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Abstract

Among attempts at giving a theoretical account of the success of deep neural networks, a
recent line of work has identified a so-called ‘lazy’ training regime in which the network
can be well approximated by its linearization around initialization. Here we investigate
the comparative effect of the lazy (linear) and feature learning (non-linear) regimes on
subgroups of examples based on their difficulty. Specifically, we show that easier examples
are given more weight in feature learning mode, resulting in faster training compared to more
difficult ones. In other words, the non-linear dynamics tends to sequentialize the learning
of examples of increasing difficulty. We illustrate this phenomenon across different ways to
quantify example difficulty, including c-score, label noise, and in the presence of easy-to-learn
spurious correlations. Our results reveal a new understanding of how deep networks prioritize
resources across example difficulty.

1 Introduction

Understanding the performance of deep learning algorithms has been the subject of intense research efforts in
the past few years, driven in part by observed phenomena that seem to defy conventional statistical wisdom
(Neyshabur et al., 2015; Zhang et al., 2017; Belkin et al., 2019). Notably, many such phenomena have been
analyzed rigorously in simpler contexts of high dimensional linear or random feature models (e.g., Hastie
et al., 2022; Bartlett et al., 2021), which shed a new light on the crucial role of overparametrization in the
performance of such systems. These results also apply to the so-called lazy training regime (Chizat et al.,
2019), in which a deep network can be well approximated by its linearization at initialization, characterized
by the neural tangent kernel (NTK) (Jacot et al., 2018; Du et al., 2019b; Allen-Zhu et al., 2019). In this
regime, deep networks inherit the inductive bias and generalization properties of kernelized linear models.

It is also clear, however, that deep models cannot be understood solely through their kernel approximation.
Trained outside the lazy regime (e.g., Woodworth et al., 2020), they are able to learn adaptive representations,
with a time-varying tangent kernel (Fort et al., 2020) that specializes to the task during training (Kopitkov &
Indelman, 2020; Baratin et al., 2021; Paccolat et al., 2021; Ortiz-Jiménez et al., 2021). Several results showed
examples where their inductive bias cannot be characterized in terms of a kernel norm (Savarese et al., 2019;
Williams et al., 2019), or where they provably outperform any linear method (Malach et al., 2021). Yet,
the specific mechanisms by which the two regimes differ, which could explain the performance gaps often
observed in practice (Chizat et al., 2019; Geiger et al., 2020), are only partially understood.

Our work contributes new qualitative insights into this problem, by investigating the comparative
effect of the lazy and feature learning regimes on the training dynamics of various groups of
examples of increasing difficulty. We do so by means of a control parameter that modulates linearity of
the parametrization and smoothly interpolates the two training regimes (Chizat et al., 2019; Woodworth
et al., 2020). We provide empirical evidence and theoretical insights suggesting that the feature learning
regime puts higher weight on easy examples at the beginning of training, which results in an increased
learning speed compared to more difficult examples. This can be understood as an instance of the simplicity
bias brought forward in recent work (Arpit et al., 2017; Rahaman et al., 2019; Kalimeris et al., 2019), which
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we show here to be much more pronounced in the feature learning regime. It also resonates with the old idea
that generalization can benefit from some curriculum learning strategy (Elman, 1993; Bengio et al., 2009).

Contributions

• We introduce and test the hypothesis of qualitatively different example importance between linear
and non-linear regimes;

• Using adequately normalized plots, we present a unified picture using 4 different ways to quantify
example difficulty, where easy examples are prioritized in the non-linear regime. We illustrate
empirically this phenomenon across different ways to quantify example difficulty, including c-score
(Jiang et al., 2021), label noise, and spurious correlation to some easy-to-learn set of features.

• We illustrate some of our insights in a simple quadratic model amenable to analytical treatment.

The general setup of our experiments is introduced in Section 2. Section 3 is our empirical study, which
begins with an illustrative example on a toy dataset (Section 3.1), followed by experiments on CIFAR 10 in
two setups where example difficulty is quantified using respectively c-scores and label noise (Section 3.2). We
also examine standard setups where easy examples are those with strong correlations between their labels and
some spurious features (Section 3.3). Section 4 illustrates our findings with a theoretical analysis of a specific
class of quadratic models, whose training dynamics is solvable in both regimes. We conclude in Section 5.

