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ABSTRACT

With the rapid advancement of large models, voice assistants are gradually acquir-
ing the ability to engage in open-ended daily conversations with humans. How-
ever, current spoken dialogue systems often overlook multi-modal information
in audio beyond text, such as speech rate, volume, emphasis, and background
sounds. Relying solely on Automatic Speech Recognition (ASR) can lead to the
loss of valuable auditory cues, thereby weakening the system’s ability to gen-
erate contextually appropriate responses. To address this limitation, we propose
VoxDialogue, a comprehensive benchmark for evaluating the ability of spoken di-
alogue systems to understand multi-modal information beyond text. Specifically,
we have identified 12 attributes highly correlated with acoustic information be-
yond words and have meticulously designed corresponding spoken dialogue test
sets for each attribute, encompassing a total of 4.5K multi-turn spoken dialogue
samples. Finally, we evaluated several existing spoken dialogue models, analyz-
ing their performance on the 12 attribute subsets of VoxDialogue. Experiments
have shown that in spoken dialogue scenarios, many acoustic cues cannot be con-
veyed through textual information and must be directly interpreted from the au-
dio input. In contrast, while direct spoken dialogue systems excel at processing
acoustic signals, they still face limitations in handling complex dialogue tasks due
to their restricted context understanding capabilities. All data and code will be
open source at https://voxdialogue.github.io/.

1 INTRODUCTION

Voice assistants have rapidly evolved into a focal point of both academic research and industry in-
novation, aiming to facilitate daily conversations (Li et al., 2017; Lee et al., 2023) and task-oriented
dialogues (Budzianowski et al., 2018; Si et al., 2024) with humans. Early iterations relied heavily
on automatic speech recognition (ASR) (Yu & Deng, 2016), combined with dialogue understanding
and state management, to support basic, predefined tasks. However, these systems (Hoy, 2018) were
constrained by their limited scope and inability to handle open-ended interactions. The advent of
large language models (LLMs) (Touvron et al., 2023) with enhanced understanding and reasoning
capabilities has revolutionized voice assistants, enabling them to engage in more dynamic and unre-
stricted dialogues with users (OpenAI, 2024b). This marks a significant departure from their earlier,
more constrained functionalities, opening up new possibilities for human-computer interaction.

Yet, despite these advancements, current spoken dialogue systems (Zhang et al., 2023; Xie & Wu,
2024; Fang et al., 2024) often overlook the rich multimodal information embedded in audio beyond
mere spoken words—such as intonation, volume, rhythm, and background sounds. Relying solely
on ASR leads to the omission of valuable auditory cues, diminishing the system’s ability to generate
contextually appropriate responses. For example, a system might fail to adjust its language to match
a user’s emotional state or regional accent, such as responding with “Yes, madam” to a female voice
or adopting british colloquialisms when detecting a British accent.

To address these limitations, recent research has shifted towards developing multimodal audio-
language models that enhance system comprehension of audio inputs. Emotion2Vec (Ma et al.,
2023), trained on vast emotional speech data, stands as the first high-quality pre-trained model
for emotion recognition. Qwen-Audio 1/2 (Chu et al., 2023; 2024) have been trained on exten-
sive datasets encompassing over 30 audio-related tasks, enabling them to understand various au-

1

https://voxdialogue.github.io/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison of spoken language and audio comprehension benchmarks in terms of
data types and evaluation dimensions. SL. refers to Spoken Language, while Dlg. indicates
whether the benchmark evaluates on dialogue tasks. Aud. represents audio comprehension, and
Mus. refers to music comprehension. Speaker Info includes attributes such as age (Age), gen-
der (Gen), accent (Acc), and language (Lan). Paralinguistic Info covers aspects like emotion
(Emo), volume (Vol), speech rate (Spd), speech fidelity (Fid), stress (Str), and non-verbal expres-
sions (NVE). †Although LeBenchmark includes a small amount of conversational data (29 hours out
of 2933 hours), it does not evaluate on the dialogue tasks. ‡Please note that although AirBench can
assess spoken language comprehension, its evaluation of conversational ability (AirBench-Chat) is
based on text-based interactions and does not address spoken dialogue capabilities.

Types Evaluation Dimensions
Benchmarks SL. Dlg. Aud. Mus. Speaker Info Paralinguistic Info
SUPERB (Yang et al., 2021) ✓ ✗ ✗ ✗ ✗ ✓ (Emo)

SLUE (Shon et al., 2022) ✓ ✗ ✗ ✗ ✗ ✗
LeBenchmark (Evain et al., 2021) ✓ ✗† ✗ ✗ ✗ ✓ (Emo)

AF-Dialogue (Kong et al., 2024) ✗ ✓ ✓ ✓ ✗ ✗
AirBench (Yang et al., 2024) ✗‡ ✓ ✓ ✓ ✓ (Age,Gen) ✓ (Emo)

