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Abstract

We present a computationally-efficient strategy to initialise the hyperparameters of a Gaus-
sian process (GP) avoiding the computation of the likelihood function. Our strategy can be
used as a pretraining stage to find initial conditions for maximum-likelihood (ML) training,
or as a standalone method to compute hyperparameters values to be used directly in the
GP model. Motivated by the fact that training a GP via ML is equivalent (on average)
to minimising the KL-divergence between the true and learnt model, we set to explore dif-
ferent metrics/divergences among GPs that are computationally inexpensive and provide
hyperparameter values that are close to those found via ML. In practice, we identify the GP
hyperparameters by projecting the empirical covariance or (Fourier) power spectrum onto a
parametric family, thus proposing and studying various measures of discrepancy operating
on the temporal and frequency domains. Our contribution extends the variogram method
developed by the geostatistics literature and, accordingly, it is referred to as the generalised
variogram method (GVM). In addition to the theoretical presentation of GVM, we pro-
vide experimental validation in terms of accuracy, consistency with ML and computational
complexity for different kernels using synthetic and real-world data.

1 Introduction

Gaussian processes (GPs) are Bayesian nonparametric models for time series praised by their interpretability
and generality. Their implementation, however, is governed by two main challenges. First, the choice
of the covariance kernel, which is usually derived from first principles or expert knowledge and thus may
result in complex structures that hinder hyperparameter learning. Second, the cubic computational cost of
standard, maximum-likelihood-based, training which renders the exact GP unfeasible for more than a few
thousands observations. The GP community actively targets these issues though the development of robust,
computationally-efficient training strategies. Though these advances have facilitated the widespread use of
GP models in realistic settings, their success heavily depend on the initialisation of the hyperparameters.

In practice, initialisation either follows from expert knowledge or time-consuming stochastic search. This
is in sharp contrast with the main selling point of GPs, that is, being agnostic to the problem and able
to freely learn from data. To provide researchers and practitioners with an automated, general-application
and cost-efficient initialisation methodology, we propose to learn the hyperparameters by approximating the
empirical covariance by a parametric function using divergences between covariances that are inexpensive
to compute. This approach is inspired by the common practice, such as when one computes some statistics
(e.g., mean, variance, discrete Fourier transform) to determine initial values for the kernel hyperparameters.
In the geostatistics literature, a method that follows this concept is the Variogram (Cressie, 1993; Chiles
& Delfiner, 1999), which is restricted to particular cases of kernels and divergences. Therefore, we refer
to the proposed methodology as Generalised Variogram Method (GMV) in the sense that it extends the
application of the classic methodology to a broader scenario that includes general stationary kernels and
metrics, in particular, Fourier-based metrics.
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Though our proposal is conceptually applicable to an arbitrary input/output dimension, we focus on the
scalar-input scalar-output case and leave the extension to general dimensions as future work.1

The contributions of our work are of theoretical and applied nature, and are summarised as follows:

• a novel, computationally-efficient, training objective for GPs as an alternative to maximum likeli-
hood, based on a projection of sample covariance (or power spectrum) onto a parametric space

• a particular instance of the above objective, based on the Wasserstein distance applied to the power
spectrum, that is convex and also admits a closed-form solution which can thus be found in a single
step

• a study of the computational cost of the proposed method and its relationship to maximum likeli-
hood, both in conceptual and empirical terms

• an experimental validation of the proposed method assessing its stability with respect to initial
conditions, confirming its linear computational cost, its ability to train GPs with a large number of
hyperparameters and its advantages as initialiser for maximum-likelihood training.

2 Preliminaries

2.1 Motivation

Let us consider y ∼ GP(0,K) and its realisation y = [y1, . . . , yn] ∈ Rn at times t = [t1, . . . , tn] ∈ Rn. The
kernel K is usually learnt by choosing a family {Kθ}θ∈Θ and optimising the log-likelihood

l(θ) = −1
2 Tr (K−1

θ yy>)− 1
2 log |Kθ| −

n

2 log 2π, (1)

with respect to θ ∈ Θ, where we used the cyclic property of the trace, and defined Kθ
def= Kθ(t) according

to [Kθ]ij = Kθ(ti − tj), i, j ∈ {1, . . . , n}. Defining K def= K(t) = Eyy>, we note that

El(θ) = −1
2 Tr (K−1

θ K)− 1
2 log |Kθ| −

n

2 log 2π. (2)

Observe that, up to terms independent of θ, equation 2 is equivalent to the negative Kullback-Leibler
divergence (NKL) between the (zero-mean) multivariate normal distributions N (0,K) and N (0,Kθ) given
by

DNKL(N (0,K)||N (0,Kθ)) = −1
2

(
Tr
(
K−1
θ K

)
+ log |Kθ|

|K| − n
)
, (3)

which, with a slight abuse of notation, can be expressed as a function of only the covariances as
DNKL(K,Kθ)

def= DNKL(N (0,K)||N (0,Kθ)).

This reveals that learning a GP by maximising l(θ) in equation 1 can be understood (in expectation) as
minimising the KL between the t-marginalisations of the true process GP(0,K) and a candidate process
GP(0,Kθ). This motivates the following remark.
Remark 1. Since maximum-likelihood learning of GPs has a cubic computational cost but it is (on average)
equivalent to minimising a KL divergence, what other divergences or distances, computationally cheaper than
the likelihood, can be considered for learning GPs?

2.2 Divergences over covariance functions

We consider zero-mean stationary GPs.2 The stationary requirement allows us to i) aggregate observations
in time when computing the covariance, and ii) compare covariances in terms of their (Fourier) spectral

1For illustration and completeness, we incorporate a toy experiment featuring 5-dimensional input data in Sec. 5.7.
2We do so for convenience in computation since non-zero-mean GPs can be understood as a mixture of a zero-mean GP and

a parametric regression model, where the GP models the residuales of the parametric part. See Section 2.7 in Rasmussen &
Williams (2005) for a discussion.
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content. Both perspectives will be present throughout the text, thus, we consider two types of divergences
over covariances: i) temporal ones, which operate directly to the covariances, and ii) spectral ones, which
operate over the the Fourier transform of the covariances, i.e., the GP’s power spectral density (PSD). As
our work relies extensively on concepts of spectral analysis and signal processing, a brief introduction to the
subject is included in Appendix A.

Though we can use most metrics (e.g., L1, L2) on both domains, the advantage of the spectral perspective is
that it admits density-specific divergences as it is customary in signal processing (Basseville, 1989). Bregman
divergences, which include the Euclidean, KL and Itakura-Saito (IS) (Itakura, 1968), are vertical measures,
i.e, they integrate the point-wise discrepancy between densities across their support. We also consider
horizontal spectral measures, based on the minimal-cost to transport the mass from one distribution—across
the support space—onto another. This concept, known as optimal transport (OT) (Villani, 2009) has only
recently been considered for comparing PSDs using, e.g., the 1- and 2-Wasserstein distances, denoted W1
and W2 (Cazelles et al., 2021; Henderson & Solomon, 2019). See Appendix B for definitions of vertical and
horizontal divergences.