Related work The neural tangent kernel was initially introduced in the context of infinitely wide networks,
for a specific parametrization that provably leads to the lazy regime (Jacot et al., 2018). Such a regime allows
to cast deep learning as a linear model using a fixed kernel, enabling import of well-known results from linear
models, such as guarantees of convergence to a global optimum (Du et al., 2019b;a; Allen-Zhu et al., 2019).
On the other hand, it is also clear that the kernel regime does not fully capture the behavior of deep models
– including, in fact, infinitely wide networks (Yang & Hu, 2021). For example, in the so-called mean field
limit, training two-layer networks by gradient descent learns adaptive representations (Chizat & Bach, 2018;
Mei et al., 2018) and it can be shown that the inductive bias cannot be characterized in terms of a RKHS
norm (Savarese et al., 2019; Williams et al., 2019). Performance gaps between the two regimes are also often
observed in practice (Chizat et al., 2019; Arora et al., 2019; Geiger et al., 2020).

Subsequent work showed and analyzed how, for a fixed (finite-width) network, the scaling of the model at
initialization also controls the transition between the lazy regime, governed by the empirical neural tangent
kernel, and the standard feature learning regime (Chizat et al., 2019; Woodworth et al., 2020; Agarwala et al.,
2020). In line with this prior work, in our experiments below we use a scaling parameter α > 0 that modulates
linearity of the parametrization and allows us to smoothly interpolates between the vanilla training (α = 1)
where features are learned and the lazy (α → ∞) regime where they are not. We compare training runs with
various values of α and empirically assess linearity with several metrics described in Section 2 below.

Our results are in line with a group of work showing how deep networks learn patterns and functions of
increasing complexity during training (Arpit et al., 2017; Kalimeris et al., 2019). An instance of this is the
so-called spectral bias empirically observed in Rahaman et al. (2019) where a sum of sinusoidal signals is
incrementally learned from low frequencies to high frequencies, or in Zhang et al. (2021) that use Fourier
decomposition to analyze the function learned by a deep convolutional network on a vision task. The spectral
bias is well understood in linear regression, where the gradient dynamics favours the large singular directions
of the feature matrix. For neural networks in the lazy regime, spectral analysis of the neural tangent kernel
have been investigated for architectures and data (e.g, uniform data on the sphere) allowing for explicit
computations (e.g., decomposition of the NTK in terms of spherical harmonics) (Bietti & Mairal, 2019; Basri
et al., 2019; Yang & Salman, 2019). This is a setup where the spectral bias can be rigorously analyzed, i.e.,
we can get explicit information about the type of functions that are learned quickly and generalize well. In
this context, our work specifically focuses on comparing the lazy and the standard feature learning regimes.

Our theoretical model in Section 4 reproduces some of the key technical ingredients of known analytical
results (Saxe et al., 2014; Gidel et al., 2019) on deep linear networks. These results show how, in the context
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of multiclass classification or matrix factorization, the principal components of the input-output correlation
matrix are learned sequentially from the highest to the lowest mode. Note however that in the framework
of these prior works, the number of modes is bounded by the output dimension - which thus reduces to
one in the context of regression or binary classification. By contrast, our theoretical analysis applies to the
components of the vector of labels Y ∈ Rn in the eigenbasis of the kernel XX⊤ defined by the input matrix
X ∈ Rn×d. Thus, despite the technical similarities, our framework approaches the old problem of the relative
learning speed of different modes in factorized models from a novel angle. In particular, it allows us to frame
the notion of example difficulty in this context.

Example difficulty is a loosely defined concept that has been the subject of intense research recently. Ways to
quantify example difficulty for a model/algorithm to learn individual examples include e.g. self-influence (Koh
& Liang, 2017), example forgetting (Toneva et al., 2019), TracIn (Pruthi et al., 2020), C-scores (Jiang et al.,
2021), or prediction depth (Baldock et al., 2021). We believe that a comprehensive theory of generalization
in deep learning will require to understand how neural networks articulate learning and memorization to
both fit the head (easy examples) and the tail (difficult examples) of the data distribution (Hooker et al.,
2020; Feldman & Zhang, 2020; Sagawa et al., 2020a;b).

2 Setup

We consider neural networks fθ parametrized by θ ∈ Rp (i.e. weights and biases for all layers), and trained
by minimizing some task-dependent loss function ℓ(θ) :=

∑n
i=1 ℓi(fθ(xi)) computed on a training dataset

{x1, · · · , xn}, using variants of gradient descent,

θ(t+1) = θ(t) − η∇θℓ(θ(t)), (1)

with some random initialization θ(0) and a chosen learning rate η > 0.

