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ABSTRACT

Advancements in large language models (LLMs) have significantly expanded their
capabilities across various domains. However, mathematical reasoning remains
a challenging area, prompting the development of math-specific LLMs such as
LLEMMA, DeepSeekMath, and Qwen2-Math, among others. These models typi-
cally follow a two-stage training paradigm: pre-training with math-related corpora
and post-training with problem datasets for supervised fine-tuning (SFT). Despite
these efforts, the improvements in mathematical reasoning achieved through con-
tinued pre-training (CPT) are often less significant compared to those obtained via
SFT. This study addresses this discrepancy by exploring alternative strategies dur-
ing the pre-training phase, focusing on the use of problem-solving data over gen-
eral mathematical corpora. We investigate three primary research questions: (1)
Can problem-solving data enhance the model’s mathematical reasoning capabili-
ties more effectively than general mathematical corpora during CPT? (2) Are syn-
thetic data from the same source equally effective, and which synthesis methods
are most efficient? (3) How do the capabilities developed from the same problem-
solving data differ between the CPT and SFT stages, and what factors contribute
to these differences? Our findings indicate that problem-solving data significantly
enhances the model’s mathematical capabilities compared to general mathemati-
cal corpora. We also identify effective data synthesis methods, demonstrating that
the tutorship amplification synthesis method achieves the best performance. Fur-
thermore, while SFT facilitates instruction-following abilities, it underperforms
compared to CPT with the same data, which can be partially attributed to its poor
learning capacity for hard multi-step problem-solving data. These insights pro-
vide valuable guidance for optimizing the mathematical reasoning capabilities of
LLMs, culminating in our development of a powerful mathematical base model
called JiuZhang-8B.

1 INTRODUCTION

To address the challenge of insufficient mathematical reasoning capabilities in large language mod-
els (LLMs), various math-specific LLMs have been developed. These include models that enhance
performance from the pre-training stage, such as LLEMMA (Azerbayev et al., 2023), DeepSeek-
Math (Shao et al., 2024), InternLM-Math (Ying et al., 2024), and Qwen2-Math (Yang et al., 2024a),
as well as models that improve through post-training, such as MetaMath (Yu et al., 2023a), Wiz-
ardMath (Luo et al., 2023), and KwaiYiiMath (Fu et al., 2023). These models generally follow a
common training paradigm. During the pre-training stage, math-related corpora are filtered from
extensive internet data to augment the model’s mathematical knowledge. During the post-training
stage, they typically utilize problem datasets and their augmented versions, such as evol-Instruct (Xu
et al., 2023), Program-of-Thought (PoT) (Chen et al., 2022), and Tool-Integrated Reasoning (TIR)
(Gou et al., 2023; Yin et al., 2024), to construct supervised datasets for Supervised Fine-Tuning
(SFT). This enables the models to follow instructions and produce outputs in the desired format.
Recently, there has been a growing focus on constructing preference datasets for the solution pro-
cess to perform Step-DPO (Lai et al., 2024) or online-RLHF (Dong et al., 2024). These approaches
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aim to obtain more accurate reasoning pathways, thereby significantly enhancing the mathematical
reasoning capabilities of the models.

Due to the intrinsic distinction between mathematical knowledge and general world knowledge,
different strategies are required for their effective acquisition and application. The primary challenge
in acquiring world knowledge lies in memorizing and understanding vast amounts of information,
necessitating large corpora during the pre-training phase to enhance knowledge reserves (Roberts
et al., 2020; Petroni et al., 2019; Dubey et al., 2024). In contrast, mathematical knowledge involves
a relatively limited set of elements, concepts, axioms, and theorems that need to be memorized and
understood. The real challenge often lies not in recalling the relevant knowledge but in using this
knowledge for reasoning or planning (Hao et al., 2023).

From previous studies, it might seem that the continue pre-training (CPT) stage contributes less
to mathematical reasoning abilities. However, recent studies, such as Physics of LLM (Allen-Zhu
& Li, 2023) and MiniCPM (Hu et al., 2024), highlight the importance of teaching models how to
utilize memorized knowledge during the pre-training stage. These findings raise concerns about
the effectiveness of the prevalent paradigm for enhancing mathematical reasoning abilities, which
primarily focuses on memorizing more mathematical knowledge during the pre-training phase and
developing reasoning abilities in the post-training phase. Therefore, we propose that alternative
strategies that use problem-solving data during the pre-training phase to teach the model to apply its
memorized knowledge, rather than merely increasing the volume of relevant data, can potentially
lead to significant improvements in mathematical reasoning capabilities. With these considerations,
we aim to explore the following fundamental research questions (RQs):

RQ1: During the CPT stage, can providing problem-solving data more effectively enhance the
model’s mathematical reasoning capabilities compared to using general mathematical corpora?