2.3 Related work

A classic notion of kernel dissimilarity in the machine learning community is that of kernel alignment, a
concept introduced by Cristianini et al. (2001) which measures the agreement between two kernels or a
kernel and a task; this method has been mostly applied for kernel selection in SVM-based regression and
classification. This notion of dissimilarity is based on the Frobenius inner product between the Gram matrices
of each kernel given a dataset—see (Cristianini et al., 2001, Def. 1). Though, in spirit, this concept is related
to ours in that the kernel is learnt by minimising a discrepancy measure, we take a signal-processing inspired
perspective and exploit the fact that, for stationary GPs, kernels are single-input covariance functions and
thus admit computationally-efficient discrepancy measures. In addition to the reference above, the interested
reader is referred to (Cortes et al., 2012) for the centred kernel alignment method.

Within the GP community, two methodologies for accelerated training can be identified. The first one
focuses directly on the optimisation procedure by, e.g., avoiding inverses (van der Wilk et al., 2020), or
derivatives (Rios & Tobar, 2018), or even by parallelisation; combining these techniques has allowed to
process even a million datapoints (Wang et al., 2019). A second perspective is that of sparse GP approxima-
tions using pseudo-inputs (Quinonero-Candela & Rasmussen, 2005), with particular emphasis on variational
methods (Titsias, 2009). The rates of convergence of sparse GPs has been studied by Burt et al. (2019)
and the hyperparameters in this approach have also been dealt with in a Bayesian manner by Lalchand
et al. (2022). Sparse GPs have allowed for fitting GPs to large datasets (Hensman et al., 2013), training
non-parametric kernels (Tobar et al., 2015), and implementing deep GPs (Damianou & Lawrence, 2013;
Salimbeni & Deisenroth, 2017). Perhaps the work that is closest to ours in the GP literature is that of Liu
et al. (2020), which trains a neural network to learn the mapping from datasets to GP hyperparameters
thus avoiding the computation of the likelihood during training. However, the authors state that “training
on very large datasets consumes too much GPU memory or becomes computationally expensive due to the
kernel matrix size and the cost of inverting the matrix”. This is because they still need to compute the kernel
matrix during training of the net, while we bypass that calculation altogether.

The Wasserstein distance has been used to compare the laws of the GP (Masarotto et al., 2019; Mallasto
& Feragen, 2017), and applied to kernel design, in particular to define GPs (Bachoc et al., 2018) and
deep GPs (Popescu et al., 2020) over the space of probability distributions. Cazelles et al. (2021) proposed a
distance between time series based on theWasserstein, termed theWasserstein-Forier distance, and showed its
application to GPs. However, despite the connection between GPs and the Wasserstein distance established
by these works, they have not been implemented to train GPs.

In geostatistics, the variogram function (Cressie, 1993; Chiles & Delfiner, 1999) is defined as the variance of
the difference of a process y at two locations t1 and t2, that is, γ(t1−t2) = V[y(t1)− y(t2)]. The variogram is
computed by choosing a parametric form for γ(t) and then fit it to a cloud of points (sample variogram) using
least squares. Common variogram functions in the literature include exponential and Gaussian ones, thus
drawing a natural connection with GP models. Furthermore, when the process y is stationary and isotropic
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(or one-dimensional) as in the GP models considered here, the variogram and the covariance K(t) follow
the relationship γ(t) = K(0)−K(t), therefore, given a kernel function the corresponding variogram function
can be clearly identified (and vice versa). The way in which the variogram is fitted in the geostatistics
literature is what inspires the methodology proposed here: we fit parametric forms of the covariance (or
the PSD) to their corresponding sample approximations in order to find appropriate values for the kernel
hyperparameters. Also, as we explore different distances for the covariance and PSD beyond the Euclidean
one (least squares) we refer to our proposal as the Generalised Variogram Method (GVM).

GVM complements the literature in a way that is orthogonal to the above developments. We find the
hyperparameters of a GP in a likelihood-free manner by minimising a loss function operating directly on the
sample covariance or its Fourier transform. As we will see, GVM is robust to empirical approximations of
the covariance or PSDs, admits arbitrary distances and has a remarkably low computational complexity.

3 A likelihood-free covariance-matching strategy for training GPs

Overview of the section. As introduced in Section 2.1, our objective is to approximate the ground-truth
kernel K with a parametric kernel Kθ∗ ; to this end we will rely on an empirical data-driven estimate of
the kernel denoted K̂n. We will proceed by matching K̂n with a parametric form Kθ∗

n
using metrics in the

temporal domain, i.e., solving equation 7, or in the spectral domain matching the Fourier transform of K̂n,
denoted Ŝn = FK̂n, with a parametric form Sθ∗

n
, i.e., solving equation 8. In the following, we present the

Fourier pairs Kθ and Sθ, the chosen estimators K̂n and Ŝn, and the metrics considered for the matching.
We then present an explicit case for location-scale families, and we finally give theoretical arguments for the
proposed learning method.

3.1 Fourier pairs Kθ and Sθ and their respective estimators

Let us consider the zero-mean stationary process y ∼ GP(0,Kθ) with covariance Kθ and hyperparameter
θ ∈ Θ. If the covariance Kθ is integrable, Bochner’s Theorem (Bochner, 1959) states that Kθ and the
process’ power spectral density (PSD), denoted Sθ, are Fourier pairs, that is,

Sθ(ξ) = F {Kθ}
def=
∫
R
Kθ(t)e−j2πξtdt, (4)

where j is the imaginary unit and F {·} denotes the Fourier transform.

Since zero-mean stationary GPs are uniquely determined by their PSDs, any distance defined on the space
of PSDs can be “lifted” to the space covariances and then to that of GPs. Therefore, we aim at learning the
hyperparameter θ ∈ Θ either by leaning on approximations on the temporal space (endowed with covariances)
or in spectral space (endowed with PSDs).

First, we consider the following statistic K̂n in order to approximate the ground-truth kernel K.
Definition 1. Let y ∈ R be a zero mean stochastic process over R with observations y = [y1, . . . , yn] ∈ Rn
at times t = [t1, . . . , tn] ∈ Rn. The empirical covariance of y is given by

K̂n(t) =
n∑

i,j=1

yiyj1t=ti−tj
Card{t|t = ti − tj}

. (5)

The estimator Ŝn(t) of the PSD S then simply corresponds to applying the Fourier transform to the empirical
kernel K̂n in equation 5, that is

Ŝn(ξ) =
∫
R
K̂n(t)e−j2πξtdt. (6)

Another usual choice for estimating the PSD is the Periodogram ŜPer (Schuster, 1900). Though ŜPer is
asymptotically unbiased (∀ξ,EŜPer(ξ) → S(ξ)), it is inconsistent, i.e., its variance does not vanish when
n → ∞ (Stoica & Moses, 2005)[Sec. 2.4.2]. Luckily, the variance of ŜPer(ξ) can be reduced via windowing
and the Welch/Bartlett techniques which produce (asymptotically) consistent and unbiased estimates of
S(ξ),∀ξ (Stoica & Moses, 2005).
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3.2 Fourier-based covariance divergences

The proposed method builds on two types of (covariance) similarity. First, those operating directly on K̂n

and Kθ, known as temporal divergences, which include the L1 and L2 distances. Second, those operating
over the Fourier transforms of K̂n andKθ, that is Ŝn and Sθ, known as spectral divergences. In the temporal
case, we aim to find the hyperparameters of y by projecting K̂n(t) in equation 5 onto the parametrised family
K = {Kθ, θ ∈ Θ}. That is, by finding θ∗ such that Kθ(·) is as close as possible to K̂n(t), i.e.,

θ∗n = arg min
θ∈Θ

D(K̂n,Kθ), (7)

where the function D(·, ·) is the chosen criterion for similarity. Similarly to the strategy of learning the
hyperparameters of the GP by matching the covariance, we can learn the hyperparameters by projecting an
estimator of the PSD, namely Ŝn in equation 6, onto a parametric family S = {Sθ, θ ∈ Θ}, that is,

θ∗n = arg min
θ∈Θ

DF (Ŝn, Sθ), (8)

where DF (·, ·) is a divergence operating on the space of PSDs.
Remark 2. Since the map Kθ → Sθ is one-to-one, equation 7 and equation 8 are equivalent when DF (·, ·) =
D(F {·} ,F {·}) and S = F {K}.