Linearization A Taylor expansion and the chain rule give the corresponding updates f (t) := fθ(t) for any
network output, at first order in the learning rate,

f (t+1)(x) ≃ f (t)(x) − η

n∑
i=1

K(t)(x, xi)∇ℓi, (2)

which depend on the time-varying tangent kernel K(t)(x, x′) := ∇θf (t)(x)⊤∇θf (t)(x′). The lazy regime is
one where this kernel remains nearly constant throughout training. Training the network in this regime thus
corresponds to training the linear predictor defined by

f̄θ(x) := fθ(0)(x) + (θ − θ(0))⊤∇θfθ(0)(x). (3)

Modulating linearity In our experiments, following Chizat et al. (2019), we modulate the level of "non-
linearity" during training of a deep network with a scalar parameter α ≥ 1, by replacing our prediction fθ by

fα
θ (x) := fθ(0) (x) + α (fθ (x) − fθ(0) (x)) (4)

and by rescaling the learning rate as ηα = η/α2. In this setup, gradient descent steps in parameter space are
rescaled by 1/α while steps in function space (up to first order) are in O(1) in α.1 α can also be viewed as
controlling the level of feature adaptivity, where large values of α result in linear training where features are
not learned. We will also experiment with α < 1 below, which enhances adaptivity compared the standard
regime (α = 1). The goal of this procedure is two-fold: (i) to be able to smoothly interpolate between the
standard regime at α = 1 and the linearized one, (ii) to work with models that are nearly linearized yet
practically trainable with gradient descent.

1Under some assumptions such as strong convexity of the loss, it was shown (Chizat et al., 2019, Thm 2.4) that as α → ∞,
the gradient descent trajectory of fα

θ(t) gets uniformly close to that of the linearization f̄θ(t) .
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Figure 1: 100 randomly initialized runs of a 4 layers MLP trained on the yin-yang dataset (a) using gradient
descent in both the non-linear (α = 1) and linearized (α = 100) setting. The training losses (b) show a speed-
up in the non-linear regime: in order to compare both regimes at equal progress, we normalize by comparing
models extracted at equal training loss thresholds (c), (d) and (e). We visualize the differences ∆loss (xtest) =
lossfnon-linear (xtest)− lossflinear (xtest) for test points paving the 2d square [−1, 1]2 using a color scale. We observe that
these differences are not uniformly spread across examples: instead they suggest a comparative bias of the non-linear
regime towards correctly classifying easy examples (large areas of the same class), whereas difficult examples (e.g. the
small disks) are boosted in the linear regime.

Linearity measures In order to assess linearity of training runs for empirically chosen values of the
re-scaling factor α, we track three different metrics during training (fig 2 right):

• Sign similarity counts the proportion of ReLUs in all layers that have kept the same activation
status (0 or > 0) from initialization.

• Tangent kernel alignment measures the similarity between the Gram matrix K
(t)
ij = K(t)(xi, xj)

of the tangent kernel with its initial value K(0), using kernel alignment (Cristianini et al., 2001)

KA(K(t), K(0)) = Tr[K(t)K(0)]
∥K(t)∥F ∥K(0)∥F

(∥ · ∥F is the Froebenius norm) (5)

• Representation alignment measures the similarity of the last non-softmax layer representation
ϕ

(t)
R (x) with its initial value ϕ

(0)
R , in terms of the kernel alignment (eq. 5) of the corresponding Gram

matrices (K(t)
R )ij = ϕ

(t)
R (xi)⊤ϕ

(t)
R (xj).

3 Empirical Study

3.1 A motivating example on a toy dataset

We first explore the effect of modulating the training regime for a binary classification task on a toy dataset
with 2d inputs, for which we can get a visual intuition. We use a fully-connected network with 4 layers and
ReLU activations. For 100 independent initial parameter values, we generate 100 training examples uniformly
on the square [−1, 1]2 from the yin-yang dataset (fig. 1.a). We perform 2 training runs for α = 1 and α = 100
using (full-batch) gradient descent with learning rate 0.01.

Global training speed-up and normalization After the very first few iterations, we observe a speed-up
in training progress of the non-linear regime (fig. 1.b). This is consistent with previously reported numerical
experiments on the lazy training regime (Chizat et al., 2019, section 3). This raises the question of whether
this acceleration comes from a global scaling in all directions, or if it prioritizes certain particular groups of
examples. We address this question by comparing the training dynamics at equal progress: we counteract
the difference in training speed by normalizing by the mean training loss, and we compare the linear and
non-linear regimes at common thresholds ((c), (d) and (e) horizontal lines in fig. 1.b).
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Comparing linear and non-linear regimes At every threshold value, we compute the predictions on
test examples uniformly paving the 2d square. We compare both regimes on individual test examples by
plotting (fig. 1.c, 1.d, 1.e) the differences in loss values,

∆loss (xtest) = lossfnon-linear (xtest) − lossflinear (xtest) (6)

Red (resp. blue) areas indicate a lower test loss for the linearized (resp. non-linear) model. Remarkably,
the resulting picture is not uniform: these plots suggest that compared to the linear regime, the non-linear
training dynamics speeds up for specific groups of examples (the large top-right and bottom-left areas) at
the expense of examples in more intricate areas (both the disks and the areas between the disks and the
horizontal boundary).

