Under review as a conference paper at ICLR 2025

OPTIMIZED MULTI-TOKEN JOINT DECODING WITH
AUXILIARY MODEL FOR LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved remarkable success across diverse
tasks, yet their inference processes are hindered by substantial time and energy
demands due to single-token generation at each decoding step. While previous
methods such as speculative decoding mitigate these inefficiencies by producing
multiple tokens per step, each token is still generated by its single-token distri-
bution, thereby enhancing speed without improving output quality. In contrast,
our work simultaneously enhances inference speed and improves the output ef-
fectiveness. We consider multi-token joint decoding (MTJID), which generates
multiple tokens from their joint distribution at each iteration, theoretically reducing
perplexity and enhancing task performance. However, MTJD suffers from the
high cost of sampling from the joint distribution of multiple tokens. Inspired by
speculative decoding, we introduce multi-token assisted decoding (MTAD), a novel
framework designed to accelerate MTJD. MTAD leverages a smaller auxiliary
model to approximate the joint distribution of a larger model, incorporating a
verification mechanism that not only ensures the accuracy of this approximation,
but also improves the decoding efficiency over conventional speculative decoding.
Theoretically, we demonstrate that MTAD closely approximates exact MTID with
bounded error. Empirical evaluations using Llama-2 and OPT models ranging from
13B to 70B parameters across various tasks reveal that MTAD reduces perplexity
by 21.2% and improves downstream performance compared to standard single-
token sampling. Furthermore, MTAD achieves a 1.42x speed-up and consumes
1.54 x less energy than conventional speculative decoding methods. These results
highlight MTAD’s ability to make multi-token joint decoding both effective and
efficient, promoting more sustainable and high-performance deployment of LLMs.

1 INTRODUCTION

Large Language Models (LLMs) such as GPT-4 and Llama-2 (Touvron et al.| 2023 have demonstrated
extraordinary capabilities across a wide range of tasks (Brown et al.l 2020} [Chowdhery et al., 2023}
Thoppilan et al.| 2022; Touvron et al., 2023)). Despite their impressive performance, the deployment of
LLMs is often constrained by substantial inference costs in terms of time and energy. This inefficiency
primarily stems from the autoregressive nature of these models, where generating a sequence of
K tokens requires K separate model calls. Each call involves loading large weight matrices and
intermediate results from GPU global memory to computing units, leading to repeated memory
accesses and limited hardware utilization (Samsi et al., 2023} [Leviathan et al., 2023)).

To tackle this challenge, researchers have delved into non-autoregressive decoding approaches. Early
methods (Ghazvininejad et al.,[2019;|Gu et al., 2017;|Guo et al.,|2020) aimed at reducing inference
latency by concurrently generating multiple tokens. But these methods usually require task-dependent
techniques and information to match the performance of autoregressive decoding (Kim et al., 2023}
Xiao et al., [2023)). More recently, speculative decoding has emerged (Leviathan et al., 2023} |Chen
et al., 2023 Kim et al., 2023} |Sun et al.| 2023), exploiting the observation that most of the small
model’s prediction aligns well with that of a large model. It leverages a smaller auxiliary model to
draft a few future tokens autoregressively, which are subsequently validated in parallel by the larger
model. As the smaller model operates significantly faster and parallel token verification incurs a
similar time cost as generating a single token, speculative decoding achieves an overall speed-up

Under review as a conference paper at ICLR 2025

of 1-2x. Despite gains in speed, these methods still generate each token based on its single-token
probability. Consequently, it does not enhance the effectiveness of the generated sequences.

In this work, we aim to go beyond the conventional trade-off between efficiency and effectiveness
by introducing multi-token joint decoding (MTJID). Unlike traditional approaches, MTJD produces
multiple tokens from their joint distribution at each decoding step. Theoretically, we show this joint
generation can lead to lower perplexity and hence improved task performance. However, directly
sampling from the joint distribution of multiple tokens poses significant computational challenges,
rendering MTJD impractical.

Inspired by speculative decoding, we propose multi-token assisted decoding (MTAD), a novel
framework designed to approximate and accelerate MTID. MTAD employs a smaller auxiliary model
to estimate the joint distribution of a larger model, significantly reducing computational demands. To
ensure the accuracy of this approximation, MTAD incorporates a verification mechanism that not
only guarantees the accuracy of the draft tokens but also enhances efficiency beyond conventional
speculative decoding by maximizing the number of accepted tokens per iteration. We provide both
theoretical and empirical analyses to demonstrate that MTAD improves perplexity and downstream
performance. Meanwhile, it achieves significant reductions in energy and time usage compared to
existing decoding strategies.

Our contributions are as follows:

1. We introduce multi-token joint decoding (MTJD), a multi-token joint decoding approach
that theoretically reduces perplexity by generating tokens from their joint distribution.

2. We develop multi-token assisted decoding (MTAD), an efficient approximation of MTJD
with bounded error that leverages a smaller model for distribution approximation.

3. We analyze the energy consumption of LLM inference. To our knowledge, we are the first
to give theoretical and empirical evidence that, despite that MTAD and other speculative
decoding algorithms increase the number of FLOPs needed during LLM inference, they
reduce the overall energy consumption by reducing the overhead induced by accessing GPU
global memory.

4. We conducted comprehensive evaluations with Llama-2 and OPT models (ranging from 13B
to 70B parameters) across various tasks, demonstrating that MTAD enhances perplexity by
21.2% and improves downstream effectiveness compared to standard single-token sampling,
while also achieving a 1.42 x speed-up and reducing energy consumption by 1.54 x compared
to conventional speculative decoding methods.

These advancements position MTAD as a robust solution for making multi-token joint decoding both
effective and efficient, thereby facilitating more sustainable and high-performance deployment of
large-scale language models. Our code is publicly available{ﬂ

2 PRELIMINARIES

2.1 DECODINGS OF LLMSs

Decoding and Perplexity. Let p denote the distribution defined by LLM model M,,. Given an input
context input, a decoding algorithm generates a sequence of /N tokens whose likelihood is denoted
as p(z1.n|input). The likelihood of the sequence is directly linked to perplexity of the sequence,
which is the exponentiated average negative log-likelihood of all tokens. Based on autoregressive

decomposition p(x1.y|input) = Hivzl p(Te|T1.0-1, input the perplexity is defined as:

t=1

| X
PPL(x1.n5) = exp {_N Zlogp(mtatl;tl)})

Perplexity serves as a direct metric for assessing the effectiveness of a decoding algorithm. In
practice, when a model is well-trained, lower perplexity often correlates with improved downstream

"nttps://anonymous.4open.science/r/LLMSpeculativeSampling—EE52
?In the paper, we omit input when there is no ambiguity.

https://anonymous.4open.science/r/LLMSpeculativeSampling-EE52

Under review as a conference paper at ICLR 2025

performance. For example, beam sampling aims to return output with lower perplexity and is proven
to have better downstream performance in general (Shi et al., 2024).

To further demonstrate the relationship between perplexity and downstream performance, we evaluate
GPT-3.5-turbo on the spider (Yu et al., 2018)) dataset. Using a temperature of 2, the model generated
10 outputs for each input. We measured the average perplexities and execution accuracies for the
outputs with the highest, lowest, and median (the 5-th lowest) perplexity. As shown in Table[I] lower
perplexity correlates with improved downstream performance, even in one of today’s largest models.

Table 1: Relationship between perplexity
and execution accuracy (EA, higher the
better) for GPT-3.5-turbo.

Now we introduce commonly used decoding approaches.

Multinomial Sampling. Multinomial sampling, also
known as standarized sampling or single-token sampling,
samples the next token z; based on T o p(|z1.4—1, input),
where 7T is a warping operation applied to enhance the Highest PPL 4.13 33

high probability region. Some common warping opera- ig&;‘t’“ﬁ{ PPL }:gg Zg

tions include fop-k warping, which limits the selection to

the top k tokens, and fop-p warping, where tokens are sam-

pled from the smallest possible subset of the vocabulary

whose cumulative probability mass exceeds a specified threshold. The deterministic version of
multinomial sampling (i.e., greedy decoding) is a special case when k& = 1.

