
Under review as submission to TMLR

Geometric Self-Supervised Pretraining on 3D Protein Struc-
tures using Subgraphs

Anonymous authors
Paper under double-blind review

Abstract

Protein representation learning aims to learn informative protein embeddings capable of ad-
dressing crucial biological questions, such as protein function prediction. Although sequence-
based transformer models have shown promising results by leveraging the vast amount of
protein sequence data in a self-supervised way, there is still a gap in exploiting the available
3D protein structures. In this work, we propose a pre-training scheme going beyond trivial
masking methods leveraging 3D and hierarchical structures of proteins. We propose a novel
self-supervised method to pretrain 3D graph neural networks on 3D protein structures, by
predicting the distances between local geometric centroids of protein subgraphs and the
global geometric centroid of the protein. By considering subgraphs and their relationships
to the global protein structure, our model can better learn the geometric properties of the
protein structure. We experimentally show that our proposed pertaining strategy leads to
significant improvements up to 6%, in the performance of 3D GNNs in various protein clas-
sification tasks. Our work opens new possibilities in unsupervised learning for protein graph
models while eliminating the need for multiple views, augmentations, or masking strategies
which are currently used so far.

1 Introduction

Proteins are fundamental biological macromolecules, responsible for a variety of functions within living or-
ganisms, ranging from catalyzing metabolic reactions, DNA replication, and signal transduction, to providing
structural support in cells and tissues (Conrado et al., 2008; Whitford, 2013; Tye, 1999). Predicting protein
function is one of the most important problems in bioinformatics, with extensive applications in drug de-
sign, drug discovery and disease modeling (Skolnick & Brylinski, 2009; Luo et al., 2021; Rezaei et al., 2020).
However, the complexity and variability of proteins pose significant challenges for computational prediction
models (Radivojac et al., 2013; Schauperl & Denny, 2022). The function of a protein is affected by its three-
dimensional structure, often dictating its interactions with other molecules (Ivanisenko et al., 2005). The 3D
structure of proteins provides critical knowledge that is often much harder to derive from their 1D amino
acid sequences alone. Therefore, understanding and predicting protein function based purely on sequence
data can be challenging without considering the 3D structural modality (Gligorijević et al., 2021; Ingraham
et al., 2019).

In recent years, the advent of 3D graph neural networks (GNNs) has introduced a big potential for protein
representation learning. These models utilize the graph structure of proteins, where nodes represent atoms
or residues, and edges represent the bonds or spatial relationships between them (Wang et al., 2023; Zhang
et al., 2022). GNNs are particularly good at processing the non-Euclidean data represented by 3D protein
structures, enabling them to learn complex patterns that affect protein functionality (Swenson et al., 2020;
Abdine et al., 2024).

Despite these advancements, a significant limitation remains in the field: the absence of a unified approach
to effectively leverage unlabeled 3D structures for pretraining deep learning models. Most current methods
depend heavily on labeled data, which is scarce and expensive to produce. In contrast with transformer
models, which have effectively used token masking as a pretraining strategy and achieved significant success
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in various fields (Vaswani et al., 2017), graph models still lack a definitive, universally accepted pretraining
approach (Sun et al., 2022). Particularly for 3D structures, graph-based models face challenges in leveraging
the extensive, unlabeled data available, while also struggling to manage computational demands efficiently.
Most prominent approaches mask node attributes or edges and then try to predict them (Hu et al., 2020).
However, they do not take into account the hierarchical structure of proteins and the important substructures
or motifs that affect their function.

Our approach tackles these challenges by introducing a novel pretraining strategy for 3D GNNs, capitalizing
on the geometric properties of protein structures. Specifically, we predict the Euclidean distances between the
geometric centers of various protein subgraphs and the protein’s overall geometric center. This method offers
several advantages. First, by utilizing subgraph representations, the model can accurately learn and capture
hierarchical patterns within the 3D structure. Second, it captures the relative distances between subgraphs,
a valuable feature as some tasks require focusing on surface nodes, while others may need attention on more
central nodes. This flexibility increases the model’s ability to handle different types of protein-related tasks
effectively.