SpokenWOZ (Si et al., 2024) ✓ ✓ ✗ ✗ ✗ ✗
SD-EVAL (Ao et al., 2024) ✓ ✓ ✓ ✗ ✓ (Age,Gen,Acc) ✓ (Emo)

VoxDialogue (ours) ✓ ✓ ✓ ✓ ✓ (Age,Gen,Acc,Lan) ✓ (Emo,Vol,Spd,Fid,Str,NVE)

dio types—including speech, audio events, and music. Pushing the envelope further, FunAudi-
oLLM (SpeechTeam, 2024) offers full-scene recognition capabilities, detecting non-verbal sounds
like laughter and breathing within speech. StyleTalk (Lin et al., 2024b) is the first spoken dialogue
system that enables tailoring responses based on contextual emotional information.

As large-scale audio-language models continue to evolve rapidly, the scientific community has in-
creasingly recognized the urgent need for a comprehensive benchmark to effectively evaluate spoken
dialogue systems. While some progress has been made, existing benchmarks often exhibit notable
shortcomings. For instance, SUPERB (Yang et al., 2021) is the first benchmark specifically designed
for spoken language, but it primarily focuses on coarse-grained semantic understanding tasks, over-
looking the importance of various acoustic features. Other benchmarks, such as AirBench (Yang
et al., 2024) and Audio-Flamingo (Kong et al., 2024), delve deeply into audio understanding, but
their dialogue content is limited to the textual modality, making them unsuitable for evaluating spo-
ken dialogue tasks. SpokenWOZ (Si et al., 2024), though valuable for its real human-computer
interaction data, is restricted to task-driven dialogues and lacks detailed fine-grained labels. To ad-
dress more specific attributes of spoken dialogue, SD-EVAL (Ao et al., 2024) shifts the focus to
characteristics like gender, age, accent, and emotion, yet its effectiveness is limited by the use of
speech utterances that are not derived from dialogue scenarios.

To better benchmark spoken dialogue systems, we analyzed non-textual multimodal acoustic infor-
mation that may affect dialogue responses, which can be categorized into three main types: speaker
information (age, gender, accent, language), paralinguistic information (emotion, volume, speed,
fidelity, stress, and various non-verbal expressions), and background sounds (audio and music). In
real-world dialogue scenarios, it is crucial to capture not only the semantic content of the speech
but also these acoustic cues to generate more appropriate responses. For example, determining
the speaker’s age from their vocal tone can help select a suitable form of address. For each of
these attributes, we designed the most appropriate spoken dialogue synthesis pipelines. Leveraging
the strong inference capabilities of large language models (LLMs) and high-fidelity text-to-speech
(TTS) synthesis, we constructed the VoxDialogue benchmark, comprising 12 dialogue scenarios
specifically tailored to different acoustic attributes. As shown in Figure 1, to the best of our knowl-
edge, this is the most comprehensive work focusing on acoustic information in spoken dialogue
benchmarks. Based on VoxDialogue, we evaluated several existing spoken dialogue systems, com-
paring the performance of ASR-based dialogue systems and direct dialogue systems across various
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acoustic-related tasks. The results demonstrate that ASR-based methods are limited in their ability
to understand the diverse acoustic attributes present in spoken dialogues, highlighting the impor-
tance of developing large-scale audio-language models. At the same time, existing direct dialogue
systems (such as Qwen2-Audio) still exhibit limitations in long-context reasoning, indicating the
need for further improvement in their contextual understanding capabilities.

All our code and data will be open-sourced. Our main contributions are as follows:

• We present the first benchmark for evaluating the ability of spoken dialogue systems to
understand acoustic information beyond speech content, VoxDialogue, which integrates
12 acoustic dimensions, including speaker attributes (age, gender, accent, language), par-
alinguistic features (emotion, volume, speed, fidelity, stress, non-verbal expressions), and
background sounds (audio, music).

• We were the first to develop distinct spoken dialogue data synthesis methods tailored for
different acoustic attributes. This approach enables large-scale synthesis of spoken dia-
logue data, supporting extensive training for spoken dialogue models and endowing them
with more comprehensive acoustic understanding capabilities.

• We conducted a systematic evaluation of existing spoken dialogue systems, comparing their
performance in terms of understanding acoustic information, supplemented by a qualitative
analysis using a GPT-based metric. Specifically, inspired by the MOS (Mean Opinion
Score) evaluation mechanism, we provided GPT with descriptive criteria corresponding to
different scores, enabling the evaluation model to more accurately assess each response in
terms of both acoustic attributes and content quality.

2 RELATED WORKS

2.1 SPOKEN DIALOG SYSTEM

With the development of large-scale language models, increasingly powerful audio-language models
have emerged, utilizing extensive training corpora to achieve comprehensive audio understanding.
SpeechGPT (Zhang et al., 2023) integrates discrete speech units into large language models (LLMs),
making it a speech-centric model. Qwen-Audio 1/2 (Chu et al., 2023; 2024) established the first
large-scale, comprehensive audio model for over 30 audio-related tasks, including speech recogni-
tion, speech translation, audio transcription, and audio event detection. Salmonn (Tang et al., 2023)
addresses task complexity in audio models by introducing more intricate story generation tasks.