We will consider parametric families S with explicit inverse Fourier transform, since this way θ parametrises
both the kernel and the PSD and can be learnt in either domain. These families include the Dirac delta,
Cosine, Square Exponential (SE), Student’s t, Sinc, Rectangle, and their mixtures; see Figure 10 in Appendix
A for an illustration of some of these PSDs and their associated kernels.
Remark 3 (Recovering kernel parameters from PSD parameters). For a parametric Fourier pair (K, S),
the Fourier transform induces a map between the kernel parameter space and the PSD parameter space.
For the chosen kernel/PSD families, this map is bijective, which allows us to compute the estimated kernel
parameters from the estimated PSD parameters (and vice versa); see Table 1 for two examples of parametric
kernels and PSDs. Furthermore, based on this bijection we refer as θ to both kernel and PSD parameters.

3.3 A particular case with explicit solution: location-scale family of PSDs and 2-Wasserstein distance

Of particular relevance to our work is the 2-Wasserstein distance (W2) and location-scale families of PSDs,
for which the solution of equation 8 is completely determined through first order conditions.
Definition 2 (Location–scale). A family of one-dimensional integrable PSDs is said to be of location-scale
type if it is given by {

Sµ,σ(ξ) = 1
σ
S0,1

(
ξ − µ
σ

)
, µ ∈ R, σ ∈ R+

}
, (9)

where µ ∈ R is the location parameter, σ ∈ R+ is the scale parameter and S0,1 is the prototype of the family.

For arbitrary prototypes S0,1, location-scale families of PSDs are commonly found in the GP literature. For
instance, the SE, Dirac delta, Student’s t, Rectangular and Sinc PSDs, correspond to the Exp-cos, Cosine,
Laplace, Sinc, and Rectangular kernels respectively. Location-scale families do not, however, include kernel
mixtures, which are also relevant in our setting and will be dealt with separately. Though the prototype
S0,1 might also be parametrised (e.g., with a shape parameter), we consider those parameters to be fixed
and only focus on θ := (µ, σ) for the rest of this section. Table 1 shows the two families of location-scale
PSDs (and their respective kernels) that will be used throughout our work.
Remark 4. Let us consider a location-scale family of distributions with prototype S0,1 and an arbitrary
member Sµ,σ. Their quantile (i.e., inverse cumulative) functions, denoted Q0,1 and Qµ,σ respectively, obey

Qµ,σ(p) = µ+ σQ0,1(p). (10)
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Table 1: Location-scale PSDs (left) and their covariance kernel (right) used in this work. We have denoted
by t and ξ the time and frequency variables respectively.

PSD Sµ,σ(ξ) Prototype S0,1(ξ) Kernel Kµ,σ(t) K0,1(t)
Square-exp exp

(
−
(
ξ−µ
σ

)2
)

exp(−ξ2) Exp-cos
√
πσ exp(−σ2π2t2) cos(2πµt)

√
π exp(−π2t2)

Rectangular rect
(
ξ−µ
σ

)
rect(ξ) Sinc σsinc(σt) cos(2πµt) sinc(t)

The linear expression in equation 10 is pertinent in our setting and motivates the choice of the 2-Wasserstein
distance W2. This is because for arbitrary one-dimensional distributions S1 and S2, W 2

2 (S1, S2) can be
expressed in terms of the quantile functions of S1 and S2, denoted respectively Q1 and Q2:

W 2
2 (S1, S2) =

∫ 1

0
(Q1(p)−Q2(p))2dp. (11)

We are now in position to state the first contribution of our work.
Theorem 1. If S is a location-scale family with prototype S0,1, and S is an arbitrary PSD, the minimiser
(µ∗, σ∗) of W2(S, Sµ,σ) is unique and given by

µ∗ =
∫ 1

0
Q(p)dp and σ∗ = 1∫ 1

0 Q
2
0,1(p)dp

∫ 1

0
Q(p)Q0,1(p)dp, (12)

where Q is the quantile function of S.

Proof Sketch. The proof follows from the fact thatW 2
2 (S, Sµ,σ) is convex both on µ and σ, which is shown by

noting that its Hessian is positive via Jensen’s inequality. Then, the first order conditions give the solutions
in equation 12. The details of the proof can be found in Appendix C.

Remark 5. Although integrals of quantile functions are not usually available in closed-form, computing
equation 12 is straightforward. First, Q0,1(p) is known for a large class of normalised prototypes including
SE (QSE

0,1(p) =
√

2erf−1(2p − 1)) and rectangles (Qrect
0,1 (p) = p1p>0), thanks to classical probability theory

results. Second, µ∗ = Ex∼S [x] and
∫ 1

0 Q
2
0,1(p)dp = Ex∼S [x2], where x is a random variable with PDF S.

Third, both integrals are one-dimensional and supported on [0, 1], thus numerical integration is inexpensive
and precise, specially when S has compact support.

As pointed out by Cazelles et al. (2021), W 2
2 (S, Sθ) is in general non-convex in θ, however, for the particular

case of the location-scale family of PSDs and parameters (µ, σ), convexity holds. Since this family includes
usual kernel choices in the GP literature, Theorem 1 guarantees closed form solution for the optimisation
problem in equation 8 and thus can be instrumental for learning GPs without computing (the expensive)
likelihood function.

3.4 Learning from data

Learning the hyperparameters through the optimisation problem in equation 7 or equation 8 is possible
provided that the statistics K̂n and Ŝn converge to K and S respectively. We next provide theoretical
results on the convergence of the optimal minimiser θ∗n. The first result, Proposition 1, focuses on the
particular case of the 2-Wasserstein distance and location-scale families, presented in Section 3.3.
Proposition 1. Let Sθ be a location-scale family, S the ground truth PSD and DF = W 2

2 . Then
EW 2

2 (S, Ŝn) → 0 implies that the empirical minimiser θ∗n in equation 8 converges to the true minimiser
θ∗ = arg minθ∈ΘW

2
2 (S, Sθ), meaning that E|θ∗n − θ∗| → 0.

Proof Sketch. First, in the location-scale family we have θ = (µ, σ). Then, the solutions in Theorem 1 allow
us to compute upper bounds for |µ∗−µ∗n| and |σ∗−σ∗n| via Jensen’s and Hölder’s inequalities, both of which
converge to zero as EW 2

2 (S, Ŝn)→ 0. The details of the proof can be found in Appendix C.
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The second result, Proposition 2, deals with the more general setting of arbitrary parametric families, the
distances L1, L2,W1,W2 and either temporal and frequency based estimators. To cover both cases, we will
denote f̂n to refer to either K̂n or Ŝn. Let us also consider the parametric function fθ ∈ {fθ|θ ∈ Θ} and the
ground truth function f which denotes either the ground-truth covariance or ground-truth PSD.
Proposition 2. For general parametric families {fθ|θ ∈ Θ}, the empirical solution θ∗n converges a.s. to
the true solution θ∗ under the following sufficient and stronger conditions: (i) D = Wr or Lr, r = 1, 2, (ii)
D(f̂n, f) a.s.−−−−→

n→∞
0; (iii) θn −−−−→

n→∞
θ ⇐⇒ D(fθn , fθ)→ 0; and (iv) the parameter space Θ is compact.