RQ2: If problem-solving data can enhance mathematical reasoning capabilities, are synthetic data
from the same source equally effective, and what synthesis methods are most efficient?

RQ3: How do the capabilities developed from the same problem-solving data differ between the
CPT and SFT stages, and what factors contribute to these differences?

We addressed these three research questions and also provided valuable training insights for opti-
mizing the mathematical reasoning ability of LLM:

For RQ1, Result 1: We demonstrate that providing math problem-solving data significantly en-
hances the model’s mathematical capabilities compared to general mathematical corpora.

Result 2: We explored various math data mixture ratios and proved that a higher proportion of
problem-solving data is more effective than general mathematical corpora.

For RQ2, Result 3: We delved into four data synthesis techniques: response diversification, query
expansion, retrospective enhancement, and tutorship amplification. Our findings revealed that re-
sponse diversification, query expansion, and tutorship amplification were effective. Among these,
tutorship amplification methods emerged as distinctly superior.

For RQ3, Result 4: While SFT can facilitate some learning of mathematical capabilities, it has a
clear disadvantage compared to CPT.

Result 5: A small amount of SFT data is sufficient to make model follow instructions.

Building on Results 4 and 5, we observe that although SFT improves instruction-following capabil-
ities, it still underperforms compared to CPT when using the same data. To investigate the cause
of this discrepancy, we hypothesized that out-of-domain (OOD) capabilities might be a contributing
factor. Consequently, we split our problem-solving data into two categories—middle school and
high school problems—and found that:

Result 6: Both SFT and CPT primarily develop capabilities aligned with their data distributions, but
SFT’s in-domain (IND) learning ability is weaker than that of CPT.

Conclusions in Result 6 are more evident in the high school training data compared to middle school,
prompting us to explore the influence of difficulty factors. We divided our problem-solving data
based on the number of reasoning steps, which serves as a proxy for problem difficulty. This allowed
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us to reconstruct the training and testing sets into three distinct difficulty distributions: easy, medium,
and hard, leading to the following findings:

Result 7: Providing hard multi-step problem-solving data enables more effective learning, and this
advantage is particularly evident in CPT compared to SFT. Thus, we recommend preparing more
challenging problem-solving data for the CPT phase.

Result 8: Regardless of the training data’s difficulty, both SFT and CPT primarily focus on learning
to solve simpler, fewer-step problems.

After addressing our three RQs, we identified the optimal strategy combination and applied it to the
LlaMa3-8B model (Dubey et al., 2024), resulting in the highly efficient JiuZhang-8B. JiuZhang-8B
surpasses various math-specific models including DeepSeek-Math-7B-base (Shao et al., 2024) and
Qwen2-Math-7B (Yang et al., 2024a), and exhibits capabilities comparable to Qwen2-Math-72B and
the recently released Qwen2.5-Math-7B (Yang et al., 2024b). We introduced only 100B mathemat-
ical tokens, equivalent to 1/10 of Qwen2.5-Math-7B, and performed CPT based on a weaker base
model. This validates that our proposed method is a more efficient approach for enhancing mathe-
matical capabilities compared to existing paradigms. Additionally, JiuZhang-8B retains strong gen-
eral knowledge capabilities, as confirmed by MMLU (Hendrycks et al., 2020) benchmarks. Since
no post-training was conducted, we are releasing the base version of JiuZhang-8B, allowing the
research community to perform further post-training to enhance its capabilities.

2 EXPERIMENTAL PREPARATION

In this section, we provide a comprehensive overview of the experimental preparations, including
data, baseline models, and metrics.

Training Data. The training data is categorized into three groups: 1) General corpus, including
scientific texts from the ArXiv subset of RedPajama (Computer, 2023), code datasets from Alge-
braicStack (Azerbayev et al., 2023) and StarCoder (Li et al., 2023), and natural language datasets
from the C4 and Wikipedia subsets of RedPajama (Computer, 2023), to prevent catastrophic for-
getting and maintain robustness. 2) Mathematical corpus, utilizing OpenWebMath (Paster et al.,
2023) to enhance mathematical proficiency. 3) Problem-solving data, including NuminaMath (LI
et al., 2024), Lila (Mishra et al., 2023), and proprietary data, with 14 million pieces used for syn-
thetic data augmentation. Our experiments employed 48.3B tokens from the general corpus, 13.7B
from the mathematical corpus, 7.2B from problem-solving data, and 30.54B from synthetic data.
Detailed descriptions are provided in Appendix A.1.

