
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ACCELERATING BLOCK COORDINATE DESCENT FOR
LLM FINETUNING VIA LANDSCAPE CORRECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Training and finetuning large language models (LLMs) are resource-intensive
tasks, with memory limitations being a key bottleneck. A classic optimization
method, block coordinate descent (BCD), offers solutions by segmenting the train-
able parameters into multiple blocks and optimizing one active block at a time
while freezing the others, thereby significantly reducing memory cost. How-
ever, we identify that blindly applying BCD to train LLMs can be inefficient for
two reasons. First, optimizing only the active block requires backpropagating
through multiple deeper yet inactive blocks, resulting in wasteful computations.
Second, the frozen blocks, when they are not quite close to optimality, can nar-
row the optimization landscape, potentially misguiding the training of the active
block. To address these issues simultaneously, we propose integrating BCD with
landscape correction, which unfreezes the inactive blocks and updates them in a
cost-efficient manner during the same backpropagation as the update to the active
block. We show that our method empirically improves vanilla BCD with minimal
additional computation and memory. Experiments on 8B and 70B models demon-
strate that our proposed method surpasses memory efficient baselines and matches
Adam’s downstream performance while reducing memory cost by 80% compared
to Adam.

1 INTRODUCTION

Large language models (LLMs) have gained significant popularity within the research community
and industry. Training these models typically entails a pretraining phase on a vast dataset, followed
by a series of finetuning adjustments to tailor the model for specific domain tasks. Both phases
demand extensive computational resources, with memory being a primary constraint. For instance,
optimizing a model containing N billion parameters using standard mixed-precision training re-
quires at least 18N gigabytes of GPU memory (refer to Section 2 for additional details). Given
the usual limitations of GPU memory, this constraint impedes researchers from experimenting with
larger models.

To address this practical challenge, researchers have developed memory efficient algorithms for
LLM training such as parameter efficient finetuning (PEFT), including Adapter Houlsby et al.
(2019), LoRA Hu et al. (2021), prompt tuning Lester et al. (2021), prefix tuning Li & Liang (2021),
etc. These techniques focus on training a small set of additional parameters while maintaining the
original pretrained model unchanged. Other memory efficient methods for full parameter training
have also been investigated. For example, Galore Zhao et al. (2024) applies a low-rank space pro-
jection to both the gradient and the optimizer’s states to reduce memory consumption.

In addition to the existing approaches, a classic optimization paradigm, known as block coordinate
descent (BCD), holds a strong potential for memory efficient LLM training and finetuning. Intu-
itively, BCD reduces the memory cost by partitioning the trainable parameters into several blocks
and optimizing over only one active block at a time. For instance, segmenting an N -billion pa-
rameter model into D blocks decreases the memory consumption from 18N to 2N + 16N

D GB, as
only the gradient and optimizer states of the active block need to be stored. In fact, BCD has been
the method of choice in many data science problems, with a wide array of variants developed for
improving memory, performance, convergence, and efficiency; see, e.g., (Hsieh et al., 2008; Chang
& Roth, 2011; Yu et al., 2012; Treister & Turek, 2014; Richtárik & Takáč, 2014).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In stark contrast to the previous memory efficient methods, and despite its intuitive memory benefits,
BCD has been overlooked and rarely explored in the context of LLMs. It was not until very recently
that Luo et al. (2024) proposed BAdam, which integrates BCD into an LLM finetuning framework
by training each active block with several Adam steps. Even though BAdam has shown preliminary
success in reducing memory cost during training and improving performance at test time, its direct
use of vanilla BCD leaves at least two fundamental aspects to be questioned:

• Computing the (stochastic) gradient for a single active block via backpropagation necessitates
calculating the partial derivatives of the activations of multiple deeper yet inactive layers. This
is wasteful of computation as these partial derivatives are not even used to update their corre-
sponding weights.

• Given that the training objective is highly nonconvex, and since all blocks are frozen except for
the active one, BCD tends to be misled by its local view of the optimization landscape, which
potentially slows down its convergence speed.

Standing on the ground offered by BAdam, we push the research frontier by proposing a simple
remedy to the above two issues. Our method, termed BREAD, is a blend of two components: (1)
Similarly to BAdam, we update the active block using several Adam steps (the BCD component);
(2) differently, we unfreeze the inactive blocks and update them using lightweight memory efficient
optimization techniques (the landscape correction component). Since landscape correction utilizes
the gradients of the activations that are already calculated, it adds minimal additional computation
and in fact addresses the wasteful computation issue. Furthermore, the landscape correction com-
ponent provides BCD a better view of the optimization landscape for better updating the current
active block, thereby addressing the second point of concern. In combination, BREAD maintains
the memory efficient feature of BCD with improved learning capability and faster convergence. Our
main contributions are outlined as follows:

• Limitations of Standard BCD in LLMs: Our research identifies two fundamental limits of
vanilla BCD when applied to neural networks (hence LLMs): The wasted computation of gradi-
ents during backpropagation and the suboptimal landscape caused by freezing inactive blocks.
These limitations partly explain why the application of BCD in neural networks is uncommon.

• Blending BCD with Landscape Correction: We propose a new method termed BREAD,
which combines BCD with a landscape correction technique to address these two limitations
simultaneously. It unfreezes some of (or all) the inactive blocks and updates them using mem-
ory efficient optimization techniques. BREAD maintains the memory efficiency of BCD with
improved optimization ability.

• Excellent Performance: Our experiments on instruction tuning and preference optimization
with the Llama 3.1-8B and Llama 3.1-70B models demonstrate that BREAD clearly outper-
forms state-of-the-art memory efficient training methods and achieves comparable downstream
performance to that of Adam on five math benchmarks and MT-bench scores.

2 PRELIMINARIES ON BLOCK COORDINATE DESCENT FOR LLM TRAINING

Our main focus lies in improving the efficiency of BCD when utilized to finetune LLMs. Therefore,
we first review some preliminary concepts of LLM and BCD in this section.

Objective of training LLMs. Consider minimizing a general objective function minW H(W) =
1
n

∑n
j=1 hj(W), where W ∈ Rd, n is the number of data samples. In the context of train-

ing/finetuning LLMs, hj(W) represents the negative log-likelihood of the autoregressive proba-
bility PW [yj |xj] =

∏m
s=1 PW [yj,s|yj,1:s−1,xj] for the j-th prompt xj and its corresponding j-th

output yj . In most LLM models, this autoregressive probability is modeled by a transformer ar-
chitecture Vaswani et al. (2017), and thus W ∈ Rd encompasses all trainable parameters of the
transformer, including the query, key, value, and output attention matrices, as well as the gate, up,
and down projection matrices of each transformer layer.