Proof. This result follows as a particular case from Theorem 2.1 in Bernton et al. (2019), where the authors
study general r-Wasserstein distance estimators for parametric families of distributions for empirical mea-
sures, under the notion of Γ-convergence or, equivalently, epi-convergence. The proof for the Lr, r = 1, 2
case is similar to that of Wr.

4 Practical considerations

This section is dedicated to the implementation of GVM. We first discuss the implementation of the estima-
tors K̂n and Ŝn and their complexity, then we present the special case of location-scale family and spectral
2-Wasserstein loss. The last subsection is dedicated to the noise variance parameter and the relationship
between GVM and ML solutions.

4.1 Computational complexity of the estimators K̂n and Ŝn

First, for temporal divergences (operating on the covariance) we can modify the statistic in equation 5 using
binning, that is, by averaging values for which the lags are similar; this process is automatic in the case of
evenly-sampled data and widely used in discrete-time signal processing. This allows to reducing the amount
of summands in K̂n from n(n+1)

2 to an order n or even lower if the range of the data grows beyond the length
of the correlations of interests.

Second, the Periodogram ŜPer has a complexity O(nk), where n is the number of observations and k the
number of frequency bins; in the evenly-sampled case, one could set k = n and apply the fast Fourier
transform at a cost O(n logn). However, for applications where the number of datapoints greatly exceeds
the required frequency resolution, k can be considered to be constant, which results in a cost O(n).

4.2 The location-scale family and 2-Wasserstein distance

In Algorithm 1, we present the case of location-scale family of PSDs {Sθ}θ∈Θ and 2-Wasserstein loss presented
in Section 3.3.

Algorithm 1 GVM - Spectral loss W2 & ({Sθ}θ∈Θ is location-scale)
Require: ti, yi, i = 1, . . . , n
Require: location-scale PSD family {Sθ}θ∈Θ (e.g., Gaussians)
Define a grid over frequency space g = {ξ0, ξ1, . . . , ξk}
Compute Ŝn = Ŝn(g), from eq. (6), over the chosen frequency grid
Compute Qn the quantile function of Ŝn
Compute θ?n given by eq. (12) with Q := Qn

Linear computational complexity and quantiles. The cost of the 2-Wasserstein loss is given by calcu-
lating i) the Periodogram ŜPer of the estimator Ŝn in equation 6, ii) its corresponding quantile function, and
iii) the integrals in equation 12. Though the quantile function is available in closed form for some families
of PSDs (see Remark 5) in general they will be calculated by quantisation: for a sample distribution (or his-
togram) one can compute the cimulative distribution and then invert it to obtain the quantile. Additionally,
the integrals of the quantile functions also have a linear cost but only in the number of frequency bins O(k)
since they are frequency histograms, therefore, computing the solution has a linear cost in the data.
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4.3 Solving the general case: beyond the location-scale family

Recall that the proposed method has a closed-form solution when one considers PSDs in location-scale fam-
ily and the W2 distance over the spectral domain. However, in the general cases in equations 7 and 8,
the minimisation is not convex in θ and thus iterative/numerical optimisation is needed. In particular, for
horizontal Fourier distances (e.g., Wasserstein distances) the derivative of the loss depends on the derivative
of the quantile function Qθ with respect to θ which might not even be known in closed form in general,
specially for mixtures. However, in most cases the lags of the empirical covariance or the frequencies of
the Periodogram belong to a compact space and thus numerical computations are precise and inexpensive.
Therefore, approximate derivatives can be considered (e.g., in conjunction with BFGS) though in our ex-
periments the derivative-free Powell method also provide satisfactory results. Algorithms 2 and 3 present
the application of GVM using the temporal and spectral metrics respectively. Note that we will usually
consider L1, L2 as temporal metrics D and also W1,W2, Itakura- Saito and KL as spectral divergences DF .
Algorithms 2 and 3 are presented side to side for the convenience of the reader.

Algorithm 2 GVM - Temporal loss
Require: ti, yi, i = 1, . . . , n
Require: parametric family {Kθ}θ∈Θ
Require: temporal metric D(·, ·)
Define temporal grid t = {t1, t2, . . . , tn}
Compute Kθ = Kθ(t)
Compute K̂n = K̂n(t) as in eq. (5)
Construct loss θ 7→ D(K̂n,Kθ)
Find θ?n in eq. (7) using BFGS or Powell

Algorithm 3 GVM - Spectral loss
Require: ti, yi, i = 1, . . . , n
Require: parametric family {Sθ}θ∈Θ
Require: spectral metric DF (·, ·)
Define frequency grid g = {ξ0, ξ1, . . . , ξk}
Compute Sθ = Sθ(g)
Compute Ŝn = Ŝn(g), from eq. (6)
Construct loss θ 7→ DF (Sθ, Ŝn)
Find θ?n in eq. (8) using BFGS or Powell

Linear computational complexity. For the general case of spectral losses using numerical optimisation
methods, we need to calculate Ŝn or its quantile (which are O(n)) only once, to then compute the chosen
distance DF , which is O(k) for discrete measures defined on a k-point grid—either in time or in frequency—
as many times as the optimiser requires it. Therefore, the cost is O(k) but with a constant that depends
on the complexity of the parametric family {Sθ, θ ∈ Θ} and the optimiser of choice. For spatial losses, the
complexity follows the same rule for the chosen spatial distance DF , and parametric family {Kθ, θ ∈ Θ}.

4.4 Noise variance and relationship to maximum likelihood

Following the assumptions of the Fourier transform, the spectral divergences considered apply only to
Lebesgue-integrable PSDs, which rules out the relevant case of white-noise-corrupted observations. This
is because white noise, defined by a Dirac delta covariance, implies a PSD given by a constant, positive,
infinite-support, spectral floor that is non-integrable. These cases can be addressed with temporal diver-
gences, which are well suited (theoretically and in practice) to handle noise.

The proposed hyperparameter-search method is intended both as a standalone likelihood-free GP learning
technique and also as a initialisation approach to feed initial conditions to a maximum likelihood (ML)
routine. In this sense, we identify a relationship between the ML estimator θ̂ML and the proposed estimator
θ∗ := arg minθ∈Θ L2(Ŝ, Sθ). From equation 4 and Plancherel’s theorem, we have ‖S−Sθ‖L2 = ‖K −Kθ‖L2 .
Then, by definition of the estimators and Lemma 2 in Hoffman & Ma (2020), we obtain the following
inequality

DKL(K||Kθ̂ML
) ≤ DKL(K||Kθ∗) ≤ 1

2‖K
−1‖2‖K−1

θ∗ ‖2‖K−Kθ∗‖F , (13)

where ‖ · ‖F denotes the matrix Frobenius norm, DKL(A||B) denotes the KL divergence between zero-mean
multivariate normal distributions with covariances A and B, and recall that K is the kernel of the ground
truth GP. Denoting the ball centred at 0 with radius M by B(0,M), we present the following remark.
Remark 6. The inequality in equation 13 states that if the proposed estimator θ∗ is such that ‖S−Sθ∗‖L2 ∈
B(0,M), then DKL(K||Kθ̂ML

) ∈ B(0, 1
2‖K

−1‖2‖K−1
θ∗ ‖2M). Therefore, under the reasonable assumption that

8
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the function θ 7→ Kθ only produces well-conditioned matrices, the factor ‖K−1‖2‖K−1
θ∗ ‖2 is bounded and thus

both balls have radius of the same order.