Output Avg. PPL | EA (%) 1

Beam Sampling. Beam sampling aims to improve output perplexity over multinomial sampling.
For each position ¢ (1 < ¢t < N), it maintains W > 1 candidate sequences, which are also called

beams. Assume we have already kept the W sequences Z;_1 = {mﬂt)_l, ce mgvr_)l} at position
t — 1, W sequences with length ¢ are then sampled from 7 0 ppeam, Where ppeam : Zt—1 X V. — [0, 1]

is the beam sampling probability:
Py, ilinput)
) 2)

ngffiuxgezkl % p(11, linput)

Pveam (xgl;i_la xt) =

Notice thatp(nglfl, xﬂinput) = p(mt\ngh input) -p(x§271 linput). In practice, beam sampling
stores the likelihood p(m%%fl |input) for each beam, and the computation complexity of ppeam, is

O(W - |V|). In deterministic beam sampling, the top W sequences with the highest likelihood
Dbeam (T1:¢) Will be kept.

2.2 VANILLA SPECULATIVE DECODING

Besides effectiveness, speculative decoding is proposed by (Leviathan et al., [2023; |Chen et al., [2023)
to accelerate the inference of LLMs. It utilizes a small model to generate the next + tokens and then
uses the large model to verify the drafted tokens in parallel, which is summarized below:

1. Let input be the input context, the small model samples ~y draft tokens x1, ..., x, using
multinomial sampling based on G(x¢|x1.+—1,input)) fort = 1,...,~, where § = T o g and
q is the small model’s output distribution.

2. The large model verifies the draft tokens in parallel by computing the conditional probability
D(we|z1:0—1, input) fort = 1,...,7.

3. Each draft token z; is accepted with probability min(1, p(z;)/¢(x;)). The draft tokens
before the first rejected token are kept as the decoding output. An additional token is sampled
from a residual distribution as a correction to the first rejected token. Then the accepted
tokens and the resampled token are appended to the context ¢nput as the input to the next
iteration.

4. Repeat step 1-3 until reaching the stopping criteria, e.g., reaching the length limit..

Because the large model verifies 7y tokens in parallel with one run, the time cost is smaller than calling
it v times. Meanwhile, although the small model still runs in an autoregressive way, its inference
speed is much faster than the large model. As a result, speculative decoding achieves a speedup of
1-2x compared to multinomial sampling while maintaining an identical sampling distribution.

Under review as a conference paper at ICLR 2025

3 METHODOLOGY

As discussed in Section 2] the goal of this work is to design an algorithm that yields lower perplexity
and better efficiency than multinomial sampling and vanilla speculative decoding. In this section,
we first introduce multi-token joint decoding (MTJD), which generates multiple tokens based on
their joint likelihood. We prove it can yield lower perplexity. Then we introduce multi-token assisted
decoding (MTAD), which approximates and accelerates MTJD by exploiting an auxiliary model.

3.1 MULTI-TOKEN JOINT DECODING

We first introduce a new decoding algorithm to improve multinomial sampling in terms of perplexity.

Definition 3.1. Multi-Token Joint Decoding. Let M, be the large target model with distribution p.
Different from single-token multinomial sampling, multi-token joint decoding (MTJD) generates the
next y; tokens at step 7 based on their joint conditional probability p(@141:¢4+,|%1:+), Where ~; is an

integer no less than 1 and ¢ = 22;11 v:7, 1.€., the total tokens generated in the previous 7 — 1 steps.

Multinomial sampling is a special case of MTID
where v; = 1, Vi. When vy = N, MTID 0.35

generates the sequence directly based on their bg —— OPT 030 P
joint likelihood. So intuitively, output perplexity 3, o Hema=2 8025 —— OPT
should improve as ~; increases. Besides, gener- ga Og-ig —— Uama-=2
ating ; tokens simultaneously allows MTJD to 2 i] o010 */‘—W
consider their interactions. In contrast, multino- 1z i 4 5 1 2 i 4 5

mial sampling selects each token without consid-

ering any future tokens. So MTJD is less prone

to choosing local optima. Figure 1: Perplexity and Rouge-L score of the
output when v, = K for MTIJD with OPT-
125M and Llama-2-68M fine-tuned on ChatGPT-
Prompts (Rashad, |2023) dataset.

Theorem [3.2] shows the limit of perplexity of
MTID when N approaches infinity. The proofs
are included in the Appendix

Theorem 3.2. Assume atthei-th(i=1,...,N)

iteration, MTJD generates ~y; tokens. Let T';

denote the total number of tokens generated at the first i iterations. Let x1.r,, denote the generated
tokens. When N — oo

1
PPLp(xl:FN) — exXp (_/Y]E’)’Lp(r%f))> (3)

where 7 is the expected number of v;, p = T o p represents how we sample the next ~y; tokens from
p (e.g., in deterministic sampling, p = arg max op always returns the tokens with the highest joint
likelihood), and Ly, (v, p) is the expected log-likelihood of the ~y tokens sampled from p:

Lp(v,p) = Eaypex Z P(Teq1:t4y|T1:0) 108 P(T 412044 |T1:0) “)

Tt41:t+-y

Here X is the space of all possible inputs.

Corollary 3.3. Based on Theorem[3.2] we can show that when N — oo, greedy MTJD (i.e., top-1
MTJD sampling) has lower perplexity than greedy decoding (top-1 single-token sampling).

Empirical evidence supports our claim. We fine-tune both a Llama and an OPT model on the ChatGPT-
Prompts dataset and evaluate the output perplexity and Rouge-L scores with example outputs. Figure
[T} shows the output perplexity and Rouge-L scores of MTJD with ~; set to a constant K, where K =
1,...,5. Notice that setting K = 1 is equivalent to multinomial sampling. We use beam sampling to
approximate the arg max sampling from the joint distribution p(x4 1.4+ x|z + 1 : ¢, input). We can
see that the perplexity keeps dropping when K increases. It confirms our claim that increasing ~;
will increase the output perplexity. Moreover, the Rouge-L score also improves with K, supporting
our claim that better perplexity reflects enhanced performance in downstream tasks.

Under review as a conference paper at ICLR 2025

I

I, like X
; small . .. large , like,) N
input ‘ model ‘ I, like, writing, codes ‘ model ‘ I, like, writing ‘ I, like, writing, python
1, like, writing, codes X
draft tokens prefixes decisions accepted tokens +

additional token

Figure 2: An example of MTAD’s verification process. MTAD accepts the longest draft sub-sequence
that passes verification based on joint likelihood.

3.2 MULTI-TOKEN ASSISTED DECODING

Unfortunately, the computation cost of MTJD is infeasible in practice, since the time and space
complexity to compute the joint distribution of ~y; tokens is |V'|7:. Inspired by speculative decoding
and the facts that “even when a small model is an order of magnitude smaller than a large model, only
a small fraction of the small model’s prediction deviate from those of the large model” (Leviathan
et al., [2023; Kim et al., 2023)), we propose multi-token assisted decoding (MTAD), which exploits a
small auxiliary model M, to accelerate MTJD approximately. The core idea is to (1) use the joint
distribution q(2¢41:¢4+, |21:¢) output by M, to approximate p(x;y1:44-, CEM) and generate y draft
tokens from q(x;41.14~,|%1.1), then (2) use the large model to validate draft tokens in parallel and
accept the longest draft prefix sub-sequence that passes verification, and (3) sample an additional
token from the distribution of the large model without extra overhead to ensure at least one token is
generated at each iteration. However, it is still infeasible to directly generate draft tokens from the
joint distribution q(:z:t+1:t+% |£1.¢). So we propose to further approximate this process with beam
sampling, which is an effective and efficient algorithm to generate sequences with high likelihood.
In this way, MTAD reduces the number of runs of the large model to generate N tokens, thus
accelerating the inference in the same way as vanilla speculative decoding does. Algorithm|I]in the
Appendix illustrates the pseudocode of MTAD algorithm.