Base Model. We selected Llama2 (Touvron et al., 2023) as our base model to ensure robustness in
our findings, as it predates the release of OpenWebMath (Paster et al., 2023). By choosing a model
that existed prior to the introduction of recent mathematical corpora, we effectively mitigate the risk
of contamination from these newer datasets. More details in Appendix A.2.

Evaluation Set. To minimize dataset contamination and broaden capability assessment, we ex-
panded our evaluation set to include GAOKAO and ZHONGKAO, alongside GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021). GAOKAO and ZHONGKAO datasets, developed post-
Llama2 release, enable the measurement of a wider range of abilities. Detailed dataset descriptions
are provided in Appendix A.3.

Deduplication and Decontamination. We employed the MinHash deduplicationLee et al. (2022)
framework to enhance training data quality by removing documents with significant duplicate con-
tent. This process included setting specific byte thresholds for deduplication and decontamination,
effectively eliminating contaminated documents, particularly from OpenWebMath (Paster et al.,
2023). Further details are in Appendix A.4.

Evaluation Metrics. Our evaluation follows a three-stage process: model inference using zero-
shot and few-shot prompts, answer comparison to handle irregular outputs, and statistical scoring to
determine accuracy. In the statistical scoring stage, we select the higher accuracy between the zero-
shot and few-shot approaches for each dataset to ensure the reliability and robustness of the results,
given that some models perform better in zero-shot settings while others prefer few-shot settings.
We report the arithmetic mean of accuracies across datasets. Detailed methodologies are discussed
in Appendix A.5.
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Figure 1: The average accuracy of the four groups varies with the number of steps.

In the following sections, we address RQ1 in Section 3, RQ2 in Section 4, and RQ3 in Section 5.

3 PRACTICE MATH PROBLEM SOLVING IN CONTINUE PRE-TRAINING

We believe that, compared to simply remembering and understanding more mathematical knowledge
from vast corpora, the focus of mathematical knowledge acquisition during the pre-training phase is
primarily on learning to apply this knowledge for reasoning or planning. The intuitive approach is
to provide corresponding data to practice. Therefore, in this section, we first aim to validate RQ1,
specifically the effectiveness of providing problem-solving data during the CPT phase. This serves
not only as a validation of our main argument but also as the foundation for subsequent research
questions. We will then continue to explore the impact of the proportion of problem-solving data to
determine an appropriate data ratio and verify the efficiency of providing problem-solving data.

Experiments. We designed four experimental groups, including one base group and three test
groups. Our goal is to demonstrate the effectiveness of providing problem-solving data by com-
paring the base group with the test groups, while exploring suitable data mixing ratios through
comparisons among the three test groups. Specifically, the total amount of math data used in the
base group and test groups is the same, with the base group utilizing the math corpus as its math
data. In contrast, the test groups employ a mix of the math corpus and problem-solving data as
their math data, with the mixing ratios varied among the three test groups. The specific data de-
tails are as follow, where the data mixture ratio indicates the mixing proportion of general data to
math data, and the math data mixture ratio reflects the blending proportion of the math corpus to
problem-solving data.

• Base1: Using 48.3B general corpus and 14.7B math corpus, mixed in a 4:6 ratio.
• Test1: Using 48.3B general corpus, 7.5B math corpus, and 7.2B problem-solving data, with data

mixture ratio 4:6, math data mixture ratio 5:5.
• Test2: Same as Test1, but using a math data mixture ratio of 3:7.
• Test3: Same as Test1, but using a math data mixture ratio of 7:3.

Training Details. We utilized Llama2 (Touvron et al., 2023) as the base model and CPT for 25,000
steps, with a global batch size of 1024 and a context length of 4096 tokens. The learning rate was
warmed up to 1e-4 and then decayed to 1e-5 using a cosine schedule (Loshchilov & Hutter, 2016).
The training data was split into 95% for training and 5% for validation. After completing the 25,000
steps, we selected the checkpoint with the lowest validation loss for evaluation as the result. We also
observed that the average accuracy on the test sets did not show significant differences across the
checkpoints immediately before and after the point where the validation loss converged.