5 Experiments

This section illustrates different aspects of the proposed GVM through the following experiments (E):

E1: shows that GVM, unlike ML, is robust to different initialisation values and subsets of observations,
E2: studies the sensibility of GVM to the calculation of Ŝn using Periodogram, Welch and Bartlett,
E3: validates the linear computational complexity of GVM in comparison to the full and sparse GPs,
E4: compares spectral against temporal implementations of GVM on an audio time series,
E5: exhibits the results of learning a 20-component spectral mixture GP using GVM with different

spectral metrics,
E6: assesses the ability of GVM to produce initial conditions which are then passed to an ML routine

that learns a spectral mixture GP with 4, 8, 12 and 16 components,
E7: presents a toy example where GVM is used to fit a GP with an isotropic SE kernel to multi-input

(5-dimensional) data.

The benchmarks were implemented on MOGPTK (de Wolff et al., 2021), and the Python codes (in Appendix
D) will be released to the public.

5.1 E1: Stability with respect to initial conditions (spectral mixture kernel, L2, temporal)

This experiment assessed the stability of GVM with respect to random initial conditions and dif-
ferent realisations. We considered a GP with a 2-component spectral mixture kernel K(t) =∑2
i=1 σ

2
i exp(−γiτ2) cos(2πµiτ) + σ2

noiseδτ with hyperparameters σ1 = 2, γ1 = 10−4, µ1 = 2 · 10−2,
σ2 = 2,γ2 = 10−4, µ2 = 3 · 10−2, σnoise = 1. We produced 4000-point realisations from the GP and 50
random initial conditions {θr}50

r=1 according to [θr]i ∼ Uniform[ 1
2θi,

3
2θi], where θi is the i-th true hyperpa-

rameter.

We considered two settings: i) train from {θr}50
r=1 using ML, and ii) compute GVM from {θr}50

r=1 and
then perform ML. Each procedure was implemented using a single realisation (to test stability wrt θr) and
different realisations (to test stability wrt the data). Our estimates θ̂i were assessed in terms of the NLL
and the relative mean absolute error (RMAE) of the parameters

∑8
i=1 |θi − θ̂i|/|θi|.

Fig. 1 shows the NLL (left) and RMAE (right) versus computation time, for the cases of fixed (top) and
different (bottom) observations; all times start from t = 1 to use the logarithmic scale. First, in all cases the
GVM initialisation (in red) took about half a second and resulted in an NLL/RMAE virtually identical to
those achieved by ML initialised by GVM, this means that GVM provides reliable parameters and not just
initial conditions for ML. Second, for the fixed observations (top), the GVM was stable wrt θr unlike ML
which in some cases diverged. Third, for the multiple observations (bottom) GVM-initialised ML diverged
in two (out of 50) runs, which is far fewer than the times that random-initialised ML diverged.

5.2 E2: Sensibility of GVM wrt the Periodogram (exact case: W2, location-scale)

We then considered kernels with location-scale PSDs and the W2 metric over the PSDs. This case has a
unique solution but requires us to compute Ŝn in equation 8; this experiment evaluates different ways of
doing so. We produced 4000 observations evenly-sampled in [0, 1000] from GPs with square exponential
and rectangular PSDs (which correspond to the Exp-cos and Sinc kernels respectively—see Table 1), each
with location µ ∼ U[0.025, 0.075] and scale l ∼ U[0.01, 0.02]. We computed Ŝ via the Periodogram, Welch and
Bartlett methods with different windows. Table 2 shows the percentage relative error (PRE)3 averaged over

3PRE = 100 |θ−θ̂|
θ

, where θ is the true parameter and θ̂ its estimate.

9
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Figure 1: GVM as initialisation for ML starting form 50 random initial conditions: proposed GVM (red),
standard ML (green) and ML starting from GVM (blue). The top plots consider a single dataset, while the
bottom plots consider different realisations for each initial condition. The L-BFGS-B optimizer was used
with the default gradient tolerance in order for the results to be comparable.

Table 2: Performance of GVM learning GPs with the Exp-cos and Sinc kernels under different sampling
settings, Periodogram methods and windows. Each entry of the table shows the average percentage relative
error for location (left) and scale (right), with their standard deviations, separated by the symbol "/". True
parameters where µ ∼ U[0.025, 0.075] and l ∼ U[0.01, 0.02]; averages and standard deviations computed over
50 runs.

Kernel Window Periodogram Bartlett Welch

Exp-cos
none 2.30±1.61/33.41±13.27 2.17±1.91/20.88±11.69 2.05±1.64/24.87±14.35
hann 2.98±2.14/34.93±14.33 3.02±2.36/26.23±13.05 2.52±1.75/31.83±13.29
hamming 2.92±2.04/34.93±14.16 2.93±2.29/27.35±13.26 2.49±1.73/32.26±13.22

Sinc
none 2.36±1.65/8.93±6.73 2.63±2.23/83.23±26.39 2.31±1.77/38.87±15.95
hann 2.68±2.02/10.03±9.22 2.59±1.77/58.86±17.48 2.44±1.78/19.52±11.32
hamming 2.60±2.01/9.62±8.93 2.56±1.75/50.62±15.79 2.43±1.76/16.51±10.75

50 runs. The estimates of both parameters are fairly consistent: their magnitude does not change radically
for different windows and Periodogram methods. In particular, the estimates of the location parameter are
accurate with an average error in the order of 2% for both kernels. The scale parameter was, however, more
difficult to estimate, this can be attributed to the spectral energy spread in the Periodogram, which, when
using the Wasserstein-2 metric, results in the scale parameter to be overestimated. For both kernels and
µ = 0.05, l = 0.01, the case of the (windowless) Periodogram is shown in Fig. 2 and the remaining cases are
all shown in Appendix E. In the light of these results, we considered the Periodogram (no window) for the
remaining experiments.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
frequencies

0

50

100

150
Learnt parameters are loc: 0.0501, scale: 0.0089
Periodogram (w: None)
Learnt kernel
Ground truth Exp-cos kernel

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
frequencies

0

100

200

Learnt parameters are loc: 0.0506, scale: 0.0108
Periodogram (w: None)
Learnt kernel
Ground truth Sinc kernel

Figure 2: GVM estimates for Exp-cos (left) and Sinc (right) kernels shown in red against Ŝ (blue) and true
kernels (black). This case: Periodogram, no window.
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5.3 E3: Linear complexity (exact case)

We then evaluated the computation time for the exact case of GVM (W2 distance and location-scale family)
for an increasing amount of observations. We considered unevenly-sampled observations from an single
component SM kernel (µ = 0.05, σ = 0.01) in the range [0, 1000]. We compared GVM against i) the ML
estimate starting from the GVM value (full GP, 100 iterations), and ii) the sparse GP using 200 pseudo
inputs (Snelson & Ghahramani, 2006). Fig. 3 shows the computing times versus the number of observations
thus validating the claimed linear cost of GVM and its superiority wrt to the rest of the methods. The (solid
line) interpolation in the plot is of linear order for GVM, linear for sparse GP since the number of inducing
points is fixed, and cubic for the full GP.

Figure 3: Training times vs number of datapoints for the proposed GVM, full GP and sparse GP.