Draft Tokens Verification Figure illustrates the verification process of MTAD. Let
Ti41,---, Ty be the draft tokens generated by beam sampling with the auxiliary model. Since
beam sampling is a widely recognized algorithm to generate sequences with high overall likeli-
hood (Leblond et al., 2021), it is reasonable to assume q(:vt+1;t+a,|x1:t) is large. Also, since beam
sampling works in an autoregressive way, we can also assume that Vj € {1,...,v}, ¢(@iq1:044]T1:0)
is large. To approximate MTJD, for each step ¢, MTAD needs to ensure the accepted tokens Ty 1:¢4-,
(0 < ~; <) also have high joint likelihood with the large model M,. So MTAD first com-
putes the joint likelihood p(z¢41.¢+;|71.¢) for j = 1,...,~. Then for each prefix sub-sequence

R p(Tet1:t4j|T1:4) ;
Ty41:444, it passes verification if and only if min(1, m) > 7, where 7 € [0,1) is a

pre-defined threshold. Notice that if min(1, w) > 7, we have w > T,
Q($t+1:t+J|£E1:t) q($t+1:t+]\11:t)

a(eees | T10) “p(@eereegl®ie) L _ 1 Therefore, our acceptance policy guar-
P(1t+1:t+j|11:z) T

antees that when ¢(zyy1.44j]1:4) > P(@i41:44j]T1.¢), the relative error is bounded. And if
q(@t41:045|T1:6) < p(@s1:045|T1:¢), it means the sub-sequence has higher likelihood in the large
model, then it is reasonable to accept it. After verifying all the sub-sequences, MTAD accepts the
longest prefix sub-sequence that passes verification.

which means

The verification step of MTAD ensures that the accepted tokens have a high joint likelihood with
the large model. We have shown that selecting multiple tokens based on their joint likelihood lead
to better output perplexity. Thus, MTAD is more effective than multinomial sampling and vanilla
speculative decoding. Furthermore, since MTAD accepts the longest draft sub-sequence with high
likelihood, it can tolerate low-quality tokens as long as the joint likelihood is high. So at each
iteration, MTAD can accept more draft tokens than vanilla speculative decoding, which results in
better efficiency.

31t is also valid to approximate p with §. Without loss of generality, we consider non-warped distribution in
the illustration of MTAD.

Under review as a conference paper at ICLR 2025

Next, we theoretically analyze the approximation error of MTAD. Lemma [3.4]shows the upper bound
of MTAD’s perplexity. And Theorem [3.5]shows the upper bound of the ratio between the perplexity
of approximate MTAD and exact MTJD. The proofs are given in Appendix

Lemma 3.4. Let us assume that when the small auxiliary model generates draft tokens with beam
sampling, the beam width is large enough such that the returned log-likelihood is close to the
maximum log-likelihood, i.e.,

Ewl:FFlEX IOg q(xri—l“rlirz‘*ll‘rlfri—l)) > (1_6)EII:F171€X max logq(xri—l‘f’liri*l‘xlipi—l))

Ty +1:T;—1

&)

where € is an error term and € < 0 because log g < 0.

Furthermore, let H(p,q) the single-token cross entropy between p and q, ie., H(p,q) =
“Eapicn Eg;tﬂ p(@es1|z1:e) log q(@es1|T1:e)-

With the two assumption above, when N — oo we have

1—¢ H
PPLy(z1.ry) < exp(—?Equ(v — 1,arg maxoq) + M) (6)
where
Lq(y,argmaxoq) = By, cx max 1ogq(wiriiesq|vre)) ™

Theorem 3.5. Let x1.r, be the tokens generated by approximate MTAD, and x7 .1 be the tokens
generated by deterministic exact MTJD. Assume Vx1.+ € X, ||log p(x|z1.+) — log ¢(x|z1:4)||eo < U,
where U is a constant. We have

lim LPLp(z1ry) <7 ¥ exp (1-enH(p)+ (1 —e+73)U
N=oo PPLP(J:T:FN)

®)

B

where H (p) is the entropy of p and € < 0 is the error term of beam sampling (see Lemma .

Theorem [3.5] suggests the approximation error of MTAD is bounded by a factor related to the
verification threshold 7, average number of accepted tokens 7, the difference between the large and
small models (measured by U), the error of beam sampling €, and the entropy of the large model
itself. In addition, the following theorem analyzes 7. The proof is illustrated in Appendix [A]

Theorem 3.6. Following the assumption in Theorem we have v > %.

With Theorem [3.6] we observe that when ¢ — p, we have U — 0 and 7 — oo. Meanwhile, when
€ — 0, meaning the beam width for the auxiliary model is large enough, the ratio bound in Theorem
[3.5] converges to 1, It implies that MTAD converges to MTJID under these limiting conditions.

Similar to Spectr (Sun et al.} 2023)) and SpecInfer (Miao et al.,|2023), it is possible to enhance the
number of accepted tokens in MTAD by allowing the draft model to generate multiple draft sequences
and applying tree-based attention (Miao et al., 2023) for simultaneous verification. However, our
preliminary experiment results suggest that since MTAD already selects the longest accepted prefix
sub-sequence, the advantage of generating multiple draft tokens is less significant. Moreover, this
approach increases the memory cost during inference and may affect the error bounds derived above.
Therefore, we leave a more detailed exploration of this extension as future work.

4 ENERGY EFFICIENCY ANALYSIS

Previous studies (Leviathan et al.,[2023}Chen et al.| 2023} |Kim et al.| 2023} |Sun et al.,2023) only
focus on the speed of speculative decoding. However, an equally important consideration is energy
consumption. To our knowledge, there is no existing work evaluating the impact of speculative
decoding on inference energy consumption. Although MTAD and speculative decoding increase
the number of FLOPs due to the involvement of a small auxiliary model and the rollback operation,
they concurrently reduce the inference time and memory operations, which are key factors of GPU
energy consumption (Allen & Ge} 2016} |Chen et al., 2011). Consequently, it poses an open question
regarding whether speculative decoding increases or decreases overall energy consumption.

Under review as a conference paper at ICLR 2025

Table 2: The effect of batch size to inference speed and energy consumption. The number of inputs is
the product of the number of LLM runs and input batch size.

Batch Size \ Energy (J) Energy/run (J) Energy/Input (J) \ Time (s) Time/run (s) Time/input(s)

1 42,450 14.1 14.1 1,129 0.376 0.376
2 49,621 16.5 8.26 1,191 0.397 0.198
4 53,325 17.7 4.43 1,178 0.392 0.098
8 59,210 19.7 2.46 1,211 0.403 0.050
16 74,058 24.7 1.54 1,255 0.418 0.026

To understand the net effect of speculative decoding, we decompose the total energy consumption
into two parts following (Allen & Ge, [2016):

Etotal = PWfloprlop + PWmemeem (9)

where PW 4, PWoem denote the power (energy/second) of FLOPs and memory operations, and
T't10p> Tmem denote the time spent on these operations. When input batch size increases, PW o,
increases until it reaches the power of maximum FLOPs, denoted as PWJflop. Meanwhile, PW e
is irrelevant to the input batch size, as it only depends on the memory hardware.

To determine the relative magnitude relationship between

PWyiop and PWy,em, we first point out the fact that GPU - Table 3: Speed and energy cost of multi-
memory operations in LLM inference are dominated by pomial sampling (ms) and speculative
accessing off-chip global memory, which consumes about decoding (spec).

100x of energy compared to accessing on-chip shared
memory (Jouppi et al., [2021). It is because each mul-
tiprocessor on GPU usually has 64KB of on-chip mem- s OPTSPEC MI;LAMAS-PZEC
ory shared by multiple threads, while storing a single s se a0 e
layer of LLM, say T5-11b (Raffel et al., 2020), requires TOKENS : : : :
ab{)ut 1GB memgry. Moreover, Allen and Ge sl?owed M B b
that doing sequential read from off-chip memory con-

sumes 20-30% more power than running maximum FLOPs (Allen & Ge, 2016). So we have
PWoem > PW}klop > PWy,p. Notice that PW;lop = PWj,p only if the batch size reaches the
maximum parallelization capacity of GPUs. During multinomial sampling and speculative decoding,
the batch size is usually small (Leviathan et al., |2023). So most of the computing power is not
utilized (Leviathan et al.}[2023)), which means PW,,.cr, > PWiiop.

