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ABSTRACT

Transformers have become dominant in large-scale deep learning tasks across var-
ious domains, including text, 2D and 3D vision. However, the quadratic com-
plexity of their attention mechanism limits their efficiency as the sequence length
increases, particularly in high-resolution 3D data such as point clouds. Recently,
state space models (SSMs) like Mamba have emerged as promising alternatives,
offering linear complexity, scalability, and high performance in long-sequence
tasks. The key challenge in the application of SSMs in this domain lies in reconcil-
ing the non-sequential structure of point clouds with the inherently directional (or
bi-directional) order-dependent processing of recurrent models like Mamba. To
achieve this, previous research proposed reorganizing point clouds along multiple
directions or predetermined paths in 3D space, concatenating the results to pro-
duce a single 1D sequence capturing different views. In our work we introduce a
method to convert point clouds into 1D sequences that maintains 3D spatial struc-
ture with no need for data replication, allowing Mamba’s sequential processing
to be applied effectively in an almost permutation-invariant manner. In contrast
to other works, we found that our method does not require positional embed-
dings, and allows for shorter sequence lengths while still achieving state-of-the-art
results in ModelNet40 and ScanObjectNN datasets and surpassing Transformer-
based models in both accuracy and efficiency.

1 INTRODUCTION

Today, the transformer architecture is the most common technology powering large-scale deep learn-
ing systems. Since their introduction by Vaswani et al. (2017), transformers have been widely
adopted in text (Dubey et al., 2024; Team et al., 2023), image (Dosovitskiy et al., 2020; Touvron
et al., 2021; Liu et al., 2021), and video (Bertasius et al., 2021; Tong et al., 2022; Liu et al., 2022;
Wang et al., 2023) data, as well as in the multimodal setting (Radford et al., 2021; Liu et al., 2024a).
In 3D vision and particularly point cloud analysis, transformers achieve state-of-the-art results (Guo
et al., 2021; Yu et al., 2022; Pang et al., 2022; Wu et al., 2024), often surpassing convolution-based
approaches (Wu et al., 2019; Li et al., 2018) at scale.

While the structure of transformers is favorable on modern hardware, their softmax attention mech-
anism drastically affects the model complexity with respect to the sequence length (in text) or the
number of patches (in image/video/point clouds) – which scales quadratically with respect to these
quantities. Over the years, this issue inspired extensive research on alternative sequence mixer strate-
gies, such as separable attention (Wang et al., 2020; Choromanski et al., 2020; Lee-Thorp et al.,
2021; Chen et al., 2021; Wortsman et al., 2023; Arora et al., 2024; Ramapuram et al., 2024), as
well as the development more efficient GPU implementations of softmax attention (Dao et al., 2022;
Dao, 2023; Shah et al., 2024). However, the most relevant leap forward on this issue arguably came
in recently and coincided with the design of state-space models such as Mamba (Gu & Dao, 2023)
as well as other parallelizable token mixers (Poli et al., 2023; De et al., 2024; Yang et al., 2023;
Qin et al., 2024; Yang et al., 2024; Beck et al., 2024). SSMs are highly parallelizable RNN-like1

sequential blocks that sparked from the seminal work of Gu et al. (2020; 2022), where complexity

1Alternatively, SSMs can be seen as fast and well-parametrized linear attention mechanisms (Dao & Gu,
2024a; Sieber et al., 2024; Ali et al., 2024). This connection between RNNs and linear attention dates back to
earlier works (Katharopoulos et al., 2020; Schlag et al., 2021).
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scales linearly with sequence length, unlocking long-context processing in several challenging ap-
plications such as audio (Goel et al., 2022) and DNA modeling (Nguyen et al., 2024). On top of
improved efficiency in the long-context setting, Mamba, xLSTMs, and other new RNN/linear at-
tention variants often show general improvements in downstream performance (see empirical study
on text in Waleffe et al. (2024)) and reasoning capabilities e.g. in the long-range arena (Tay et al.,
2020) and other challenging text tasks where transformers can struggle (Beck et al., 2024).

Along with 2D vision (Liu et al., 2024c; Zhu et al., 2024; Li et al., 2024), Mamba was soon ap-
plied to several 3D data domains (Xing et al., 2024; Zhang et al., 2024b) and specifically to point
clouds (Liang et al., 2024; Zhang et al., 2024a; Liu et al., 2024b), where it looks particularly promis-
ing since datasets such as ScanNet (Dai et al., 2017), often contain over 100k points. Compared to
the 1D setting such as audio and text, where Mamba (just like any RNN variant) naturally processes
data left-to-right or bidirectionally without the need for positional embeddings (Waleffe et al., 2024),
2D and 3D data is inherently not sequential and hence pose an intriguing conceptual challenge to
the application of Mamba. Note that instead non-causal attention-based models are set operations2,
where position is often added directly to the features (Vaswani et al., 2017; Su et al., 2024) or to the
attention matrix (Press et al., 2021). As such, while 1D/2D and 3D data are conceptually similar in
attention (i.e., set operation + positional information as a feature, see e.g. Dosovitskiy et al. (2020)),
they become puzzling when an order-sensitive sequential block processes inputs. This motivates our
question, which we explore in the 3D setting:

How shall we apply a sequential model to non-sequential data, e.g. a point cloud?