The goal of our pretraining is to capture meaningful structural information about proteins that can later be
fine-tuned for specific downstream tasks. By designing a pretraining task that focuses on subgraph distances,
we hypothesize that our model will develop a deeper understanding of protein geometry, especially compared
to simpler tasks like edge distance prediction. The intuition is that subgraph distance prediction forces
the model to learn more complex interactions within the protein structure, making it a richer and more
informative pretraining task.

We evaluate our approach, by pretraining various models with different featurization schemes, for protein
structures, in a large amount of 3D structures from AlphaFold database (Varadi et al., 2022). We demonstrate
increased performance in multiple protein classification tasks for different base architectures. Our pretraining
strategy is designed to be general and adaptable, as it can be used with any model architecture that can
encode the protein 3D structure. We believe our approach will lead the way and inspire more geometric
self-supervised methods on 3D protein structures.

Our contributions can be summarized as follows:

• We present a new pretraining task for protein representation learning that focuses on predicting
geometric distances between subgraphs. Our work presents a significant shift from traditional pre-
training masking tasks, and open a new avenue in geometric self-supervised learning.

• Our proposed pretraining strategy allows the model to capture rich geometric and structural features
of proteins, while maintaining a low computational overhead.

• We conduct a thorough evaluation of the proposed pretraining task using various featurization
schemes and backbone models. Our results show that the proposed pretraining task consistently
improves the downstream performance.

• We analyze the performance in the pretraining task and identify correlation with downstream task
performance, consistent with findings in other fields, such as language modeling.

• We release the full source code and integrate our model into the ProteinWorkshop library (Jamasb
et al., 2024) , providing the community with tools to easily reproduce our results and extend the
work for future research in protein representation learning.

2 Related Work

GNNs. Graph Neural Networks were introduced years ago (Scarselli et al., 2008), but it wasn’t until the
rise of deep learning that they started gaining widespread attention (Kipf & Welling, 2016; Hamilton et al.,
2017; Veličković et al., 2017). Despite their variations, these models can be unified under the framework
of Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017). MPNNs use an iterative message
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passing mechanism, where each node updates its representation by receiving messages from its neighbors.
The final graph representation is obtained using a permutation invariant pooling function over the node
representations. Several models have been developed to handle various types of graph structures, including
those designed for heterogeneous graphs (Yu et al., 2020; Lv et al., 2021), signed graphs (Huang et al., 2021;
2019), and 3D geometric graphs (Gasteiger et al., 2020; Schütt et al., 2018; Coors et al., 2018; Du et al.,
2024).

Protein Representation Learning. Protein representation learning aims to learn informative embed-
dings that capture the biological and functional characteristics of proteins. Early methods primarily focused
on sequence-based representations (Kulmanov & Hoehndorf, 2020; Liu, 2017). Recent advancements have
shifted towards multimodality, by integrating the structural information of proteins. For instance, methods
like HoloProt (Somnath et al., 2021) incorporate sequence, surface and structure information, DeepFRI (Glig-
orijević et al., 2021) propose a GCN to solve protein function prediction tasks while GAT-GO (Lai & Xu,
2022) introduces an attention-based graph model. Moreover, with the advance of language models, the re-
searches have started integrating and encoding also text information for the proteins such as Prot2Text (Ab-
dine et al., 2024), ProtST (Xu et al., 2023) and ProteinDT (Liu et al., 2023). 3D GNNs have also emerged
as a promising approach to capture the spatial relationships within protein structures. Wang et al. (2023)
introduced ProNet, a 3D GNN model that integrates spatial and geometric information for protein classi-
fication tasks. Schütt et al. (2018) developed SchNet, which incorporates radial basis functions to handle
pairwise distances in molecular graphs. Coors et al. (2018) proposed SphereNet, a spherical representation
of molecular structures that enhances spatial encoding. Our work is orthogonal to these methods, as it can
be applied to various backbone architecture, aiming to improve the learned representations by leveraging
the geometric structure in 3D protein data throughr pretraining.