3.2 Hastening easy examples

We now experiment with deeper convolutional networks on CIFAR10, in two setups where the training
examples are split into groups of varying difficulty. Additional experiments with various other choices of
hyperparameters and initialization seed are reported in Appendix F.

3.2.1 Example difficulty using C-scores

In this section we quantify example difficulty using consistency scores (C-scores) (Jiang et al., 2021). Informally,
C-scores measure how likely an example is to be well-classified by models trained on subsets of the dataset
that do not contain it. Intuitively, examples with a high C-score share strong regularities with a large group
of examples in the dataset. Formally, given a choice of model f , for each (input, label) pair (x, y) in a dataset
D, Jiang et al. (2021) defines its empirical consistency profile as:

ĈD,n (x, y) = Êr

D
n∼D\{(x,y)}

[P (f (x; D) = y)] , (7)

where Êr is the empirical average over r subsets D of size n uniformly sampled from D excluding (x, y),
and f(·, D) is the model trained on D. A scalar C-score is obtained by averaging the consistency profile
over various values of n = 1, · · · , |D| − 1. For CIFAR10 we use pre-computed scores available as https:
//github.com/pluskid/structural-regularity.

While training, we compute the loss separately on 10 subsets of the training set ranked by increasing C-scores
deciles (e.g. examples in the last subset are top-10% C-scores), for both the training set and test set. We also
train a linearized copy of this network (so as to share the same initial conditions) with α = 100. The α = 1
run is trained for 200 epochs (64 000 SGD iterations) whereas in order to converge the α = 100 run is trained
for 1 000 epochs (320 000 SGD iterations). Similarly to fig. 1, we normalize training progress using the mean
training loss in order to compare regimes at equal progress. We check (fig. 2 top right) that the model with
α = 100 indeed stays in the linear regime during the whole training run, since all 3 linearity metrics that
we report essentially remain equal to 1. By contrast, in the non-linear regime (α = 1), a steady decrease of
linearity metrics as training progresses indicates a rotation of the NTK and the representation kernel, as well
as lower sign similarity of the ReLUs.

The results are shown in fig. 2 (top left). As one might expect, examples with high C-scores are learned faster
during training than examples with low C-scores in both regimes. Remarkably, this effect is amplified in the
non-linear regime compared to the linear one, as we can observe by comparing e.g. the top (resp. bottom)
decile in light green (resp dark blue). This illustrates a relative acceleration of the non-linear regime in the
direction of easy examples.

3.2.2 Example difficulty using label noise

In this section we use label noise to define difficult examples. We train a ResNet18 on CIFAR10 where 15% of
the training examples are assigned a wrong (random) label. We compute the loss and accuracy independently
on the regular examples with their true label, and the noisy examples whose label is flipped. In parallel, we
train a copy of the initial model in the linearized regime with α = 100. Fig. 2 bottom right shows the 3
linearity metrics during training in both regimes.
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Figure 2: Starting from the same initial parameters, we train 2 ResNet18 models with α = 1 (standard training) and
α = 100 (linearized training) on CIFAR10 using SGD with momentum. (Top left) We compute the training loss
separately on 10 subgroups of examples ranked by their C-scores. Training progress is normalized by the mean training
loss on the x-axis. Unsurprisingly, in both regimes examples with high C-scores are learned faster. Remarkably, this
ranking is more pronounced in the non-linear regime as can be observed by comparing dashed and solid lines of the
same color. (Bottom left) We randomly flip the class of 15% of the training examples. At equal progress (measured
by equal clean examples loss), the non-linear regime prioritizes learning clean examples and nearly ignores noisy
examples compared to the linear regime since the solid curve remains higher for the non-linear regime. Concomitantly,
the non-linear test loss reaches a lower value. (Right) On the same training run, as a sanity check we observe that
the α = 100 training run remains in the linear regime throughout since all metrics stay close to 1, whereas in the
α = 1 run, the NTK and representation kernel rotate, and a large part of ReLU signs are flipped. These experiments
are completed in Appendix F with accuracy plots for the same experiments, and with other experiments with varying
initial model parameters and mini-batch order.

The results are shown in fig. 2 (bottom left). In both regimes, the training process begins with a phase where
only examples with true labels are learned, causing the loss on examples with wrong labels to increase. A
second phase starts (in this run) at 1.25 clean examples loss for the non-linear regime and 1.5 clean loss for
the linear regime, where random labels are getting memorized. We see that the first phase takes a larger
part of the training run in the non-linear regime than in the linear regime. We interpret this as the fact
that the non-linear regime prioritizes learning easy examples. As a consequence, the majority of the training
process is dedicated to learning the clean examples in the non-linear regime, whereas in the linear regime
both the clean and the noisy labels are learned simultaneously passed the 1.5 clean loss mark. Concomitantly,
comparing the sweet spot (best test loss) of the two regimes indicates a higher robustness to label noise thus
a clear advantage for generalization in the non-linear regime.