Addressing this question is scientifically intriguing, timely, and crucial for fully harnessing the po-
tential of new efficient attention variants in the 3D domain. While inspecting the constantly growing
literature on Mamba applications in 3D vision, we can see two recurring patterns3.

(A) 3D point cloud data has to be converted into an ordered sequence before Mamba can be ap-
plied. This has been achieved with different strategies such as reordering the points along
axis and replicating the sequence (Liang et al., 2024; Zhang et al., 2024a) or scanning it from
different directions (Liu et al., 2024b).

(B) Much like in transformers, positional embeddings are used. This information is conceptually
redundant since (1) positional information is contained in the feature themselves, and (2) the
ordering of patches along the constructed sequence is already used by Mamba implicitly. Note
that in text, Mamba is often applied without positional embeddings (Waleffe et al., 2024).

While the performance of Mamba in 3D data already shows promise, often surpassing transformers
in accuracy and processing speed, points A and B above showcase that applying Mamba to point
clouds poses nontrivial challenges, potentially affecting robustness and generalization out of dis-
tribution. Towards understanding and improving our understanding of the optimal preprocessing
strategies for Mamba-powered models for 3D data, we introduce the following contributions:

1. We draw attention to the problem of sequence construction when applying Mamba to 2D or 3D
data. We complement our discussion with both theoretical considerations on invariances and
positional embeddings (Sec. 3.3) and ablations (Sec. 4).

2. We introduce NIMBA 4, a Mamba-like model that feeds 3D data points based on an intuitive
3D-to-1D reordering strategy that preserves the spatial distance between points (Sec. 3.3.2).
This strategy allows for safe removal of positional embeddings without affecting (most times,
improving) performance. This is in stark contrast to all previously introduced Mamba strategies
in point clouds where our ablation reveal a performance drop when positional embeddings are
not used. Along with improved efficiency, our results (Sec. 4) showcase how principled ordering
along a point cloud can improve performance of Mamba models in this setting.

3. We show how our ordering strategy in NIMBA drastically improves robustness of the model
against data transformations such as rotations and jittering (Sec. 4).

2As noted by Kazemnejad et al. (2024), BERT encoders (Devlin et al., 2019) on text without positional
embeddings are a bag-of-words model. Deep causal self-attention (decoders) can instead recover positional
information at the second layer.

3Similar discussion would hold for 2D data, see e.g. Liu et al. (2024c).
4The name NIMBA is derived from the combination of Nimbus (latin for “dark cloud”) and Mamba.
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We compare our contributions with previous work in Table 1.

Model Backbone Sequence length Bidirectional Pos embedding
PCT Transformer N × ✓
PointMAE Transformer N × ✓
PointMamba Mamba 3N × ✓
Point Cloud Mamba Mamba 3N ✓ ✓
OctreeMamba Mamba N ✓ ✓
Point Tramba Hybrid N ✓ ✓
PointABM Hybrid N ✓ ✓
NIMBA (Ours) Mamba N × ×

Table 1: Comparison of Models based on Architecture, Sequence Length, Directionality and Posi-
tional Embedding. We denote with N number of points in the point cloud.

2 RELATED WORK

Point Cloud Transformers. Transformers, initially designed for NLP, have proven to be highly
effective in point cloud analysis due to their global attention mechanisms and permutation invariance
properties. Early models like Vision Transformer (ViT) (Dosovitskiy et al., 2020) demonstrated that
transformers could outperform CNNs in classification by applying attention directly to patches. This
success inspired their application to point clouds, where global feature modeling is crucial.
Point-BERT (Yu et al., 2022) applied BERT’s masked modeling to 3D data, using a discrete tok-
enizer to convert point patches into tokens and self-supervised pre-training to recover masked points.
Point-MAE (Pang et al., 2022) further advanced this with masked autoencoding, learning latent rep-
resentations by reconstructing missing parts from masked inputs. These methods outperformed
traditional models by leveraging large unlabeled datasets, but their self-attention’s quadratic com-
plexity limits scalability. OctFormer (Wang, 2023) addressed this by using octree-based attention,
reducing computational costs through local window partitioning while maintaining performance for
large-scale tasks.PointGPT (Chen et al., 2023) uses an autoregressive framework inspired by GPT,
treating point patches as sequential data to predict the next patch. This pre-training strategy shows
strong generalization in few-shot and downstream tasks, enhancing transformers’ flexibility in point
cloud processing. Similarly, PCT (Guo et al., 2021) leverages transformer architecture with permuta-
tion invariance to process unordered point sequences. By using farthest point sampling and nearest
neighbor search, PCT captures local context effectively, achieving state-of-the-art performance in
tasks like shape classification and part segmentation.

Point Cloud State Space Models. The use of SSMs in point cloud analysis has recently gained at-
tention as a promising approach to address the computational limitations of transformer-based archi-
tectures. Although transformers effectively capture global dependencies, their quadratic complexity
impedes scaling to high-resolution point clouds. In contrast, SSMs like the Mamba architecture of-
fer linear complexity and efficient long-range modeling. Yet a primary challenge in applying SSMs
to point clouds is the unordered nature of the data, which does not align well with the sequential
processing of SSMs. To address this, researchers have already proposed methods to convert point
clouds into sequences.