Results. As shown in Figure 1, the blue line, representing the reference group following the cur-
rent training paradigm, indicates that continued pre-training using the math corpus effectively im-
proves problem-solving accuracy. However, compared to the other three curves, even though Base1
utilized the same number of tokens, the trend and extent of improvement in mathematical capabil-
ities were significantly lower than those of the three test groups. From Table 7, we observe that
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this enhancement is consistent across the four evaluation sets, demonstrating improvements in var-
ious dimensions of mathematical reasoning abilities. Thus, we achieve Result 1: Providing math
problem-solving data significantly enhances the model’s mathematical capabilities compared
to general mathematical corpora.

For the three Test groups, the green line in Figure 1 shows that as the number of steps increases,
its average accuracy consistently surpasses the other two. A similar conclusion is drawn from the
accuracy of the four evaluation sets presented in Figure 7. Notably, we did not introduce new tokens
but simply altered the math data mixture ratio. This leads us to Result 2: A higher proportion of
problem-solving data is more effective than general mathematical corpora.

4 EXPLORATION OF EFFICIENT DATA SYNTHESIS METHODS

In the preceding sections, Results 1 and 2 highlighted the effectiveness of problem-solving data.
However, the limited availability of such data compared to internet data underscores the need for
efficient data synthesis methods. Additionally, it is not yet fully researched whether further synthesis
from the same problem-solving data during the pre-training stage can enhance model performance.
To address these issues and RQ2, we explore four data synthesis methods: response diversification,
query expansion, retrospective enhancement, and tutorship amplification. Our aim is to validate the
effectiveness of synthesized data and identify the most efficient synthesis method. Below, we briefly
introduce the data synthesis methods used in our study.

Response Diversification aims to enhance model capabilities by generating diverse reasoning paths
through methods like rejection sampling. Since it does not alter the answers, response diversification
does not require additional labeling, making it easy to implement. The effectiveness of response data
synthesis has been established through various implementations (Yuan et al., 2023; Yu et al., 2023b;
Chen et al., 2024); Chen et al., 2024). Instead of using a sampling-then-deduplication approach,
we require the model to follow two steps to improve the efficiency of response diversification: 1)
generate two distinct solutions based on the question and the original answer; 2) Select the solution
with the correct final answer to serve as one diversified training sample.

Query Expansion aims to enhance model capabilities by expanding the question set. However,
generating high-quality questions directly is challenging. Existing methods (e.g., Yu et al., 2023b
and Mitra et al., 2024) leverage the concept of reshaping, which involves generating new questions
based on existing questions and answers through rephrasing, reversing statements, and other tech-
niques. The synthesis of new questions focuses on ensuring: 1) the accuracy of the newly generated
questions, and 2) the accuracy of their corresponding answers. We integrate existing methods and
emphasize these key points by requiring the LLM to perform augmentation in four steps based on
the input question and solution: 1) transform the question into a statement, 2) generate new ques-
tions based on the statement, 3) provide answers for the new questions, and 4) evaluate the answers
and explain the reasoning. Our approach improves quality through three main aspects: first, we pro-
vide the original questions and answers; second, steps 1 and 2 ensure that the generated questions
are valid and solvable; and third, steps 3 and 4 involve self-evaluation to assess the quality of the
answers to the new questions.

Retrospective Enhancement Ye et al. (2024) posits that teaching the model to directly correct mis-
takes is beneficial. They employ a low-resource construction method that involves directly inserting
subsequent steps into preceding ones, allowing models to retry upon regret. A special [back] token
is used for identification, which is why we refer to it as retrospective enhancement. This method has
been validated on GSM8K using a small parameter model with minimal pre-training. Our scenario
differs in two key ways: 1) we utilize a more diverse question set, with some questions significantly
different from the simpler forms in GSM8K; 2) we perform continued pre-training on a mainstream
model that possesses a certain level of mathematical capability. We aim to validate the effectiveness
of this straightforward method.

Tutorship Amplification is inspired by the real-life practice of teachers guiding students to rectify
mistakes. As evidenced by OpenAI (2024), models can be trained to spot erros. This agrees with Ye
et al. (2024), who suggest that while models can detect errors, they lack opportunities for correction.
Unlike back augmentation, which generates artificial errors leading to sub-optimal results, tutorship
amplification simulates a realistic error correction process. In this process, a ”strong” model, acting
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as a teacher, aids a ”weak” model, representing a student. After the student model generates an
answer to a problem, the teacher model performs the following steps: 1) Checks if the student’s
answer is correct. 2) If correct, responds affirmatively. 3) If incorrect, points out the erroneous
steps and continues solving from that point. We aim for this process to achieve three objectives:
first, to construct realistic errors that are likely to occur; second, to enable self-evaluation and error
identification; third, to facilitate timely correction of identified mistakes. We believe these three
elements will aid the model in learning self-correction and enhancing its reasoning accuracy.

