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Abstract

Generative large language models (LLMs) exhibit impressive capabilities, which1

can be further augmented by integrating a pre-trained vision model into the origi-2

nal LLM to create a multimodal LLM (MLLM). However, this integration often3

significantly decreases performance on natural language understanding and gen-4

eration tasks, compared to the original LLM. This study investigates this issue5

using the LLaVA MLLM, treating the integration as a continual learning problem.6

We evaluate five continual learning methods to mitigate forgetting and identify a7

technique that enhances visual understanding while minimizing linguistic perfor-8

mance loss. Our approach reduces linguistic performance degradation by up to9

15% over the LLaVA recipe, while maintaining high multimodal accuracy. We10

also demonstrate the robustness of our method through continual learning on a11

sequence of vision-language tasks, effectively preserving linguistic skills while12

acquiring new multimodal capabilities.13

Figure 1: Summary results of the best CL methods we evaluated for training LLaVA 1.5 compared to
the unimodal base LLM and the original version of LLaVA 1.5. All results are with Pythia 2.8B as
the base LLM. The best method has almost the same vision-language (VL) accuracy while providing
a large increase in linguistic performance on 1 NLG and 4 NLU tasks by 8% and 2% (absolute), resp.

1 Introduction14

Advances in integrating visual information with large language models (LLMs) have led to the15

development of multimodal large language models (MLLMs), excelling at many vision-language16

(VL) tasks [1–12]. Recent studies converge on a general recipe for developing MLLMs: Alignment17

of LLM token embeddings with visual embeddings followed by instruction-tuning on VL tasks18

like visual question answering (VQA) [8]. However, creating an MLLM often degrades the LLM’s19

natural language understanding (NLU) and generation (NLG) performance, a phenomenon known as20

catastrophic forgetting [3, 6]. For instance, PaLM-E experienced an 87% drop in NLG performance21

over the base LLM [6]. Similar forgetting has been noted for LLaVA [11], but little work has22

addressed understanding and mitigating this issue. Multimodal LLMs are designed in part to serve as23

general multimodal understanding models [13, 14]. They must therefore perform well not only on24

vision-language data, but also retain their linguistic or text-only performance.25

Here, we study mitigating the loss of linguistic abilities in the popular LLaVA MLLM using continual26

learning (CL) techniques designed to mitigate catastrophic forgetting [15]. In CL, a sequence of27

non-stationary tasks is learned, where we treat the first task as already learned by the base LLM28
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followed by new VL tasks. We study these methods in two paradigms. In the first, we seek to29

recreate LLaVA 1.5 while mitigating linguistic forgetting through our methods, and in the second, we30

sequentially learn each VL dataset in the LLaVA recipe.31

This paper makes the following contributions:32

1. Using the original LLaVA 1.5 training recipe, we study linguistic forgetting in 9 MLLMs,33

including 5 built on the Pythia family of LLMs to study the role of model scales and34

instruction tuning on such linguistic forgetting.35

2. We study the effectiveness of 5 mitigation techniques for reducing linguistic forgetting and36

show that the best method improves accuracy for NLG, NLU, and VL tasks compared to the37

naive LLaVA recipe (see Fig. 1).38

3. We pioneer studying CL for MLLMs by sequentially learning VL tasks, where we assess the39

efficacy of CL techniques to mitigate catastrophic forgetting in this challenging scenario.40

2 Methods41

2.1 The LLaVA MLLM42

We study LLaVA 1.5, henceforth referred to as LLaVA, which is one of the most widely used43

multi-modal training protocols. LLaVA has the following components:44

1. Visual Encoder: Following earlier implementations [16, 12], we use a pre-trained ViT-L/1445

from CLIP which takes an image resolution of 336px as the vision encoder, which is kept46

frozen throughout training to ensure stability, prevent overfitting to initial training tasks.47

2. LLM: We study 9 choices for LLaVA’s LLM of varying scales and instruct-tuning: 6 Pythia48

models (160M - 2.8B) [17], Phi2 (3B) [18], and 2 LLaMA 2 (7B) models. Refer to Appendix49