BCD for LLM training. Instead of minimizing the objective function over the entire set of train-
able parameters W , the key idea of BCD is to break down this high dimensional optimization
problem into a series of lower dimensional ones, thereby significantly reducing the memory re-
quirement of GPU RAM. Specifically, BCD first splits the model parameters into D block, i.e.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

W = {W1, · · · ,Wℓ, · · · ,WD}, where Wℓ ∈ Rdℓ and
∑D

ℓ=1 dℓ = d. The block partition in such a
splitting can be very flexible. For instance, the block variable Wℓ can be either a single matrix or all
the trainable matrices of a transformer layer. Then, at each block iteration, BCD updates only one
active block while fixing the others at their most up-to-date values. This makes each sub-problem
of BCD a D× smaller problem compared to the original one if the D blocks are partitioned evenly.
Suppose at the (t+ 1)-th block iteration the active block is Wℓ, BCD solves the following problem:

W t+1
ℓ ∈ argmin

Wℓ∈Rdℓ

1

|N |
∑
j∈N

hj(W
t+1
1 , · · · ,W t+1

ℓ−1 ,Wℓ,W
t
ℓ+1, · · · ,W t

D) (1)

where N ⊆ {1, · · · , n} is a batch of the training dataset. Updating from block ℓ = 1 to block
ℓ = D is counted as one block-epoch. Since it is intractable to solve (1) exactly, one can instead
approximate the solution by implementing K Adam steps, as utilized in BAdam Luo et al. (2024).

BCD is a memory efficient full parameter optimization method for LLM training. It is evident
to see that BCD is a full parameter optimization method, as all the trainable parameters W will be
updated after one block-epoch. More importantly, BCD is also memory efficient.

Let us first analyze the memory consumption of the Adam optimizer under the mixed precision
training setting Micikevicius et al. (2017). The memory cost is attributed to the storage of the
model parameters, gradients, and optimizer states. We consider an LLM with N billion parameters
and express GPU memory consumption in gigabytes (GB). Initially, one must store the FP16 model
parameters for the backpropagation (BP) process, requiring 2N memory. Additionally, the optimizer
maintains a copy of the model in FP32 precision, consuming another 4N memory. The gradients,
momentum, and second moment vectors are all stored in FP32 precision with each requiring 4N
memory. Consequently, the total memory required is at least 18N . For example, in order to train a
Llama 3-8B or a Llama 3-70B model, Adam requires at least 144 GB or 1260 GB of GPU RAM,
respectively, which can be prohibitive in limited memory scenarios.

In sharp contrast to Adam, BCD only requires storing the FP32 model parameters, gradients, and
optimizer states for the active block Wℓ, which is only 1/D of the memory consumption needed for
all the parameters. Thus, in addition to maintaining an FP16 model that requires 2N memory, BCD
needs a total of only 2N + 16N

D memory. Therefore, for training a Llama 3-8B or a Llama 3-70B
model and when D = 32 or D = 80 (partition each transformer layer as a block), BCD only needs
roughly 20 GB or 154 GB of GPU RAM, respectively, which is significantly cheaper compared to
the costs of Adam. For a more detailed analysis on memory cost, we refer to Luo et al. (2024).

3 LIMITATIONS OF BCD FOR NEURAL NETWORKS

Although BCD is proven to be memory efficient for training and finetuning LLMs, we will illustrate
two major limitations of the BCD optimization scheme when it is used for training models induced
by a neural network structure in this section. The results apply to the setting of training and finetun-
ing LLMs as well. Motivated by these limitations, we will develop a more efficient training method
based on BCD, which achieves superior performance compared to that of the vanilla BCD.

To ease our analysis, let us consider a L-layer feedforward neural network model:

zℓ+1 = f ℓ
Wℓ

(zℓ), ∀1 ≤ ℓ ≤ L, with z1 = x, (2)

where L is the total number of layers, x is the input, f ℓ
Wℓ

is the ℓ-th layer’s transform.

Limitation I: Ineffective utilization of intermediate derivatives during backpropagation. Due
to the compositional structure of deep neural networks, the gradients of the trainable parameters are
calculated according to the chain rule. For example, taking the stochastic gradient of the ℓ-th layer’s
parameters Wℓ requires computing the partial derivatives with respect to all the activation values of
deeper layers, as shown in the following equation:

∂H

∂Wℓ
=

∂H

∂zL+1

∂zL+1

∂zL
· · · ∂zℓ+2

∂zℓ+1︸ ︷︷ ︸
Iℓ+1

∂zℓ+1

∂Wℓ
, (3)

where H is the objective function of the neural network training problem. During the backpropa-
gation process in optimization method like Adam, the intermediate partial derivatives Iℓ+1 of the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

activations in (3) are properly utilized for computing the gradients of the L,L − 1, · · · , ℓ + 1-th
layers’ weight parameters as well. However, since BCD only updates the active block Wℓ, the term
Iℓ+1 is merely used for calculating the gradient of Wℓ, resulting in ineffective utilization of the
computed partial derivatives of the activations during backpropagation.

Limitation II: Suboptimal landscape of BCD’s sub-problem. To tackle a training problem, op-
timization methods such as Adam optimize over all the trainable parameters W , while the BCD
optimization scheme (1) minimizes the objective over only the current active block, keeping the
others fixed. Intuitively, BCD appears to narrow the optimization landscape of the training problem
by freezing most of the parameters in each of its sub-problems, potentially eliminating better search
directions that can lead to rapid decrease of the objective function. To establish such an intuition
formally, we consider the following simple regression problem modeled by a 3-layer neural network:

min
W1,W2 W3

H(W1,W2,W3) := ∥y − ŷ∥22,

where z2 = σ(W1x), z3 = σ(W2z2), ŷ = W3z3.

Here, x is a non-zero input vector, y is the true label vector, and σ(z) := max (0, z) is the ReLU
activation function. The following proposition states that the optimization landscape of one of the
BCD sub-problems is suboptimal in terms of minimizing H .
Proposition 1. (suboptimal landscape of BCD’s sub-problem) Define

H̃∗ := min
W2

∥y − ŷ∥22, and H∗ := min
W1,W2,W3

∥y − ŷ∥22.

Here, H̃∗ is the optimal value returned BCD that minimizes H only over block W2, while fixing W1

and W3. Suppose that the fixed W3 in BCD has full column rank. If z∗
3 := (W⊤

3 W3)
−1W⊤

3 y has
at least one negative entry, then H̃∗ > H∗.

Proof. We first show that H∗ = 0. One can construct z3 = [1, 0, · · · , 0]⊤ and W3 = [y,0, · · · ,0].
Note that such a choice of z3 is always achievable by choosing a specific W2. Hence, 0 function
value can be attained by the constructed feasible point. This yields H∗ = 0 after realizing that the
objective function must be nonnegative. We illustrate this issue in Figure 1.

In BCD, W1 and W3 are fixed. We further assume that the fixed W3 has full column rank. We split
our discussion into two cases. Case I: y /∈ range(W3). We trivially have H̃∗ > 0 = H∗. Case
II: y ∈ range(W3). In this case, z∗

3 := (W⊤
3 W3)

−1W⊤
3 y is the unique point that can achieve

0 function value. However, since z∗
3 has at least one negative entry and z3 ≥ 0 (due to the ReLU

activation), we have ∥z3−z∗
3∥22 > 0. Therefore, we have ∥y− ŷ∥22 = ∥W3(z

∗
3 −z3)∥22 > 0 = H∗,

where the last inequality follows from the full column rankness of W3.