In addition, previous studies have shown that during LLM inference 15,y > T'f0p (Leviathan et al.l
2023)). Therefore, the energy induced by memory operations, i.e., PW,epm Timem dominates Eyoyq;.
Since speculative decoding reduces T},,¢,, by reducing the number of runs of the large model, it
should reduce the inference energy consumption to a similar extent as it reduces time consumption.

To validate our hypothesis, we conducted an experiment to evaluate how batch size influences
energy consumption during inference. We ran OPT-13b models on a Nvidia L40 GPUs with 48GB
memory. Fixing the total number of runs of the large model while varying the input batch size b €
{1,2,4,8,16} for each run, we measured time and energy cost. The details of energy measurement
are illustrated in the Appendix [D] Table [2] shows the results. As batch size doubles, although the
number of FLOPs doubles, the energy consumption per run increases slightly. This observation
demonstrates that PW ¢, Tinem dominates E, ... Moreover, we measured the speed and energy
consumption of running multinomial sampling with the large model and speculative decoding using
OPT (125M, 13B) and Llama-2 (68M, 13B) models. The results, shown in Table 3] indicate that
speculative decoding reduces the energy consumption and the time cost. This observation corroborates
our claim to the energy efficiency of speculative decoding.

5 EXPERIMENTS

Datasets and Models. We use five public datasets for evaluation: (1) ChatGPT-Prompt (Rashad|
2023)), (2) ChatAlpaca (Bian et al.,[2023), (3) CNN Dailymail (See et al.| 2017), (4) Spider (Yu et al.|
2018)), and (5) MT-bench (Zheng et al., 2023)). Tablein the Appendix shows more details of the
datasets. Following previous studies (Kim et al., [2023)), we use two public LLM families in our
experiments: OPT (Zhang et al.,|2022) and Llama-2 (Touvron et al., 2023)). In this section, we set the
large model to be OPT-13B and Llama-2-13B as they are the largest models that can run on a single

Under review as a conference paper at ICLR 2025

40GB GPU, and use Llama-68M (Miao et al.| 2023) and OPT-125M as the small models. Appendix
[Creports additional experiment results with OPT-30B and Llama-2-chat-70B.

Baselines. For each pair of small and large models, we compare our method with four specula-
tive decoding methods: vanilla speculative decoding (speculative) (Lee et al.l 2018]; |(Chen et al.|
2023), Spectr (Sun et al., [2023), SpecInfer (Miao et al.| |[2023)), and BiLD (Kim et al., [2023)). Our
implementation of MTAD and all the baselines are based on a public implementation of speculative
decoding (Bear, 2024). For each method, we let it generate at most 128 tokens for each input and run
it for 1, 000 seconds. We open-sourced our code for reproduction. All the methods are stochastic
with top-k and top-p sampling. The details of the hyper-parameters (e.g., k¥ and p) and machine
configurations of the experiments can be found in the Appendix and[H

Appendix [Creports additional experiments and ablation studies.

Table 4: Inference efficiency and output perplexity of different methods on ChatGPT-Prompt (CP),
ChatAlpaca (CA), CNNDailyMail (CD), Spider (SP), and MT-Bench (MT) datasets. Bold numbers
mark the best result, underlined numbers mark the second best.

speculative BiLD Spectr SpeclInfer MTAD

speed (token/s) 1 36.84+0.53 34.440.87 4514132 29.7+040 63.040.20
Llama-2 | energy (J/token) | 6.621+0.91 7.454+0.90 5.1740.88 9.5240.10 3.38+0.02
cp perplexity | 3.64+£0.11 3.1540.06 3.6440.08 3.6440.11 2.06+0.06
speed (token/s) 1 33.842.47 31.5+1.87 38.04220 32.840.58 55.840.30
OPT energy (J/token) | 7.484+0.07 8.754+0.13 6.08+0.11 10.341.49 3.61+0.03
perplexity | 5.4740.11 4.514£0.09 5.274+0.09 5.1240.01 3.00+£0.09
speed (token/s) T 31.640.35 28.8+0.20 27.740.29 26.540.49 44.1+0.25
Llama-2 | energy (J/token) | 6.98+0.15 7.9940.15 7.2040.08 7.5240.32 4.72+0.03
CA perplexity | 2.1340.03 1.9540.03 2.1540.01 2.1540.01 1.88+0.05
speed (token/s) T 35.6£0.45 38.54+0.93 28.440.34 31.440.39 49.6+0.42
OPT energy (J/token) | 5.7440.11 5.1240.06 6.2440.11 8.68+1.83 4.03+0.02
perplexity | 3.3240.10 2.604+0.06 3.1640.06 3.4240.03 2.07+0.03
speed (token/s) 1 30.740.18 30.510.21 25.040.31 24.640.06 44.2+0.99
Llama-2 | energy (J/token) | 7.074+0.19 7.41+0.16 8.2240.19 7.59+0.85 4.80+0.12
cD perplexity | 2.8740.08 2.934+0.03 3.0640.11 2.9240.09 2.63+0.10
speed (token/s) 1 31.74091 30.940.80 23.740.40 25.740.36 43.6+0.33
OPT energy (J/token) | 6.3710.11 6.71+0.17 7.3140.17 8.0340.63 4.86+0.03
perplexity | 3.9740.06 3.7440.09 4.044+0.07 3.924+0.34 3.1740.06
speed (token/s) 1 24.04-0.28 26.24+0.08 24.240.29 23.840.20 26.4+0.28
Llama-2 | energy (J/token) | 10.754£0.02 9.84+0.07 11.040.08 11.040.76 9.01+0.07
perplexity | 2.2610.01 2.13+0.03 2.2940.04 2.2940.03 1.87+0.03

SP =
speed (token/s) 1 24.61+0.30 29.940.55 19.8+0.13 24.140.10 34.4+0.46
OPT energy (J/token) | 15.643.55 13.643.07 20.1£2.52 16.9£2.75 11.7£2.36
perplexity | 2.3040.07 1.90+0.01 2.2040.09 2.2140.01 1.631+0.03
speed (token/s) 1 23.0+1.10 2374143 19.1+£2.71 23.742.03 29.4+2.71
Llama-2 | energy (J/token) | 7.9940.26 7.404+0.19 9.2740.54 9.2040.73 6.71+1.19
MT perplexity | 3.6440.51 3.4440.76 3.6440.51 3.634+0.50 2.21+0.18
speed (token/s) T 34.043.00 4474292 28.7+2.46 28.542.74 48.0+1.80
OPT energy (J/token) | 12.1+0.36 6.231+0.67 12.9+1.73 13.2+1.88 6.111-0.82
perplexity | 2.0240.40 1.5040.27 1.97+0.38 1.994 0.33 1.10£0.03

5.1 COMPARISON WITH BASELINES

Table] shows the primary results of our experiments while Table [5] details the block efficiency,
defined as the average number of tokens generated per iteration, of different methods. The standard
deviations in the tables are computed by repeating each experiment four time.ﬂ First, we observe
that MTAD is significantly more efficient than all baselines in terms of both energy and time. On one
hand, the energy consumption of MTAD is on average 1.54 x smaller than that of vanilla speculative
decoding. On the other hand, MTAD is 1.10 — 1.71x faster than vanilla speculative decoding, 1.38 %
faster than BiLD, 1.59x faster than Spectr, and 1.60x faster than SpecInfer. SpecInfer and Spectr
has better block efficiency than vanilla speculative decoding, but are slower. This may be due to the
fact that they have to verify multiple draft sequences, which introduces extra overhead and may not

“For MT-Bench, the standard deviation also accounts for variations across different tasks.

Under review as a conference paper at ICLR 2025

be perfectly parallelized, especially when the memory overhead exceeds the GPU memory capacity.
Meanwhile, MTAD has the best block efficiency without causing any extra overhead, hence it is
significantly more efficient.