3.3 Spurious correlations

We now examine setups where easy examples are those with strong correlations between their labels and
some spurious feature (Sagawa et al., 2020b). We experiment with CelebA (Liu et al., 2015) and Waterbirds
(Wah et al., 2011) datasets.

6



Under review as submission to TMLR

0.75 0.80 0.85 0.90 0.95 1.00
accuracy train

0.50

0.55

0.60

0.65

0.70

0.75

Ce
le

b
A

ac
cu

ra
cy

 te
st

super adaptive ( = 0.5)
non-linear ( = 1)
linear ( = 100)

0.5 0.6 0.7 0.8 0.9 1.0
train acc. ex. with spurious correl.

0.5

0.6

0.7

0.8

0.9

1.0

tra
in

 a
cc

. e
x.

 w
/o

 sp
ur

io
us

 c
or

re
l.

super adaptive ( = 0.5)
non-linear ( = 1)
linear ( = 100)

0.5 0.6 0.7 0.8 0.9 1.0
test acc. ex. with spurious correl.

0.5

0.6

0.7

0.8

0.9

1.0

te
st

 a
cc

. e
x.

 w
/o

 sp
ur

io
us

 c
or

re
l.

super adaptive ( = 0.5)
non-linear ( = 1)
linear ( = 100)

0.7 0.8 0.9 1.0
accuracy train

0.50

0.55

0.60

0.65

0.70

0.75

0.80

W
at

er
bi

rd
s

ac
cu

ra
cy

 te
st

super adaptive ( = 0.5)
non-linear ( = 1)
linear ( = 100)

0.5 0.6 0.7 0.8 0.9 1.0
train acc. ex. with spurious correl.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
tra

in
 a

cc
. e

x.
 w

/o
 sp

ur
io

us
 c

or
re

l.

super adaptive ( = 0.5)
non-linear ( = 1)
linear ( = 100)

0.5 0.6 0.7 0.8 0.9 1.0
test acc. ex. with spurious correl.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

te
st

 a
cc

. e
x.

 w
/o

 sp
ur

io
us

 c
or

re
l.

super adaptive ( = 0.5)
non-linear ( = 1)
linear ( = 100)

Figure 3: We visualize the trajectories of training runs on 2 spurious correlations setups, by computing the accuracy
on 2 separate subsets: one with examples that contain the spurious feature (with spurious), the other one without
spurious correlations (w/o spurious). On Celeb A (top row), the attribute ’blond’ is spuriously correlated with
the gender ’woman’. In the first phase of training we observe that (left) the test accuracy is essentially higher for
the linear run, which can be further explained by observing that (middle) the training accuracy for w/o spurious
examples increases faster in the linear regime than in non-linear regimes at equal with spurious training accuracy.
(right) A similar trend holds for test examples. In this first part the linear regime is less sensitive to the spurious
correlation (easy examples) thus gets better robustness. (bottom row) On Waterbirds, the background (e.g. a lake)
is spuriously correlated with the label (e.g. a water bird). (left) We observe the same hierarchy between the linear
run and other runs. In the first training phase, the linear regime is less prone to learning the spurious correlation: the
w/o spurious accuracy stays higher while the with spurious examples are learned ((middle) and (right)). These
experiments are completed in fig. 12 in Appendix F with varying initial model parameters and mini-batch order.

CelebA (Liu et al., 2015) is a collection of photographs of celebrities’ faces, each annotated with its
attributes, such as hair color or gender. Similarly to Sagawa et al. (2020b), our task is to classify pictures
based on whether the person is blond or not. In this dataset, the attribute "the person is a woman" is
spuriously correlated with the attribute "the person is blond", since the attribute "blond" is over-represented
among women (24% are blond) compared to men (2% are blond).

We use 20 000 examples of CelebA to train a ResNet18 classifier on the task of predicting whether a person
is blond or not, using SGD with learning rate 0.01, momentum 0.9 and batch size 100. We also extract a
balanced dataset with 180 (i.e. the total number of blond men in the test set) examples in each of 4 categories:
blond man, blond woman, non-blond man and non-blond woman. While training progresses, we measure the
loss and accuracy on the subgroups man and woman. Starting from the same initial conditions, we train 3
different classifiers with α ∈ {.5, 1, 100}.