Graph Pretraining. Pretraining techniques for GNNs have focused on various strategies to utilize un-
labeled data effectively. Traditional methods include node and edge masking, where attributes are hidden,
and the model learns to predict them (Hu et al., 2019; Xie et al., 2022). However, these methods often fail
to capture the complex hierarchical and spatial patterns present in 3D structures. In contrast, our approach
aim to leverage the geometric properties of 3D protein structures using different motifs, offering a novel
approach to pretraining in this domain.

Graph contrastive learning methods have also gained traction as effective approaches for pretraining graph
models. These methods aim to learn meaningful embeddings by contrasting different views or augmentations
of the same graph, such as through node perturbations or subgraph extractions. GraphCL (You et al., 2020),
which applies contrastive loss to node representations, and DGI (Veličković et al., 2018), which learns graph-
level embeddings by maximizing mutual information between node features and graph-level representations.
However, these methods often rely on carefully designed augmentations and may require extra computational
resources for generating and contrasting multiple views of each graph. In contrast, our pretraining task does
not require multiple views, augmentations, or masking strategies, thus simplifying the pretraining process.

3 Methods

3.1 3D Graph Neural Networks

Notation. A 3D graph representing a protein is formally denoted as G = (V,E, P ), where V represents
the set of nodes, E denotes the edges, and P denotes the spatial coordinates of each node in the graph. In
this work, we represent each amino acid as a node, using the position p ∈ R3 of the Cα atom as the position
of the amino acid. We connect each node with the k = 16 most nearest neighbors. We encode the aminoacid
types as node features and the sequential distances as edge features. We denote as hl

u the node features of
node u at layer l, and euv the edge feature vector for the edge uv. We denote as N the total number of
nodes and Ni the set of neighbors of node i.
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Figure 1: Visualization of the Geometric Centroid Pretraining Strategy for Protein Graph Neural Networks.
This diagram illustrates the methodology employed to predict the Euclidean distances between the centroids
of various subgraphs (cS) and the overall protein centroid (cG).

Architecture. We use two graph-based models that are specifically adapted for analyzing 3D protein
structures, as the base models for our experiments. Specifically, we use ProNet (Wang et al., 2023), a recent
3D GNN model that achieves state-of-the-art performance in protein classification tasks. In each layer of
ProNet, the node representations are updated as follows:

hl+1
i = f1

hl
i,
∑

j∈Ni

f2
(
vl

j , eji,F (dji, θji, ϕji, τji)
) , (1)

where f1 and f2 functions are parameterized using neural networks and F is a geometric transformation at
the amino acid level. Here (dji, θji, ϕji) is the spherical coordinate of node j in the local coordinate system
of node i to determine the relative position of j, and τji is the rotation angle of edge ji.

The second base model is SchNet (Schütt et al., 2018), a popular invariant message passing GNN. SchNet
performs message passing using element-wise multiplication of scalar features along with a radial filter that
takes into account the pairwise distance ∥x⃗ij∥ between two nodes. In each layer of SchNet, the node
representations are updated as follows:

h
(l+1)
i = h

(l)
i +

∑
j∈Ni

f1

(
h

(l)
j , ∥x⃗ij∥

)
(2)

Finally, we use also use a simple GCN model (Kipf & Welling, 2016), which updates the node representations
as follows:

h(l+1) = f

 ∑
j∈N (i)∪{i}

1√
d̂j d̂i

h(l)
j

 , (3)

where f is a linear projection followed by a non-linear activation and d̂i = 1 +
∑

j∈N (i) 1.

The final protein representation, hG, for all models is computed by applying a sum pooling layer in the node
representations from the last layer, L:

hG =
N∑

i=1
hL

i (4)

3.2 Geometric Self-Supervised Pretraining

Pretraining plays a crucial role in enhancing the performance of deep neural networks, particularly in domains
where labeled data is scarce or expensive to obtain. In this work, we leverage the large amount of available
unlabeled 3D protein structures. Specifically, we pretrain the model to predict the distance between the
geometric centroid of a subgraph and the geometric centroid of the entire protein G. The objective is to
minimize the difference between the predicted and actual Euclidean distances. However, since Mean Squared
Error loss is usually much harder to optimize, we discretize the distances using 10 equal bins and formulate
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the problem as a classification task, using the cross-entropy loss instead. An overview of the proposed
pipeline is illustrated in Figure 1.