Synthetic Data. A seed set was created by filtering subsets from the original problem-solving data,
based on the completeness of data and the number of reasoning steps involved. Following this, four
data synthesis methods were applied to the seed set. Details regarding the quantity of the resulting
synthetic data and associated token counts are provided in Table 1.

Experiment. We utilized a control group, Base2, which comprised 48.3B general corpus tokens,
14.7B math corpus tokens, and 7.2B problem-solving data. In addition to the data used in Base2,
we introduced extra tokens generated from the four data synthesis methods to establish four experi-
mental groups. These models were continuous pre-trained from the raw LLaMa2 base model. Each
data combination was trained for at most 25,000 steps, and the checkpoint at which the validation set
loss converged was selected. The final accuracy was then evaluated based on this chosen checkpoint.
Other training parameters are consistent with those in Section 3.

Model Num Tokens GSM8K Math Gaokao Zhongkao Average
Base2 - - 47.84 20.12 22.98 67.05 39.50
Res-Div 14,018,544 6.82B 52.99 23.22 23.83 65.15 41.30
Query-Exp 24,459,192 4.78B 51.25 23.08 27.23 69.13 42.67
Retro-Enh 14,707,792 5.04B 45.11 21.72 22.98 66.67 39.12
Tutor-Amp 11,942,328 13.90B 64.44 35.88 32.77 69.32 50.60

Table 1: Performance comparison of four experimental groups using different synthetic data meth-
ods and one control group across four evaluation sets. ”Num” denotes the count of problem-solving
questions and corresponding solutions used, while ”Tokens” indicates the total number of tokens.
The model abbreviations represent: Res-Div (Response Diversification), Query-Exp (Query Expan-
sion), Retro-Enh (Retrospective Enhancement), and Tutor-Amp (Tutorship Amplification).

Results. The experimental results for the four combinations of synthetic data are presented in Table
1. From this, we derive Result 3: Response Diversification, Query Expansion and Tutorship
Amplification emerge as effective data synthesis techniques, with Tutorship Amplification reg-
istering particularly pronounced effects. Conversely, Retrospective Enhancement appears to exert
minimal influence. We postulate that this could be attributed to the fact that the erroneous data con-
structed is not grounded in actual sampling, resulting in a lower likelihood of occurrence and thereby
inhibiting the model’s capacity for error detection and rectification learning. We also noticed that
query expansion and response diversification yield limited enhancements. We propose two hypothe-
ses for this observation: first, the ability to comprehend varied data formulations and learn multiple
problem-solving methods might be skills that can be gleaned from the original data, and thus may
not expand the model’s upper limit of reasoning capability; second, during data generation, the
model’s self-evaluation might have failed to identify its own errors, thereby constraining the quality
of the synthesized data. As for the effectiveness of Tutorship Amplification, our hypotheses are
twofold: first, the model acquired a reasoning framework for self-checking, error detection, and
correction through the tutorship amplification data; second, the tutorship amplification data facili-
tated the learning of knowledge application to correctly resolve problems via error correction. We
anticipate that our analysis and hypotheses will offer valuable insights for future research endeavors.

5 ABILITIES ACQUISITION COMPARISON OF CPT AND SFT STAGES

In the previous two sections, we demonstrated that providing problem-solving data during the CPT
phase efficiently teaches the model to apply mathematical knowledge and enhances its reasoning
abilities. However, how does this differ from developing mathematical reasoning skills during the
SFT phase? In this section, we aim to explore this question. Specifically, we will first verify that the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

change in the training stage indeed raises the upper limits of the model’s capability, not merely due
to the data. Then, we will investigate the sources of differences in mathematical learning between
the CPT and SFT phases from two perspectives: data distributions and difficulty levels.

5.1 COMPARISON OF ABILITIES ACQUISITION

In this section, we explore how the stage at which problem-solving data is introduced (CPT vs. SFT)
significantly affects the model’s ultimate capabilities. We have a total of 7.2B problem-solving data,
which can be allocated at either the CPT or SFT stage. Additionally, we sample 0.072B problem-
solving data for 1%-SFT to endow the model with instruction-following ability. We propose the
following experimental settings to compare the acquisition of learning capabilities between the CPT
and SFT stages:

• Base1: CPT with 48.3B general corpus and 14.7B math corpus.
• Base2: CPT with 48.3B general corpus, 7.5B math corpus, and 7.2B problem-solving data.
• Base1-SFT: SFT with 7.2B problem-solving data based on Base1.
• Base1-1%SFT: SFT with 0.072B problem-solving data based on Base1.
• Base2-1%SFT: SFT with 0.072B problem-solving data based on Base2.