Waterbirds (Wah et al., 2011) is a smaller dataset of pictures of birds. We reproduce the experiments
of Sagawa et al. (2020a) where the task is to distinguish land birds and water birds. In this dataset, the

7



Under review as submission to TMLR

background is spuriously correlated with the type of bird: water birds are typically photographed on a
background such as a lake, and similarly there is generally no water in the background of land birds. There
are exceptions: a small part of the dataset consists of land birds on a water background and vice versa (e.g.
a duck walking in the grass).

We use 4 795 training examples of the Waterbirds dataset. Since the dataset is smaller, we start from a
pre-trained ResNet18 classifier from default PyTorch models (pre-trained on ImageNet). We replace the last
layer with a freshly initialized binary classification layer, and we set batch norm layers to evaluation mode2

We train using SGD with learning rate 0.001, momentum 0.9 and minibatch size 100.

From the training set, we extract a balanced dataset with 180 examples in each of 4 groups: land birds on
land background, land birds on water background, water bird on land background, and water bird on land
background, which we group in two sets: with spurious when the type of bird and the background agree,
and w/o spurious otherwise. While training, we measure the accuracy separately on these 2 sets. We train
3 different classifiers with α ∈ {.5, 1, 100}.

Looking at fig. 3 left, for both the Waterbirds and the CelebA experiments we identify two phases: in the
first phase the test accuracy is higher for the linear α = 100 run than for other runs. In the second phase all 3
runs seem to converge, with a slight advantage for non-linear runs in Waterbirds. Taking a closer look at the
first phase in fig. 3 middle and right, we understand this difference in test accuracy in light of spurious and
non-spurious features: in the non-linear regime, the training dynamics learns the majority examples faster, at
the cost of being more prone to spurious correlations. This can be seen both on the balanced training set and
the balanced test set.

4 Theoretical Insights

The goal here is to illustrate some of our insights in a simple setup amenable to analytical treatment.

4.1 A simple quadratic model

We consider a standard linear regression analysis: given n input vectors xi ∈ Rd with their corresponding
labels yi ∈ R, 1 ≤ i ≤ n, the goal is to fit a linear function fθ(x) to the data by minimizing the least-squares
loss ℓ(θ) := 1

2
∑

i(fθ(xi) − yi)2. We will focus on a specific quadratic parametrization, which can be viewed
as a subclass of two-layer networks with linear activations.

Notation We denote by X ∈ Rn×d the matrix of inputs and by y ∈ Rn the vector of labels. We consider
the singular value decomposition (SVD),

X = UMV ⊤ :=
rX∑

λ=1

√
µλuλv⊤

λ (8)

where U ∈ Rn×n, V ∈ Rd×d are orthogonal and M is rectangular diagonal. rX denotes the rank of X,
µ1 ≥ · · · ≥ µrX

> 0 are the non zero (squared) singular values; we also set µλ = 0 for rX < λ ≤ max(n, d).
Left and right singular vectors extend to orthonormal bases (u1, · · · , un) and (v1, · · · , vd) of Rn and Rd,
respectively. In what follows we assume, without loss of generality3, that the vector of labels has positive
components in the basis uλ, i.e., yλ := u⊤

λ y ≥ 0 for λ = 1, · · · n.

Parametrization We consider the following class of functions

fθ(x) = θ⊤x, θ := 1
2

d∑
λ=1

w2
λ vλ (9)

2In order not to interfere with α scaling (see section 2), and since we consider that batch norm is a whole different theoretical
challenge by itself, we chose to turn it off, and instead keep the mean and variance buffers to their pre-trained value. See
appendix D for further discussion of this point.

3One can use the reflection invariance √
µλuλv⊤

λ = √
µλ(−uλ)(−vλ)⊤ of the SVD to flip the sign of yλ.
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In this setting, the least-squares loss is minimized by gradient descent over the vector parameter w =
[w1, · · · wd]⊤. Given an initialization w0, we want to compare the solution of the vanilla gradient (non linear)
dynamics with the solution of the lazy regime, which corresponds to training the linearized function (3),
given in our setting by f̄θ̄(x) = θ̄⊤x where θ̄ =

∑d
λ=1 wλw0

λ vλ.

4.2 Gradient dynamics

For simplicity, we analyze the continuous-time counterpart of gradient descent,

w(0) = w0, ẇ(t) = −∇wℓ(θ(t)) (10)

where the dot denotes the time-derivative. Making the gradients explicit and differentiating (9) yield

θ̇(t) = −Σ(t)(θ(t) − θ∗), Σ(t) = V Diag(µ1w2
1(t), · · · , µdw2

d(t))V ⊤ (11)

where θ∗ is the solution of the linear dynamics.4 Note how Σ(t) is obtained from the input correlation
matrix X⊤X by rescaling each eigenvalue µλ by the time-varying factor w2

λ. By contrast, the lazy regime is
described by the equation obtained from (11) by replacing Σ(t) the constant matrix Σ(0).