Next, we compare the output perplexity of different algo-

rithms. The perplexity scores of vanilla speculative decod- Table 5: Average number of tokens
ing, Speclnfer, and Spectr are close since their sampling geperated at each iteration across all
distributions are equivalent. Meanwhile, BiLD approxi- {atasets.

mates the sampling distribution of single-token multino-

mial sampling but yields better perplexi.ty. Itis 1b.ecause we | Liamaz OFT
set a strict acceptance threshold for BiLD, which lowers 011008 260006
. spec 5 . 8 !
the acceptance rate but ensures every token has a high b | 1831010 2684036
probability in the large model, thus improving the overall Spectr | 2732043 3451042

SpecInfer | 2.7440.46 3.4510.40

likelihood. More importantly, there is a significant gap MIAD. | 3174043 4.3040.03

between MTAD and other baselines. On average, the per-
plexity of MTAD is 21.2% lower than that of speculative
decoding.

Table 6: Downstream task scores of spec-
ulative decoding and MTAD. All the
In addition, to show MTAD indeed improves the down- scores are higher the better.

stream effectiveness, we compare the performance metrics
of speculative decoding and MTAD on CNNDM, Spi- \ | spec MTAD
der, and MT-Bench datasetsE] We exclude the other two CD | Rougel | 0114 0.118
datasets as they lack explicit downstream metrics. And we
exclude the results of OPT models due to their consistently
poor performance across all evaluated datasets. As illus-

SP | EA | 115 130

Humanities 2.95 3.15
Extraction 1.80 2.50

trated in Table[6| MTAD outperforms speculative decod- Roleplay | 3.10 3.80
ing across all three datasets, thereby validating our claim Math L0 1.00

. . . MT Coding 1.25 1.10
that MTAD achieves superior effectiveness compared to Reasoning | 380 3.5
conventional decoding methods that rely on single-token STEM 285 3.0

Writing 3.80 3.65

distributions. Average 2.58 2.68

5.2 ABLATION STUDY
5.2.1 NUMBER OF BEAMS

First, we investigate how the number of beams used in the beam decoding of the small model
affects the inference performance. Table[7]shows the results. Increasing the number of beams im-
proves the quality of the draft tokens, which not only improves the output perplexity but also
increases the average acceptance length and hence leads to better efficiency. But we can see
that the increment slows down when the number of beams is large enough. In addition, when
the number of beams is too large, the inference cost of the small model will become too high.

Table 7: Effect of number of beams to the inference
5.2.2 ACCEPTANCE THRESHOLD performance on ChatGPT-Prompts dataset.

Next, we evaluate the effect of acceptance ‘ # beams | 2 4 6 3
threshold 7. Intuitively, when we increase 7
from O to 1, the acceptance criterion becomes Llama-2
more strict, the efficiency drops while the output
perplexity increases. Surprisingly, this expec-

tation is only partially correct. As shown in OFT
Figure 3] the efficiency indeed drops when 7 in-
creases. However, the perplexity increases when
7 is close to 1. When 7 = 1, all the draft tokens are rejected, which makes MTAD equivalent to
multinomial sampling. Similarly, when 7 is close to 1, the advantage of multi-token joint decoding
on effectiveness disappears, hence the perplexity becomes close to the perplexity of multinomial
sampling. Another surprising observation is that the perplexity of MTAD is good when 7 = 0. When
7 = 0, MTAD is equivalent to generating y tokens using beam decoding with the small model, then

speed (token/s) 1
energy (J/token) |
perplexity |
speed (token/s) T
energy (J/token) |
perplexity |

559 599 602 613
243 225 222 220
244 212 214 210

51.0 541 543 559
250 232 236 230
3.63 316 342 319

>All speculative baselines are equivalent to multinomial sampling

Under review as a conference paper at ICLR 2025

generating an additional token with the large model. The fact that MTAD achieves good perplexity
when 7 = 0 can be explained by the fact that “even when a small model is an order of magnitude
smaller than a large model, only a small fraction of the small model’s predictions deviate from those
of the large model” (Kim et al.| 2023} Leviathan et al.| 2023)). Moreover, when 7 ranges from 0.1
to 0.9, the performance of MTAD is relatively stable, suggesting that MTAD is not sensitive to the
acceptance threshold.

6 RELATED WORK

EFFICIENT DECODING INFERENCE. There are exten-

sive studies on improving large model inference efficiency. 55— . L —
Well-known methods include model quantization (Frantar ,>? tomez | 8% \: i
et al,[2022} [Lin et al.}2023), model pruning (Gale et al., a0 . / Eig o
2019; [Sanh et al.| 2020), and model distillation (Hinton| g>* N\J 23

' 20

et al., [2015). Despite achieving significant speed-ups, a 25~ —
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
acceptance threshold acceptance threshold

common drawback of these methods is that they have to
sacrifice the model’s effectiveness.

A direction closer to our work is non-autoregressive de-
coding. It is first proposed by (Gu et al.| [2017)) to generate
multiple tokens in parallel. That is, the model simultane-
ously predicts p(xi4x|x1.¢) (kK = 1,2,...). Subsequent studies further improved the performance
of parallel decoding by incorporating additional information (Wang et al., 2019; Sun et al., 2019
L1 et al.,|2019) or using additional iterations to refine predictions (Ghazvininejad et al., 2019; |Lee
et al,2018; \Guo et al., [2020). However, these works require continuous training of the model and
usually either compromise the model effectiveness or require task-dependent techniques to achieve
comparable performance (Kim et al., [2023)).

Figure 3: Effect of acceptance threshold
on output perplexity and decoding speed.

SPECULATIVE DECODING. Speculative decoding was recently proposed in (Leviathan et al.
2023} |Chen et al., [2023)) as a way to accelerate LLM inference. Spectr (Sun et al.,|2023)) enhances
speculative decoding by letting the small model generate multiple i.i.d. draft sequences. While
speculative decoding and Spectr use the large model to verify all the tokens drafted by the small model,
BiLD (Kim et al.l2023) only calls the large model when the probability output by the small model
is below a pre-defined threshold ;. The large model rejects a token if its negative log-likelihood is
larger than threshold 7. Speclnfer (Miao et al., 2023) uses one or multiple small models to generate
a draft token tree to increase the average acceptance length for each iteration. All these methods can
be perceived as exact or approximate versions of sampling tokens from the conditional distribution
p(z¢|x<4). Therefore, their output perplexity is bounded by greedy decoding.

An orthogonal direction to improve speculative decoding is to improve the effectiveness of the small
draft model. It is obvious that if more draft tokens are accepted, the overall inference speed will
increase. BiLD (Kim et al., 2023) uses a model prediction alignment technique to better train the
small model. Liu et al. (Liu et al., |2023) propose online speculative decoding to continually update
the draft model based on observed input data. Instead, Rest (He et al.l|2023) uses a retrieval model to
produce draft tokens. An alternative way is to train additional heads in the large model to predict
future tokens. Representative works include EAGLE (Li et al.,[2024) and MEDUSA (Cai et al., [2024).
Importantly, these works are orthogonal to speculative decoding techniques, including our proposed
method. This orthogonality means that the improvements offered by more accurate draft tokens could
be combined with our method for better effectiveness.

7 CONCLUSION

We introduce multi-token assisted decoding that significantly enhances output quality along with
better time and energy efficiency. A distinctive aspect of our work is the exploration of speculative
decoding’s impact on inference energy consumption, an often neglected area in existing studies. This
research contributes not only a novel decoding approach but also valuable insights for optimizing
LLM deployment in real-world applications where considerations of both quality and efficiency are
crucial.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Tyler Allen and Rong Ge. Characterizing power and performance of gpu memory access. In 2016
4th International Workshop on Energy Efficient Supercomputing (E2SC), pp. 46-53. IEEE, 2016.

Feifei Bear. Llmspeculativesampling. https://github.com/feifeibear/
LLMSpeculativeSampling, 2024. Accessed: 2024-05-19.

Ning Bian, Hongyu Lin, Yaojie Lu, Xianpei Han, Le Sun, and Ben He. Chatalpaca: A multi-turn dia-
logue corpus based on alpaca instructions. https://github.com/cascip/ChatAlpaca,
2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Jianmin Chen, Bin Li, Ying Zhang, Lu Peng, and Jih-kwon Peir. Tree structured analysis on gpu
power study. In 2011 IEEE 29th International Conference on Computer Design (ICCD), pp. 57-64.
IEEE, 2011.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1-113,
2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323,2022.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. Mask-predict: Parallel
decoding of conditional masked language models. arXiv preprint arXiv:1904.09324, 2019.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li, and Richard Socher. Non-autoregressive
neural machine translation. arXiv preprint arXiv:1711.02281, 2017.