A.3 for details on the base LLMs.50

3. Alignment Network: To inject other modalities into LLaVA, it uses a two layered alignment51

network that projects embeddings from the vision encoder into the embedding representa-52

tional space of the text tokens [19].53

We follow the standard LLaVA 1.5 training recipe, and provide detailed implementational descriptions54

in Appendix A.3.55

2.2 Continual Learning Methods56

To mitigate catastrophic forgetting in MLLMs, we examine and adapt several continual learning meth-57

ods for LLaVA multimodal training: LoRA [20], Soft Targets [21], Rehearsal [22], and mSGM [21],58

along with the original LLaVA fine-tuning (Naive FT). Details of the mitigation methods, the continual59

learning setup and data mixtures are provided in Appendix A.60

In all methods, the alignment layer and LLM are trained and the ViT is frozen. Following the LLaVA61

1.5 training protocol, the VL datasets are trained in a single epoch corresponding to a single training62

pass through each dataset.63

3 Experiments64

In our experiments, we treat training a MLLM as a CL problem, where the system learns a sequence of65

tasks from 1 to T . Task 1 always consists of training the LLM, where we assume the LLM has already66

been trained and we do not know the provenance of the training data or the exact methods to create it,67

which is true of many commonly used LLMs (e.g., Llama 2 and Llama 3). In our experiments on68

analyzing and mitigating linguistic forgetting, there are 2 tasks: 1) learning the base LLM, and 2)69

learning the mixture of VL datasets. In CL experiments, there are 5 tasks where the first is training70

the base LLM, and then each VL task is sequentially learned.71

Following the standard LLaVA recipe, for all experiments, task 2 begins by training the VL alignment72

network using the LLaVA-595 CC-SBU captioning dataset. The network is trained to generate73

captions with an auto-regressive loss, with the vision encoder and LLM kept frozen. Subsequently, the74

LLM and alignment layer are trained for tasks 2 to T . For the forgetting and mitigation experiments75

in Secs. 3.1 and 3.2, the two-task setup is identical to LLaVA 1.5’s training protocol. The continual76

learning setup employed in Sec. 3.3 is detailed in Appendices A and B.77

Evaluation. We evaluate the models using six natural language datasets: Lambada [23] for NLG,78

ARC-Easy [24], ARC-Challenge [24], Winogrande [25], and WSC [25] for NLU, as well as four79

vision-language datasets: VQAv2 [26], GQA [27], TextVQA OCR and Pure [28], and RefCOCO [29]80

corresponding to the LLaVA data mixture (see Appendix B.3 for details). Performance is measured81
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using accuracy and the forgetting metric ∆, which quantifies changes in task performance following82

training on new tasks (see Appendix A.3).83

3.1 Analyzing Linguistic Forgetting84

Linguistic forgetting has not been studied in LLaVA, so before assessing CL methods, we measure85

linguistic forgetting and VL performance for all LLMs using the standard LLaVA training recipe;86

which uses naive fine-tuning. Using this recipe, our 9 LLMs are transformed into MLLMs.87

Overall Results. Our overall results are given in Fig. 2a. Five models suffer from linguistic forgetting,88

while surprisingly, four have increased NLU/NLG accuracy due to positive transfer from the VL89

tasks.90

Positive Backwards Transfer & Analysis of NLU vs. NLG Tasks. In Table 2b , we study the91

impact of forgetting on NLU vs. NLG tasks. All MLLMs exhibit greater NLG forgetting than NLU92

forgetting, and NLU datasets are the source of the cases of positive backward transfer (negative ∆).93

We posit this may be due to the additional common-sense reasoning and world knowledge encoded94

in visual-language tasks and instructions, which is relevant for the NLU tasks. In terms of model95

size, typically smaller models show higher NLG forgetting, which is consistent with PaLM-E’s96

observations. We include additional results on NLU, NLG forgetting in Appendix Sec. C.3.97

Figure 2(a): Linguistic forgetting versus VL perf. for 9 MLLMs
trained with the LLaVA recipe. Five models exhibited linguistic
forgetting, while four had negative linguistic forgetting, indicating
that VL training resulted in positive transfer to language tasks.