It is important to note that we perform SFT on both Base1 and Base2 using 1% of the problem-
solving data. This setup allows us to isolate the impact of instruction-following capability im-
provements and thereby assess the true enhancement in mathematical reasoning ability brought by
introducing problem-solving data at the CPT stage.

Experiment Details. During the SFT stage, we set a batch size of 256 and used a learning rate that
decayed from 1e-5 to 1e-6 following a cosine schedule. We trained for 3 epochs, ensuring that the
training loss converged. After convergence, we selected the optimal result from 10 checkpoints for
reporting, which typically occurred around the checkpoints at 2 epochs.

Figure 2: Comparison of the acquisition of learning capabilities between the CPT and SFT stages

Results. The evaluation results across the four datasets can be found in Appendix D. Their average
accuracy is illustrated in Figure 2. First, we observed the red and blue shaded areas, where a small
amount of SFT data brought similar improvements on both Base1 and Base2. From the evaluation
results, this improvement stems from a significant reduction in the model’s previously inconsistent
and repetitive outputs. We believe this is a result of the supervised approach in SFT, leading to
Result 5: A small amount of SFT data is sufficient to enhance the model’s ability to follow
instructions.

Next, we compared the results after removing the influence of instruction-following capabilities. At
this point, the differences, denoted as SFT ∆ and CPT ∆2, can be viewed as the improvements in
mathematical reasoning ability obtained during the SFT and CPT phases, respectively. Given that
both used the same data, but the capability gain in SFT was only about 60% of that achieved during
CPT. Additionally, comparing Base1-SFT and Base2, despite using the same data, Base1-SFT also
gained the ability to follow instructions, yet its performance was still inferior to Base2. Thus we
conclude Result 4: While SFT can facilitate some learning of mathematical capabilities, it has
a clear disadvantage compared to CPT.
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To better understand SFT’s impact on learning capabilities, we add three additional experimental
groups, where we performed SFT with 10%, 20%, and 50% splits of the problem-solving data.
These were compared with Base1, 1% SFT, and 100% SFT to analyze the effect of SFT data volume
on reasoning improvement. The results are shown in Figure 5. We observed a significant increase in
average accuracy at the 1% SFT markgroup, followed by a logarithmic-linear relationship between
data volume and accuracy improvement. This further validates our Result 5, confirming that a small
amount of SFT data enhances the model’s ability to follow instructions. Moreover, increasing the
SFT data may continue to logarithmically improve the model’s reasoning ability.

5.2 IMPACT OF DIFFERENT DATA DISTRIBUTIONS

In the previous section, we observed that the reasoning capability learned during the SFT phase
is significantly weaker compared to CPT. In this section, we aim to explore the source of this dif-
ference. Our initial intuition was that data distributions might have different impacts on capability
learning at each stage, with CPT possibly contributing to enhanced out-of-distribution (OOD) per-
formance. However, our findings contradicted this hypothesis. Both CPT and SFT primarily develop
capabilities aligned with the data distributions they are trained on.

Experiment. We designed our experiments by segmenting the training data based on evaluation
sets. Specifically, we selected one evaluation set to represent in-distribution (IND) capabilities,
with the remaining sets considered out-of-distribution (OOD). Correspondingly, we retained only
the portions of the training data aligned with IND capabilities. However, it is important to note
two key challenges: first, during the decontamination process, we already excluded any data that
overlapped with the evaluation sets; second, the scope of mathematical abilities inherently includes
overlap and coverage across different areas. Due to these factors, it is challenging to perfectly match
training data to specific capabilities. Therefore, we utilized knowledge point labels from the original
problem-solving data to segment out 0.83B middle school data, corresponding to ZHONGKAO as
its IND capabilities, and 0.89B high school data, corresponding to GAOKAO as its IND capabilities.
The OOD capabilities are represented by the remaining evaluation sets that do not align with these
IND capabilities. The specific experimental design is as follows:

• Base1: As described in Section 3. CPT with 48.3B general corpus and 14.7B math corpus.
• Middle-school-SFT: SFT with 0.83B middle school data on Base1.
• Middle-school-CPT: CPT with Base1 data and middle school data.
• High-school-SFT: SFT with 0.89B high school data on Base1
• High-school-CPT: CPT with Base1 data and high school data.