We note that the full column rank assumption of the fixed weight matrix W3 is mild. In LLMs, the
last matrix is typically the tall LM head matrix, which has more rows (vocabulary size) than columns
(embedding dimension). In practice, a tall matrix often has full column rank. In addition, it is always
feasible to have negative entries in z∗

3 by choosing a specific y. Moreover, although we prove such
a result for a simple regression problem modeled by a 3-layer neural network, we expect it to occur
more frequently in the training and finetuning of LLMs, as the training objective of LLMs is much
more complicated. Finally, the result in Proposition 1 can be readily generalized to any nonnegative
or bounded activation functions, e.g., Swish Ramachandran et al. (2017), SiLU Elfwing et al. (2018),
Sigmoid, etc.

When fixing W1 and W3 and training only on the intermediate layer’s weight matrix W2, the
sub-problem of BCD represents a partial landscape of the full optimization problem. Proposition 1
demonstrates that this sub-problem might be incapable of finding the optimal value 0. It is important
to note that this result does not necessarily imply that BCD cannot find an optimal solution. Recall
that BCD is a full parameter optimization method, and the weight matrices W1 and W3 will indeed
be updated in subsequent block iterations. Therefore, BCD may eventually converge to an optimal
solution that achieves 0 function value. However, our analysis reveals that the sub-problem of BCD
potentially excludes parts of the optimization landscape that provide search directions toward the
optimal solution. This observation suggests that BCD might slow down the convergence speed
compared to Adam.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

W1
3

W2
3 yyerror

Range(W3)
Learnable space of y

(a) W3 is frozen.

W1
3
W2

3
y

(b) W3 is trainable.

Figure 1: When W3 is frozen, the projection error ∥y −
ŷ∥22 > 0. When W3 is trainable, the learnable space rotates
to cover the label y, the error ∥y − ŷ∥22 = 0.

0 200 400 600 800 1000 1200 1400
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

0.06
0.586

initial loss: 2.64
Loss of 3-layer neural network training

BAdam
BREAD (rank1)
rank1 update only

Figure 2: With rank-1 landscape
correction, BREAD converges sig-
nificantly faster than BCD.

Based on these limitations of BCD, we will design a new method to correct the landscape of BCD’s
sub-problem and simultaneously utilize the computed partial derivatives of the activations properly.

4 ACCELERATING BCD VIA LANDSCAPE CORRECTION

In this section, we propose a new BCD method with landscape correction to solve the two limitations
revealed in Section 3 simultaneously.

4.1 THE BREAD METHOD

In Section 3, our analysis indicates that the incomplete landscape of BCD’s sub-problem may slow
down the convergence speed. To address this issue, one immediate approach is to apply Adam to
other blocks as well. However, this essentially reverts to using Adam and undermines the memory
efficient property of the BCD optimization scheme. Fortunately, for the regression problem we
analyzed in Section 3, we show in the following proposition that a low-rank landscape correction is
sufficient to compensate for the incompleteness of BCD’s sub-problem.
Proposition 2 (rank-1 landscape correction). For any non-zero input x and label y, there exists a
rank-1 matrix C such that the following problem has optimal value 0:

min
W2,C

∥y − ŷ∥22,

where z2 = σ(W1z), z3 = σ(W2z2), ŷ = (W3 +C)z3.

Proof. We construct z3 = e1 = [1, 0, · · · , 0]⊤. Let C =
[
y −W

(1)
3 , 0, · · · , 0

]
, where W (1)

3 is the

first column of W3. Then, we have ∥(W3 +C)z3 − y∥22 = ∥Ce1 − (y −W3e1)∥22 = 0.

Motivated by this proposition, we propose to introduce additional trainable low-rank correction
matrices to the matrices in the frozen inactive blocks {Wℓ′}ℓ′ ̸=ℓ, where Wℓ is the current active
block. For simplicity, let us assume that each block is a matrix, and our design applies to general
layer-wise or other types of partitions as well. Mathematically, all the inactive block matrices are
corrected by low-rank correction matrices as follows:

Wℓ′ +Cℓ′ with rank(Cℓ′) ≤ r, ∀ℓ′ ̸= ℓ. (4)

To maintain memory efficiency, we use the Burer-Monteiro factorization representation of a low-
rank matrix Burer & Monteiro (2003):

C = UV , U ∈ Rm×r,V ∈ Rr×n. (5)

Following the spirit of adapter Houlsby et al. (2019) and LoRA Hu et al. (2021), we only store the
low dimensional matrices U and V rather than C. This approach allows us to store the gradients
and optimizer states for these much smaller sized matrices, resulting in only negligible additional

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: BREAD: Block coordinate descent with landscape correction.

1 input: model parameters {W 0
ℓ }Lℓ=1, number of blocks D, iterations per block K, training

dataset: D = {(xj , yj)}nj=1, batch size B.
2 initialization: block-epoch index t← 0, the correction matrices C0

j ← 0, ∀j ∈ [P], and
the corresponding optimizer states s̃0j ← 0, ∀j ∈ [P].

3 while stopping criterion not meet do
4 generate a block partition π = {π1, . . . , πD} ;
5 repeat for one block-epoch i← 1, . . . , D
6 select correction matrices’ indices J ⊂ [P] as in (7);
7 st,0πi

← 0 ; // reinitialize optimizer states for the active block
8 W t,0

πi
←W t

πi
; s̃t,0J ← s̃tJ ;

9 repeat for landscape corrected block updates k ← 1, . . . ,K
10 sample a data batch in random reshuffled manner DB = {(xj , yj)}Bj=1 ∼ D;
11 within one backward pass based on the data batch DB

12 calculate the active block’s grad. gt,k
i and correction matrices’ grad. g̃t,k

J ;
13

// Update the active block and correction matrices
14 W t,k

πi
, st,kπi

← AdamStep(W t,k−1
πi

, gt,k
πi

, st,k−1
πi

);

15 Ct,k
J , s̃t,kJ ← AdamStep(Ct,k−1

πi
, g̃t,k

J , s̃t,k−1
J);

16 end
17 W t+1

πi
←W t,K

πi
; Ct+1

J ← Ct,K
J ; s̃t+1

J ← s̃t,KJ ; st,Kπi
← None;

18 end
19 t← t+ 1;
20 end
21 return parameters {W t

ℓ }Lℓ=1 and correction matrices {Ct
j}Pj=1.

memory consumption. We initialize U to zero and initialize V from uniform distribution; see Ap-
pendix A for detailed setup.

We note that one can add the landscape correction matrix C to each matrix in the inactive blocks or
to part of the matrices, leading to two different variants. Additionally, we may also add a full-rank
correction matrix C, training it using an on-the-fly SGD method Lv et al. (2023) to maintain the
memory efficient feature of BCD. We refer to Section 4.3 for details.

Algorithm design. Based on the above developments, we propose accelerating block coordinate
descent via landscape correction (BREAD). We present the detailed procedure in Algorithm 1. Sup-
pose we can add a total of P landscape correction matrices. BREAD first splits the model into D
blocks, which can be partitioned either in a layer-wise or matrix-wise manner. Then, each block
sub-problem is approximately solved using K steps of landscape corrected updates. In each update,
the active block and the correction matrices are updated during the same backward pass. It is im-
portant to note that the optimizer states of the correction matrices are accumulated throughout the
entire algorithm execution, as they occupy only negligible memory space.