One common strategy among recent works is to design ordering methods that preserve the spa-
tial relationships within point clouds when converting them into sequences. For example, Point-
Mamba (Liang et al., 2024) and Point Cloud Mamba (PCM) (Zhang et al., 2024a) introduce axis-
wise reordering techniques and sequence replication to improve SSMs’ ability to capture both local
and global structures. Other studies use hierarchical data structures to reflect the spatial hierar-
chy, such as octree-based ordering in OctreeMamba (Liu et al., 2024b), which organizes points in
a z-order sequence, maintaining spatial relationships while capturing features at multiple scales.
While preserving spatial relationships during serialization is crucial, enhancing local feature extrac-
tion within SSMs is equally important for point cloud analysis. Although SSMs model long-range
dependencies efficiently, capturing fine-grained local details remains important. Mamba3D (Han
et al., 2024) addresses this by introducing a Local Norm Pooling block to improve local geometric
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representation. It also employs a bidirectional SSM operating on both tokens and feature channels,
balancing local and global structure modeling without increasing computational complexity.

Following (Waleffe et al., 2024; Dao & Gu, 2024a), Another line of research combines the strengths
of Transformers and SSMs for better performance and efficiency. PoinTramba (Wang et al., 2024)
integrates Transformers to capture detailed dependencies within point groups, while Mamba mod-
els relationships between groups using a bidirectional importance-aware ordering strategy. By re-
ordering group embeddings based on importance scores, this approach improves performance and
addresses random ordering issues in SSMs. SSMs are also applied to point cloud completion and
filtering. 3DMambaIPF (Zhou et al., 2024) uses Mamba’s selection mechanism with HyperPoint
modules to reconstruct point clouds from incomplete inputs, preserving local details often lost in
Transformers. For filtering, it combines SSMs with differentiable rendering to reduce noise in large-
scale point clouds, improving alignment with real-world structures and handling datasets with hun-
dreds of thousands of points where other methods struggle.

These works show that SSMs effectively address key challenges in point cloud analysis, offering
efficient and scalable solutions for various tasks. With advances in serialization, feature extraction,
and hybrid architectures, SSMs have become a valuable approach for advancing 3D vision applica-
tions. In this work, our goal is to further strengthen these results by offering a simple, principled
and robust solution for constructing input sequences input of Mamba-like models.

3 MODEL DESIGN

We start in Sec. 3.1 by overviewing the processing strategies common in the point cloud literature. In
Sec. 3.2 by recalling the basic properties of Mamba and self attention, highlighting their connections.
We continue in Sec. 3.3 by describing how Mamba-like processing of point cloud data leads to
interesting considerations around the effects of assigning an order to patches in 3D space. We then
analyze the PointMamba strategy in Sec. 3.3.1 and in Sec 3.3.2 we describe our methodology.

3.1 BASIC STRATEGIES IN POINT CLOUD ANALYSIS

We outline the typical pipeline used for point cloud analysis in recent deep models. These are not
specific to our model, but will allow us to make connections and simplify the discussion.
Preprocessing. The goal of the preprocessing phase is to reduce the cardinality of the point cloud
while preserving the structure of the data, allowing for more efficient computation in subsequent
stages. Formally, let P = {pi | pi ∈ R3, i = 1, . . . , N} represent the point cloud, where N is
the total number of points, and pi = (xi, yi, zi) denotes the 3D coordinates of each point. After
normalizing the points, a 2-step process is often followed:
1. Center Selection: nc points are selected using the Farthest Point Sampling (FPS) algorithm. FPS

iteratively selects points that are farthest from each other, ensuring that the sample is represen-
tative of the original point cloud. These points are referred to as ”centers” {Ci}nc

i=1, providing
global information about the object.

2. Patch Creation: For each center, np nearest points are selected using the k-Nearest Neighbors
(kNN) algorithm. This results in a set of patches {Pi}nc

i=1, each centered around one of the
chosen centers, capturing more localized information about the object.

The values of nc and np are hyperparameters of this preprocessing stage. In our experiments, we
followed the procedure of previous work in the literature that can be found in Appendix A.
Patch Embedding. Each patch Pi is embedded into a fixed-dimensional vector pi through a se-
quence of expansions, convolutions, and linear projections. This embedding process is a pointwise
transformation from RBS×np×3 → RBS×np×de . Here BS is the batch size, np is the number of points
per patch, and de is the embedding dimension. This embedding captures local geometric information
within each patch, which is crucial for understanding the finer details of the object structure.
Center Embedding. Each center Ci is embedded into a fixed-dimensional vector ci to capture
global positional information and provide context for the relationships between different patches.
This embedding process is a pointwise transformation from RBS×nc×3 → RBS×nc×de .

Following the setting of transformer-based models (Vaswani et al., 2017), the center embedding
serves a similar purpose to positional embeddings in point cloud analysis. By focusing on capturing

4
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spatial relationships across the entire point cloud, it is believed to provide a complementary view to
the local information captured by patch embeddings.

3.2 ATTENTION AND MAMBA

In this subsection we denote by X ∈ RN×d a generic input consisting of N elements in d dimen-
sions. In the context of Sec. 3.1, X is the sequence of patch embeddings possibly augmented with
positional embeddings. We denote by Xi the i-th row of X , corresponding to an input token in text
or a patch/point cluster in vision. We describe attention and Mamba-like processing of X yielding
updated representations Y ∈ RN×d.