Building on advancements in audio understanding, a series of spoken dialogue models (e.g.,
Qwen-Audio-Chat) have been developed to facilitate more intelligent human-computer interactions.
Audio-Flamingo (Kong et al., 2024) developed a chat model using a text dialogue dataset centered
on audio events, enabling multi-turn, audio-focused text dialogues. StyleTalk (Lin et al., 2024b)
focused on emotional dialogue tasks and introduced the first spoken dialogue model capable of
generating responses with varying emotional tones.

However, existing spoken dialogue models (Xie & Wu, 2024; Fang et al., 2024) primarily focus
on understanding speech content and audio information, with a few work specifically dedicated to
comprehending detailed acoustic information within speech. To address this gap, this paper focuses
on 12 acoustic dimensions that could influence dialogue content, including speaker attributes (age,
gender, accent, language), paralinguistic features (emotion, volume, speed, fidelity, stress, non-
verbal expressions), and background sounds (ambient noise, music). Additionally, we developed
a pipeline for synthesizing spoken dialogue data based on these attributes, aiming to enhance the
ability of spoken dialogue models to understand acoustic information beyond the textual content.

2.2 SPOKEN LANGUAGE BENCHMARK

With the rapid development of large-scale audio models (Chu et al., 2024; SpeechTeam, 2024), the
scientific community has increasingly recognized the need for a comprehensive benchmark to eval-
uate spoken dialogue systems. While some progress has been made, many existing benchmarks
still fall short. For instance, SUPERB (Yang et al., 2021) was the first benchmark specifically de-
signed for spoken language, but it primarily focuses on coarse-grained understanding tasks. Audio-
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Table 2: Dialogue example of VoxDialog. The bold black text highlights the acoustic and back-
ground information unique to spoken dialogue, while the blue text emphasizes responses that depend
on these information.

Attributes Example

I. Speaker Information
A: Excuse me, I’m looking for a reliable smartphone that suits my needs. (Man Voice)Gender B: Certainly, Sir! ... excellent performance and a long-lasting battery, perfect for business tasks.

A: What dishes do you recommend? (Young Voice)Age B: Sure! You might enjoy our specialty beef burger, it’s fantastic with fresh juice.

A: Could you help me with my schedule? (British Accent)Accent B: Of course, I’ll assist you in organizing your timetable.

A:今天天气怎么样? (Speaking in Chinese)
Language B:今天天气晴朗，气温适中，适合外出活动。

II. Paralinguistic Information
A: Can you recommend a good movie? (Sad Tone)Emotion B: I get it. Maybe Soul—it’s emotional and might bring you some comfort.

A: Can you tell me how to solve this problem? (Loud Volume)Volume B: Could you speak more quietly? People around are studying.

A: I’d like to get the burger, a soda, and also the pasta, please. (Speaking Quickly)Speed B: Sorry, could you say that more slowly? I didn’t catch everything you said.

A: Can you tell me the time of the meeting? (Poor Audio Quality)Fidelity B: I’m having trouble hearing you. Could you improve the audio quality?

A: I really don’t like making sushi. (Emphasis on “making sushi”)Stress B: Oh, I see. If you don’t like making sushi, what other types of cooking do you enjoy?

A: Could you help me move this box? (With a sigh before speaking)Non-verbal
Expressions B: Are you feeling okay? It seems like you’re really tired. I can take care of it for you.

III. Background Sound
What was that sound just now? (Background sound: airplane engine sound, explosion sound)Audio

Events That was a loud explosion. It sounded like the plane exploded. Hope no one was hurt.

A: Hey, what instrument is this song played on? (Music: Piano Song, Sad Song)Music B: It should be the piano, it sounds so sad.

Flamingo (Kong et al., 2024) explores audio comprehension but is limited to text-based dialogue
data, lacking a focus on evaluating spoken dialogue. AirBench (Yang et al., 2024) was the first
to propose using GPT-4 (OpenAI, 2024b) to measure spoken dialogue system performance, but its
evaluation set remains constrained to a QA interaction. SpokenWOZ (Si et al., 2024) is a large-scale
task-oriented dataset that offers real human interaction data, making it valuable for evaluating task-
driven dialogue systems. SD-Eval (Ao et al., 2024), which emphasizes acoustic attributes such as
gender, age, accent, and emotion, uses raw audio from confessional-style corpora, making it less
suitable for conversational scenarios.

However, due to the difficulty of collecting spoken dialogue data in specific scenarios, none of the
current benchmarks can effectively evaluate whether spoken dialogue systems can understand vari-
ous acoustic information beyond text. To address this gap, we developed VoxDialogue, a benchmark
created using synthetic data tailored to these acoustic attributes, and evaluated the ability of existing
spoken dialogue systems to comprehend such acoustic information.