We now carry out a simple experiment to validate the effectiveness of Algorithm 1 and the insights
in Proposition 1 and Proposition 2. Specifically, we train a 3-layer neural network with rank-1
BREAD, with 100 Adam optimization steps for each sub-problem. As shown in Figure 2, rank-1
BREAD (orange) achieves significantly faster convergence than BCD (blue). The loss difference
between rank-1 BREAD and BCD is eventually 0.586. This is a significant amount, as the loss is
only decreased by 0.06, if we train C only (rank-1 update only, green). These empirical observations
verify that the proposed combination of BCD and landscape correction accelerates the convergence
of the individual scheme (BCD alone or landscape correction alone).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4.2 MEMORY AND COMPUTATIONAL EFFICIENCY OF BREAD

In this section, we analyze the memory and computational cost of BREAD, showing that BREAD
only introduces marginal additional costs compared to vanilla BCD.

Memory cost analysis. To simplify the analysis, we consider a D-layer neural network where each
layer consists of one matrix with dimensions Rm×m. The rank r correction matrix introduces addi-
tional 2Dmr parameters. Since the correction matrix is primarily used for coarse-grained landscape
correction, the rank is set to be small, e.g., r ∈ [1, 8], making the additional memory required almost
negligible. In the scenario where r = 4, D = 32, and m = 4096, BREAD only increases memory
cost by Dr(m+m)

m2 ≈ 2.6% compared to BCD.

Computational cost analysis. We now show that the additional backward cost is also cheap, since
the intermediate partial derivatives used for computing the active block’s gradient can be directly
used for computing correction matrices’ gradients, as we have identified in (3). Specifically, the
gradient of the correction matrix Cj can be expressed as

∂H

∂Cj
=

∂H

∂zL+1

∂zL+1

∂zL
· · · ∂zj+2

∂zj+1︸ ︷︷ ︸
Computed in (3), ∀j ≥ ℓ

∂zj+1

∂Cj
. (6)

Clearly, when j ≥ ℓ, computing the (stochastic) gradient of Cj only requries additional computation
of ∂(zj+1)

∂Cj
, which is cheap given the low dimensionality after low-rank factorization representation,

i.e., Cj = UjVj . We empirically measure the memory and epoch training time in Table 1.

4.3 PRACTICAL VARIANTS OF BREAD

A computational efficient variant. For simplicity, we consider an L-layer neural network where
each layer consists of one weight matrix, and our block partition is layer-wise. Based on the deriva-
tion of (6), evaluating the gradients of the correction matrices is inexpensive for layers ℓ+1, . . . , L.
However, the gradient evaluation for layers 1, . . . , ℓ − 1 is more costly, as it requires calculating
∂zj+1

∂zj
for j = 1, . . . , ℓ − 1. These intermediate partial derivatives of the activations are not com-

puted during the backpropagation to the active layer ℓ. Therefore, one computationally efficient
variant of BREAD is to add correction matrices only for layers ℓ + 1, . . . , L. This leads to two
strategies of selecting correction matrices:

J =

{
[P], if use BREAD
{j| j ∈ [P], Cj corrects layers ℓ+ 1, . . . , L}, if use BREAD-partial

(7)

A full-rank memory efficient variant. The previous implementation uses low-rank matrices for
landscape correction. Alternatively, one can apply a potentially full-rank linear transformation to
correct features. This can be achieved through a memory efficient on-the-fly SGD update on the
inactive blocks. Specifically, due to the compositional structure of neural networks, the gradient of
the model is computed from the deep layers to the shallow layers. The strategy is to perform an SGD
update on a matrix whenever its (stochastic) gradient is available, and then immediately discard
the corresponding gradient after the update. We term this approach BREAD-SGD. It introduces
additional memory cost for storing the gradient of the largest matrix, but this overhead is usually
negligible. We formally present this variant in Algorithm 2.

We compare the performance of these two variants of BREAD in Section 5.4.

5 NUMERICAL EXPERIMENTS

We evaluate the proposed BREAD in finetuning Llama 3.1-8B and Llama 3.1-70B model on math
finetuning and instruction tuning tasks, comparing its memory cost, time cost and downstream per-
formance with full training algorithm and memory efficient baselines.

5.1 SETUP

We begin by introducing the experimental setup.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Method Peak Memory Cost Epoch GPU Hour GPU #

Llama 3.1-70B

Adam (estimated) 1260 GB+ – 16+ A100-80G
LoRA 296.8 GB 213.1 8 A100-40G
BAdam 276.2 GB 119.0 8 A100-40G
BREAD 288.6 GB 212.4 8 A100-40G
BREAD-partial 288.6 GB 152.7 8 A100-40G

Llama 3.1-8B

Adam 208.2 GB 37.3 8 A100-40G
Galore 40.5 GB 10.3 1 A100-80G
LoRA 25.0 GB 6.0 1 A100-40G
BAdam 21.8 GB 3.3 1 A100-40G
BREAD 23.2 GB 5.8 1 A100-40G
BREAD-partial 23.2 GB 4.0 1 A100-40G

Table 1: Memory footprint and time cost for finetuning models on MathInstruct.

Baselines. We compare BREAD with 1) BAdam Luo et al. (2024), which applies vanilla BCD
algorithm with Adam as the inner solver; 2) LoRA Hu et al. (2021), which freezes the pre-trained
weight and only updates the injected low-rank adapters; 3) Galore Zhao et al. (2024), which projects
the gradient into low-rank spaces for reducing the memory cost; 4) Adam Kingma (2014), which
serves as the full parameter training baseline.

Math finetuning. We finetune the Llama 3.1-70B and Llama 3.1-8B models on MathInstruct
dataset Yue et al. (2023) for 3 epochs, which contains 260K questions that covers wide range of fields
in mathematics. The finetuned models are evaluated on 4 in-domain mathematical benchmarks, i.e.,
GSM8K, MATH, NumGLUE, and AQuA Cobbe et al. (2021); Hendrycks et al. (2021); Mishra et al.
(2022); Ling et al. (2017), and 1 out-of-domain mathematical benchmarks, i.e., SimulEq Koncel-
Kedziorski et al. (2016). The evaluations are based on 0-shot prompt and 4-shot chain-of-thought
prompt, respectively. Due to the limited computational resource, we do not include the Adam’s
results for 70B model. Since there is no model parallel implementation released for Galore by the
finish of the manuscript, we are unable to report its 70B results as well.

Instruction tuning. We perform supervise finetuning on the Llama 3.1-8B model using Alpaca-
GPT4 dataset Peng et al. (2023), which contains 52K questions and corresponding GPT-4 generated
answers. The model is evaluated on MT-bench Zheng et al. (2023) for examining the model’s
instruction-following capability.

Preference optimization. After the instruction tuning, we further align the tuned model using direct
preference optimization (DPO) Rafailov et al. (2024) on Ultrafeedback dataset Cui et al. (2023). To
compare with the baseline optimization methods more comprehensively, we report the evaluation
results of using Adam instruction tuned model as base model, and using the same optimization
method for both phases.

All the experiments are run for 3 epochs. The reported scores are the best one among checkpoints at
epoch 1, 2, 3. The detailed hyper-parameters are presented in Appendix A.