5.4 E4: Performance and cost of spectral and temporal metrics over the same time series

This experiment compares the performance and computational cost of the temporal and spectral implemen-
tations of GVM for a common time series and GP models of increasing complexity. We used a real-world
audio signal from the Free Spoken Digit Dataset4. GVM was implemented with the metrics L1 and L2 both
in the spectral and temporal domain to learn a sample from the above dataset, which was 4300 samples
long. The kernel considered was a spectral mixture (SM) (Wilson & Adams, 2013), Fig. 4 shows losses and
running times as a function of the number of components of the SM kernel; all runs use the Powell optimiser.
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e 
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]

Spectral L1
Spectral L2
Temporal L1
Temporal L2

Figure 4: Temporal and spectral implementation of GVM: Losses and running times as a function of the
order of the spectral mixture kernel.

From the left plot in Fig. 4 (losses) let us recall that each implementation has its own metric and thus
they are not comparable directly, however, notice that both spectral implementations are monotonic with
respect to the model order. Furthermore, the fact that the Temporal L2 loss increases with the model order
suggests that the optimisation in the time domain is more challenging than its spectral counterpart. In
terms of computational complexity, the right plot in Fig. 4 confirms monotonicity of the computational cost

4https://github.com/Jakobovski/free-spoken-digit-dataset
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with the number of kernel parameters, however, notice that the spectral implementations reach a plateau
after 10 components; further suggesting the superiority of the spectral implementation in terms of ease of
optimisation.

Lastly, Fig. 5 shows the fitting of both implementations and metrics in their respective domains. In the time
domain (top plots) we can see that the L1 metric (top left) provides a generally acceptable fit but misses
some peaks of the autocorrelation function (empirical kernel estimate K̂n), while the L2 metric (top right)
aims to reach the peaks of K̂n at the cost of missing central parts of it. In the spectral domain (bottom
plots) we see only minor discrepancies for both metrics, with perhaps the most interesting feature being the
difference in the peak at around frequency 0.04, where L1 matched the peak and L2 provided a wider fit.

0 100 200 300 400
time

0.0

0.5

1.0
Temporal distance: L1

Autocorrelation function
Learnt 10-comp Spectral Mix.

0 100 200 300 400
time

0.0

0.5

1.0
Temporal distance: L2

Autocorrelation function
Learnt 10-comp Spectral Mix.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
frequencies

0

100

Spectral distance: L1
Periodogram (w: hann)
Learnt 10-comp Spectral Mix.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
frequencies

0

100

Spectral distance: L2
Periodogram (w: hann)
Learnt 10-comp Spectral Mix.

Figure 5: Example of matching for the temporal (top) and spectral (bottom) implementation of GVM for
the 10-component SM using the L1 (left) and L2 (right) metrics.

With this comparison, we validate the intuition that for kernels with concentrated spectral information (such
as the spectral mixture) the spectral implementation of GVM is more robust to the metric and faces a less
challenging optimisation task.

5.5 E5: Fitting a 20-component spectral mixture (different spectral metrics)

This experiment shows the effect of different spectral distances in the GVM estimates, also using an audio
signal from the Free Spoken Digit Dataset (different from Experiment 4). Based on the promising perfor-
mance of the spectral implementation of GVM, we trained a 20-component SM, a kernel known to be difficult
to train, and considered the spectral distances L1, L2, W1 and W2 (spectral); Itakura-Saito and KL were
unstable and left our of the comparison. Fig. 6 shows the results of the GVM: observe that under almost all
metrics, the 20-component spectral mixture matches the Periodogram (considered to be the ground truth
PSD in this case). The exception is W2 which struggles to replicate the PSD peaks due to its objective of
averaging mass horizontally.

5.6 E6: Learning spectral mixtures and parameter initialisation (L2, multiple orders)

In this experiment, GVM was implemented to find the initial conditions of a GP with SM kernel (4, 8,
12 and 16 components) to a real-world 1800-point heart-rate signal from the MIT-BIH database5. We
considered the L2 metric (spectral) minimised with Powell and then passed the hyperparameters to an
ML routine for 1500 iterations (using Adam with learning rate = 0.1). This methodology was compared
against the random initialisation and provided by MOGPTK based on Bayesian nonparametric spectral
estimation (BNSE) (Tobar, 2018). Fig. 8 first shows the GVM approximations to the heart-rate PSD using
16-component spectral mixtures, for both both kernels.

5http://ecg.mit.edu/time-series/
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Figure 6: GVM matching Periodogram with a 20-component SM under different spectral metrics.
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Figure 7: NLLs for the SE spectral mixtures (4,8,12 and 16 components) with different initialisation strate-
gies.

Fig. 7 shows NLL for the cases considered. Observe that: i) the non-initialised ML training becomes trapped
in local minima in all four cases, ii) the initialisation provided by GVM provides a dramatic reduction of
the NLL, even wrt to the BNSE initialisation, iii) the “elbow” at the beginning of the GVM-initialised case
suggests that the ML training could have run for a a few iterations (e.g., 100) and still reach a sound solution.
Table 3 shows the execution times and reveals the superiority of GVM also in computational time.
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Figure 8: GVM approximations of the PSD of a 1800-sample heart-rate signal using 16-components SE (top)
and rectangular (bottom) mixtures. Training time shown above each plot.

5.7 E7: Learning an isotropic SE kernel (standard variogram, 5-dimensional inputs, L2)

Though our work focuses on the single-input-dimension case, recall that the GVM method is applica-
ble to datasets of arbitrary input dimension, therefore, to motivate the use of GVM for multi-input
GPs, we present a minimal multi-input example. We considered a 5-dimensional GP with SE kernel
K(τ) = σ2 exp(− 1

2l2 ||τ ||
2) + σ2

noiseδt, and considered four sets of values for the hyperparameters. Notice
that though we consider 5-dimensional input data, we assume that all dimensions have the same scale pa-
rameter, this is the usual setting of the Variogram method in Geostatistics (Cressie, 1993; Chiles & Delfiner,
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Table 3: Computation times (secs) for fitting SMs.
4-comp 8-comp 12-comp 16-comp

GVM init 2.6 7.6 10.9 23.9
BNSE init 74.6 68.9 72.0 74.1
ML 420.3 464.6 529.2 582.6

Table 4: GVM applied to multi-input data for four runs of synthetic data using different hyperparameters,
i.e., σ2, l, σ2

noise. For each set of hyperparameter, n = 100 runs were executed to calculate the mean and
standard deviation of the estimates (i.e., σ̂2, l̂, σ̂2

noise).

Run σ2 l σ2
noise σ̂2 l̂ σ̂2

noise
1 5 2 1 5.20 ± 2.07 0.50 ± 0.09 0.91 ± 0.68
2 15 2 2 14.12 ± 13.14 2.07 ± 1.09 2.04 ± 1.51
3 3 3 0.5 2.68 ± 3.33 3.24 ± 1.65 0.97 ± 0.71
4 0.5 5 0.5 0.45 ± 0.62 3.96 ± 2.50 0.56 ± 0.30

1999). For each set of hyperparameters, we sampled 1000 points and then implemented GVM with the L2
(temporal) distance to learn the GP. Table 4 shows the estimate error and standard deviation for each hyper-
parameter, from which the applicability of GVM to address the isotropic multi-input case can be confirmed.
For illustration and resemblance to the standard variogram method, Fig. 9 shows the case σ2 = 5, l = 1,
and σnoise = 1, where the learnt hyperparameters were σ̂2 = 5.85, l̂ = 1.09, and σ̂noise = 1.02.
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2

3

4

5
Variogram for a 5-dimensional isotropic SE kernel

Empirical variance
Learned kernel (GVM)

Figure 9: Empirical covariance and fitted covariance function via GVM. The data consisted of 1000 5-
dimensional datapoints.

