arrival rate δM ,

ry0(ν) = lim inf
N→∞

1
N

Eν

[
N∑

n=1
g(un, y

O
n )1(un ̸= 0)|y0

]
≥ lim inf

N−→∞

1
N

Eν

[
N∑

n=1
gmin1(un ̸= 0)|y0

]

≥ gmin

(
1− lim sup

N−→∞

1
N

Eν

[
N∑

n=1
1(un = 0, yL

n > 0)|y0

])
≥ gmin

(
1− Λ

l(0, yO = W ))

)
≥ δM

Since the average successful learning rate is greater than the average query arrival rate, this induces a stable buffer, and
due to Foster’s Theorem, this induces a recurrent Markov chain.

B.3 Proof of Theorem 2

We state the following lemma which is key to prove Theorem 2.

Lemma 2. (Monotonicy of value function V ) The value function Vn(y) is decreasing in number of queries left, n and
oracle state, yO and increasing in learner state, yL.

Proof. The strategy for proving the monotonicity of the value function with respect to the state space variables will be
to use induction and assumptions about the cost function and the probability transition matrix.

The recursion for Vn+1
(
[yO, yL]

)
from (7) is,

Vn+1
(
y = [yO, yL]

)
= min

u∈U
c(u, yO) +

∑
yO′

∈SO

P(yO′
|yO)

(
g(yO, u)Vn

(
[yO′

, yL − u]
)

+ (1− g(yO, u))Vn

(
[yO′

, yL]
))

,

where V0

(
[yO′

, yL]
)

= l(yL).

Monotonicity in n: The first step of the induction, V1
(
[yO, yL]

)
≤ V0

(
[yO′

, yL]
)

can be shown as,

V1
(
[yO, yL]

)
= min

u∈U
c(u, yO) +

∑
yO′

∈SO

P(yO′
|yO)

(
g(yO, u)l(yL) +(1− g(yO, u))l(yL)

)
≤ Q1

(
[yO, yL], 0

)
= l(yL) = V0

(
[yO′

, yL]
)
.

Now let Vn

(
[yO′

, yL]
)
≤ Vn−1

(
[yO′

, yL]
)

, then using the recursion and the monotonicity of cost it is straightforward
to show that it holds true for n+ 1 since,

Vn+1
(
[yO, yL]

)
≤ min

u∈U
c(u, yO) +

∑
yO′

∈SO

P(yO′
|yO)

(
g(yO, u)Vn−1

(
[yO′

, yL − 0]
)

+ (1− g(yO, u))Vn−1

(
[yO′

, yL]
))

,

= Vn

(
[yO, yL]

)
Monotonicity in yL: We use inductive reasoning again to prove that the value function is increasing in yL. Note
that V0

(
[yO, yL]

)
= l(yL) is increasing in yL. Let Vn

(
[yO, yL]

)
be increasing in yL. From the definition of

Vn+1
(
[yO, yL]

)
it follows that Vn+1 is sum of increasing functions of yL hence it should also be increasing in yL.

Monotonicity in yO: Using the assumption of first order stochastic dominance on P(yO′ |yO) we prove that
Vn

(
[yO, yL]

)
is non-increasing in yO. V0

(
[yO, yL]

)
= l(yL) is non-increasing in yO. Assume Vn

(
[yO, yL]

)
is

non-increasing.

Then, for yO > 1, by monotonicity of c, c(u, yO) ≤ c(u, yO − 1). And by the first-order stochastic dominance assump-
tion and induction assumption,

∑
yO′

∈SO P(yO′ |yO)Vn

(
[yO′

, yL]
)
≤
∑

yO′
∈SO P(yO′ |yO − 1)Vn

(
[yO′

, yL]
)
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Then for yO > 1,

Vn+1
(
y = [yO, yL]

)
= min

u∈U
c(u, yO) +

∑
yO′

∈SO

P(yO′
|yO)

(
g(yO, u)Vn

(
[yO′

, yL − u]
)

+ (1− g(yO, u))Vn

(
[yO′

, yL]
))