Attention. The standard self-attention block (Vaswani et al., 2017) consists of three matrices:
WQ, WK , and WV , which are the learnt parameters of the model. These matrices, when multiplied
with the input X ∈ RN×d, yield the queries Q ∈ RN×d, keys K ∈ RN×d, and values V ∈ RN×d:
Q = XWQ, K = XWK , V = XWV . These are combined to produce the output Y ∈ RN×d.

Y = softmax

(
QK⊤
√
d

)
V, (1)

where softmax is applied row-wise. Assuming for simplicity WV is the identity matrix, we get

Y = ΦX
SDPA ·X, (2)

where ΦSDPA ∈ RN×N mixes tokens as follows:

ΦX
SDPA = softmax


1√
d
X0WQW

⊤
KX⊤

0
1√
d
X0WQW

⊤
KX⊤

1 · · · 1√
d
X0WQW

⊤
KX⊤

N
1√
d
X1WQW

⊤
KX⊤

0
1√
d
X1WQW

⊤
KX⊤

1 · · · 1√
d
X1WQW

⊤
KX⊤

N

...
...

. . .
...

1√
d
XNWQW

⊤
KX⊤

0
1√
d
XNWQW

⊤
KX⊤

1 · · · 1√
d
XNWQW

⊤
KX⊤

N

 . (3)

In causal self-attention, used e.g. in language modeling, the upper triangular portion of ΦSDPA is set
to 0. For vision application, ΦSDPA is often used without masking.

Mamba. Architectures based on state-space models (SSMs) (Gu et al., 2022; Gu & Dao, 2023;
Dao & Gu, 2024a) compute the output Y through a dynamic recurrence of input signals. X is seen
as a time-series where time flows from left to right: X1, X2, . . . , XN . Starting from Zi−1 = 0 ∈ Rn

Zi = AiZi−1 +BiXi (4a)
Zi = CiZi +DiXi, (4b)

where Zi is the hidden state of the system, and the dynamic matrices of appropriate dimensions
Ai, Bi, Ci, Di are functions of the model parameters as well as the input. The S6 block (Gu & Dao,
2023; Dao & Gu, 2024a) parametrizes the recurrence as

Ai = e−∆iWA , Bi = ∆iWBXi, Ci = WCXi, Di = WDXi (5)

and ∆i = softplus(W∆Xi + b∆), with W∆, WA, WB , WC , WD are learnt matrices of appropri-
ate dimensions, and b∆ is a learnt bias. It is well known (Katharopoulos et al., 2020; Ali et al.,
2024; Dao & Gu, 2024a; Sieber et al., 2024) that this system can be cast into an attention matrix
representation 5, also known in the SSM literature as convolutional representation (Gu et al., 2021):

Y = ΦX
S6 ·X, (6)

where

ΦX
S6 =


C0B0 +D0 0 · · · 0
C1A1B0 C1B1 +D1 · · · 0

...
. . . . . .

...
CN

∏N
k=1 AkB0 · · · CNANBN−1 CNBN +DN

 . (7)

5In modern variants of Mamba such as Mamba2 (Dao & Gu, 2024a), the hidden dimension of Z in Eq. 4 is
such that ΦS6 ∈ RN×N . For earlier variants, the transformation is conceptually similar but has to be written in
a slightly different form.
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Architecture. Attention and S6 layers are often used in deep networks by interleaving with MLPs,
normalization components and skip connections. We use in this paper the backbone of the Mamba
architecture (Gu & Dao, 2023), and refer to the original paper for details as well as to our appendix.

3.3 POSITIONAL EMBEDDINGS AND ARROW OF time IN MAMBA AND ATTENTION

There are two crucial macroscopic differences between ΦSDPA and ΦS6:

• ΦS6 is lower triangular, while ΦSDPA is not.

• ΦSDPA has an isotropic structure: entries close to the diagonal are computed similarly to entries
far from the diagonal. Instead, in ΦS6 the distance to the diagonal affects computation: it affects
in the number of Ais multiplied together in the formula for each entry.

This divergence between Mamba and Softmax attention is quite deep, and implications are strictly
related to the two propositions below:

Proposition 1 (Softmax Attention). Y = ΦX
SDPA ·X is invariant to row-wise permutations Π of the

input. For all X,Π and model parameters, we have Φ
Π(X)
SDPA ·Π(X) = Π(ΦX

SDPA ·X).

Proposition 2 (Mamba). Y = ΦX
S6 · X is not invariant to row-wise permutations Π of the input:

there exists X,Π and model parameters such that ΦΠ(X)
S6 ·Π(X) ̸= Π(ΦS6 ·X).

Proposition 1 directly follows from the fact that attention is a set operation (Vaswani et al., 2017),
and proposition 2 is also easy to prove (see appendix).

Pros of being sequential. Cirone et al. (2024) proved that S6 – with no need for positional embed-
dings – can simulate any autonomous nonlinear dynamical system evolving in the direction i → i+1.
This result is rooted in more general statements regarding Turing Completeness of RNNs (Siegel-
mann & Sontag, 1992; Chung & Siegelmann, 2021). Indeed, in language modeling, Mamba is
used without positional embeddings (Waleffe et al., 2024), in contrast to Softmax Attention without
masking which requires positional embedding information capture distance information within X6.