LLM Scale (B) NLU ∆ ↓ NLG ∆ ↓

Pythia

0.16 0.94 12.01
0.41 –1.19 8.62

1.0 –1.63 4.95
1.4 0.55 8.07
2.8 1.74 9.18

Pythia (I) 1.4 –1.20 –1.01

Phi2 3.0 2.60 4.39

Vicuna 1.5 7.0 –0.98 2.04

LLaMA 2 7.0 –2.15 –0.43

Average — –0.15 5.31

Figure 2(b): NLU vs NLG Forgetting:
Composition of linguistic forgetting between
NLU and NLG tasks for models after LLaVA
training. Negative ∆ indicates positive
backward-transfer, which is desirable. "I"
denotes the instruct-tuned model.

3.2 Mitigating Linguistic Forgetting98

We study the efficacy of our mitigation methods toward reducing linguistic forgetting. Due to99

computational constraints, we exhaustively tested mitigation methods with Pythia (160M) in Table 3a,100

and then evaluate the best method across all parameter scales of Pythia models in Fig. 3b.101

In Table 3a, Soft Targets has the highest accuracy across VL datasets with the least linguistic102

forgetting. LoRA and mSGM better preserve NLU/NLG performance but at the cost of decreased VL103

accuracy compared to naive fine-tuning. We posit that the retention of next-token logits enforced by104

Soft Targets is crucial in mitigating linguistic forgetting for causal generation during MLLM training.105

Model Vision-Language (VL) ↑ VL Avg. NL Avg.
VQAv2 TextVQA GQA Acc ↑ ∆ ↓ Acc ↑

OCR Pure
Pythia (160M) 0.00 0.00 0.00 0.00 0.00 – 32.61
Naive FT 30.32 2.40 3.83 22.17 5.29 7.83 24.78
LoRA 28.97 1.02 1.74 17.97 2.42 1.69 30.92
mSGM 28.39 1.37 2.71 17.48 3.36 2.68 29.93
Soft Targets 32.67 6.92 6.10 25.39 10.57 2.83 29.78

Figure 3(a): Results for mitigation methods on LLaVA training.
Evaluate alternatives to naive fine-tuning for transforming Pythia
160M into an MLLM. In Fig. 3b (right), we evaluate the average
linguistic forgetting for Pythia models in the 160M to 2.8B scale,
after training on LLaVA. Negative forgetting refers to a positive
backward transfer in NL performance after multimodal training.

Figure 3(b): Linguistic forgetting for vary-
ing model sizes of Pythia (160M - 2.8B).

3



Analyzing the Role of Parameter Count. In Driess et al. [6], larger models had less catastrophic106

forgetting than smaller ones for NLG/NLU. The opposite result was found in Luo et al. [30].107

We analyze this phenomenon in the Pythia family of models in Fig. 3b, where we evaluate naive108

fine-tuning and the best method for 160M, Soft Targets. Across scales, Soft Targets has zero or109

negative linguistic forgetting over the naive fine-tuning method used in the original LLaVA paper,110

with competitive VL performance compared to naive fine-tuning (especially at higher scales, see111

Fig. 4a). Soft Targets achieved positive backward transfer in the low model size regime (0.16-0.41B)112

and no forgetting for larger sizes (>0.41B). In contrast, naive fine-tuning had severe forgetting in the113

0.16-0.41B regime and reduced forgetting when the model size exceeded 1B parameters.114