,

≤ min
u∈U

c(u, yO − 1) +
∑

yO′
∈SO

P(yO′
|yO − 1)

(
g(yO, u)Vn

(
[yO′

, yL − u]
)

+ (1− g(yO, u))Vn

(
[yO′

, yL]
))

= Vn+1
(
y = [yO − 1, yL]

)
,

Proof for the infinite horizon discounted MDP: Since instantaneous cost w is bounded. Hence the value function
sequence,

V β
n+1

(
[yO, yL, yE ]

)
= min

u∈U

w(u, y;λ) + β
∑

yO′
∈SO

yE′
∈SE

P(yO′
|yO)P(yE′

)
(
g(yO, u)V β

n

(
[yO′

, yL + yE − u, yE′
]
)

+

(1− g(yO, u))V β
n

(
[yO′

, yL + yE , yE′
]
))]

,

converges for any initial V β
0
(
[yO, yL, yE ]

)
. Hence we choose a V β

0
(
[yO, yL, yE ]

)
which is increasing in yL, yE

and decreasing in yO. Note that by assumptions on c and l, w(u, y;λ) is decreasing in yO and nondecreasing in yL.
Therefore by induction V β

n

(
[yO, yL, yE ]

)
is increasing in yL and yE . And by assumption of first order stochastic

dominance on P(yO′ |yO) it is easy to see that V β
n

(
[yO, yL, yE ]

)
is decreasing in yO. Therefore V β

(
[yO, yL, yE ]

)
=

V β
∞
(
[yO, yL, yE ]

)
is increasing in yL and yE and decreasing in yO.

We use this result on V β
(
[yO, yL, yE ]

)
in the discussion of structural results on the infinite horizon average cost MDP.

We now prove Theorem 2:

Proof. To show that the optimal discounted cost policy is monotonically increasing in learner state yL, we will prove
inductively that QN

(
[yO, yL], u

)
is submodular in (yL, u) for all yL ≥ 1. In other words, we prove that,

Qn+1
(
[yO, yL], 1

)
−Qn+1

(
[yO, yL], 0

)
= c(1, yO)− c(0, yO) +

∑
yO′

∈SO

P(yO′
|yO)g(yO, 1)

×
[
Vn

(
[yO′

, yL − 1]
)
− Vn

(
[yO′

, yL]
)]

is monotonically decreasing in the learner state yL for y ≥ 1 for all n ≥ 0 for a suitable initialization. This is a sufficient
condition for a monotone threshold policy since if the state action (Q) decreases monotonically. It will change its sign
over the learner state space SL only once, and the action 0 will be optimal until a certain value of yL and the action 1
will be optimal otherwise.

Qn+1
(
[yO, yL], 1

)
−Qn+1

(
[yO, yL], 0

)
has increasing differences in yL if, Vn

(
[yO, yL]

)
has increasing difference

in yL. We prove this inductively. By assumption of integer convexity, V0
(
[yO, yL]

)
= l(yL), has increasing differences

in yL. Assume Vn

(
[yO, yL]

)
has increasing differences in yL then Qn+1

(
[yO, yL], u

)
is submodular in (yL, u). We

will now show that Vn+1
(
[yO, yL]

)
has increasing differences in yL, i.e.

Vn+1
(
[yO, yL + 1]

)
− Vn+1

(
[yO, yL]

)
−
(
Vn+1

(
[yO, yL]

)
− Vn+1

(
[yO, yL − 1]

))
≥ 0. (18)
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Now let Qn+1
(
[yO, yL], u1

)
= Vn+1

(
[yO, yL + 1]

)
, Qn+1

(
[yO, yL], u2

)
= Vn+1

(
[yO, yL]

)
and

Qn+1
(
[yO, yL], u3

)
= Vn+1

(
[yO, yL − 1]