3 VOXDIALOGUE

3.1 OVERVIEW

Spoken dialogue systems are typically used in daily dialogues (Lin et al., 2024a). As shown in Table
2, we evaluate the performance of spoken dialogue systems across these three categories in daily
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dialogue scenarios. Beyond understanding the speech content, spoken dialogue systems must also
generate the most appropriate responses by considering the speaker’s emotions, gender, and other
acoustic-related information. Therefore, unlike traditional text-based dialogue benchmarks (Li et al.,
2017), we systematically analyze the acoustic characteristics that may influence response content
and have developed a tailored evaluation set specifically for spoken dialogue systems. The evalua-
tion set for daily dialogue is divided into the following categories: I. Speaker Information. (1) Age:
Responses should be tailored to the speaker’s age, adjusting salutations (e.g., Mrs./Miss) or suggest-
ing content appropriate for their age group. (2) Gender: Responses should be gender-specific, mod-
ifying salutations (e.g., Mr./Mrs.) or offering preferences based on gender. (3) Accent: Responses
should account for the speaker’s accent, selecting vocabulary that aligns with their speech (e.g.,
British people may be more accustomed to using ‘timetable’ instead of ‘schedule’). (4) Language:
Responses should be adapted to the speaker’s language, choosing the most appropriate language for
the response. II. Acoustic Information. (5) Emotion: Responses should detect the speaker’s emo-
tional state and provide a suitable reply (e.g., suggesting comforting music when sensing distress).
(6) Volume: Responses should consider the speaker’s volume, asking them to lower or raise their
voice (e.g., requesting quieter speech in quiet environments). (7) Speed: Responses should adjust
to the speaker’s speech rate, asking them to slow down or clarify if speaking too quickly for com-
prehension. (8) Fidelity: Responses should detect poor audio quality and ask the speaker to repeat
or improve the clarity of their speech for better understanding. (9) Stress: Responses should recog-
nize emphasis on specific words and tailor replies to focus on the stressed content. (10) Non-verbal
Expressions: Responses should account for non-verbal cues such as sighs, detecting emotions like
tiredness or frustration, and offering assistance accordingly. III. Background Sound. (11) Au-
dio Event: Responses should recognize relevant audio events and adapt accordingly. (12) Music:
Responses should adjust to the type and mood of the background music.

3.2 SPOKEN DIALOGUE GENERATION

Stage1: Dialogue Script Synthesis. Building on the methodology of previous studies (Lin et al.,
2024a), we employed large language models with advanced reasoning capabilities to synthesize
spoken conversation scripts tailored to diverse scenarios and acoustic conditions. Specifically, we
utilized GPT-4o (OpenAI, 2024a) to pre-generate several rounds of historical conversations, fol-
lowed by the generation of contextually appropriate responses under various controlled acoustic
conditions. This approach ensures that the synthesized dialogue scripts capture a wide range of
acoustic features, thereby enhancing their robustness and diversity.

Stage2: Spoken Dialogue Generation. In line with previous works (Ao et al., 2024; Lin et al.,
2024a), we utilized high-fidelity TTS (Du et al., 2024) to generate spoken dialogues corresponding
to the dialogue scripts. We carefully tailored the most appropriate speech synthesis method for each
attribute during the generation process: (1) Gender, Speed and Emotion. We use COSYVOICE-
300M-INSTRUCT1 to achieve condition speech generation based on gender and emotion by ad-
justing style instructions. (2) Stress, Language, and Non-verbal Expressions. We achieved
control over these aspects by adjusting the text content in the COSYVOICE-300M-SFT2, adding
< stress >< /stress >, [laughter], or changing the language of the text. (3) Volume, Fidelity,
Audio Events, and Music. We used COSYVOICE-300M-SFT to generate the basic speech, then ap-
plied post-processing techniques to fine-tune these specific attributes. The details of post-processing
are shown in Stage 4. (4) Age. We randomly selected 1,000 speaker samples of different ages from
Hechmi et al. (2021) and Tawara et al. (2021) as reference timbres and used COSYVOICE-300M3

for zero-shot TTS synthesis. (5) Accent. We used the industrial-grade TTS tool (edge-TTS4), which
offers over 318 timbre references spanning various regions, languages, and genders to achieve pre-
cise accent generation.

Stage3: Automatic Verification for Spoken Dialogue. To ensure the quality of the synthesized
spoken dialogue data, we first employed a pre-trained model to automatically filter out unqualified
samples, removing those with generation errors and inconsistent timbre. Specifically, we used the

1https://huggingface.co/FunAudioLLM/CosyVoice-300M-Instruct
2https://huggingface.co/FunAudioLLM/CosyVoice-300M-SFT
3https://huggingface.co/model-scope/CosyVoice-300M
4https://github.com/rany2/edge-tts
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(a) Word Cloud of VoxDialogue.