In the proposition below (proved in Appendix A), we consider the system (10, 11) initialized as θ0 :=
1
2

∑d
λ=1(w0

λ )2 vλ where we assume that w0
λ ̸= 0 for all λ. We denote by ỹλ the components of the input-label

correlation vector X⊤y ∈ Rd in the basis vλ: we have ỹλ = √
µλyλ for 1 ≤ λ ≤ rX and 0 when rX < λ ≤ d.

Proposition 1 The solution of (10, 11) is given by,

θ(t) =
d∑

λ=1
θλ(t)vλ, θλ(t) =


θ0
λ θ∗

λ

θ0
λ − e−2ỹλt(θ0

λ − θ∗
λ ) if θ∗

λ ̸= 0

θ0
λ

1 + 2µλθ0
λ t

if θ∗
λ = 0

(12)

By contrast, the solution in the linearized regime where Σ(t) ≈ Σ(0) is,

θλ(t) = θ∗
λ + e−µλθ0

λ t(θ0
λ − θ∗

λ ) (13)

4.3 Discussion

While the gradient dynamics (12,13) converge to the same solution θ∗, we see that the convergence rates of
the various modes differ in the two regimes. To quantify this, for each dynamical mode 1 ≤ λ ≤ rX such
that |θ∗

λ | ̸= 0, let tλ(ϵ), tlin
λ(ϵ) be the times required for θλ to be ϵ-close to convergence, i.e |θλ − θ∗

λ| = ϵ, in
the two regimes. Substituting into (12) and (13) we find that, close to convergence ϵ ≪ θ∗

λ and for a small
initialization, θ0

λ ≪ θ∗
λ,

tλ(ϵ) = 1
ỹλ

log θ∗
λ

ϵθ0
λ

, tlin
λ(ϵ) = 1

µλθ0
λ

log θ∗
λ

ϵ
(14)

up to terms in O(ϵ/θ∗
λ , θ0

λ /θ∗
λ ). Two remarks are in order:

Linearization impacts learning schedule. Specifically, while the learning speed of each mode depends
on the components of the label vector in the non linear regime, through ỹλ = √

µλyλ, it does not in the
linearized one. Thus, the ratio of ϵ-convergence times for two given modes λ, λ′ is tλ/tλ′ = ỹλ/ỹλ′ in the
non-linear case and tlin

λ/tlin
λ = µλ′θ0

λ′/µλθ0
λ in the linearized case, up to logarithmic factors.

4Explicitly, θ∗ = Σ+X⊤y + P⊥(θ0) where Σ+ is the pseudoinverse of the input correlation matrix Σ = X⊤X and P⊥

projects onto the null space of X. It decomposes as θ∗ =
∑d

λ=1 θ∗
λ vλ in the basis vλ, where θ∗

λ = yλ/
√

µλ for 1 ≤ λ ≤ rX and
θ∗
λ = θ0

λ for rX < λ ≤ d.

9
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Figure 4: (left) Different input/label correlation (example 1): examples are learned in a flipped order in the two
regimes. (middle) Label noise (example 2): the non-linear dynamics prioritizes learning the clean labels (right)
Spurious correlations (example 3): the non-linear dynamics prioritizes learning the spuriously correlated feature.
These analytical curves are completed with numerical experiments on standard (dense) 2-layer MLP in figure 14 in
appendix G, which shows a similar qualitative behaviour.

Sequentialization of learning. Non-linearity, together with a vanishingly small initialization, induces a
sequentialization of learning for the various modes (see also Gidel et al., 2019, Thm 2). To see this, pick
a mode λ and consider, for any other mode λ′, the value θλ′(tλ) at the time tλ := tλ(ϵ) where λ reaches
ϵ-convergence. Let us also write θ0

λ = σθ̃0
λ where σ is small and θ̃0

λ = O(1) as σ → 0. Then elementary
manipulations show the following:

θλ′(tλ) = θ∗
λ′ θ̃0

λ′

θ̃0
λ′ +

[
ϵθ̃0

λ′/θ∗
λ′

]2
ỹ

λ′
ỹλ σ

2
ỹ

λ′
ỹλ

−1
=σ→0

{
θ∗

λ′ ỹλ′ > ỹλ

0 ỹλ′ < ỹλ

(15)

In words, for fixed ϵ > 0 and in the limit of small initialization, the mode λ gets ϵ-close to convergence before
any of the subdominant mode deviates from their (vanishing) initial value: the modes are learned sequentially.

4.4 Mode vs example difficulty

We close this section by illustrating the link between mode and example difficulty on three concrete examples
of structure for the training data {xi, yi}n

i=1. In what follows, we consider the overparametrized setting where
d ≥ n. We denote by e1, · · · ed the canonical basis of Rd.