3.3 Continually Learning VL Tasks115

We next turn to continually learning each of the VL datasets used to train LLaVA 1.5, where we116

group the datasets based on the task type. Details of the data mixture, task groupings and ordering117

are provided in Table 4 and Sec. B.3 in the Appendix. Note that there is no VL evaluation dataset118

associated with the Task 2 (Instruct), but we still measure NLU/NLG performance. Given our limited119

computational budget, we exhaustively studied our CL methods only for the smaller-scale Pythia120

410M LLM (see Table 1), and then we evaluated the best-performing mitigation method for all of the121

Pythia LLMs (see Appendix Figures 5a and 5b).122

Table 1: Continually learning LLaVA Tasks with Pythia 410M. We report cumulative task-wise
accuracy and forgetting of each mitigation method across VL and NL tasks, where we evaluate test
sets associated with all tasks seen up to current task. Task 5 represents cumulative performance.

Model Task 2 (Instruct) Task 3 (VQA) Task 4 (OCR) Task 5 (Ref)
VL (A ↑) NL (∆ ↓) VL (A ↑) NL (∆ ↓) VL (A ↑) NL (∆ ↓) VL (A ↑) NL (∆ ↓)

Naive-FT - 0.58 44.22 12.21 16.67 4.95 0.48 7.70

Soft Targets - 0.81 0.16 14.67 10.23 5.41 0.31 10.90
LoRA - 1.38 37.46 1.23 14.03 2.50 9.59 4.36
mSGM - 1.11 36.31 1.57 11.69 1.40 0.32 6.32
Rehearsal (1%) - 0.58 37.74 10.90 3.47 7.41 3.55 7.65
mSGM + Reh. (1%) - 1.11 35.28 0.73 12.38 2.25 10.21 2.77

Results for Pythia 410M. Results for Pythia 410M are given in Table 1. In terms of NLU/NLG123

forgetting, all mitigation methods showed efficacy in reducing forgetting across the sequence of124

tasks. Overall, mSGM with and without rehearsal achieves the least linguistic forgetting while125

maintaining the highest cumulative VL performance across all baselines. Regarding VL performance,126

naive fine-tuning achieves better performance at the cost of high linguistic forgetting. In contrast,127

mSGM achieves competitive VL performance and sometimes even surpasses it, e.g., for RefCOCO,128

an especially challenging VL task.129

Model scaling results. Model scaling results are given in Appendix Fig. 5. We compare mSGM130

with Rehearsal - the best method identified for Pythia 410M, against naive LLaVA fine-tuning across131

all Pythia model sizes. In general, the original naive LLaVA fine-tuning exhibits greater loss of132

NLU/NLG as well as VL performance. In contrast, VL performance for mSGM rivals or exceeds the133

original LLaVA fine-tuning across all model sizes, with little to no NLU/NLG forgetting.134

4 Discussion135

This work presents one of the first studies of linguistic forgetting in MLLMs, particularly for open-136

source models with modest parameter counts (< 7B). We show that the degree of linguistic forgetting137

typically reduces with model scale, and is far more severe for NLG tasks compared to NLU. We138

pioneer treating MLLM creation as a CL problem, and show that CL methods effectively mitigate139

linguistic forgetting while minimally hindering VL accuracy. In our experiments, our best mitigation140

method far outperforms the naive LLaVA recipe in terms of linguistic forgetting, while maintaining141

competitive VL performance. We show that this benefit holds across model scales. We pioneer CL142

for MLLMs, and establish strong baselines for this task. In fact, we observe that besides maintaining143

competitive VL performance with naive LLaVA training, our mitigation methods achieve near zero144

and in some cases even negative linguistic forgetting. This suggest that our mitigation methods145

achieve a positive backward transfer of linguistic ability after multi-modal training. Given the146

essential nature of multimodal abilities for many applications, our research highlights that naive147

multimodal fine-tuning can significantly degrade prior linguistic abilities. Our findings underscore148

the need to develop more robust and capable mitigation approaches, and showcase the applicability149

of CL techniques to the fine-tuning of foundation models. We aim to inspire future research in this150

direction, ultimately contributing to the advancement of more resilient and versatile MLLMs.151
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Appendix273