Cons of being sequential. While in the text is convenient to drop positional embeddings, in the
2D and 3D applications, the notion of “position” cannot be easily captured by 1D ordering in a
sequence: when processing data X where each Xi relates to a precise position in space, the out-
put Y crucially depends on the chosen order the Xis are arranged into – in contrast with softmax
attention (see propositions above). In a point cloud, we might order along the principal axis in 3D
space and feed point clusters one at a time along these axes (Liang et al., 2024) or along an octree-
determined path (Liu et al., 2024b). The output of S6, in this case, still depends on the processing
order, regardless of the inclusion of additional positional embeddings in X and despite the potential
bidirectional application of such models.

In this paper, our goal is to work towards a principled strategy for processing point clouds with in-
herently sequential models such as Mamba. We first describe in-depth one existing approach (Liang
et al., 2024) in Sec. 3.3.1 and then propose a patch reordering strategy that is able to match or
improve performance compared to existing approaches, without requiring positional embedding but
relying solely on the sequential patch ordering we introduce. This both reveals sensitivity to Mamba
in sequence construction and potential for future developments using our strategy.

3.3.1 POINTMAMBA STRATEGY

Despite the conceptual difficulty in processing 3D data with sequential models, several approaches
have been tested in the the literature (see Sec. 2). We here present the strategy proposed by Point-
Mamba (Liang et al., 2024): Following the notation of Sec. 3.1, centers {Ci}nc

i=1 are first sorted
along each axis (x, y, z) independently, resulting in three separate ordered sequences: (Cx

i )
nc
i=1,

(Cy
i )

nc
i=1, and (Cz

i )
nc
i=1. For each axis-sorted sequence, we obtain the corresponding patch embed-

dings {pi} and center embeddings {ci}, which are then concatenated in the three orders above to
form the input sequence X .

6Kazemnejad et al. (2024) recently proved that causal self-attention can instead recover positional informa-
tion in 1D structures. Yet, modern practice still adopts positional embeddings by default also in this setting.

6
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Figure 1: Ordering Strategy of NIMBA and PointMamba.

This strategy allows for successful processing, as we report in Sec. 4, yet has several weaknesses:

• The method results in the sequence length being tripled, introducing redundancy and negatively
affecting efficiency.

• Centers that are close in the 3D space may not be adjacent in the sequence, which can affect the
model’s robustness and ability to capture spatial relationships effectively.

• As we show in Sec. 4, this method is highly sensitive to the presence of positional embedding
information. While this is common in standard attention-based architectures, it is less natural in
Mamba-based models. In addition, it increases number of parameters and introduces additional
redundancy.

3.3.2 NIMBA STRATEGY

To overcome the limitations of the PointMamba strategy, we propose the NIMBA approach, designed
to better maintain geometric relationships by ensuring that consecutive centers in the 1D sequence
fed to the model are close in 3D space. The NIMBA strategy is based on the concept of local
proximity preservation:

1. Initial Axis-Wise Ordering: Initially, centers are flattened by ordering along the y-axis. Any
initial order could work, but we chose the y-axis as empirical results indicated that this ordering
reduces the computational cost of the following phase.

2. Proximity Check: We scan the sequence obtained previously and we iteratively check the dis-
tance between the current and the next center. If the distance exceeds a predefined threshold r,
we look for a center along the sequence that is near enough to the starting center and place it
next to it. If no suitable center is found within the threshold, the sequence proceeds to the next
center without modification. In this way, we ensure that consecutive centers in the sequence have
a distance less than r.

Mathematically, the proximity check can be described as ∥Ci−Ci+1∥ < r, where ∥·∥ represents the
Euclidean distance in 3D space. The choice of r is crucial: a high threshold value (e.g., r ≥ 2

√
3,

the diagonal of a unit cube) means that the sequence remains similar to the initial order since the
requirement will always be satisfied. Instead, using a low threshold (e.g., r = 0) is computationally
expensive since each center would be compared to all the others in the sequence, and will result in
an ordering identical to the initial axis-wise order, as no centers will be considered close enough
to trigger reordering. In our experiment we found r = 0.8 to be a good balance between quality
of reordered sequence and computational cost. Other than efficiency reasons, the choice of the
threshold r is related to the nature of point cloud datasets. Indeed, in ModelNet and Scanobject
datasets the objects are contained in a [−1, 1]3 cube. The literature confirms that this comes from
the nomalization step, which is a standard procedure in similar works and datasets. The choice of r
can be interpreted as a portion of the distance between the center of the scene and the border of the
scene, which should be 40%. Figure 2 show the complete pipeline of NIMBA

Figure 1 show the sequence created from the two strategies. When comparing to the PointMamba
approach, NIMBA does not rely on positional embeddings and doesn’t replicate the sequence: the
reordering strategy proposed leverages the spatial relationships of points, allowing the model to rely
only on the patch embedding, thus enhancing accuracy and stability.
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Figure 2: Overview of NIMBA pipeline.