(b) The Duration Distribution of Turns.

(c) The Duration Distribution of Dialogues.
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Figure 1: Visualization of static analysis of VoxDialogue.

Whisper model (Radford et al., 2023) to filter out all sentences with a word error rate (WER) greater
than 5%, and applied speaker-diarization-3.1 (Plaquet & Bredin, 2023; Bredin, 2023) to eliminate
samples with timbre inconsistencies in speeches of the same speaker throughout dialogue sequence.

Stage4: Post-processing for Specific Acoustic Attributes. For attributes such as volume, fidelity,
audio events, and music, we performed post-processing to ensure that the audio aligns with the re-
quired expectations. For fidelity, according to the Nyquist-Shannon sampling theorem, the sampling
rate must be at least twice the highest frequency of the signal to ensure lossless reconstruction.
To capture frequencies up to 4 kHz, the minimum sampling rate should be 8 kHz. Therefore, we
downsampled the speech to 4 kHz (to simulate the loss of speech signal and represent ‘poor’ audio
quality, resulting in the loss of some speech information) and then resampled it back to 16 kHz to
simulate poor audio fidelity. For volume, dialogue turns labeled as ‘loud’ were amplified to simulate
by increasing the power 8-fold. For dialogue turns labeled as ‘low’, the audio power was reduced to
50% of its original level to simulate poor microphone reception. For audio events, a large language
model is used to classify events as either temporary or continuous. Temporary audio events, such as
a door slamming or a phone ringing, are brief sounds that occur momentarily and are spliced before
the first voice segment. In contrast, continuous audio events, like background chatter or street noise,
are prolonged and are looped as background sound throughout the conversation. For music, we
randomly spliced it before the first speech segment or set it to play in a loop as background sound.

Stage5: Human Verification. While large language models (LLMs) are effective at following
instructions and generating coherent conversation samples, they are primarily trained on text data
and lack exposure to human spoken conversations. As a result, the automatically generated data
may exhibit unnatural characteristics. To ensure the naturalness and logical consistency of the spo-
ken conversation sample pairs with the audio features, we employ human annotators for additional
quality checks.

3.3 DATASET STATISTICS

Distribution of Attribute Categories. As shown in Figure 1 (d), the distribution of attribute cat-
egories in VoxDialogue is balanced, allowing for a comprehensive evaluation of spoken dialogue
systems’ understanding and dialogue capabilities across various acoustic attributes. In Figure 1 (a),
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Table 3: Detailed statistics of the corresponding subsets of each attribute in VoxDialogue. Gray
fonts indicate that samples of this attribute are included in other subsets. IN (India), CA (Canada),
ZA (South Africa), GB (United Kingdom), SG (Singapore), US (United States), and AU (Australia).
Turns represents the total number of turns in each subset, Dialog. indicates the number of dialogues
in each subset, Avg denotes the average number of turns per dialogue in each subset, and Dur. refers
to the total duration (in hours) of all dialogues in each subset.

Attributes Categories Turns Dialog. Avg Dur.
I. Speaker Information

Gender Male, Female 2040 340 6.0 3.17
Age Youth (15-30), Middle-Aged (30-60), Elderly (60+) 3096 447 6.9 6.05

Accent IN, CA, ZA, GB, SG, US, AU 1440 240 6.0 2.20
Language Chinese, English 2892 482 6.0 3.51

II. Paralinguistic Information
Emotion Neutral, Happy, Sad, Angry, Surprised, Fearful, Diagusted 1980 330 6.0 2.41
Volume Loud Volume, Low Volume, Normal Volume 1824 304 6.0 2.08
Speed High Speed, Low Speed, Normal Speed 2184 364 6.0 2.93

Fidelity Low Fidelity, Normal Fidelity 2196 366 6.0 3.36
Stress Stress, No Stress 2354 392 6.0 2.51
NVE Laughter, No Laughter 2046 341 6.0 3.68

III. Background Sound

Audio The caption of different audio. 5000 500 10.0 5.25(e.g., The wind is blowing and rustling occurs.)

Music The aspect list of different music pieces. 3734 420 8.9 5.42(e.g., [steeldrum, higher register, amateur recording])

Overall 30.7K 4.5K 6.8 42.56

we also present a word cloud of VoxDialogue, where it is evident that the dataset primarily con-
sists of daily dialogue, featuring a large number of natural spoken words such as “yeah,” which are
representative of daily spoken interactions. This makes it suitable for assessing the performance of
spoken dialogue systems in real-world dialogue scenarios. Additionally, the dataset contains nu-
merous acoustically relevant keywords, such as “heard,” “loud,” and “sound,” further supporting the
evaluation of acoustic-related aspects of dialogue understanding.