For each of the examples below, we consider an initialization w0 =
√

σ[1 · · · 1]⊤ with small σ > 0 and the
corresponding solutions in Prop. 1 for both regimes.

Example 1 We begin with a rather trivial setup where each mode corresponds to a training example. It
will illustrate how non-linearity can reverse the learning order of the examples. Given a sequence of strictly
positive numbers µ1 ≥ · · · µn > 0, we consider the training data,

xi = √
µiei, yi = µn−i+1/

√
µi, 1 ≤ i ≤ n (16)

In the linearized regime, fθ(t)(xi) converges to yi at the linear rate σµi; the model learns faster the examples
with higher µi, hence with lower index i. In the non linear regime, the examples are learned sequentially
according to the value ỹi = √

µiyi = µn−i+1, hence from high to low index i. Thus in this setting, linearization
flips the learning order of the training examples (see fig. 4 left).

In examples 2 and 3 below we aim at modelling situations where the labels depend on low-dimensional (in
this case, one dimensional) projections on the inputs (e.g. an image classification problem where the labels
mainly depend on the low frequencies of the image). These two examples mirror the two sets of experiments
in Sections 3.2.2 and 3.3, respectively.

10
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Example 2 We consider a simple classification setup on linearly separable data with label noise. Here we
assume d > n. Conditioned on a set of binary labels yi = ±1, the inputs are given by

xi = κiyie1 + ηei+1 1 ≤ i ≤ n (17)

where κi = ±1 is some ‘label flip’ variable and η > 0. We assume we have q ‘noisy’ examples with flipped
labels, i.e. κi = −1, where 1 ≤ q < ⌈n/2⌉.

The SVD of the feature matrix X ∈ Rn×d defined by (17) can be made explicit. In particular, the top left
singular vector is u1 = ȳ/

√
n, where ȳ ∈ Rn denotes the vector of noisy labels ȳi := κiyi. This singles

out a dominant mode y1 := (u⊤
1 y)u1 of the label vector y that is learned first by the non-linear dynamics.

Explicitly,

y1 = (1 − 2q

n
)ȳ (18)

For a small noise ratio q/n ≪ 1, this yields y1i ≈ yi for clean examples and −yi for noisy ones: fitting the
dominant mode amounts to learning the clean examples – while assigning the wrong label to the noisy ones.
This is illustrated in fig 4 (middle plot).

Example 3 We consider a simple spurious correlation setup (Sagawa et al., 2020b), obtained by adding to
(17) a ‘core’ feature that separates all training points. Here we assume d > n + 1. Conditioned on a set of
binary labels yi = ±1, the inputs are given by

xi = κiyie1 + λyie2 + ηei+2, 1 ≤ i ≤ n (19)

for some binary variable κi = ±1, scaling factor λ ∈ (0, 1), and η > 0. Given 1 ≤ q < ⌈n/2⌉, we assume we
have a majority group of n − q training examples with κi = 1, whose label is spuriously correlated with the
spurious feature e2, and a minority group of q examples with κi = −1.

The analysis is similar as in Example 2. For small noise ratio and scaling factor λ, the non-linear dynamics
enhances the bias towards fitting first the majority group of (‘easy’) examples with spuriously correlated
labels. This illustrates an increased sensitivity of the non linear regime to the spurious feature – at least in
the first part of training. This is shown in fig 4 (right plot).

5 Conclusion

The recent emphasis on the lazy training regime, where deep networks behave as linear models amenable to
analytical treatment, begs the question of the specific mechanisms and implicit biases which differentiates it
from the full-fledged feature learning regime of the algorithms used in practice. In this paper, we investigated
the comparative effect of the two regimes on subgroups of examples based on their difficulty. We provided
experiments in various setups suggesting that easy examples are given more weight in non-linear training mode
(deep learning) than in linear training, resulting in a comparatively higher learning speed for these examples.
We illustrated this phenomenon across various ways to quantify examples difficulty, through c-scores, label
noise, and correlations to some easy-to-learn spurious features. We complemented these empirical observations
with a theoretical analysis of a quadratic model whose training dynamics is tractable in both regimes. We
believe that our findings makes a step towards a better understanding of the underlying mechanisms that
drive the good generalization properties observed in practice.

Broader Impact Statement

This work proposes to improve our understanding of the mechanisms behind deep learning models training.
There is no clear direct application of these theoretical observations to create harmful tools, however as for
any technology, machine learning models can be used for malicious intentions. We also acknowledge that
deep learning uses a significant amount of compute capacity when scaled to global tech companies, which in
some places is powered by carbon emitting power plants, thus contributes to global warming.
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