4 EXPERIMENTAL RESULTS

To make comparisons as fair as possible, we implemented our model in the code environment of
PointMamba (Liang et al., 2024), which in turn builds on the Point-MAE framework (Pang et al.,
2022)7. Rather than fine-tuning a pre-trained model, we trained from scratch to better highlight the
difference between each setting. In Appendix A, we provide a comprehensive dataset description
as well as implementation details for NIMBA . We report the grid search process used to select
the learning rates for reproducing experiments from other models. We dedicate to all methods we
reproduce the same tuning efforts as NIMBA , and repeat all experiments three times and report the
results as mean accuracy ± standard deviation.

4.1 OBJECT CLASSIFICATION

We evaluate our proposed model, NIMBA , against various baseline models on multiple object clas-
sification benchmarks, including ModelNet (Wu et al., 2015) and three versions of ScanObjectNN
(OBJ-BG, OBJ-ONLY, and PB-T50-RS from Uy et al. (2019)). Results are summarized in Table 2.

Model Backbone Param. (M)↓ Accuracy (%)↑
ModelNet OBJ-BG OBJ-ONLY PB-T50-RS

PointNet (Qi et al., 2017a)∗ Neural Network 3.5 89.2 73.3 79.2 68.8
PointNet++ (Qi et al., 2017b)∗ Neural Network 1.5 90.7 82.3 84.3 77.9
PCT (Guo et al., 2021)∗ Transformer 2.9 90.17 - - -

Point Mamba† Mamba 12.3 92.08 ± 0.16 87.80 ± 0.72 87.20 ± 0.88 82.20 ± 0.45
NIMBA (Ours) Mamba 12.3 92.10 ± 0.14 89.06 ± 0.42 89.29 ± 0.23 83.91 ± 0.38

Point-MAE† Transformer 22.1 92.30 ± 1.02 86.77 ± 0.91 86.83 ± 0.78 81.23 ± 0.77
PointMamba† Mamba 23.86 92.08 ± 0.19 88.01 ± 0.77 86.49 ± 0.49 83.01 ± 0.82
NIMBA (Ours) Mamba 23.86 92.10 ± 0.14 89.80 ± 0.36 89.76 ± 0.37 84.21 ± 0.65

Table 2: Accuracy on classification tasks. Different scales are reported. ∗ are values reported
from the PointMamba paper (Liang et al., 2024), while † are our reproducing choosing the best-
performing learning rate for each model and task.

Transformer-based Models. Transformer-based models such as PCT and Point-MAE achieve com-
petitive accuracies on these benchmarks. However, NIMBA surpasses these models by up to ≈ 2%
on several datasets while using fewer parameters. Importantly, NIMBA achieves these improvements
without employing positional embeddings.

Mamba-based Models. For Mamba-based architectures, our baseline PointMamba achieves strong
performance. NIMBA exceeds PointMamba across all datasets, with accuracy improvements of up to
1.5%. Additionally, when scaling up to 23.86M parameters, NIMBA continues to enhance its perfor-
mance, surpassing the larger PointMamba model. These results demonstrate that NIMBA effectively
leverages additional parameters to improve accuracy while maintaining efficiency.

Training Efficiency. Beyond accuracy, we also assess the training efficiency of NIMBA compared
to PointMamba. As shown in Table 3, NIMBA reduces the training time by ≈ 14% on ModelNet and

7Code will be released after publication, along with a github repository.
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≈ 17% on ScanObjectNN after 300 epochs of training. This improvement in training speed further
highlights the efficiency of our model.

Models Param.(M)↓ Time (m)↓
ModelNet ScanObjectNN

PointMamba† 17.4 500 240
NIMBA (Ours) 17.4 430 200

Table 3: Training time comparison in 300 epochs

Overall, NIMBA outperforms both transformer-
based and Mamba-based baseline models with-
out relying on positional embeddings, demon-
strating its effectiveness in object classification
tasks.

4.2 PART SEGMENTATION

Models Param.(M)↓ Cls. mIoU(%)↑ Inst. mIoU(%)↑
PointNet∗ - 80.39 83.7
PointNet++∗ - 81.85 85.1
Point-MAE† 27.1 83.91 ± 0.43 85.7 ± 0.23
PointMamba† 17.4 83.37 ± 0.17 85.07 ± 0.12
NIMBA (Ours) 17.4 84.36 ± 0.06 85.54 ± 0.05

Table 4: Performance comparison on the ShapeNetPart
segmentation task. ∗ indicates values reported in the
PointMamba paper (Liang et al., 2024), while † de-
notes our reproduced results using the best-performing
learning rates for each method.

We evaluate NIMBA on the part seg-
mentation task using the ShapeNetPart
dataset. As shown in Table 4, we re-
port the mean IoU (mIoU) for both class-
level (Cls.) and instance-level (Inst.)
metrics. NIMBA achieves higher Cls.
mIoU compared to both Transformer-
based and Mamba-based models and
demonstrates competitive performance in
Inst. mIoU. Specifically, NIMBA outper-
forms our Mamba-based baseline, Point-
Mamba, by ≈ 1% in Cls. mIoU while
maintaining similar Inst. performance. Since all models are tuned to best independently, we at-
tribute this performance boost to our improved reordering strategy.

4.3 ABLATIONS

Here, we present a series of ablation studies to investigate the impact of the different components
even further. In particular, in Sec. 4.3.1 we show and compare the effects of positional embedding,
in Sec. 4.3.2 we test the robustness of models when augmentation and noise are applied and in
Sec. 4.3.3 we see how a bidirectional implementation of Mamba affects performances. All the
ablations were made on the classification task on the ScanObjectNN dataset OBJ-BG variation.