5.2 MEMORY AND TIME COST MEASURE

In Table 1, we empirically measure the peak memory cost and one epoch’s time cost of finetuning
models on the MathInstruct dataset. The GPU hour is calculated as the training time×GPU number.

We set the LoRA rank to 64 to keep its number of trainable parameters (0.83 billion) close to a single
block of BREAD (0.86 billion). Compared with LoRA, the proposed BREAD consumes slightly
lower memory and costs about the same amount of training time. The computational-efficient variant
BREAD-partial requires significantly less training time than BREAD, and is comparable to BAdam.

Remark. The reported memory cost is higher than the theoretical value, especially for the 70B
model’s experiments which requires distributed training. This additional memory cost arises from
storing activation values and computational buffers, e.g. the gradient buffer for performing reduce
scatter operation. Furthermore, the training time may have slight fluctuations for different runs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Base model: Llama 3.1-8B

Method GSM8K MATH NumGLUE SimulEq AQuA Avg.

0-shot 4-shot 0-shot 4-shot 0-shot 4-shot 0-shot 4-shot 0-shot 4-shot 0-shot 4-shot

Base model 17.8 52.5 8.6 23.2 25.7 40.6 12.2 28.8 19.3 43.7 16.7 37.8
Adam 62.3 64.9 17.4 22.9 56.4 56.8 28.6 33.5 44.9 52.8 41.9 46.2
Galore 46.7 57.2 16.2 22.9 42.8 45.0 28.7 32.3 47.8 48.4 36.4 41.2
LoRA 48.7 58.1 13.7 23.0 34.6 54.4 29.6 29.0 47.3 50.3 34.8 43.0
BAdam 53.9 58.3 17.2 23.6 53.7 57.2 32.5 32.8 50.4 49.6 41.5 44.3
BREAD 57.0 57.6 20.0 23.7 55.9 58.2 32.5 32.8 49.6 50.0 43.0 44.5

Base model: Llama 3.1-70B

Method GSM8K MATH NumGLUE SimulEq AQuA Avg.

0-shot 4-shot 0-shot 4-shot 0-shot 4-shot 0-shot 4-shot 0-shot 4-shot 0-shot 4-shot

Base model 58.8 79.4 24.9 41.4 43.7 55.8 26.3 38.1 52.0 64.2 41.1 51.2
LoRA 83.8 82.0 41.7 44.2 70.4 69.0 40.3 48.8 61.4 65.8 59.5 62.0
BAdam 81.4 82.9 40.3 43.8 68.1 69.7 50.0 52.7 65.3 70.1 61.0 63.8
BREAD 83.4 84.2 41.4 44.7 73.1 74.4 51.3 56.8 68.3 70.5 63.5 66.1

Table 2: Math evaluation results for models finetuned on MathInstruct dataset.

Method SFT DPO

GPT-4 GPT-4o GPT-4 GPT-4o

Base model 6.07 5.18 6.63 5.66
Adam 6.63 5.66 7.83 6.18

LoRA 6.52 5.60 7.48 5.95
Galore 6.33 5.48 6.99 5.93
BAdam 6.53 5.57 7.63 6.14
BREAD 6.77 5.82 7.68 6.31

Table 3: MT-bench scores of different methods
finetuning Llama 3.1-8B.

0 1000 2000 3000 4000 5000 6000
Number of iterations

0.45

0.50

0.55

0.60

0.65 Training loss
BAdam
BREAD
BREAD-partial
BREAD-SGD
BREAD-SGD-partial

Figure 3: Convergence of BAdam, BREAD
and its variants on MathInstruct dataset.

5.3 FINETUNING PERFORMANCE

Math finetuning. The evaluation results on math benchmarks are shown in Table 2. For the 8B
model’s finetuning, BREAD beats all the other 3 memory efficient baselines in both 0-shot and 4-
shot average score. Under the 0-shot setting, BREAD even outperforms Adam baseline by 1.1. For
the finetuning of 70B model, BREAD outperforms BAdam in all tasks, demonstrating the effective-
ness of landscape correction. Furthermore, BREAD beats LoRA in 8 out of 10 tasks.

Instruction tuning and DPO. We report the MT-bench score evaluated by both GPT-4 and GPT-4o
models in Figure 3. After SFT, the MT-bench score of all baseline approaches improves over the
base model. BREAD achieves the highest scores in both evaluations, which are even higher than
Adam, demonstrating the effectiveness of landscape correction. Based on the model finetuned by
Adam, we further align the model using direct preference optimization (DPO). Notably, BREAD
achieves the highest evaluation score by GPT-4o model.

5.4 ABLATION ON VARIANTS OF BREAD

We present 1-epoch training loss of BREAD and its variants in Figure 3. For reference, we also
display the loss of BAdam. Here, BREAD-partial means that only deeper layers of the active block
will be updated; the BREAD-SGD applies on-the-fly SGD update for all the frozen blocks; the
BREAD-SGD-partial incorporates the feature of both, updating frozen blocks that are deeper than
the active block using SGD. Since SGD usually requires higher learning rate, we scale the SGD’s

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

learning rate up by 10 times compared to the update of the active block. As we can see, all the
variants converge faster than the baseline method BAdam, justifying the effectiveness of landscape
correction. The BREAD outperforms BREAD-partial since it optimizes all the correction matrices
in each iteration. The BREAD-SGD variants converge faster than the low-rank ones, which may
attribute to the higher learning rate of the correction matrices and the high-rank update. Notably, the
BREAD-SGD-partial exhibits similar convergence as BREAD-SGD.

6 RELATED WORKS

Block coordinate descent method. Block coordinate descent (BCD) is a classic optimization
paradigm that dates back at least to Hildreth (1957). It has gained popularity in recent years, due
to its scalability and efficiency for many machine learning applications (Nesterov, 2012; Richtárik
& Takáč, 2014; Peng & Vidal, 2023; Ding et al.; Peng & Yin, 2024). The community seems to
converge to a consensus that, in order for BCD to be efficient, the problem it optimizes needs to
possess the so-called coordinate-friendly structure (Shi et al., 2016). Nevertheless, deep networks
are of a compositional nature and not coordinate-friendly, which is perhaps why recent surveys or
books have never mentioned training deep networks as an application of BCD (Wright, 2015; Shi
et al., 2016; Beck, 2017; Wright & Recht, 2022; Sayed, 2022). Recently, BAdam Luo et al. (2024)
was proposed to finetune LLMs based on the BCD framework, where each block sub-problem is
approximately solved using several Adam steps. Although BAdam achieved preliminary success, it
is based on the vanilla BCD framework and shares the fundamental limitations we revealed in this
work. In light of these, we believe identifying the limitations of BCD for LLM fintuning and fixing
them entail certain insights, and this is what makes our contributions non-trivial and valuable.