We organize implementation details and additional supporting experimental findings as follows:274

• Appendix A describes the implementation details for the experiments.275

• Appendix B provides details on the datasets and evaluations.276

• Appendix C summarizes findings of additional supporting experiments and ablation studies.277

A Implementation Details278

We provide details below of the experimental settings for the alignment and fine-tuning phases279

of the LLaVA1.5 training protocol, the continual learning methods methods we employ, and the280

implementational and hyperparameter search details. For LLaVA, our configuration details are the281

same as LLaVA1.5 in order to reproduce and compare effectively to the LLaVA1.5 multi-modal282

training protocol.283

A.1 Libraries and Tools284

To reproduce the LLaVA 1.5 experiment, we build on top of the Prismatic library [31], and use285

the Prismatic library for vision-language tasks and EleutherAI’s LM_Eval library [32] for natural286

language evaluations. All our code is written in PyTorch [33].287

A.2 Base LLMs used288

We study 9 choices for LLaVA’s LLM: comprising six Pythia models [17], Phi2 (3B)[18], and two289

LLaMA 2 (7B) models. The six Pythia variants span various scales, including 160M, 410M, 1B, 1.4B,290

and 2.8B parameters, with two versions of the 1.4B model—one of which is instruction fine-tuned.291

Additionally, we evaluate both the original LLaMA 2 and the instruction fine-tuned Vicuna-1.5 7B[5],292

which is utilized in LLaVA 1.5.293

1. Phi2 [34] has been trained on the same dataset as Phi1 [18], which includes a curated294

selection of “textbook quality” data from the web (6 billion tokens) and an additional 1295

billion tokens of synthetically generated textbooks and exercises created using GPT-3.5 [35].296

The Phi series are among the most performative models in the under 7B parameter size297

class [34].298

2. Pythia [17] comprises two sets of 8 models, each corresponding to two datasets. For every299

model size, one set is trained on the Pile dataset [36], while the other set is trained on a300

version of the Pile where global de-duplication has been applied. The granular model scaling301

suite of Pythia is particularly useful for our study. We select the de-duplicated set of Pythia302

models.303

3. LLaMA 2 is reportedly trained on a mix of publicly available online data, but specific details304

are not available [37]. LLaVA 1.5 reports its best performance with instruction fined-tuned305

LLaMA 2 LLMs [12].306

A.3 LLaVA Training Details307

Following the LLaVA 1.5 protocol [8], the visual encoder is a CLIP VIT-L@336px which takes an308

image resolution of 336px with letterbox resizing, and the alignment network is a two-hidden layer309

MLP projector with GELU activation. The LLM generations are limited to a maximum token length310

of 2048.311

A.3.1 Alignment Stage312

In the alignment stage, we use a learning rate of 0.001 with a linear warmup followed by a cosine313

decay scheduler. The training process is carried out for 1 epoch with a global batch size of 256,314

distributed as 16 samples per device. We use gradient checkpointing and mixed precision training315

to speed up computation. We used FSDP (Fully Sharded Data Parallel) to train all our models [38].316

During the alignment stage, we shard only the gradients and optimizer states, not the parameters.317

A.3.2 Fine-tuning Stage318

For the fine-tuning stage, the learning rate is 2e− 05, with a linear warmup for a 0.03 ratio of steps319

followed by cosine decay. This stage also runs for 1 epoch but with a smaller global batch size of320
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128, keeping the per-device batch size constant at 16. Depending on the size of the LLM (Phi2 3B vs321

Pythia 160M), we vary the per-device batch size, but the global batch size is kept constant across all322

experiments. We switch to the FSDP full sharding strategy, with all parameters, optimizer states, and323

gradients sharded across the devices.324

A.4 Continual LLaVA325

For the Continual LLaVA setting, we follow the same experimental configuration as before in the326