4.3.1 EFFECT OF POSITIONAL EMBEDDING

Models Acc. with PE(%)↑ Acc. without PE(%)↑ Gap(%)↓

Point-MAE† 86.77 ± 0.91 80.24 ± 0.87 6.53 ± 1.78
PointMamba† 87.80 ± 0.72 83.69 ± 0.76 4.11 ± 1.48
PoinTramba† 92.42 ± 0.48 86.46 ± 0.34 5.96 ± 0.82
NIMBA (Ours) 89.80 ± 0.36 88.12 ± 0.54 1.68 ± 0.90

Table 5: Influence of positional emebedding (PE) on perfor-
mance. ∗ indicates values reported in the PointMamba paper
(Liang et al., 2024), while † denotes our reproduced results
using the best-performing learning rates.

To investigate the impact of po-
sitional embedding (PE), we con-
ducted a series of experiments com-
paring transformer, Mamba, and hy-
brid models. As shown in Table
5, performance generally declines
when PE is removed, affecting both
models with attention blocks and
Mamba-based models. This includes
PoinTramba, which, despite outper-
forming NIMBA under normal condi-
tions, relies heavily on PE. Without it, NIMBA achieves better results. We observed that many
Mamba-like models using PE often replicate sequences or add bidirectionality to maintain perfor-
mance. We hypothesize this is due to redundancy: when sequences are insufficiently meaningful, the
model scans them multiple times for better information retrieval. In contrast, NIMBA ’s reordering
strategy preserves sequence length and performs well without PE.

4.3.2 ROBUSTNESS

To further explore the differences between PointMamba and NIMBA , we tested both models by
applying the following noise injections to the input point clouds:

• Rotation: A random 3D rotation of the object;
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Figure 3: Results of applying noise to the training set, test set, or both. NIMBA demonstrates greater
robustness compared to PointMamba, particularly when the noise does not alter the spatial distances
between points, such as in the case of rotation.

• Random Horizontal Flip (RHF): A random flip along the horizontal axis;
• Jittering: Points in the point cloud are perturbed with Gaussian white noise;
• Random Input Dropout (RID): Points are randomly removed with a probability p;
• All: A combination of all the noise types listed above.

Each type of noise was applied to the training set, the test set, or both. As shown in Figure 3,
NIMBA generally exhibits greater robustness to noise, particularly in the case of rotation, where we
even observe an improvement in performance. This confirms that the reordering strategy employed
by NIMBA is resilient to noise that preserves pairwise distances between points, such as a rotation.

4.3.3 HYDRA

Models Param.(M)↓ Accuracy(%)↑
PointMamba with hydra 12.85 86.23
NIMBA with hydra 12.85 86.4

Table 6: Results when substituting the Mamba
block with the Hydra block in the architecture

Building on previous works that utilize scan-
ning different directions (Zhang et al., 2024a;
Liu et al., 2024b; Wang et al., 2024), we
explored the impact of replacing the Mamba
block with Hydra (Hwang et al., 2024), a bidi-
rectional extension of Mamba using a quasisep-
arable matrix mixer, in both PointMamba and
our NIMBA . Hydra scans sequences in both directions simultaneously, meaning PointMamba still
processes a sequence of length 3N , while NIMBA still processes length N . As shown in Table 6,
performance generally declined in both cases, likely due to the shift to Hydra, which is based on
Mamba2 (Dao & Gu, 2024b). We recommend future research to focus on optimizing Mamba2 in
these contexts, as optimization remains a key challenge with such models.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced NIMBA , a robust and principled approach for point cloud processing
using state space models (SSMs). When using such causal models, a key challenge is to effectively
convert a 3D set of data into a 1D sequence for proper analysis. We addressed this by proposing a
spatially-aware reordering strategy that preserves spatial relationships between points. Differently
from others, our method eliminates the need for positional embeddings and sequence replication,
enhancing both efficiency and performance. Our experimental results demonstrate that NIMBA out-
performs or matches transformer-based and other Mamba-based models on benchmark datasets such
as ModelNet, ScanObject, and ShapeNetPart in classification and segmentation tasks.

Limitations and Future Work. While NIMBA successfully addresses several challenges in point
cloud analysis with SSMs, certain limitations remain. From an optimization standpoint, the model
shows limited improvement when scaled. Additionally, when replacing the Mamba block with
Mamba2 or integrating NIMBA into hybrid architectures, we observed performance declines, sug-
gesting potential integration issues. We encourage further investigation into optimizing SSMs and
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leveraging their integration with transformer architecture for point cloud analysis. We believe this
work offers a new perspective on applying non-transformer models in domains beyond natural lan-
guage processing, highlighting the potential of SSMs in 3D vision applications.
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A APPENDIX

A.1 DATASETS

In our experiments, we evaluate the performance of our model using three publicly available 3D
datasets: ModelNet40, ScanObjectNN and ShapeNetPart.

ModelNet40 (Wu et al., 2015): It is a widely used benchmark synthetic dataset used to evaluate 3D
object classification models. It consists of 12,311 CAD models across 40 categories, representing
clean and noise-free 3D shapes, such as airplanes, chairs, and cars, offering a diverse set of 3D
shapes.