Memory efficient finetuning. To address memory issue, multiple variants have been proposed. Pa-
rameter efficient finetuning (PEFT) methods achieve memory efficiency by only training small por-
tion of (possibly extra) parameters while freezing most of the others, such as Adapter tuning Houlsby
et al. (2019), prompt tuning, and prefix tuning Lester et al. (2021); Li & Liang (2021). Low-rank
adaptation (LoRA) is perhaps the most popular technique that approximates model updates using
two smaller, trainable low-rank matrices Hu et al. (2021). LoRA’ variants have been proposed to
address its rank constraints and further reducing the memory cost Lialin et al. (2024); Xia et al.
(2024); Dettmers et al. (2023). Galore Zhao et al. (2024) projects the gradient into low-rank space
so that it does not need to store the full gradient and optimizer states in the memory. LOMO updates
parameters in real time during the backpropagation process Lv et al. (2023), so that one can perform
SGD without store stochastic gradients. MeZO offers an alternative by approximating SGD using
only forward passes Malladi et al. (2023), drawing from zeroth-order optimization that estimates
stochastic gradients through the difference in function values. While this paper addresses the same
application as these methods, they remain orthogonal to the proposed approaches. They can function
as lightweight updates in the frozen layers for landscape correction.

7 CONCLUSIONS AND DISCUSSIONS

This paper investigates the application of a classic optimization method, known as BCD, to the
finetuning of LLMs. We pinpoint two primary shortcomings of the standard BCD approach when
applied to deep neural networks: the unnecessary computational overhead during backpropagation,
and the misguiding optimization landscape caused by frozen blocks. To overcome these challenges,
we introduce a new method termed BREAD, which unfreezes the inactive blocks and updates them
in a lightweight manner. Our experimental results demonstrate that BREAD significantly enhances
downstream task performance while maintaining the original BCD algorithm’s memory and com-
putational efficiency.

For future research, it would be intriguing to explore the potential of BCD in the (continual) pre-
training phase of LLMs. Moreover, it is not necessary to apply feature correction at each iteration.
Exploring the frequency of updating correction matrices is another meaningful direction, which can
further save the computational cost. Additionally, since the downstream task performance of LLMs
is not strictly determined by the training loss, it would be interesting to reveal deeper insights on
why BREAD is better than vanilla BCD from a scientific perspective that is beyond this work’s
optimization interpretation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Amir Beck. First-Order Methods in Optimization. Society for Industrial and Applied Mathematics,
2017.

Samuel Burer and Renato DC Monteiro. A nonlinear programming algorithm for solving semidefi-
nite programs via low-rank factorization. Mathematical programming, 95(2):329–357, 2003.

Kai-Wei Chang and Dan Roth. Selective block minimization for faster convergence of limited mem-
ory large-scale linear models. In Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 699–707, 2011.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. QLoRA: Efficient finetuning
of quantized LLMs. Advances in Neural Information Processing Systems, 36, 2023.

Lisang Ding, Ziang Chen, Xinshang Wang, and Wotao Yin. Efficient algorithms for sum-of-
minimum optimization. In Forty-first International Conference on Machine Learning.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural networks, 107:3–11, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Clifford Hildreth. A quadratic programming procedure. Naval Research Logistics Quarterly, 4(1):
79–85, 1957.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S Sathiya Keerthi, and Sellamanickam Sundarara-
jan. A dual coordinate descent method for large-scale linear svm. In Proceedings of the 25th
international conference on Machine learning, pp. 408–415, 2008.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh Hajishirzi.
Mawps: A math word problem repository. In Proceedings of the 2016 conference of the north
american chapter of the association for computational linguistics: human language technologies,
pp. 1152–1157, 2016.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 3045–3059, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing, pp. 4582–4597, 2021.

Vladislav Lialin, Sherin Muckatira, Namrata Shivagunde, and Anna Rumshisky. ReLoRA: High-
rank training through low-rank updates. In The Twelfth International Conference on Learning
Representations, 2024.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale gener-
ation: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,
2017.

Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter training method
for large language models. arXiv preprint arXiv:2404.02827, 2024.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv:2306.09782,
2023.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D Lee, Danqi Chen, and Sanjeev
Arora. Fine-tuning language models with just forward passes. Advances in Neural Information
Processing Systems, 36, 2023.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney, Bhavdeep Sachdeva, Peter Clark, Chitta Baral,
and Ashwin Kalyan. Numglue: A suite of fundamental yet challenging mathematical reasoning
tasks. arXiv preprint arXiv:2204.05660, 2022.

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4. arXiv preprint arXiv:2304.03277, 2023.

Liangzu Peng and René Vidal. Block coordinate descent on smooth manifolds: Convergence theory
and twenty-one examples. Technical report, arXiv:2305.14744v3 [math.OC], 2023.

Liangzu Peng and Wotao Yin. Block acceleration without momentum: On optimal stepsizes of
block gradient descent for least-squares. arXiv preprint arXiv:2405.16020, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming, 144(1):1–38, 2014.

Ali H Sayed. Inference and Learning from Data: Foundations, volume 1. Cambridge University
Press, 2022.

Hao-Jun Michael Shi, Shenyinying Tu, Yangyang Xu, and Wotao Yin. A primer on coordinate
descent algorithms. Technical report, arXiv:1610.00040v2 [math.OC], 2016.

Eran Treister and Javier S Turek. A block-coordinate descent approach for large-scale sparse inverse
covariance estimation. Advances in neural information processing systems, 27, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 2017.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Stephen J Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34, 2015.

Stephen J Wright and Benjamin Recht. Optimization for data analysis. Cambridge University Press,
2022.

Wenhan Xia, Chengwei Qin, and Elad Hazan. Chain of LoRA: Efficient fine-tuning of language
models via residual learning. arXiv preprint arXiv:2401.04151, 2024.

Hsiang-Fu Yu, Cho-Jui Hsieh, Kai-Wei Chang, and Chih-Jen Lin. Large linear classification when
data cannot fit in memory. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(4):
1–23, 2012.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, and Yongqiang
Ma. LlamaFactory: Unified efficient fine-tuning of 100+ language models. arXiv preprint
arXiv:2403.13372, 2024. URL http://arxiv.org/abs/2403.13372.

13

http://arxiv.org/abs/2403.13372

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DETAILED EXPERIMENTAL SETUP

We introduce the detailed hyperparameters and experimental setup in this section.

Global setup. For all the experiments in math finetuning, instruction tuning and direct preference
optimization, we fix the effective batch size to be 16 and train the model for 3 epochs. We use
DeepSpeed ZeRO-3 to implement all the experiments that require distributed training (shown in
Table 1). For all the experiments, we apply gradient checkpointing to reduce the memory cost
for storing activation values. We use mixed-precision training with BFloat 16 as the low-precision
datatype except for Galore, where we follow the setup in its paper, using pure BFloat 16 and 8-
bit Adam optimizer for reducing the memory cost. Since the downstream tasks’ performance of
the language model have high variability, we grid search learning rate from {1e-6, 1e-5, 5e-5} with
cosine learning rate schedule, and report the best result among the checkpoints at the end of epoch 1,
2, 3. The grid search is not extensive due to our limited computation resources. The implementation
of BAdam, Galore, LoRA are based on LLama-Factory Zheng et al. (2024).

Math finetuning. We randomly select 100,000 samples from the MathInstruct dataset and fine-tune
all the models using the same samples. The benchmarks scores are evaluated using the MAm-
moTH’s repository1 (without using program-of-thought). The rank of correction matrices U and V
for BREAD and BREAD-partial is set to 8. We initialize U as zero, and initialize V from the Kaim-
ing uniform distribution He et al. (2015), i.e.