Subgraph Computation. While our approach is compatible with any subgraph selection method, for
our implementation, we chose 2-hop ego networks centered around 10% of the amino acids in each protein.
Therefore, for each protein G, we obtain a set of different subgraphs SG , where each subgraph corresponds
to a 2-hop ego network.

Firstly, we compute the geometric centroid of the protein and the subgraphs. The geometric centroid cG of
the protein is calculated by averaging the coordinates of all aminoacids in the protein:

cG = 1
|V |

∑
i∈V

pi

cG =
(

1
|V |

∑
i∈V

xi,
1

|V |
∑
i∈V

yi,
1

|V |
∑
i∈V

zi

) (5)

where (xi, yi, zi) are the coordinates of each node i. Similarly, the centroid cS for each subgraph S ∈ SG is
calculated by averaging the coordinates of the nodes within the subgraph:

cS =

 1
|S|
∑
j∈S

xj ,
1

|S|
∑
j∈S

yj ,
1

|S|
∑
j∈S

zj

 , (6)

where |S| is the number of nodes in subgraph S. We then compute the Euclidean distance between the
centroid of the protein and the centroid of each subgraph, S:

d(cS , cG) = ∥cS − cG∥ (7)

Then the label for each subgraph is computed by discretizing this distance into one of 10 equal bins, which
transforms the regression task into a classification task.

Distance Prediction. To predict the distances, we calculate the embedding for a subgraph S by aggregating
the node representations within this subgraph:

hS =
∑
i∈S

hL
i (8)

This summation operation merges the features of the nodes in the subgraph from the final layer L of ProNet
to a vector that represents the entire subgraph. The predicted probability for each bin is derived from the
embeddings hG and hS , using a parameterized function f(hS∥hG). In our experiments, we use a two-layer
multilayer perceptron (MLP) to parameterize the function f . The loss function is defined as the cross-entropy
loss between the true and predicted bin labels across all proteins and their respective subgraphs:

Lpretraining = − 1
N

∑
G∈D

∑
S∈SG

10∑
k=1

y
(k)
S,G log ŷ(k)

S,G, (9)

where D is the collection of training protein graphs, N is the number of subgraphs, y(k)
S,G is the true probability

for bin k (1 for the correct bin, 0 otherwise), and ŷ
(k)
S,G is the predicted probability for bin k.

Complexity. The additional overhead introduced by our method due to the subgraph computation can
be eliminated by performing it once, as a preprocessing step, by storing the subgraphs. Moreover, since we
extract the subgraph representations from the final node representations of the GNN, we only require one
forward pass for each graph.

Motivation. In this work, we aim to address the limitations inherent in traditional pretraining methods for
protein representation learning. Existing approaches often rely on simplistic masking strategies that can not
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accurately capture the complex three-dimensional structural patterns in proteins. These methods tend to
overlook the spatial relationships and the hierarchical organization within protein structures, as they focus
solely on single node or edge masking.

In contrast, our proposed pretraining method leverages the geometric and hierarchical properties of protein
structures to pretrain 3D GNNs, by using subgraph representations instead of single nodes or edges. More-
over, our method encourages the model to learn the distance of the atoms from the center, which can be
important for tasks such as ligand-binding, where surface nodes play a significant role.

4 Experiments and results

4.1 Datasets

Pretraining Dataset For the pretraining, we used 542k SwissProt proteins structures from the AlphaFold
Database (Varadi et al., 2022). This dataset offers high-quality, predicted protein structures, making it a
reliable choice for model training. The pretraining process captures a broad spectrum of structural and
functional patterns, which is crucial for generalization to other proteins.