6 Conclusions

By direct minimisation of the discrepancy among covariance functions, we have proposed a novel methodology
to pretrain stationary Gaussian processes, which avoids computation of the (cubic cost) likelihood function.
The found hyperparameter values can then be passed to a ML-based training routine as initial conditions
to conclude the training of the model. Our approach, termed Generalised Variogram Method (GVM),
represents a critical improvement in terms of computational complexity: we have shown, both theoretically
and empirically, that for the particular case of the 2-Wasserstein spectral distance and location-scale PSDs,
GVM is convex and its solution can be computed in a single step. In experimental terms, we have shown
the following properties of GVM in the general case: i) applicability to multi-input data, ii) stability wrt
to different ways of computing the Periodogram, iii) consistency under different realisations of the GP
unlike ML, iv) computational efficiency wrt ML and sparse GPs, v) a realistic alternative to compute initial
conditions for ML resulting in considerable reduction of ML iterations, and lastly, vi) ability to train kernels
of large number of components that are challenging to train from random initial conditions using ML.
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In the general formulation of the proposed GVM (i.e., using either a temporal or spectral divergence) the only
requirement in our setup is stationarity, however, particular results in our proposal have specific requirements.
First, when using a spectral divergence (the main novel contribution of our work), it is needed that the
kernels’ Fourier transform (i.e., the PSD) can be computed and is Lebesgue integrable so that DF (Ŝn, Sθ) in
equation 8 can be computed; this condition is rather general and admits most stationary kernels used in the
literature with the exception of the white noise variance—see Sec.4.4. Second, for the exact case outlined
in Thm. 1 we require that the PSD belongs to a location-scale family, this includes standard covariance
functions such as the (single-component) spectral mixture, square exponential, sinc, and cosine. PSDs that
are not location-scale such as mixtures of the above kernels can too be dealt with spectral divergences,
however, the solution is not exact and it has to be computed using numerical optimisation methods from
equation 8. Third, for all other covariances (including the white noise one) we can use GVM with temporal
divergences, which only requires the kernel to be stationary and evaluated pointwise, to find the solution via
equation 7.

Spectral kernels are a large class of covariance functions, therefore, the GVM is widely applicable in real-
world scenarios in audio, seismics, astronomy, fault diagnosis, finance and any other fields where repetitive
temporal patterns arise. In this sense, we hope that our work paves the way for further research in conceptual
and applied fields. In theoretical terms, we envision extensions towards non-stationary data using, e.g., time-
frequency representations or mini-batches. In practical terms, we aim to address the general-input-dimension
case and our developed companion software (to be converted into a standalone toolbox) will help others make
use of GVM as and initialisation method for ML or to directly find the required hyperparameters.
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A Background: Fourier analysis of continuous-time stochastic processes

We present a brief description of the elements of Fourier analysis used in our proposal. For a more in-depth
introduction of the subject, the reader is referred to Stoica & Moses (2005) and Vetterli et al. (2014).

Let us consider a stochastic process over Rn denoted (yt)t∈Rn , n ∈ N. Since the usual condition of stationarity
might be restrictive in some cases, we consider the following weaker version of stationarity.
Definition 3 (Wide-sense stationarity). The stochastic process y is wide-sense stationary (WSS) if its mean
function is constant and its autocorrelation only depends on the temporal difference. That is,

E[yt] = µ(t) = µ (14)
E[yt1yt2 ] = c(t1, t2) = c(t1 − t2). (15)

Though strict stationarity implies WSS, the implication does not hold in the opposite direction. However, for
Gaussian processes (GP), whose distribution is fully determined by the first two moments, strict stationarity
and WSS are equivalent conditions.
Definition 4 (Power spectral density). Let y be a WSS stochastic process with an absolutely integrable
correlation function c(τ) = E[ytyt−τ ]. The Fourier transform of c(·) given by

S(ξ) =
∫ ∞
−∞

c(τ)e−j2πξτdτ (16)

is called power spectral density.

Observe that, if both c and S satisfy the conditions for the inversion of the Fourier transform, then c and S
are Fourier pairs, meaning that we also have

c(τ) =
∫ ∞
−∞

S(ξ)ej2πξτdξ. (17)

Equations 16 and 17 are a consequence of the Wiener-Khinchin Theorem (Vetterli et al., 2014, p. 292), which
relates autocorrelation structure of a WSS process with its distribution of energy across frequencies. This
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Figure 10: Illustration of the relationship between covariance and spectral representations of GPs. Left to
right: kernel, PSD and a GP sample. Top to bottom: square exponential (SE), rational quadratic (RQ),
periodic (Per), cosine (cos) and spectral mixture (SM) kernels. For the RQ and Per kernels, the PSD was
computed numerically using the discrete time Fourier transform.

result is instrumental in the construction of GP: under the observation that GPs are uniquely determined
by their autocorrelation (or covariance) function, the design of a GP can be conveniently performed in the
frequency domain by parametrising the PSD. Furthermore, recall that for zero-mean GPs the autocorrelation
and autocovariance functions coincide; thus, we refer to the latter as the covariance kernel.

There are well-known pairs of kernels and PSDs that follow from the above observation. Figure 10 illustrates
five cases, showing the covariance kernels, their PSD and a sample of a GP with the corresponding kernel.

In practice, we regard data as realisations of a stochastic process and we need to estimate the covariance
or the PSDs from the available datasets. In the signal processing community, these quantities are usually
estimated in a nonparametric fashion. For instance, the sample covariance in Definition 1 is an estimate of
the covariance, which in the case of evenly-spaced dataset {y∆, . . . , yN∆} takes the standard form

ĉ(k∆) = 1
N − k

N−k∑
n=1

yn∆y(n+k)∆. (18)

The problem of recovering the PSD from a finite collection of observations {yt1 , . . . , ytN } is referred to as spec-
tral estimation and the classic nonparametric method to perform this estimation is called the Periodogram.
This technique builds on the observation that, under mild assumptions, the definition of the PSD in equation
16 is equivalent to

S(ω) = lim
T→∞

E

 1
2T

∣∣∣∣∣
∫ T

−T
yte
−jωtdt

∣∣∣∣∣
2
 . (19)
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Therefore, when only a finite dataset of observations is available, the limit and the expectation can be ignored
in the above expression thus yielding the natural sample estimate of the PSD given by

Ŝ(ω) = 1
N

∣∣∣∣∣
N∑
i=1

yte
−jωt

∣∣∣∣∣
2

, (20)

where N in the denominator replaced 2T as normaliser.

Equation 20 is known as the Periodogram, a widely used method for estimating the PSD of a WSS stochastic
process introduced by Schuster (1900). Today, however, the concept of Periodogram refers to a wider class
of techniques for spectral estimation that build on the original formulation but at the same time address
some of the known drawbacks related to the biasedness and large variance of the Periodogram.

Two widely used extensions of the Periodogram are the Bartlett and the Welch methods. The former operates
by splitting the data into segments and computing the standard Periodogram over each one of them, to then
average over all computed Periodograms with the aim to reduce the noise in the estimate. The latter follows
the same concept but also multiplies each segment by a window so as to mitigate the effect of the border of
the segments in the estimation. Usual choices for the windows are the Hann and Hamming functions.