Distribution of Dialogue Turns and Duration. All dialogues in our dataset are multi-turn dia-
logues. In Figure 1 (e), we show the distribution of dialogue turns, with the majority consisting
of 6 turns and a maximum of 10 turns. This allows for a comprehensive evaluation of spoken di-
alogue systems’ ability to understand contexts of varying lengths. In addition, Figures 1 (b) and 1
(c) illustrate the distribution of each turn and the overall dialogue length, respectively, showing that
most sentences are approximately 4 seconds long. This implies that the system must understand the
context and reason effectively before generating a response.

Statistics for Subset of Each Attribute. We present the detailed statistics of each attribute in
VoxDialogue in Table 3, covering 35 different categories across 12 attributes. The average number
of turns per dialogue exceeds 6, with each attribute containing more than 300 dialogues, ensuring
comprehensive reflection of dialogue capabilities.

4 BENCHMARK FOR SPOKEN DIALOGUE SYSTEM

4.1 TASK DEFINITION

The task of a spoken dialogue system is to generate appropriate responses based on the contextual
information from the sequence of human dialogue (e.g., the user’s utterance sequence) and the pre-
ceding assistant response sequence, where the total number of dialogue turns is denoted by t. The
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(a) Comparison of BLEU Across Methods and Attributes.
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(b) Comparison of ROUGE-L Across Methods and Attributes.

Age Gender Accent Language Emotion Volume Speed Fidelity Stress NVE Audio Music
Attributes

0
5

10
15
20
25
30
35

Sc
or

es

Audio-Flamingo
Qwen-Audio
SALMONN
Qwen-Audio2
FunAudioLLM

(c) Comparison of METEOR Across Methods and Attributes.

Age Gender Accent Language Emotion Volume Speed Fidelity Stress NVE Audio Music
Attributes

74
76
78
80
82
84
86
88
90

Sc
or

es

Audio-Flamingo
Qwen-Audio
SALMONN
Qwen-Audio2
FunAudioLLM

(d) Comparison of BERTScore Across Methods and Attributes.

Figure 2: The comparison of spoken dialogue performance across 12 different attribute-specific test
sets on the VoxDialogue dataset.

goal of the spoken dialogue system is to generate the most suitable response based on the previous
t utterances and the t− 1 historical replies. In our work, we evaluate the performance of the spoken
dialogue system by focusing solely on the final utterance of each dialogue.

4.2 EVALUATION METRICS

To assess the model’s performance, we conducted separate tests on a subset of Voxdialogue. Draw-
ing on previous research (Ao et al., 2024), we utilized both quantitative and qualitative metrics for
a comprehensive evaluation. The quantitative evaluation focused on two key aspects: content and
style. For content evaluation, we employed widely recognized text generation metrics, including
vocabulary-level measures such as BLEU (Papineni et al., 2002), ROUGE-L (Lin, 2004), and ME-
TEOR (Banerjee & Lavie, 2005), alongside semantic-level metrics like BERTScore (Zhang et al.,
2019). For style evaluation, we calculated the weighted F1 score of speech sentiment.

In addition to these quantitative assessments, we conducted a qualitative analysis using GPT-based
metric (Yang et al., 2024). The meaning of each score is as follows: 1: Contextually relevant but
lacks attribute information. 2: Partially relevant to the context but feels unnatural, with no attribute
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Table 4: GPT-based Metric Comparison of Different Spoken Dialogue Models on VoxDialogue.

Method Speaker Info Paralinguistic Info Background
Age Gen Acc Lan Emo Vol Spd Fid Str NVE Aud Mus
ASR-Based Spoken Dialogue System

FunAudioLLM (SpeechTeam, 2024) 4.32 4.39 3.57 4.61 4.09 1.82 1.92 1.79 3.13 2.87 3.47 3.59

Direct Spoken Dialogue System
Audio-Flamingo (Kong et al., 2024) 1.00 1.00 1.04 1.72 1.00 1.20 1.14 1.26 1.34 1.06 1.37 1.11
SALMONN (Tang et al., 2023) 1.99 1.64 1.78 3.50 1.84 2.88 2.27 2.29 3.86 2.59 2.15 2.23
Qwen-Audio (Chu et al., 2023) 1.36 1.04 1.28 1.04 1.06 1.48 1.08 1.32 2.49 2.65 1.42 1.18
Qwen2-Audio (Chu et al., 2024) 3.46 4.18 2.71 4.43 3.73 3.06 3.29 2.98 3.93 3.46 3.81 3.98

information. 3: Partially relevant to the context, with mention of the attribute. 4: Contextually
relevant and natural, mentioning the attribute, but could be improved. 5: Contextually relevant,
smooth, natural, and accurately addresses the attribute. We have included all the evaluated prompt
templates in supplementary materials. Please refer to the supplementary materials for more details.