Junliang Guo, Linli Xu, and Enhong Chen. Jointly masked sequence-to-sequence model for non-
autoregressive neural machine translation. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 376-385, 2020.

Zhenyu He, Zexuan Zhong, Tianle Cai, Jason D Lee, and Di He. Rest: Retrieval-based speculative
decoding. arXiv preprint arXiv:2311.08252, 2023.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B Jablin, George
Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, et al. Ten lessons from three generations
shaped google’s tpuv4i: Industrial product. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), pp. 1-14. IEEE, 2021.

Sehoon Kim, Karttikeya Mangalam, Suhong Moon, Jitendra Malik, Michael W Mahoney, Amir
Gholami, and Kurt Keutzer. Speculative decoding with big little decoder. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

11

https://github.com/feifeibear/LLMSpeculativeSampling
https://github.com/feifeibear/LLMSpeculativeSampling
https://github.com/cascip/ChatAlpaca

Under review as a conference paper at ICLR 2025

Rémi Leblond, Jean-Baptiste Alayrac, Laurent Sifre, Miruna Pislar, Jean-Baptiste Lespiau, Ioannis
Antonoglou, Karen Simonyan, and Oriol Vinyals. Machine translation decoding beyond beam
search. arXiv preprint arXiv:2104.05336, 2021.

Jason Lee, ElIman Mansimov, and Kyunghyun Cho. Deterministic non-autoregressive neural sequence
modeling by iterative refinement. arXiv preprint arXiv:1802.06901, 2018.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pp. 19274-19286. PMLR, 2023.

Yuhui Li, Fangyun Wei, Chao Zhang, and Hongyang Zhang. Eagle-2: Faster inference of language
models with dynamic draft trees. arXiv preprint arXiv:2406.16858, 2024.

Zhuohan Li, Zi Lin, Di He, Fei Tian, Tao Qin, Liwei Wang, and Tie-Yan Liu. Hint-based training for
non-autoregressive machine translation. arXiv preprint arXiv:1909.06708, 2019.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Xiaoxuan Liu, Lanxiang Hu, Peter Bailis, lon Stoica, Zhijie Deng, Alvin Cheung, and Hao Zhang.
Online speculative decoding. arXiv preprint arXiv:2310.07177, 2023.

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao Cheng, Zeyu Wang, Rae Ying Yee Wong,
Zhuoming Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhihao Jia. Specinfer: Accelerating
generative 1lm serving with speculative inference and token tree verification. arXiv preprint
arXiv:2305.09781, 1(2):4, 2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485-5551, 2020.

Mohamed Rashad. Chatgpt-prompts, 2023. URL https://huggingface.co/datasets/
MohamedRashad/ChatGPT-prompts.

Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones, William
Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to watts: Benchmark-
ing the energy costs of large language model inference. In 2023 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1-9. IEEE, 2023.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-tuning.
Advances in Neural Information Processing Systems, 33:20378-20389, 2020.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. Advances in Neural Information Processing
Systems, 35:17456-17472, 2022.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point: Summarization with
pointer-generator networks. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1073-1083, Vancouver, Canada, July
2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1099. URL https:
//www.aclweb.org/anthology/P17-1099.

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, Yifan Wang, Yujiu Yang, and Wai Lam. A
thorough examination of decoding methods in the era of llms. arXiv preprint arXiv:2402.06925,
2024.

Zhiqging Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin, and Zhihong Deng. Fast structured decoding
for sequence models. Advances in Neural Information Processing Systems, 32, 2019.

Ziteng Sun, Ananda Theertha Suresh, Jae Hun Ro, Ahmad Beirami, Himanshu Jain, and Felix Yu.
Spectr: Fast speculative decoding via optimal transport. arXiv preprint arXiv:2310.15141, 2023.

12

https://huggingface.co/datasets/MohamedRashad/ChatGPT-prompts
https://huggingface.co/datasets/MohamedRashad/ChatGPT-prompts
https://www.aclweb.org/anthology/P17-1099
https://www.aclweb.org/anthology/P17-1099

Under review as a conference paper at ICLR 2025

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang Zhai, and Tie-Yan Liu. Non-autoregressive
machine translation with auxiliary regularization. In Proceedings of the AAAI conference on
artificial intelligence, volume 33, pp. 5377-5384, 2019.

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min Zhang, Tao Qin, and Tie-yan Liu. A survey
on non-autoregressive generation for neural machine translation and beyond. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2023.

Zeyu Yang, Karel Adamek, and Wesley Armour. Part-time power measurements: nvidia-smi’s lack
of attention. arXiv preprint arXiv:2312.02741, 2023.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595-46623, 2023.

13

Under review as a conference paper at ICLR 2025

A PROOF

A.1 PROOF OF THEOREM [3.2]

Proof.
1 &
PPL(x1.ry) = exp <_FN Ing(xixlzi1)>
=t (10)
N1
= (Fﬁz:: ogp(zr,_,:r;|T1r, 1))
When N — 00, FNN — ¥, and 5 ZZ logp(xr, .1, 1) —
Boriex 200 2 irnr, OB 14y |21:0) 108 P(Te4 1644 |71:6) = By L (7, D) O
A.2 PROOF OF COROLLARY [3.3]
Proof. For deterministic multi token sampling, p,,;+; = arg max op, so we have
Lp(’%ﬁmulti) - EIl;tEX wmax logp($t+1:t+’y‘xl:t) (]])
t41it4y

Notice that deterministic greedy sampling can be seen as a special case of MJGD where
Dsingle(Tt41:44+|214) = 1 if and only if 4y; = argmax, p(z|z1.44.-1) for i = 1,...,7.
Let x},;,,, be the tokens generated by deterministic MJGD and let =z}, be the to-
kens generated by deterministic greedy decoding. For any fixed v and xz;.:, we have

log (2144 lT1:0) < maxg, . logp(Tiyiaiy|T1:) = logp(zfyyq.|T1:4). Therefore,
L, (7, Dsingte) < Lp(7, Dmuits). Then with Theorem 3.2, we know that the perplexity of greedy
decoding will be higher. O

A.3 PROOF OF LEMMA [3.4]

We first prove the following Lemma.

Lemma A.1. Let PPL, and PP L, denote the perplexity of tokens under distribution p and q. When

N — oo, we have
PPLP(J]L[‘N)

PPLy(z1.1y)

T

2

IN

(12)

where T is the verification threshold.

Proof. In the i-th iteration, the first 7; — 1 tokens are the accepted draft tokens and the last token is
sampled from p. Based on our verification criteria, we know that for the accepted draft tokens, we
have

p(xrri71+1:1“¢71+’¥i—1 |x1:Fi—1)

> T (13)
q(‘rri—1+151‘i—1+%*1‘xltri—1
So,
plEury) o N 11 p(er;|1r-1) (14)
q(xl:FN) q(l‘Fi‘xl:Fi—l)

Notice that

plz)\ " 1o, (pla)
I'; i—1 I; I —1
=exp | — log | —————~= (15)
(H (zr, 1)) p<N; g(‘l(l’n i1))>
When N — oo, since the last token at each iteration is sampled from p, we have

Z < (xr, |331 T —1)> — Bplog (Q(xnbﬁl:n—l) = KLp.g) =0 (16)

14

Under review as a conference paper at ICLR 2025

So
o Plerzir)) T
 CEEEEIENA R -
= (@, v, 1)
Therefore,
p@iry) o N s
q(xleN)
Thus,
1
PPLy(rs) (p(xl’”)> P (19)
PPLQ(mLFN) q(z1ry)
O]
Now, we prove Lemma 3.4}
Proof.
N
1
—log PPLy(71.ry) = T Z(logq($ri,1+1:1“i71|$1:1“i,1) +log q(zr,|1.0,-1)) (20)

i=1

When N — oo, since the first ; — 1 tokens are sampled with beam decoding, we have
N
1
N Z log q(xri—1+13ri_1|m1:ri—1)) — E’YEILteX IOg q(xt+11t+771\11:t)
i=1