B Definition of the distances and divergences

For two functions f1 and f2, we have the following general distances:

• 1-Euclidean : L1(f1, f2) =
∫
R |f1(ξ)− f2(ξ)|dξ

• 2-Euclidean : L2(f1, f2) =
∫
R(f1(ξ)− f2(ξ))2dξ

Furthermore, when f1 and f2 are densities with quantile functions Q1 and Q2 respectively, we have the
additional divergences:

• 1-Wasserstein (Villani, 2009; Peyré & Cuturi, 2019) :

W1(f1, f2) =
∫ 1

0
|Q1(p)−Q2(p)|dp

• 2-Wasserstein (Villani, 2009; Peyré & Cuturi, 2019) :

W2(f1, f2) =
∫ 1

0
(Q1(p)−Q2(p))2dp

• Kullback-Leibler :
DKL(f1‖f2) =

∫
R

log
(
f1(ξ)
f2(ξ)

)
f1(ξ)dξ

• Itakura-Saito (Itakura, 1968) :

DIS(f1‖f2) =
∫
R

(
f1(ξ)
f2(ξ) − log f1(ξ)

f2(ξ) − 1
)
dξ

• Bregman divergences (Amari, 2016) : for a function G : R → R that is differentiable and strictly
convex,

DG(f1, f2) = G(f1)−G(f2)− 〈∇G(f2), f1 − f2〉

Here, we have assumed that both f1 and f2 integrate unity, in the cases where this condition is not met, the
densities can be normalised before computing the distance.
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C Proofs

C.1 Convexity of spectral loss for W2 and location-scale family

Proof of Theorem 1. We recall that

W 2
2 (S, Sµ,σ) =

∫ 1

0
(Qµ,σ(p)−Q(p))dp. (21)

From a direct application of the rule of differentiation under the integral sign, we get the gradient for the
location-scale family:

∇µ,σW 2
2 (S, Sµ,σ) = 2

∫ 1

0
(Qµ,σ(p)−Q(p))∇µ,σQµ,σ(p)dp (22)

= 2
∫ 1

0
(µ+ σQ0,1(p)−Q(p))∇µ,σ(µ+ σQ0,1(p))dp

= 2
∫ 1

0
(µ+ σQ0,1(p)−Q(p))

(
1

Q0,1(p)

)
dp.

Hessian for the location-scale family:

Hµ,σW
2
2 (S, Sµ,σ) = 2

∫ 1

0

(
1 Q0,1(p)

Q0,1(p) Q0,1(p)2

)
dp. (23)

Determinant of the Hessian (via Jensen’s inequality):

|H|/2 =
∫ 1

0
Q0,1(p)2dp−

(∫ 1

0
Q0,1(p)dp

)2

>

∫ 1

0
Q0,1(p)2dp−

∫ 1

0
Q0,1(p)2dp = 0, (24)

where the inequality is strict due to the strict convexity of (·)2.

Therefore, the first order conditions are given by:

∫ 1

0
(µ+ σQ0,1(p)−Q(p))dp = 0 ⇐⇒ µ =

∫ 1

0
(Q(p)− σQ0,1(p))dp =

∫ 1

0
Q(p)dp (25)

and
∫ 1

0
(µ+ σQ0,1(p)−Q(p))Q0,1(p)dp = 0 (26)

⇐⇒ σ =
∫ 1

0 (Q(p)− µ)Q0,1(p)dp∫ 1
0 Q0,1(p)2dp

=
∫ 1

0 Q(p)Q0,1(p)dp∫ 1
0 Q

2
0,1(p)dp

, (27)

where in the last expression we have used the fact that the location of the prototype S0,1 is zero and so is
its mean, meaning that if x ∼ S0,1 we can write

∫ 1
0 µQ0,1(p)dp = µEx∼S0,1 [x] = 0.

C.2 Learning from data (W2 distance and location-scale family)

Proof of Proposition 1. First, recall that in the location-scale family θ = (µ, σ). We denote by Q and Q̂n
the respective quantile functions of S and Ŝn. Then, following the solutions in Theorem 1 and Jensen’s
inequality we can compute the following upper bound for the location parameter µ∗:

(E|µ∗ − µ∗n|)2 ≤ E|µ∗ − µ∗n|2 = E
∣∣∣∣∫ 1

0
Q(p)dp−

∫ 1

0
Q̂n(p)dp

∣∣∣∣2
≤ E

[∫ 1

0
|Q(p)− Q̂n(p)|2dp

]
= E[W 2

2 (S, Ŝn)],
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and by hypothesis EW 2
2 (S, Ŝn)→ 0.

In the same sense, now using Hölder’s inequality, we obtain the following bound for the scale parameter σ∗:

E|σ∗ − σ∗n| = E
∣∣∣∣∫ 1

0
Q(p)Q0,1(p)dp−

∫ 1

0
Q̂n(p)Q0,1(p)dp

∣∣∣∣
≤ E

[∫ 1

0
|(Q(p)− Q̂n(p))Q0,1(p)|dp

]
≤ E

[(∫ 1

0
|Q(p)− Q̂n(p)|2dp

) 1
2
](∫ 1

0
|Q0,1(p)|2dp

) 1
2

= E[W2(S, Ŝn)]
(∫ 1

0
|Q0,1(p)|2dp

) 1
2

,

which tends to 0 by again Jensen’s inequality, (E[W2(S, Ŝn)])2 ≤ E[W 2
2 (S, Ŝn)]→ 0.

D Code

We have developed a short self-contained toolbox included in the attached Supplementary Material. The
purpose of the code is to facilitate the use of the proposed method by the community and in particular to
replicate all our results. The components included are as follows

• The files waflgp.py and gpinit.py defines the class, constructor and methods for the spectral and
temporal distances respectively.

• The file utils.py, which contains simple auxiliary functions

• The Jupyer Notebook Exp0_minimal_ex, a minimal working example of our toolbox

• Notebooks Exp1, Exp2, Exp3, Exp4, Exp5, Exp6 replicate the paper experiments.

• The data used for the experiments (heart-rate and audio)

For the reader’s conveniece, Jupyter Notebook Exp0_minimal_ex is attached here.
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Minimal working example of provided code

Exp0 _minimal_ ex

June 3, 2021

[1]: #general imports
import numpy as np
import matplotlib.pyplot as plt
#our package
from waflgp import *
import utils

[2]: #load data
signal = np.loadtxt('Data/hr2.txt')

[3]: #instantiate model, sum of 16 Gaussians
q = 16
gp = waflgp(space_output=signal, aim = 'learning', kernel = 'qSM')#Spectral Mix
#set frequencies (optional)
freqs = np.linspace(0,0.02,2000)
gp.set_freqs(freqs)

[4]: #train with periodogram, L2 metric and q components
gp.train_WL(method = 'periodogram', metric = 'L2', order=q)
#plot Periodogram and best PSD fit
gp.plot_psd(title = f'Minimal example')

Optimization terminated successfully.
Current function value: 0.002876
Iterations: 33
Function evaluations: 21261

L2-ok

1E Additional figures for E2

Experiment E2 shows the sensibility of the choice of Periodogram method and window for two kernels. Here,
we provide all the figures corresponding to the estimates in Table 2 in the paper. The caption of each set of
figures explains the setting considered.
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Figure 11: Kernel: Exp-cos.
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Figure 12: Kernel: Sinc.
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