Model GSM8K Math Gaokao Zhongkao Average
Base1 28.20 9.48 8.09 30.68 19.11
Middle-school-SFT 22.67 (-5.53) 16.36 (+6.88) 10.21 (+2.12) 52.28 (+21.60) 25.38 (+6.27)

Middle-school-CPT 29.42 (+1.22) 15.04 (+5.56) 8.09 (0.00) 54.71 (+24.03) 26.81 (+7.70)

High-school-SFT 19.11 (-9.09) 13.48 (+4.00) 16.60 (+8.51) 36.78 (+6.10) 21.49 (+2.38)

High-school-CPT 23.96 (-4.24) 13.82 (+4.34) 22.98 (+14.89) 34.19 (+3.51) 23.74 (+4.63)

Table 2: Differences in learning capabilities across various data distributions during different train-
ing stages.

Results. As shown in Table 2, for the IND capabilities represented by bolded evaluation results,
learning during the CPT stage consistently led to greater improvements compared to learning during
the SFT stage. This effect is especially evident in the learning of more challenging high school-level
knowledge. Thus, we achieve Result 6: Both SFT and CPT primarily develop capabilities aligned
with their data distributions, but SFT’s in-domain (IND) learning ability is weaker than that of CPT.

In addition, for OOD capabilities, learning during the SFT stage experienced significantly more dis-
ruption. This is particularly noticeable for GSM8K (see the capability dimension chart in Appendix
B), which has the largest distributional difference. After SFT, the model’s performance on OOD
tasks suffered more compared to CPT.
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5.3 IMPACT OF DIFFERENT DIFFICULTY LEVELS

In the previous section, although we clarified that both CPT and SFT involve in-domain capability
learning, it remains unclear what cause SFT’s learning performance to be weaker than CPT’s. How-
ever, conclusions in Result 6 are more evident in the high school training data compared to middle
school, prompting us to explore the difference in learning capabilities between CPT and SFT with
varying difficulty levels problem-solving data.

Experiment. We selected a 5B subset of our problem-solving data and categorized it based on the
number of solution reasoning steps: data requiring 1-3 steps was classified as easy, 4-7 steps as
medium, and 8 or more steps as hard. The distribution of samples accounted for 36.0%, 38.4%,
and 25.6% of the total data, respectively, while token counts made up 23.0%, 36.0%, and 41.0%,
respectively. Given the unavoidable inaccuracies in this method of categorization, we focused solely
on easy data and hard data for the CPT and SFT comparison experiments. The experimental groups
were designed as follows:

• Base1: As described in Section 3. CPT with 48.3B general corpus and 14.7B math corpus.
• Easy-SFT: SFT using the easy data subset on top of Base1.
• Easy-CPT: CPT incorporating both the Base1 data and the easy data subset.
• Hard-SFT: SFT using the hard data subset on top of Base1.
• Hard-CPT: CPT incorporating both the Base1 data and the hard data subset.

Model GSM8K Math Gaokao Zhongkao Average Easy Medium Hard
Base1 28.20 9.48 8.09 30.68 19.11 14.86 6.69 4.85
Easy-SFT 31.31 14.46 14.04 48.30 27.03 22.52 (+7.66) 10.68 (+4.00) 6.94 (+2.09)

Easy-CPT 37.98 15.70 17.02 52.46 30.79 27.61 (+12.75) 13.33 (+6.64) 6.27 (+1.42)

Hard-SFT 31.39 17.40 15.32 54.55 29.66 24.37 (+9.51) 11.93 (+5.24) 6.84 (+1.99)

Hard-CPT 45.79 23.96 26.38 69.89 41.51 35.78 (+20.92) 20.17 (+13.48) 9.32 (+4.47)

Table 3: Performance comparison of CPT and SFT models on different difficulty levels. The table
shows the evaluation metrics across various datasets (GSM8K, Math, Gaokao, Zhongkao) and their
average performance, as well as specific performance on easy, medium, and hard data subsets.

Results. The results in the left half of Table 3, which is divided by vertical lines, show that CPT
models consistently outperform SFT models, with some relative improvements specifically indi-
cated. Notably, Hard-CPT exhibits greater relative enhancements compared to Easy-CPT, and these
improvements are not limited to just the hard domain accuracy but are observed across all datasets.
Moreover, regardless of whether it is SFT or CPT, training on Hard data consistently yields better
results compared to training on Easy data. This suggests Result 7: Providing hard multi-step
problem-solving data enables more effective learning, and this advantage is particularly evi-
dent in CPT compared to SFT. Therefore, given limited computational resources, we recom-
mend preparing more challenging problem-solving data for the CPT phase.