LLaVA setting. A model trained on Task (i), will then be simply used as the pretrained checkpoint327

for Task (i+ 1), with training following normally. The training configurations are then identical to328

the fine-tuning stage. In the case of PET methods like LoRA, the adapter weights are merged back329

into the LLM before starting training on the new task.330

Different from the LLaVA setting, we continually learn each of the VL datasets used to train LLaVA331

1.5, where we group the datasets based on the task type. Details of the dataset sequence are described332

in Appendix 4.333

A.5 Continual Learning Methods334

To mitigate catastrophic forgetting in MLLMs, we examine and adapt several methods for LLaVA335

multimodal training:336

1. Naive Fine-Tuning corresponds to the original LLaVA method with no modifications.337

2. LoRA keeps the original LLM weights frozen and learns low-rank updates for them [20].338

Following LoRA’s recommended protocol, we inject LoRA weights into all LLM linear339

layers. After each task is learned, LoRA weights are merged into the LLM. Details in340

Appendix A.6.2.341

3. Soft Targets was proposed in [21] to reduce forgetting in CL. Rather than using hard targets342

for training, simple label smoothing is used to reduce the severity of the training loss under343

distribution shift in CL. We smooth the hard target vector Y , by smoothing the target tokens344

by −α, and offsetting non-target tokens by +α/(N − 1), where α controls the smoothing,345

and N is the LLM’s vocabulary size. We discuss the choice of α in Appendix A.6.3.346

4. Rehearsal (Experience Replay) is an effective method for CL that involves storing data347

from earlier tasks and mixing it with data from new tasks. We study it in our CL experiments348

since we do not have any stored data for task 1 (training the base LLM). We study storing349

1% of randomly selected samples from each previous task, excluding task 1.350

5. mSGM is based on SGM, which combines soft targets, weight initialization, and LoRA to351

mitigate catastrophic forgetting [21]. We adapt SGM based on our modified soft targets and352

omit weight initialization and output layer freezing since the output vocabulary is static, and353

the output layers are used for the causal generation of LLMs.354

A.6 Hyperparameter Search355

A.6.1 LLaVA1.5 Setting356

To reproduce and directly compare against the LLaVA 1.5 protocol, we keep the explicit training357

configurations the same (as mentioned in Appendix A).358

A.6.2 LoRA359

We train several different LoRA settings on the smallest Pythia-160M LLM for tractability and360

compare the resulting VL and NLU/NLG performances. We vary the a) target modules (between 1)361

all linear layers, and 2) key, query, and value projection layers only), b) LoRA ranks in the range362

of 1/4− 1/2 of the full rank of the model, rank stabilized LoRA [39], and larger alpha values (16363

instead of 8 as default). Table 2 shows the comparisons by training on the LLaVA setting.364

A.6.3 Soft Targets365

We train the LLaVA recipe with the soft targets with varying alpha α ∈ {0.001, 0.01, 0.1}, and report366

results in Figure 3. The Pythia 160M model is used for this tuning.367
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Table 2: Analysis of LoRA Ranks and Configuration: We train the Pythia 160M model with a
varying set of ranks and configurations.

Model Vision-Language (VL) VL Avg. NL Avg.
VQAv2 TextVQA OCR TextVQA Pure GQA Acc ↑ ∆ ↓ Acc ↑

Original LLaVA 30.32 2.40 3.83 22.17 5.29 7.83 24.78
Language Only LLM 0.00 0.00 0.00 0.00 0.00 - 32.61

LoRA (1/2 Full Rank, Higher Alpha) 28.72 1.05 2.67 19.73 2.84 9.33 23.28
LoRA (1/2 Full Rank, RSLoRA) 28.97 1.02 1.74 17.97 2.42 1.69 30.92
LoRA (1/4 Full Rank) 24.64 0.93 1.41 15.04 2.11 11.64 20.97
LoRA (1/4 Full Rank, Higher Alpha) 6.46 0.68 0.55 2.44 1.04 2.53 30.08
LoRA (1/2 Full Rank) 0.13 0.20 0.10 0.00 0.00 - -
LoRA (1/2 Full Rank, RSLoRA, KQV Target) 0.00 0.00 0.00 0.00 0.00 - -

Table 3: Selecting α for Soft Targets. We train the Pythia 160M model with Soft Targets by varying
the alpha ∈ {0.001, 0.01, 0.1}.