(
−U(

√
6
r),U(

√
6
r)
)

. The rank of LoRA is set to 80
and 64 for finetuning Llama 3.1-8B and Llama 3.1-70B, respectively, so that the trainable parameter
number of LoRA is close to that of one BAdam/BREAD’s active block. We follow the conventional
setup to set the LoRA scaling factor α = 2× LoRA rank. We set Galore’s rank to be 256, with the
period of re-calculating the projection matrix being 256. We set K = 100 for BAdam and BREAD.

Instruction tuning and direct preference optimization. The evaluation of MT-bench score is
based on FastChat Zheng et al. (2023) using both GPT-4 and GPT-4o API. The maximum sequence
is set to 1024 and 2048 for the experiments on Alpaca-GPT4 and UltraFeedback, respectively. For
BAdam and BREAD, we solve each block sub-problem for 128 steps, i.e. K = 128.

1https://github.com/TIGER-AI-Lab/MAmmoTH

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B BREAD-SGD ALGORITHM

We introduce a variant of the BREAD algorithm, termed BREAD-SGD, which employs Adam for
updating the active block and on-the-fly SGD for the inactive block. The detailed procedure is out-
lined in Algorithm 2. Analogous to BREAD, BREAD-SGD partitions the model into D distinct
blocks and combines the gradient computation and update steps into a singular operation. Specifi-
cally, gradients are calculated on a layer-by-layer basis; active layers are updated using Adam, while
inactive layers undergo a single SGD step. Once an inactive layer is updated, its gradient is discarded
to enhance memory efficiency.

Algorithm 2: BREAD-SGD

1 input: model parameters {W 0
ℓ }Lℓ=1, number of blocks D, iterations per block K.

2 initialization: block-epoch index t← 0, and the corresponding optimizer states
s̃0j ← 0, ∀j ∈ [P].

3 while stopping criterion not meet do
4 generate a block partition π = {π1, . . . , πD} ;
5 repeat for one block-epoch i← 1, . . . , D
6 select correction matrices’ indices J ⊂ [P];
7 st,0πi

← 0 ; // initialize Adam optimizer states
8 W t,0

πi
←W t

πi
;

9 repeat for landscape corrected block updates k ← 1, . . . ,K

10 gt,k
L = ∂H

∂zL+1

11 repeat for layers ℓ← L, . . . , 1
12 if ℓ == πi then
13 W t,k

πi
, st,kπi

← AdamStep(gt,k
πi

, st,k−1
πi

) ; // Update active blocks
14 end
15 else
16 Gt,k

ℓ ← gt,k
ℓ ·

∂zℓ+1

∂Wℓ
;

17 W t,k
ℓ ←W t,k−1

ℓ − ηGt,k
ℓ ; // Update the inactive block

18 Gt,k
ℓ ← None ; // Clear gradients to save memory

19 end
20 gt,k

ℓ−1 = gt,k
ℓ ·

∂zℓ+1

∂zℓ
;

21 end
22 end
23 W t+1

πi
←W t,K

πi
; st,Kπi

← None;
24 end
25 t← t+ 1;
26 end
27 return parameters {W t

ℓ }Lℓ=1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C CONVERGENCE RESULT

In this section, we establish a preliminary convergence result for the proposed algorithms. For
brevity of expression, we analyze the BREAD-SGD. The analysis of BREAD and BREAD-partial
follows the similar strategy. We begin by introducing the assumptions.

Assumption 1. The function H(W) is L-smooth on W and Li-smooth on block Wi for blocks
i = 1, · · · , D:

∥∇WH(W)−∇WH(W̄)∥ ≤ L∥W − W̄ ∥. (8)∥∥∥∥∥ ∂H

∂Wi

∣∣∣∣
W 1

i

− ∂H

∂Wi

∣∣∣∣
W 2

i

∥∥∥∥∥ ≤ Li∥W 1
i −W 2

i ∥, i = 1, · · · , D. (9)

The block-wise smoothness (9) can be naturally induced by the function smoothness (8).

Assumption 2. There block derivatives∇WiH(W) are uniformly bounded by a constant G:

∥∇Wi
H(W)∥ ≤ G, i = 1, · · · , D.

Theorem 1 (Descent of BREAD). Under Assumption 1 and Assumption 2, the Algorithm 2 with
deterministic gradient achieves the following descent after each block-epoch of updates:

H(W t+1)−H(W t) ≤ −O(αK)∥∇H(W t)∥2, (10)

under the step size choice α ≤ min{ λ
2LK2 ,

λ2

24LKG , LG
2 , 108D

16G2K3 }.

By telescoping (10) from t = 1toT , and divide each side by T , we obtain the sample complexity
of ∥∇H(W t)∥2 = O(K/T). The proof of Theorem 1 is based on the following Lemma, which
establishes the descent property of one block sub-problem.

Lemma 1. Under Assumption 1 and Assumption 2, the Algorithm 2 update yields the following
approximate descent property:

H(W t
i)−H(W t

i−1) ≤ −
αK

4G
∥∇H(W t

i−1)∥22

Proof. The proof of Lemma 1 follows the analysis framework of Luo et al. (2024), except that we
need to analyze the descent property of the update in correction matrices. We define some notations
for the ease of expression. At the beginning of block epoch t, block sub-problem i, let W t

j,i be the
parameter of block j, W t

i be the full parameter. Based on the smoothness property in Assumption 1,
we have

H(W t
i)−H(W t

i−1) ≤
〈
∇H(W t

i−1),W
t
i −W t

i−1

〉
+

L

2

∥∥W t
i −W t

i−1

∥∥2
2

=
∑

j∈[D]\i

〈
∇jH(W t

i−1),W
t+1
j,i −W t+1

j,i−1

〉
︸ ︷︷ ︸

I1

+
∑

j∈[D]\i

Lj

2
∥W t+1

j,i −W t+1
j,i−1∥

2
2︸ ︷︷ ︸

I2

+
〈
∇iH(W t

i−1),W
t+1
i,i −W t+1

i,i−1

〉
+

Li

2
∥W t+1

i,i −W t+1
i,i−1∥

2
2 (11)

The analysis of the last two terms directly follows the strategy in BAdam. We now analyze the first
two terms. Let β = cβα be the step size for the correction matrices. Define the gradient bias term
of the block sub-problem as etj,i := 1

K

∑K
k=1∇jH(W t,k

i−1) − ∇jH(W t
i−1), where W t,k

i is the
parameter at block epoch j, sub-problem i, inner Adam step k, we have

I1 = Kβ
∑
j

〈
∇jH(W t

i−1),−∇jH(W t
i−1) + etj,i

〉
(i)

≤ −
∑
j

3

4
Kβ∥∇jH(W t

i−1)∥22 +
∑
j

4βK∥etj,i∥22

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(ii)

≤ −3

4
Kβ∥∇jH(W t

i−1)∥22 + 4βK
∑
j

∥∥∥∥∥ 1

K

K∑
k=1

∇jH(W t,k
i−1)−∇jH(W t

i−1)

∥∥∥∥∥
2

2

(iii)