)
for some actions u1, u2 and u3. Now (18) can be written as,

Qn+1
(
[yO, yL + 1], u1

)
−Qn+1

(
[yO, yL], u1

)
−
(
Qn+1

(
[yO, yL], u1

)
−Qn+1

(
[yO, yL − 1], u2

))
≥ 0 ⇐⇒(

Qn+1
(
[yO, yL + 1], u1

)
−Qn+1

(
[yO, yL], u1

))︸ ︷︷ ︸
A

−
(
Qn+1

(
[yO, yL], u1

)
−Qn+1

(
[yO, yL], u2

))︸ ︷︷ ︸
By optimality≥0

−
((
Qn+1

(
[yO, yL], u2

)
−Qn+1

(
[yO, yL], u3

)))︸ ︷︷ ︸
By optimality≥0

−
((
Qn+1

(
[yO, yL], u3

)
−Qn+1

(
[yO, yL − 1], u3

)))︸ ︷︷ ︸
B

≥ 0.

Now rearranging the terms for A,

A =
∑

yO′
∈SO

P(yO′
|yO)×

[
g(yO, u2)]

(
Vn

(
[yO′

, yL]
)
− Vn

(
[yO′

, yL − 1]
))

+(1− g(yO, u2))
(
Vn

(
[yO′

, yL + 1]
)
− Vn

(
[yO′

, yL]
))]
≥∑

yO′
∈SO

P(yO′
|yO)×

[
Vn

(
[yO′

, yL]
)
− Vn

(
[yO′

, yL − 1]
)]
≥ B

The second last inequality is due to induction on Vn

(
[yO, yL]

)
and the last inequality follows from similar expansion on

B and induction hypothesis. This theorem can be straightforwardly extended to infinite horizon discounted MDP.

B.4 On threshold structure of average Lagrangian cost optimal policy

To show that the optimal policy of the unconstrained average cost MDP has a threshold structure, we first state the
following lemma (Sennott, 1989).

Lemma 3. Let (βk) be any increasing sequence of discount factors, s.t., limk→∞ βk = 1. Let (ν∗
βk

) be the associated
sequence of discounted optimal stationary policies. There exist a subsequence (αk) of (βk) and a stationary policy ν
that is the limit of (ν∗

αk
).

An optimal policy given by Lemma 3 is an average cost optimal policy under suitable assumptions (Sennott, 1989). We
verify these assumptions and characterize the average cost optimal policy in the following theorem:

Theorem 4. Any stationary deterministic policy ν given by Lemma 3 is an average cost optimal policy. In particular
there exists a constant ψ = limβ→1(1− β)V β(y) for every y, and function Ψ(y) with −N ≤ Ψ(y) ≤My , such that,

ψ + Ψ(y) = min
u∈U

w(u, y;λ) +
∑
y′ ∈S

P(y
′
|y, u)Ψ(y)

 .

Furthermore, the stationary policy is average cost optimal with an average cost ψ.

Proof. For any stationary policy ν to be average cost optimal, the following assumptions need to be satisfied (Sennott,
1989):

• Assumption 1: For every state y and discount factor β, the optimal discounted cost V β(y) is finite.

• Assumption 2: There exists N ≥ 0 such that, −N ≤ Ψβ(y) ∆= V β(y)− V β(0) where 0 is a reference state.

• Assumption 3: There exists My ≥ 0, such that, Ψβ(y) ≤My for every y and β. For every y there exists, u
such that

∑
y′ ∈S P(y′ |y, u) <∞.

• Assumption 3’: Assumption 3 holds and
∑

y′ ∈S P(y′ |y, u)My <∞.
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For a reference state 0 = [0,W, 0], the policy of always transmitting induces a stable buffer, and the expected time and
cost for the first passage to state 0 are finite. Therefore by Proposition 5i) and 4ii) of Sennott (1989) and from Ross
(2014) Assumption 1 and 3 are satisfied. Assumption 3’ is satisfied by the probability transition given in (8). Assumption
2 is satisfied because V β is increasing in yL, yE and decreasing in yO and therefore V β(y) ≥ V β(0) ∀y ∈ S as shown
in Lemma 2.

Due to the above lemma and theorem and using the discussion in the proof of Lemma 2, the average cost optimal policy
inherits the monotone threshold structure of the discounted optimal policy.
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