ScanObjectNN (Uy et al., 2019): It presents a more challenging real-world scenario by offering
around 15,000 objects across 15 categories, scanned from real-world indoor scenes. Unlike the
controlled environment of CAD datasets, the objects in ScanObjectNN are captured in cluttered
and noisy environments, introducing additional complexity due to background noise, occlusion, and
deformation. The diversity of real-world settings in this dataset makes it particularly suited for
evaluating the robustness of models in practical object classification tasks. The dataset comes in
three variants with different degree of difficulty:

• OBJ-ONLY: the easiest variant in which there is only the object in the scene. This is the
most similar variant to a CAD analogous.

• OBJ-BG: an intermediate variant in which there is also the background. We focused mostly
on this variant since it is the most similar to the real world.

• PB-T50-RS: the hardest version that adds some perturbations to the objects and can be used
as a benchmark to test the robustness on the classification task

ShapeNetPart (Yi et al., 2016) It is a widely recognized benchmark for 3D shape segmentation
tasks. This dataset is a subset of the larger ShapeNet repository and includes 31,693 3D CAD
models categorized into 16 common object classes such as chairs, planes, and tables. Each model
is richly annotated with detailed geometric and semantic labels, providing valuable information for
training and evaluating segmentation algorithms.

A.2 TRAINING DETAILS

In this section, we give more details on the training setting that we used for our experiments.

To make a fair comparison, we followed the work proposed by PointMamba (Liang et al.,
2024), PointMAE (Pang et al., 2022) and PCT (Guo et al., 2021) and we show the specific settings
for the 3 different datasets and tasks: object classification on the synthetic ModelNet40 in Table 7,
object classification on ScanObjectNN in Table 8 and segmentation on ShapeNet in Table 9. We
used a model of dimension 384 with 12 encoder layers and 6 heads across all experiments while
there are some slight differences in the number of points sampled, number of patches and number
of points per patch across the experiments, but still following the works mentioned above.

The main hyperparameter that we tuned in all the experiments reproduced is the learning
rate and we did it with the following criteria:

1. We first did a wide grid search in the range [0.3− 0.00001] with the values

[0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001]

and took the best value as lr∗. This search has the nice property of having a scale 3 factor
between each value and gives the order of magnitude the learning rate should have.

2. With lr∗ we created a new grid search with the values

[3lr∗, 2lr∗, lr∗,
lr∗

2
,
lr∗

3
]

and took the best value as newlr∗. This search, other than fine-graining the choice of best
learning rate, also ensures that lr∗ is not a boundary value.
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3. We checked if newlr∗ was equal to lr∗ and if not we went back to the previous point and
used newlr∗ as lr∗. We kept up doing so until newlr∗ was equal to lr∗

4. We then ran the experiment 3 times with newlr∗ with 3 different seeds in all our experi-
ments, and report the mean accuracy ± standard deviation.

Configuration Details Value

Model Configuration
Transformer Dimension 384
Num. of Encoder Layers 12
Num. of heads 6

Points Configuration
Num. of Points 1024
Num. of Patches 64
Num. of Point per Patches 32

Training settings

Optimizer AdamW
Learning Rate 1e-4
Weight Decay 5e-2
Scheduler Type Cosine
Num. of Epochs 300
Num. of Warm-up Epochs 10
Batch Size 32
Seeds 0, 123, 777

Table 7: Training configuration for classification on ModelNet40

Configuration Details Value

Model Configuration
Transformer Dimension 384
Num. of Encoder Layers 12
Num. of heads 6

Points Configuration
Num. of Points 2048
Num. of Patches 128
Num. of Point per Patches 32

Training settings

Optimizer AdamW
Learning Rate 5e-4
Weight Decay 5e-2
Scheduler Type Cosine
Num. of Epochs 300
Num. of Warm-up Epochs 10
Batch Size 32
Seeds 0, 123, 777

Table 8: Training configuration for classification on ScanObjectNN

B MISSING PROOFS

B.1 PROOF OF PROPOSITION 2

The general formula describing S6 computation is Yk = Ck

∑k
j=0(

∏k
k=j+1 Ak)BkXj . Let us pick

N = 2, we have Y0 = C0B0X0 and Y1 = C1A1B0X0 +C1B1X1. Let Π swap the first and second
inputs. For the reversed sequence, we have Ŷ0 = Ĉ0B̂0X1 and Ŷ1 = Ĉ1Â1B̂0X1 + Ĉ1B̂1X0.
We have to prove that for any realized value of A,B,C, Â, B̂, Ĉ, there exists a sequence X such
that Y1 ̸= Ŷ0, i.e. C1A1B0X0 + C1B1X1 ̸= Ĉ0B̂0X1. It is clear that converse would imply
C1A1B0X0 = (Ĉ0B̂0 − C1B1)X1, i.e. a strong relationship between the values of X0 and X1.
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Configuration Details Value

Model Configuration Transformer Dimension 384
Num. of Encoder Layers 12

Points Configuration
Num. of Points 2048
Num. of Patches 128
Num. of Point per Patches 32

Training settings

Learning Rate 1e-4
Weight Decay 5e-2
Scheduler Type Cosine
Num. of Epochs 300
Num. of Warm-up Epochs 10
Batch Size 16
Seeds 42, 123, 777

Table 9: Training configuration for classification on ShapeNetPart
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