Z (1 - 6)E7E$1;r‘i71€X max Q(xl"i_l—',-l:l“,:—l‘ml:l"i_l))
Tr;_q4+1:T;—1

=(1—-¢)E,L,(y — 1, argmaxoq)

2D
Since the last token at each iteration is sampled from p, we have
L XN
N Zlog q(zr;|r1r;-1)) = Eqy,exEplog q(ze1|z10) = —H(p, q) (22)
i=1
So) Hp.q)
—¢ ’
—10g PPLy(71:0y) 2 = Brr,_ex WX q(@tiieilare)) = —o 0 (23)
Y v Tt41:t+~ vy
H 1-—
PPLy(z1.0y) < exp ((]_7,6]) - — 6EWLq(fy — 1,arg max oq)> (24)
Y v
O

A.4 PROOF OF THEOREM [3.3]

Proof. We have

PPL . 1 PPL :
lim PPLy(z1ry) <775 lim PPLy(1ry) (LemmdA.1))
N—oo PPLy(27p) N—oo PPLy(27p)

=75 iy o0 PPLy(@1:ry) (Theorem(3.2))
exp (f %E,YLP (v, arg max op))

exp (%’(1) — %]EVLq(’y — 1, arg max oq))

(Lemmad3.4))

o G pe—

H 1-— 1
=7 exp ((pq) — ?GEWL(I(V — 1,argmaxoq) + ?EWLp(fy,arg max op)

¥
(25)

15

Under review as a conference paper at ICLR 2025

Notice that L, (v, argmaxop) > L,(y + 1,argmaxop) for any
. This is because for any 214, maxe,, .. 10gP(Tii1:44~]T1:t)
maxXe, ., . (108D(Tep1e4q]21:0) + 108 P(Tgryt1]T1:044

MaAX iz 1. p4myt1 logp(xt+1:t+“/+1‘xlit)'

So

v

i PP Lalors)
N-oc PPLy(z} 1,)

H (p, € 1—c¢
(fyC]) + gEva(fy, arg max op) + ?(EA,LP(% argmax op) — E, L,(7, arg max oq)))

(26)

Since € < 0, and Ly (7, arg max op) is the maximum log-likelihood, which is larger than the expected
log-likelihood (i.e., negative entropy), we have

1
<7 7% exp (

ngLP (7, arg max op)
5

€

:jE"/EII:tE-X max 1ng(mt+1:t+'y|-r1:t)
Y T Loty @7
€

SCE B ex Z P(Tea1it4y|T1:0) 08 P(Tt4 1044]71:0)
'7 Tt41:t+y

= —eH(p)

In addition
E, L, (v, argmaxop) — E, L, (v, arg max oq)
=E,(Ly(7,argmaxop) — L(,arg maxoq))
=E, (Emztex max 1og p(Tiq1:t44]T1:) — Emlztex$max log q($t+1:t+7|$1:t))

Ltt1:t+y t4 1ty

:EVE:M;tEX(max logp(xtJrl:tJr'y‘ml:t)_ max logq($t+1:t+’y|x1:t)>
Ttt1cttry Tt+1:t+y

(28)
S E’yEml;teX -Krfla}i (1ng(xt+1:t+'y‘x1:t) - IOg q(xt+1:t+'y|$1:t))
t ity
Y
= EEq, ex max <Z log p(@¢4i|T1:64i-1) — log Q(It+i|x1:t+i—1)>
ity 1/21
<E\Eqy,exUy (because || logp(z|zi.) — log q(z]21:4)|lee < U)
And H(p,q) = H(p) + K L(pl|q)-
KL(pllg) = Esyoex Y p(alzre)(log p(efars) — log p(z|z1.0))
’ (29)
S Eppex Zp($|$1;t)U <U
So H(p,q) < H(p) + U. Therefore,
PPL . 1—ey)H 1-— U
lim p(fci.FN) <77% exp <(ey)H (p) ir(€+7)) (30)
N0 PPLy(zr) 5
O

A.5 PROOF OF THEOREM [3.6]

Proof. Recall that we accept @4 1.+4; if and only if log p(T¢11:445]21:4) — 10g @(@4 1:045|T1:) >
log 7. Since || log p(x|z1.¢) — log ¢(z|x1.t)]|c0 < U, we have

log p(x441:445|%1:0) — log q(Tepr:45]T14) = —JU (31)
Therefore 1.4+ is always accepted if j < %. So7y > % O

16

Under review as a conference paper at ICLR 2025

B PSEUDOCODE OF MJSD

See Algorithm [I]

Algorithm 1 One Iteration of MTAD Algorithm
Input: draft model M,, target model M,,, input, threshold 7

1:

2: # Sample draft sequences from M, with beam sample.
3: x, q + beamSample(M,, input) # x; is the i-th draft token. g; = q(x1.;|input)

4: P« M,(input, X) #Pc ROTOXWVI P, o = p(x = jlz1.i-1, input)

5: # Select the longest accepted draft sequence

6: p—1,n+ -1

7. fori =1to~ do

8:] — I;

90 p<p*xPij,qq

10: if 7 < min(1, g) then

11: n<j # longest accepted prefix so far

12: end if

13: end for

14: # Sample the next token using results of M),
15: p’ — P7]+1

16: t ~p'

17: return [z, ..., Ty,]

Table 8: Dataset Statistics

Dataset Task Avg. Input Len
ChatGPT-Prompt Instruction 25.2
ChatAlpaca Chat 271.7
CNNDM Summarization 3,967.1
Spider Text-to-SQL 347.68
MT-Bench Various' N/A?

C ADDITIONAL EXPERIMENTS

C.1 RESUTLTS WITH OPT-30B AND LLAMA-2-70B

Here we report the performances of different methods for OPT (350M and 30B) and Llama-2-Chat
(7B and 70B). Table[9]shows the average performances across all datasets. MTAD always achieves
the lowest perplexity and the best efficiency.

C.2 ABLATION STUDY OF TOP-K AND TOP-P SAMPLING

Here we conduct an ablation study to show how the value of k£ and p in top-k and top-p warping
affects our method. Table[10|shows the results. We can see that when changing the value of & and p,
MTAD consistently achieves significantly better performances.

C.3 ADDITIONAL EXPERIMENTS ON CNNDM AND SPIDER

We also report the downstream effectiveness of our method on CNNDM and Spider when the small
model and large model are fine-tuned on the dataset. Table [[T]and Table [I2]show the results. We can
see that MTAD consistenly achieve better effectiveness as well as faster decoding speed.

!The tasks of MT-Bench cover humanities, extraction, roleplay, math, coding, reasoning, stem, writing, and
STEM.

2MT-Bench contains multi-turn tasks where the input includes the responses of LLMs, so the input length is
not fixed.