Fold Classification. We used the dataset and experimental protocols from (Wang et al., 2023). The
dataset encompasses a total of 16,712 proteins categorized into 1,195 different folds. Our evaluation spans
three distinct test sets: Fold, Superfamily, and Family. For the Fold Dataset, we used the same dataset as in
previous studies (Hermosilla et al., 2020; Wang et al., 2023). To assess the model’s ability to generalize, three
test sets are used: Fold, where proteins from the same superfamily are not seen during training; Superfamily,
where proteins from the same family are excluded from training; and Family, where proteins from the same
family are included in the training data. Among these, the Fold test set presents the highest challenge due to
its significant divergence from the training set’s conditions. For this task, the dataset is divided into 12,312
proteins for training, 736 for validation, and additional subsets for testing: 718 proteins for the Fold test,
1,254 for Superfamily, and 1,272 for Family.

React Classification. An Enzyme Commission (EC) number is a numerical classification scheme for
enzymes, based on the chemical reactions they catalyze. Each protein in the dataset is associated with an
EC number, with annotations for these numbers obtained from the SIFTS database (Dana et al., 2019).
The dataset encompasses a total of 37,428 proteins representing 384 distinct EC numbers. We utilized a
dataset comprised of 3D protein structures sourced from the Protein Data Bank (PDB) (Berman et al.,
2000). Following the experimental setup of (Wang et al., 2023), 29,215 proteins were used for training, 2,562
for validation, and 5,651 for testing. Every EC number is represented across all three dataset splits. Proteins
with more than 50% similarity were grouped together in the same split. This setup aids in evaluating the
model’s ability to generalize across different protein structures.

4.2 Experimental Setup

Baselines. We compare our pretraining method with the edge distance prediction task. Edge distance
prediction is a self-supervised learning task in graph representation learning, aimed at predicting the pairwise
distance between two nodes in a graph. In this task, a certain number of edges are randomly sampled from
the input batch, a mask is applied on the sampled edges(and their associated attributes), the distance is
then predicted based on the learned node representations of these sampled edges. Both subgraph distance
prediction and edge distance prediction aim to learn geometric or distance information, so we chose edge
distance prediction as a relevant comparison for evaluating the effectiveness of our approach.

We use ProteinWorkshop library to run all the experiments, including model pretraining and downstream
classification tasks. ProteinWorkshop provides various protein representation learning benchmarks, with
implementation of numerous featurisation schemes, datasets and tasks. We use ProNet, SchNet and GCN
as the base architectures. We further implement the ProNet model and our self-supervised pretraining task
in the ProteinWorkshop library to have a fair comparison. We choose three Cα-based featurisation schemes:
ca_base uses one-hot encoding of the amino acid type for each node; ca_angles added 16-dimensional
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positional encoding and κ, α ∈ R4 the virtual torsion and bond angles defined over Cα atoms; ca_bb added
ϕ, ψ, ω ∈ R6 which correspond to the backbone dihedral angles.

Training Details. For ProNet, we use the best hyperparameters from (Wang et al., 2023) and apply only
ca_base featurisation as it computes internally angle information. For GCN and SchNet, we applied all
featurisation methods and used the default hyperparameters from ProteinWorkshop. For both pretraining
tasks, we conducted a grid search to determine the optimal learning rate from 1e − 4 and 3e − 4. For
the edge distance task, we select 256 edges to be masked from the batch. For both tasks, pretraining is
performed for 10 epochs with batch size 32 using a linear warm-up with cosine schedule. For downstream
tasks, we search for every model and featurisation the best learning rate among 0.00001, 0.0001, 0.0003, 0.001
and the best dropout among 0.0, 0.1, 0.3, 0.5 based on validation performance on the fold classification task,
we use 150 maximum number of epochs with a batch size of 32 and ReduceLROnPlateau learning rate
scheduler monitoring the validation metric with patience of 5 epochs and reduction of 0.6. We monitor
the validation accuracy and perform early stopping with patience of 10 epochs, we report the average and
standard deviation over three runs using different seeds.

Table 1: Accuracy (%) and F1_max (%) on reaction and fold classification tasks with ca_base featuriza-
tion.