4.3 SPOKEN DIALOGUE SYSTEM

In order to build a comprehensive benchmark, we evaluated two main types of spoken dialogue
system approaches: (1) ASR-based dialogue systems (e.g., FunAudioLLM (Fang et al., 2024)) and
(2) direct spoken dialogue systems5 (e.g., Audio-Flamingo (Kong et al., 2024), SALMONN (Tang
et al., 2023), Qwen-Audio (Chu et al., 2023), and Qwen2-Audio (Chu et al., 2024)). Figure 2
presents a comparative analysis using four metrics across various attributes on the VoxDialogue
dataset. Based on the experimental results, we gained the following key insights:

ASR-based systems excel in context-sensitive tasks. In attributes that can be inferred through
context understanding, ASR-based systems (such as FunAudioLLM) show significant advantages.
ASR systems first transcribe speech into text and then process it, allowing them to more effectively
capture and analyze the context of a conversation. For example, in attributes like Emotion and
Speaker Information(Age, Gender, Accent, Language), FunAudioLLM consistently outperforms
direct spoken dialogue systems. The results from BLEU, ROUGE-L, METEOR, and BERTScore
metrics indicate that FunAudioLLM achieves higher scores, such as in emotion (3.22 BLEU, 14.93
ROUGE-L, 18.97 METEOR, 86.92 BERTScore). This proves that most current direct spoken dia-
logue systems lack adequate context understanding capabilities and are far weaker than text-based
large language models.

Advantages of direct spoken dialogue systems in acoustic attribute processing. Although
ASR-based systems can leverage the strong context understanding capabilities of large language
models, they struggle with attributes that heavily rely on sound understanding (such as volume,
fidelity, speed, and other paralinguistic information). ASR-based methods face challenges when
addressing dialogue tasks related to these attributes. In contrast, direct systems like Qwen2-Audio
excel in tasks involving these acoustic properties. The results show that Qwen2-Audio outperforms
other systems in these categories. For instance, Qwen2-Audio achieved the highest scores for vol-
ume (4.56 BLEU, 23.13 ROUGE-L, 29.82 METEOR, and 87.98 BERTScore), demonstrating its
ability to handle loud and soft speech variations more effectively. Similarly, fidelity is another
strong point for direct dialogue systems. Qwen2-Audio’s excellent performance in handling varying
fidelity levels (3.38 BLEU, 14.36 ROUGE-L, 13.03 METEOR, 87.12 BERTScore) confirms that
spoken dialogue tasks, which heavily rely on acoustic information beyond words.

5All models used in the evaluation are -chat version.
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4.4 QUALITATIVE COMPARISON

Inspired by Yang et al. (2024), we also attempted to use GPT-4 (OpenAI, 2024b) for evaluation,
focusing on whether the responses exhibit the specific attribute characteristics and whether they
provide reasonable replies to the previous context. As shown in Table 4, we present the qualitative
testing results of different methods across 12 attributes. Specifically, a score of 3 represents mention
of attribute information, 4 represents a reasonable and natural response.

We observed that the conclusions from the qualitative tests largely align with those from the quan-
titative evaluations. For context-driven attributes (such as speaker information and emotion), ASR-
based dialogue models continue to demonstrate the best performance. However, for attributes that
are highly dependent on acoustic information (such as speed, fidelity, audio, and music), direct spo-
ken dialogue models like Qwen2-Audio significantly outperform FunAudioLLM, underscoring the
importance of developing direct spoken dialogue models.

Additionally, we found that Qwen-Audio often responds with descriptive sentences related to the
query, which severely affects its performance. The SALMONN model frequently repeats parts of the
query, leading to higher quantitative scores in some attributes (e.g., a BLEUScore of 87.53 for Stress,
0.53 higher than Qwen2-Audio), but its qualitative performance is inferior to Qwen2-Audio (with a
GPT-4-based metric score 0.97 lower). This indicates that most current large audio-language models
are focused on QA-style interactions, and are not yet well-suited for dialogue-style conversations.

5 CONCLUSION

In this work, we introduced VoxDialogue, a comprehensive benchmark designed to evaluate spo-
ken dialogue systems’ ability to understand information beyond words. By identifying 12 critical
attributes tied to acoustic cues such as speech rate, volume, emphasis, and background sounds, we
constructed a challenging test set of 4.5K multi-turn dialogue samples. Our experiments demon-
strated that while ASR-based systems excel at context understanding and textual interpretation, they
fail to capture important acoustic signals that are essential for contextually appropriate responses.
In contrast, direct spoken dialogue systems outperform ASR-based models in processing acoustic
properties, but their limited ability to understand complex dialogue contexts remains a significant
shortcoming. The findings highlight the importance of acoustic information in enhancing the perfor-
mance of spoken dialogue systems and reveal the current limitations in both ASR-based and direct
spoken dialogue models.

REPRODUCIBILITY STATEMENT

All of our data, code, and model weights will be open-sourced.

• Section 3 provides detailed instructions on the construction of VoxDialogue, including a
comprehensive list of all relevant open-source resources.