17

Under review as a conference paper at ICLR 2025

Table 9: Inference efficiency and output perplexity of different methods with OPT (350M,30B) and
Llama-2-Chat (7B,70B). The mean and standard deviation are computed across all datasets. Bold
numbers mark the best result, underlined numbers mark the second best.

speculative BiLD Spectr SpecInfer MTAD

speed (token/s) T | 8.37£3.07 8.64£3.50 9.114£3.03 8.87£2.82 9.53+3.29
Llama-2 | energy (J/token) | | 138+87.7 142£99.7 122+66.4 125+65.4 119£67.7
perplexity | 1.774£0.22 1.69+0.25 1.73£0.24 1.73+0.24 1.5240.19

speed (token/s) + | 153%£1.64 14.5£1.96 17.0+4.14 17.44+4.00 19.5+4.11
OPT energy (J/token) | | 72.4£11.5 79.6£3.03 68.2+16.7 6244103 60.0£12.8
perplexity | 4741196 3.50+1.42 4.55+193 449£195 2.74+0.87

Table 10: Ablation study of k£ and p in top-k and top-p sampling

K P | Greedy | Speculative | MJSD
| PPL Tokens/sec | PPL Tokens/sec | PPL Tokens/sec

20 09 | 3.74 22.6 3.64 36.8 2.06 63.0
20 0.8 | 3.06 22.7 3.10 38.5 1.93 58.8
10 09 | 3.03 22.7 3.22 38.5 1.95 62.5
10 0.8 | 2.56 22.7 2.53 40.0 1.80 62.5

Table 11: Comparison of ROUGE-L Scores and Tokens per Second under Different Fine-Tuning
Conditions on CNNDM

\ No Fine-Tune \ Fine-Tune 68M \ Fine-Tune Both
Method | ROUGE-L Tokens/sec | ROUGE-L Tokens/sec | ROUGE-L Tokens/sec
Speculative 0.114 37.7 0.114 20.4 0.164 24.3
MISD 0.118 44.2 0.121 25.0 0.168 27.1

Table 12: Comparison of Execution Accuracy (EA) and Tokens per Second under Different Fine-
Tuning Conditions on Spider

| NoFine-Tune | Fine-Tune 68M | Fine-Tune Both

Method | EA Tokens/sec | EA Tokens/sec | EA Tokens/sec
Speculative | 11.5 28.5 11.5 27.8 16.3 25.6
MIJSD 13.0 30.3 14.8 32.3 18.3 294

18

Under review as a conference paper at ICLR 2025

2.24

2.09

1.8

1.6 1

relative score

(X]
1.4
e ® °
[] o
]
1.2 1 e ©* o
™Y []
[] ° [N ° . []
1.0 4 . b °® 4
[]
0.6 0.7 0.8 0.9 1.0

relative perplexity

Figure 4: Relationship between relative perplexity (normalized by multinomial sampling’s perplexity)
and relative performance score (normalized by multinomial sampling’s score).

C.4 VISUALIZATION OF PERPLEXITY AND OUTPUT QUALITY

To further illustrate the relationship between perplexity and downstream performance, we present a
scatter plot in Figure [The plot shows the correlation between relative downstream scores (normal-
ized by the score of multinomial sampling) and relative perplexity (normalized by the perplexity of
multinomial sampling) across 7 decoding algorithms, 3 datasets, and 2 model configurations. The
results confirm that lower perplexity generally correlates with higher output quality.

C.5 CORRELATION BETWEEN ENERGY AND SPEED

We observed there is a correlation between speed and energy as shown in the Figure 5 newly added to
the appendix C, whether considering the entire table or focusing on a specific dataset and model. For
fairness,all methods for a given dataset and model were run on the same machine nodes. However,
for a fixed method (e.g., Spectr), experiments on different datasets and models might be conducted
on different nodes (all equipped with L40 GPUs). We did notice that the same configuration run on
different machines may have varied energy consumption. This variation introduces some randomness,
which could make the correlation appear less consistent across datasets and models.

20.0 —— CcP+Llama2 2001 * @ speculative
CP+OPT BILD
17.5 1 —— CA+Llama2 17.51 & Spectr
—— CA+OPT A A Specinfer
—— CD+Llama2 ™ v MTAD
15.0 1 —— CD4OPT 15.0
5 SP+Llama2 H
£ 4 ‘
2 125 —— SP+OPT ERPER
= MT+Llama2 =
> > Y
8 100 MT+OPT £ 100
3 10, .04
5 g ¢ a4y Ay
ot
75 1 s 7.54 [VS
/ " °
5.0 5.0 we
v v v
20 30 40 50 60 20 30 40 50 60
speed (tokens/s) speed (tokens/s)
(a) group by dataset and model (b) group by methods

Figure 5: Correlation between speed and energy

D ENERGY CONSUMPTION MEASUREMENT

We use the command "nvidia-smi —-query-gpu=power.draw —format=csv" to get
GPU power every second, and sum them up as the total energy consumption. We use average
energy consumption per token to measure energy efficiency. There is a recent study pointing out the

19

Under review as a conference paper at ICLR 2025

measurement error using nvidia-smi (Yang et al.,|2023). We follow the three principles proposed
in (Yang et al.l [2023) to minimize the error.

E CONFIGURATION

The experiments are conducted on a machine with 1 Nvidia L40 GPU (48 GB), 4 CPUs, and 50 GB
main memory, using a batch size of 1, which is common for online serving (Schuster et al.,|2022]).
We set the maximum running time to be an hour for each baseline. We use average tokens/second to
measure the inference speed and use perplexity (exponentiated average negative log-likelihood) based
on the probability of the large model to measure the output quality. Because different methods might
finish different numbers of inputs, we only calculate the perplexity of the first M inputs, where M is
the number of inputs finished by greedy decoding. We use average energy consumption per token to
measure energy efficiency. The details of energy measurement are illustrated in the Appendix.

F HYPER-PARAMETER DETAILS

In the experiments, we follow the default settings in (Bear, [2024) to warp the sampling distribution
p and ¢ with the following steps, which are the default warpping operations in a public speculative
decoding implementation.

1. Keep the probabilities of top 20 tokens unchanged, and set the probabilities of other tokens
to 0, then normalize the distribution.

2. Sort the tokens based on their distributions descendingly. Keep the first K tokens such that

their cumulative probabilities is larger than 0.9, while set the probabilities of other tokens to
0.

For different methods, we choose their hyper-parameters by using a small validation set. We select
the set of hyper-parameters that make the corresponding method have best output perplexity. Table
[[3] shows the hyper-parameters used in the experiments.

Table 13: Hyper-parameters of different methods for different models and datasets. L: Llama, O:OPT,
CP: ChatGPT-Prompts, CA: ChatAlpaca, CD: CNNDaily.

| | LCP OCP LCA OCA LCD OCD LSP OSP LMT OMT

speculative step len ~y 4 4 4 4 4 4 4 4 4 4
step len ~y 4 4 4 4 4 4 4 4 4 4

Spectré&Speclnfer num seq m 4 2 2 4 2 2 2 2 2
step len ~y 10 10 10 10 10 10 10 10 10 10

BiLD fallback thres 71 0.9 0.9 0.9 0.3 0.9 0.3 0.9 0.9 . .
rollback thres 7o 2 2 1 2 3 2 1 1 1 1

step len ~y 4 4 4 4 4 4 4 4 4 4

num beams 8 8 8 8 8 8 8 8 8 8
MTAD acchejthres 7 | 01 01 0l 0.1 0.1 01 09 01 09 0.1

G LICENSE OF DATASETS AND MODELS

Datasets:

e ChatGPT-Prompts: Non (https://huggingface.co/datasets’/MohamedRashad/ChatGPT-
prompts)

* ChatAlpaca: Apache-2.0 License
* CNN Dailymail: Apache-2.0 License

Models
e OPT-125M and OPT-13B: Model License (https://github.com/

facebookresearch/metaseg/blob/main/projects/OPT/MODEL__
LICENSE . md)

20

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md

Under review as a conference paper at ICLR 2025

* Llama-68M: Apache-2.0 License

e Llama-2-13B: Llama-2 Community License Agreement
Codes

* LLMSpeculativeSampling (https://github.com/feifeibear/
LLMSpeculativeSampling)

21

https://github.com/feifeibear/LLMSpeculativeSampling
https://github.com/feifeibear/LLMSpeculativeSampling

	Introduction
	Preliminaries
	Decodings of LLMs
	Vanilla Speculative Decoding

	Methodology
	Multi-Token Joint Decoding
	Multi-Token Assisted Decoding

	Energy Efficiency Analysis
	Experiments
	Comparison with Baselines
	Ablation Study
	Number of Beams
	Acceptance Threshold

	Related Work
	Conclusion
	Proof
	Proof of Theorem 3.2
	Proof of Corollary 3.3
	Proof of Lemma 3.4
	Proof of Theorem 3.5
	Proof of Theorem 3.6

	Pseudocode of MJSD
	Additional Experiments
	Resutlts with OPT-30B and Llama-2-70B
	Ablation study of top-k and top-p sampling
	Additional Experiments on CNNDM and Spider
	Visualization of perplexity and output quality
	Correlation between Energy and Speed

	Energy Consumption Measurement
	Configuration
	Hyper-parameter Details
	License of Datasets and Models