Model Vision-Language (VL) VL Avg. NL Avg.
VQAv2 TextVQA OCR TextVQA Pure GQA Acc ↑ ∆ ↓ Acc ↑

Language Only LLM 0.00 0.00 0.00 0.00 0.00 - 32.61

Soft Targets (α = 0.1) 3.38 1.19 1.32 1.76 1.62 0.67 31.95
Soft Targets (α = 0.01) 32.67 6.92 6.10 25.39 10.57 2.83 29.78
Soft Targets (α = 0.001) 25.12 2.17 1.73 14.84 3.49 4.97 27.64

Original LLaVA 30.32 2.40 3.83 22.17 5.29 7.83 24.78

B Datasets & Evaluation368

B.1 Training Datasets369

For the continual LLaVA setting, the original LLaVA 1.5 data mixure is split into groups of vision-370

language (VL) tasks. These VL tasks are then learned sequentially in the Continual LLaVA training.371

Table 4 provides the splits of the LLaVA 1.5 data mixture into a sequence of VL tasks, based on task372

types. The collation of all these datasets forms the LLaVA 1.5 data mixture, which is used to train the373

LLaVA MLLMs, per the LLaVA’s protocol as described in Appendix A.3.374

Table 4: Continual LLaVA Setup: The LLaVA 1.5 data mixture is split into groups of vision-
language (VL) tasks. VQA (OE & OK) refers to open-ended and outside-knowledge VQA tasks.

Task Type Task Data Size
Pre-Training 1 LLM Pre-Training* –

Instruct Tuning 2 CC-LAION-SBU 558K
LLaVA-Inst, ShareGPT 198K

VQA 3 VQA2 83K
(OE & OK) OKVQA 9K

A-OKVQA 66K
GQA 72K

VQA (OCR) 4 OCRVQA 80K
TextCaps 22K

Referential 5 RefCOCO 48K
Grounding VisualGenome 86K

B.2 Evaluation Datasets375

Natural Language Evaluation: We use six datasets. For NLG, we use Lambada [23], which376

is the only NLG dataset that uses accuracy for evaluation. For NLU, we use ARC-Easy [24],377

ARC-Challenge [24], Winogrande [25], and WSC [25] for NLU.378

Vision-Language Evaluation: We use the test sets corresponding to each VL dataset used for379

training LLaVA: VQAv2 and GQA for general VQA tasks [26, 27], TextVQA OCR (and Pure) for380

OCR tasks [28], and RefCOCO for referential expression generation tasks [29]. Additional details381

are given in Appendix B.3.382
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B.3 Evaluation Dataset Preparation383

Corresponding to the datasets used to train LLaVA, we evaluate the model on all corresponding384

datasets. We use the slim1 versions of all VQAv2, GQA, Text-VQA and RefCOCO datasets for385

evaluation, as provided within Prismatic-VLMs [31]. All slim versions of the evaluation sets contain386

1024 examples each, and we use the provided index splits for testing.387

B.4 Measuring Performance388

To assess performance, we compute the forgetting metric ∆, where a positive value indicates forgetting389

and a negative value indicates learning the next task enhances the performance of previously acquired390

tasks (or a backward transfer [40]). The performance change, ∆, on task t after training on task k is391

defined as:392

∆t(k) = ωt(1)− ωt(k), ∀t < T (1)

where T is the total number of tasks, and ωt is the harmonic mean of the accuracy values of the393

evaluation datasets for task t. We use the harmonic mean because it is dominated by the accuracy of394

the worst-performing dataset for the task, thereby emphasizing the need to perform well and avoid395

forgetting for all of the datasets.396

C Additional Experiments397

C.1 LLaVA Model Scaling398

Below, we report the VL performance results with varying model scales after LLaVA training. We also399

again show the linguistic forgetting here for reference. In Figure 4a, we see that the VL performance400

of the Soft Targets approach is competitive with the Naive FT approach, especially at the 2.8B scale.401

We note that the gap in VL performance reduces with the model scale in the LLaVA, and is nearly on402

par with Naive FT at the highest scales. This is while maintaining a zero to negative loss in linguistic403

abilities compared to the Naive FT approach (Figure 4b).