Model Pretraining React Fold
Accuracy F1_max Fold Super-Family Family

(%) Accuracy F1_max Accuracy F1_max Accuracy F1_max

GCN
None 43.44±2.1 50.57±2.33 12.32±0.6 16.99±0.73 10.85±0.1 16.84±0.17 57.35±1.8 64.55±1.54

Edge Distance 43.39±1.3 51.89±2.05 12.49±0.2 17.47±0.40 11.39±0.5 16.47±0.32 54.88±4.9 61.85±5.01
Subgraph Distance (Ours) 47.46±0.9 54.47±0.83 12.90±0.1 17.49±0.66 11.81±0.5 17.23±0.07 58.40±4.2 66.90±1.79

ProNet
None 77.96±5.3 78.10±1.9 46.92±1.4 47.38±2.53 60.32±0.1 58.30±1.61 97.69±0.1 96.62±0.63

Edge Distance 79.14±2.3 79.89±2.5 47.40±1.1 47.24±3.57 63.13±1.1 57.20±0.98 98.07±0.1 95.72±0.33
Subgraph Distance (Ours) 80.61±1.3 81.10±1.4 50.11±1.0 49.38±0.39 64.79±2.7 61.76±1.99 97.88±0.0 98.08±0.25

SchNet
None 59.48±1.9 66.04±1.63 21.35±2.3 27.43±1.19 23.53±0.3 29.76±0.43 76.85±1.7 83.35±1.22

Edge Distance 60.95±1.9 67.67±1.50 22.16±1.5 30.16±0.77 29.36±1.7 35.19±0.46 79.60±1.3 84.10±1.43
Subgraph Distance (Ours) 65.03±1.3 68.73±1.91 23.41±0.2 29.27±1.31 27.65±1.0 32.94±0.28 82.62±1.7 83.99±0.34

Table 2: Accuracy(%) and F1_max on reaction and fold classification tasks with ca_angles featurization.

Model Pretraining React Fold
Accuracy F1_max Fold Super-Family Family

Accuracy F1_max Accuracy F1_max Accuracy F1_max

GCN
None 70.14±1.3 75.81±1.37 25.45±0.7 31.28±0.55 33.21±1.3 40.63±1.19 89.68±0.5 93.06±0.56

Edge Distance 69.40±1.0 75.86±0.04 24.73±0.5 30.72±0.53 33.84±1.3 40.82±0.80 88.71±0.7 92.23±0.20
Subgraph Distance (Ours) 70.75±1.3 76.71±1.69 27.67±0.5 33.29±0.62 35.99±0.7 43.24±1.02 91.07±0.2 93.67±0.40

SchNet
None 69.27±3.1 75.06±2.56 26.66±0.8 33.48±0.95 34.87±0.8 41.97±0.40 90.29±0.7 93.22±0.61

Edge Distance 68.81±2.8 75.33±0.72 27.89±0.4 34.41±0.54 36.19±0.9 43.18±1.39 90.21±0.3 92.95±0.35
Subgraph Distance (Ours) 72.26±2.3 77.50±2.11 31.22±1.9 37.04±1.44 39.65±0.3 46.44±0.67 91.94±0.0 94.45±0.19

Table 3: Accuracy(%) and F1_max on reaction and fold classification tasks with ca_bb featurization.

Model Pretraining React Fold
Accuracy F1_max Fold Super-Family Family

Accuracy F1_max Accuracy F1_max Accuracy F1_max

GCN
None 70.82±0.9 76.56±1.06 26.18±1.4 32.21±0.78 33.43±0.2 40.21±0.25 89.90±0.5 92.79±0.28

Edge Distance 69.80±3.8 77.85±0.65 24.21±1.0 31.35±0.46 32.31±1.5 40.04±0.58 88.31±1.8 91.55±0.54
Subgraph Distance (Ours) 71.44±0.5 77.26±0.31 27.69±0.3 33.54±0.11 35.77±0.7 42.74±0.34 90.92±0.9 93.34±0.48

SchNet
None 70.33±0.5 76.40±2.67 28.43±0.6 33.84±0.75 36.28±0.3 42.51±0.88 89.94±0.8 92.36±0.22

Edge Distance 73.72±0.8 78.66±0.99 31.46±1.3 37.60±1.49 38.93±1.5 45.78±1.39 90.12±1.3 93.00±0.57
Subgraph Distance (Ours) 73.78±0.5 78.76±2.05 31.45±1.0 37.02±0.64 42.13±1.6 47.59±0.05 91.99±0.5 94.79±0.29
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Figure 2: Performance of the SchNet model during pretraining: (a) Accuracy and (b) Loss curves across
pretraining.
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Figure 3: Performance of the GCN model during pretraining: (a) Accuracy and (b) Loss curves across
pretraining.