• Section 4.1 outlines the detailed task definitions.
• Section 4.2 elaborates on the evaluation metrics and specific details.
• All of our prompt templates are included in the Supplementary Material.
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Table 5: Detailed Comparison of Spoken Dialogue Systems across Various Metrics

(a) BLEU Scores

Method Speaker Info Paralinguistic Info Background
Age Gen Acc Lan Emo Vol Spd Fid Str NVE Aud Mus

FunAudioLLM 2.53 2.66 3.34 2.72 3.22 4.20 2.77 2.65 3.58 2.57 3.35 2.25

Audio-Flamingo 2.08 2.40 2.83 0.01 2.74 3.95 2.70 2.50 2.58 1.41 3.38 2.81
Qwen-Audio 2.26 2.56 3.05 1.74 3.01 3.78 2.61 0.54 3.02 2.15 2.97 2.87
SALMONN 2.29 2.35 2.88 3.09 2.88 4.44 2.73 2.82 2.33 2.04 3.55 2.86
Qwen-Audio2 2.22 2.52 3.20 3.18 3.11 4.56 2.92 3.38 2.93 2.85 3.60 2.97

(b) ROUGE-L Scores

Method Speaker Info Paralinguistic Info Background
Age Gen Acc Lan Emo Vol Spd Fid Str NVE Aud Mus

FunAudioLLM 12.15 12.95 15.07 15.88 14.93 8.28 7.97 4.47 13.49 12.63 12.20 12.20

Audio-Flamingo 6.12 6.15 6.62 0.03 5.78 5.48 7.67 7.57 5.12 7.41 5.91 7.88
Qwen-Audio 8.34 11.44 7.12 12.09 8.24 0.71 6.61 9.58 7.76 11.36 7.29 9.01
SALMONN 11.52 11.43 10.51 14.80 11.81 13.30 10.56 10.22 15.71 11.01 10.05 10.51
Qwen-Audio2 11.51 9.62 13.18 15.66 14.18 23.13 17.34 14.36 13.45 12.67 13.01 12.97

(c) METEOR Scores

Method Speaker Info Paralinguistic Info Background
Age Gen Acc Lan Emo Vol Spd Fid Str NVE Aud Mus

FunAudioLLM 16.89 20.12 21.03 15.21 19.31 10.19 9.83 8.16 16.95 16.31 13.22 13.04

Audio-Flamingo 8.23 7.79 10.03 0.25 9.17 8.31 8.69 11.04 8.12 7.88 9.93 11.01
Qwen-Audio 12.87 14.16 12.92 11.06 13.12 1.41 5.28 6.11 10.92 13.21 12.22 12.08
SALMONN 11.02 10.81 11.21 10.35 11.13 11.78 10.14 10.17 11.84 9.03 11.18 10.21
Qwen-Audio2 12.96 16.15 18.24 14.37 17.05 30.11 19.08 12.78 14.01 24.41 17.29 15.72

(d) BERTScore

Method Speaker Info Paralinguistic Info Background
Age Gen Acc Lan Emo Vol Spd Fid Str NVE Aud Mus

FunAudioLLM 86.14 86.65 87.24 86.97 86.87 84.87 85.03 84.36 87.51 84.51 86.98 87.19

Audio-Flamingo 83.12 83.84 83.86 75.28 83.78 84.91 84.71 84.81 83.78 82.89 83.78 84.74
Qwen-Audio 83.41 84.46 83.84 85.79 84.34 85.53 85.34 85.66 79.55 83.85 83.95 84.14
SALMONN 84.64 86.75 86.65 86.44 86.05 87.27 86.06 86.74 87.53 84.92 85.63 86.06
Qwen-Audio2 85.59 85.79 86.67 86.52 86.65 88.02 87.32 87.12 87.08 85.79 87.19 87.19

A MORE EXPERIMENT RESULTS

A.1 THE DETAILED PERFORMANCE COMPARISON

For comparison, the detailed performance corresponding to Figure 2 is presented in Table 5.

B LIMITATION

Our work heavily relies on synthetic datasets. Although prior research (Liu et al., 2023) has shown
that synthetic data can be effectively used for training and evaluation, a domain gap persists between
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synthetic and real-world data. This gap may affect the generalization of models trained on synthetic
data when applied to real-world dialogue scenarios.

However, since our focus is on understanding acoustic information, synthetic data proves particu-
larly useful in simulating various acoustic cues found in real conversational settings. Additionally,
the synthetic dataset offers more diverse and controllable dialogue content, making it sufficient for
evaluating whether spoken dialogue systems can understand information beyond text.

To properly assess the performance of dialogue systems in real-world scenarios, it is crucial to use
datasets based on authentic conversational environments. We believe that constructing a separate
real-world dialogue evaluation benchmark, independent of our work, would be more effective in
evaluating spoken dialogue systems’ performance in real scenarios than using a single dataset to
assess both acoustic information comprehension and real-world dialogue capabilities.
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