Figure 4(a): Avg. VL performance with model scale Figure 4(b): Linguistic forgetting with model scale

Figure 4: Vision-language and linguistic forgetting for varying model sizes. We evaluate the
average VL performance and linguistic forgetting for Pythia models in the 160M to 2.8B scale, after
training on LLaVA. Negative forgetting refers to a positive backward transfer in NL performance
after multimodal training.

404

C.2 Continual LLaVA Model Scaling405

Model scaling results are given in Fig. 5. We compare mSGM with Rehearsal, the best method406

identified for Pythia 410M with naive fine-tuning. Naive fine-tuning leads to a sharp and consistent407

drop in NLU/NLG performance as continual multi-modal training proceeds. In contrast, mSGM with408

Rehearsal has little to no NLU/NLG forgetting across all tasks and multiple model scales. For Pythia409

1B, mSGM with Rehearsal achieves positive backward transfer for NLU/NLG datasets as the VL410

tasks are learned, which is rarely observed in CL. For the 160M parameter model, naive fine-tuning411

suffers large amounts of forgetting compared to mSGM. For some tasks, naive fine-tuning exhibits412

greater losses of NLU/NLG performance, unlike mSGM. In general, VL performance for mSGM413

rivals or exceeds naive fine-tuning across scales.414

1https://github.com/TRI-ML/vlm-evaluation
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Figure 5(a): Continual VL Performance Figure 5(b): Continual Linguistic Forgetting

Figure 5: Continual Learning LLaVA Tasks: Vision-language performance and Linguistic
forgetting for varying model sizes. We evaluate mSGM + Rehearsal (1%) and LLaVA Naive-FT
on the Continual Learning setup, with varying base LLMs: Pythia models from 160M to 1.4B scale.
Task 2 is not associated with any VL dataset for evaluation, since it is a captioning and instruction
following task.

C.3 Analysis of Forgetting across NLU and NLG tasks415

To understand the composition of linguistic forgetting on the LLaVA setting, we look at the NLU and416

NLG forgetting for 9 different LLMs with varying scales: Pythia scaling family of models from the417

160M to the 2.8B parameter range, Phi2 3B, Vicuna1.5 7B and LLaMA2 7B. Figure 6 shows these418

results. We can observe a clear trend of higher forgetting for the NLG dataset (Lambada), compared419

to forgetting for NLU. Another trend we note is that forgetting typically reduces with higher model420

scales, for both NLG and NLU.421

Figure 6: Linguistic forgetting by NLU and NLG tasks: For the LLaVA setting, we look at different
model scales and families, and show the degree of linguistic forgetting by both NLU and NLG tasks
separately. Here, the NLU and NLG averages are computed as the simple mean.

C.4 Pre-trained LLMs422

Here we provide clickable links to download each of the open-source pre-trained LLMs used in this423

paper:424

• phi-2-3b425

• pythia-160m426

• pythia-410m427

• pythia-1b428

• pythia-1p4b429

• pythia-1p4b-instruct430

• pythia-2p8b431

• llama2-7b-pure432

• vicuna-v15-7b433
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https://huggingface.co/lmsys/vicuna-7b-v1.5


C.5 Artifact Use434

We ensure that any artifacts (such as datasets, software, models, code, or other supplementary435

materials) associated with our paper are used in a manner that aligns with their original purpose and436

the guidelines set forth by the creators. In particular, our artifacts are the models and code we build437

our experiments on top of, which we have listed above in Sections A.1 and C.4.438
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