4.3 Results and Discussion

Downstream Task Results. We report the accuracy and F1 max results for different featurizaton schemes
in Tables 1, 2 and 3. Compared to models without pretraining and those using edge distance pretraining, the
subgraph distance method consistently yields higher performance. Specifically, SchNet pretrained with our
task can lead to significant improvements in accuracy such as 4.78% in the Super-Family task with ca_angles
featurization and 5.85% with ca_bb featurization. The same patterns hold for GCN and ProNet, where our
pretrained models are significantly better, demonstrating that the hierarchical and geometric information
captured through subgraph distance pretraining is beneficial.

Pretraining Analysis. In this section, we analyze the performance of our model in the pretraining task.
Specifically, we present accuracy and loss curves across the pretraining epochs for the test set, and provide
a confusion matrix to further understand the quality of predictions.

We pretrained the SchNet model with the three different feature schemes and we plot the accuracy and
cross-entropy loss in Figure 2. The loss curves demonstrate that for all feature schemes the loss is decreasing
during pretraining, with schnet_ca_bb showing the lowest final loss. In Figure 3, we report the results for
the GCN model during pretraining. Similarly, we observe that the loss is decreasing and the accuracy is
increasing during pretraining. The ca_angles and ca_bb schemes achieve the best performance, which is
reasonable as they have more information for the geometry of the protein.
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Interestingly, we observe that there is a correlation between the pretraining performance and the downstream
tasks performance. Models pretrained with the ca_angles and ca_bb featurization schemes, which show
higher pretraining accuracies, generally exhibit better performance on downstream tasks. This result aligns
with observations in language modeling, where strong pretraining performance, such as accurate next-word
prediction, is a reliable indicator of the performance in various downstream tasks (Wei et al., 2021). Our
study extends this concept geometric self-supervised learning, demonstrating that accurate prediction of
subgraph distances during pretraining can significantly enhance the performance of models in downstream
applications.

5 Conclusion and Future work

In this work, we proposed a new self-supervised learning method to learn accurate protein representations
from 3D structures. By capitalizing on the extensive collection of protein structures available, we pre-trained
a 3D GNN model to predict the distance between the geometric centroid of the entire protein and various
subgraphs within the protein. We experimentally show that our pretraining strategy leads to improved
performance in downstream classification tasks, such as protein fold and reaction classification, while also
outperforming typical pretraining methods such as edge masking. In future work, we plan to explore the
effects of various subgraph selection strategies and investigate how combining our approach with additional
pretraining tasks could further enhance performance. We hope that our work will inspire more people to
leverage the large amount of protein structures and develop specialized self-supervised learning methods for
these data.
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A Appendix

Table 4: F1_macro on reaction and fold classification tasks with ca_base featurization.

Model Pretraining React Fold
Fold Super-Family Family

GCN
None 27.61±1.87 2.78±0.25 2.74±0.13 24.36±1.54

Edge Distance 28.81±1.71 3.07±0.26 2.90±0.33 22.59±2.61
Subgraph Distance (Ours) 31.15±0.78 3.05±0.14 3.14±0.14 25.79±0.96

ProNet
None 13.28±1.61 20.78±1.54 77.19±4.19

Edge Distance 14.25±1.06 20.36±0.49 74.48±1.01
Subgraph Distance (Ours) 14.85±0.89 22.31±2.84 83.46±0.81

SchNet
None 42.27±1.61 5.53±0.78 6.73±0.27 44.47±2.62

Edge Distance 43.87±1.80 6.90±0.33 9.06±0.46 45.64±3.18
Subgraph Distance (Ours) 44.42±1.92 6.65±0.64 7.57±0.29 42.52±0.62

Table 5: F1_macro on reaction and fold classification tasks with ca_angles featurization.