≤ −3

4
Kβ∥∇jH(W t

i−1)∥22 + 4β
∑
j

K∑
k=1

∥∥∥∇jH(W t,k
i−1)−∇jH(W t

i−1)
∥∥∥2
2

(iv)

≤ −3

4
Kβ∥∇jH(W t

i−1)∥22 + 4βK
∑
j

K∑
k=1

Lj

∥∥∥W t,k
j,i−1 −W t

j,i−1

∥∥∥2
2

(v)

≤ −3

4
Kβ∥∇jH(W t

i−1)∥22 +
4β3G2K4

3
DL

≤ −1

2
Kβ∥∇jH(W t

i−1)∥22 (12)

where (i) uses Young’s inequality, (ii) applies the definition of etj,i, (iii) uses the fact that
(
∑K

i=1 ai)
2 ≤ Ka2i , (iv) is due to the Assumption 1, (v) is due to

K∑
k=1

∥W t,k
j,i−1 −W t

j,i−1∥22 ≤
K∑

k=1

(
k−1∑
m=1

∥W t,m+1
j,i−1 −W t,m

j,i−1∥

)2

≤
K∑

k=1

((k − 1)βG)2

= β2G2 (K − 1)K(2K − 1)

6
≤ β2G2K3

3
,

and the last inequality is due to β ≤
√

3D
16K3 , which is ensured by α ≤ 108D

16G2K3 .

Similar to the analysis above, we can bound I2 based on Assumption 2:

I2 =
∑
j

Lj

2
β2

∥∥∥∥∥
K∑

k=1

∇jH(W t,k
i−1)−∇jH(W t

i−1)

∥∥∥∥∥
2

2

(13)

≤
∑
j

Lj

2
β2K4G2 (14)

≤ 2G2KLβ2 ≤ 1

4
KβG2, (15)

where the first inequality is due to Assumption 2, the second inequality is based on the fact that
L > Lj ,∀j ∈ [D], and the last inequality is due to β ≤ L/8. Combine (12), (15) and (11), and
given that β = α/4G, we have

H(W t
i)−H(W t

i−1) ≤ −
1

4
Kβ∥∇H(W t

i−1)∥22 +
〈
∇iH(W t

i−1),W
t+1
i,i −W t+1

i,i−1

〉
+

Li

2
∥W t+1

i,i −W t+1
i,i−1∥

2
2

≤ −βK

2
∥∇H(W t

i−1)∥22 −
αK

8G
∥∇iH(W t

i−1)∥22

≤ −αK

8G
∥∇H(W t

i−1)∥22 (16)

where the second inequality follows (Luo et al., 2024)’s analysis. Specifically, by following exact
the same argument in (Luo et al., 2024) Lemma D.6 and Lemma D.7, the last two terms can be
decomposed into a descent term −O(α∥∇H(W t

i)∥) plus an error term O(α∥ẽti∥2) that represents
the gradient bias, where the error ∥ẽti∥ can be shown to be in the order ofO(α∥∇iH(W t

i)∥), which
can be eliminated by controlling the step size α.

Proof of Theorem 1. Since (16) establishs exact the same descent property as in Luo et al. (2024)
Corollary D.8, one can follow the same argument as in BAdam’s analysis to prove the Theorem 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTS

D.1 MORE ABLATION STUDY RESULTS

We present additional ablation studies on the hyperparameters of BREAD, including the block
switch frequency K, the rank of correction matrices r, and the block ordering strategies.

0 3000 6000 9000 12000 15000
Number of iterations

0.45

0.50

0.55

0.60

0.65

Tr
ai

ni
ng

 lo
ss

Ablation on K
BAdam-K128
BREAD-K32
BREAD-K128
BREAD-K256
BREAD-K512

(a) Effect of K.

0 3000 6000 9000 12000 15000
Number of iterations

0.45

0.50

0.55

0.60

0.65

Tr
ai

ni
ng

 lo
ss

Ablation on r
BAdam
BREAD-r2
BREAD-r4
BREAD-r8
BREAD-r16

(b) Effect of r.

0 3000 6000 9000 12000 15000
Number of iterations

0.45

0.50

0.55

0.60

0.65

Tr
ai

ni
ng

 lo
ss

Ablation on ordering strategies
BREAD-ascending
BREAD-descending
BREAD-random

(c) Effect of ordering strategies.

Figure 4: Ablation study on the effect of Adam inner steps K, rank of correction matrices r, and
block ordering strategies.

Effect of K. We present the effect of sub-problem update steps K in Fig. 4a, which is by default
128 in our paper’s experiments. The convergence of BAdam is provided for reference. Evidently,
increasing K consistently accelerates the convergence of BREAD for the examined range, where
BREAD with K = 512 takes only half of the iterations to reach the final training loss of BREAD
with K = 32. One possible explanation for the phenomenon is that when using larger K, the Adam
update will aggregate more historical information in its momentum and second moment term, and
thereby finds better search direction and scaling. We leave the scientific study of K as a future
direction. Notably, BREAD outperforms BAdam under all choices of K.

Effect of r. The effect of correction matrices’ rank r is shown in Fig. 4b, which is set to 8 in
our paper. We note that by adding rank-2 correction matrices, BREAD converges significantly
faster than BAdam, which corroborates our observation in Proposition 2. BREAD exhibits faster
convergence as the rank increases, since larger rank offers higher freedom of search directions.

Effect of ordering strategies. We test the ordering strategies of ascending (from input layer to
output layer), descending (from output layer to input layer), and random (select the layer in random
reshuffling manner). As shown in Fig. 4c, different ordering strategy does not result in evident
difference of convergence speed.

D.2 CONVERGENCE IN TERMS OF TIME.

0 10 20 30 40 50 60
Time (s)

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Tr
ai

ni
ng

 lo
ss

Convergence versus time
BAdam
BREAD
BREAD-partial
BREAD-SGD
BREAD-SGD-partial

(a) Training loss in terms of time.

0 10000 20000 30000 40000 50000
Number of iterations

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Tr
ai

ni
ng

 lo
ss

Convergence versus iteration
BAdam
BREAD
BREAD-partial
BREAD-SGD
BREAD-SGD-partial

(b) Training loss in terms of iteration.

We fine-tune the Llama 3.1-8B model on MathInstruct dataset for 3 epochs, and report training loss
convergence versus time/iteration in Appendix D.2. Notably, BREAD-SGD-partial achieves the
fastest convergence in terms of time, and BREAD-SGD and BREAD-partial surpasses BAdam at
certain points. All the BREAD variants achieve lower training loss than BAdam after 3 epochs.

18

	Introduction
	Preliminaries on Block Coordinate Descent for LLM Training
	Limitations of BCD for Neural Networks
	Accelerating BCD via Landscape Correction
	The BREAD Method
	Memory and Computational Efficiency of BREAD
	Practical Variants of BREAD

	Numerical Experiments
	Setup
	Memory and Time Cost Measure
	Finetuning Performance
	Ablation on Variants of BREAD

	Related Works
	Conclusions and Discussions
	Detailed Experimental Setup
	BREAD-SGD Algorithm
	Convergence Result
	Additional Experiments
	More Ablation Study Results
	Convergence in terms of time.