Model Pretraining React Fold
Fold Super-Family Family

GCN
None 54.93±1.21 7.19±0.65 10.76±0.63 60.94±2.35

Edge Distance 54.16±0.87 7.11±0.41 11.12±0.62 57.89±1.36
Subgraph Distance (Ours) 55.68±1.34 7.62±0.41 12.42±0.43 63.37±0.94

SchNet
None 53.40±3.07 7.17±0.35 11.46±0.37 62.15±2.26

Edge Distance 53.61±1.98 7.70±0.39 11.78±0.73 61.23±1.59
Subgraph Distance (Ours) 56.35±2.87 8.75±1.38 13.86±0.54 65.73±1.27

Table 6: F1_macro on reaction and fold classification tasks with ca_bb featurization.

Model Pretraining React Fold
Fold Super-Family Family

GCN
None 55.55±1.21 7.27±0.47 10.96±0.25 61.55±0.86

Edge Distance 56.95±0.54 6.99±0.36 10.61±0.35 58.30±2.85
Subgraph Distance (Ours) 56.57±0.84 7.83±0.15 12.15±0.50 64.25±1.96

SchNet
None 55.10±3.66 7.78±0.28 11.75±0.43 60.89±2.56

Edge Distance 58.45±0.94 8.62±0.71 13.23±0.53 62.07±3.09
Subgraph Distance (Ours) 57.53±2.19 8.77±0.57 13.81±0.29 66.69±1.42
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Table 7: rocauc_weighted on reaction and fold classification tasks with ca_base featurization.

Model Pretraining React Fold
Fold Super-Family Family

GCN
None 94.48±0.33 67.86±0.24 75.97±0.09 78.17±0.57

Edge Distance 94.50±0.59 67.69±0.20 74.74±0.07 77.19±1.55
Subgraph Distance (Ours) 95.27±0.20 68.83±0.39 75.85±1.60 78.96±0.42

ProNet
None 91.07±0.53 93.80±0.38 82.40±0.03

Edge Distance 89.78±1.53 93.29±0.62 82.29±0.06
Subgraph Distance (Ours) 91.66±0.47 95.02±0.42 82.43±0.02

SchNet
None 96.73±0.04 75.56±0.68 82.43±0.37 80.83±0.20

Edge Distance 97.13±0.06 78.94±0.18 85.12±0.63 81.22±0.03
Subgraph Distance (Ours) 97.25±0.24 78.36±0.93 84.09±0.49 81.20±0.06

Table 8: rocauc_weighted on reaction and fold classification tasks with ca_angles featurization.

Model Pretraining React Fold
Fold Super-Family Family

GCN
None 97.49±0.08 79.85±0.51 86.92±0.36 81.93±0.05

Edge Distance 97.41±0.28 80.36±0.27 86.22±0.08 81.78±0.13
Subgraph Distance (Ours) 97.62±0.16 81.45±0.31 88.06±0.36 85.38±5.73

SchNet
None 97.67±0.02 82.29±0.70 88.75±0.37 82.14±0.12

Edge Distance 97.57±0.06 83.38±0.31 89.19±0.55 81.19±0.08
Subgraph Distance (Ours) 97.73±0.21 84.12±0.50 90.50±0.17 82.26±0.00

Table 9: rocauc_weighted reaction and fold classification tasks with ca_bb featurization.

Model Pretraining React Fold
Fold Super-Family Family

GCN
None 97.37±0.06 80.89±0.37 86.59±0.10 81.85±0.05

Edge Distance 97.44±0.05 80.70±0.44 86.35±0.22 81.67±0.01
Subgraph Distance (Ours) 97.50±0.37 82.06±0.29 87.95±0.13 82.02±0.06

SchNet
None 97.63±0.85 82.66±0.14 89.12±0.19 82.01±0.06

Edge Distance 97.77±0.18 85.41±0.68 90.40±0.26 82.04±0.37
Subgraph Distance (Ours) 97.84±0.07 85.13±1.06 90.81±0.41 82.26±0.05
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