The results in right half of Table 3 indicate that both SFT and CPT models achieve their highest
improvements on Easy problems, with reduced gains as problem difficulty increases. For example,
Easy-SFT and Easy-CPT show significant improvements of +7.66 and +12.75 on Easy problems, but
only +2.09 and +1.42 on Hard problems, respectively. Similarly, Hard-SFT and Hard-CPT exhibit
their largest gains on Easy problems (+9.51 and +20.92) compared to Hard problems (+1.99 and
+4.47). These patterns suggest the Result 8: Regardless of the training data’s difficulty, both
SFT and CPT primarily focus on learning to solve simpler, fewer-step problems.

6 TRAINING A STRONG MATH-SPECIFIC MODEL

To further validate the effectiveness of our empirical results, we aimed to train a strong math-specific
model based on the LLaMa3-8B (Dubey et al., 2024), named JiuZhang-8B. We followed the con-
clusions from the three RQs outlined earlier: (1) We maintained a 3:7 ratio of mathematical corpus
to problem-solving data; (2) We used synthesized data from Query Expansion, Response Diver-
sification, and Tutorship Amplification, with a focus on expanding data using the most efficient
Tutorship Amplification method; (3) We filtered and expanded the raw data by focusing on prob-
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lems with more than five reasoning steps, using these as seed data to generate additional synthesized
data. In addition, we incorporated newly released mathematical corpora (Han et al., 2024) into the
training. Ultimately, we used 39.6B general corpus tokens, 46.7B mathematical corpus tokens, and
51.1B problem-solving data and synthesized data tokens to train JiuZhang-8B for 25,000 steps,
with a global batch size of 1024 and a context length of 8192 tokens. The learning rate was warmed
up to 1e-4 and then decayed to 1e-5 using a cosine schedule.

Results. As presented in Table 4, compared to the base model, we significantly enhanced the founda-
tional capabilities of Llama3-8B, even surpassing larger models such as LLaMa3.1-70B and Qwen2-
72B, which have over 70 billion parameters. Additionally, we evaluated our model using the Gao
et al. (2024) on the MMLU (Hendrycks et al., 2020) benchmarks, achieving a score of 0.6222 com-
pared to Llama3-8B’s 0.6211, demonstrating that it maintained its general knowledge capabilities.

Compared to math-specific base models, JiuZhang-8B outperforms DeepSeek-Math-7B-base (Shao
et al., 2024) and Qwen2-Math-7B (Yang et al., 2024a), and exhibits capabilities comparable to
Qwen2-Math-72B and the recently released Qwen2.5-Math-7B (Yang et al., 2024b). Compared
to Qwen2.5-Math-7B, JiuZhang-8B was trained on only 140 billion tokens (100 billion of which
are math-related), while Qwen2.5-Math-7B utilized 1 trillion tokens, as reported. Additionally,
JiuZhang-8B starts from a weaker base model. These findings validate our proposed method as an
efficient approach to enhancing mathematical capabilities compared to existing paradigms. Further
discussions on related work can be found in Appendix E.

Since we did not perform a complete post-training process, we are releasing the base version of
our model. This allows the research community to conduct further post-training to enhance its
capabilities as needed.

Model GSM8K Math Gaokao Zhongkao Average
General Model

Meta-Llama-3-8B 58.38 17.04 13.62 42.61 32.91
Meta-Llama-3-70B 82.34 38.42 28.09 64.02 53.21
Meta-Llama-3.1-8B 56.79 19.70 11.49 44.70 33.17
Meta-Llama-3.1-70B 81.73 39.66 31.06 64.77 54.31
Qwen2-7B 80.44 47.82 27.23 70.45 56.49
Qwen2-72B 86.58 56.88 45.11 73.67 65.56
Qwen2.5-7B 84.61 53.22 45.53 80.30 65.92
Qwen2.5-72B 90.60 59.38 56.60 82.95 72.38

Specific Model
Llemma-7B 41.47 18.94 14.89 45.08 30.10
Deepseek-Math-7B-Base 65.73 33.40 23.83 62.69 46.41
Qwen2-Math-7B 80.67 53.02 42.13 77.08 63.22
Qwen2-Math-72B 88.63 61.88 51.91 81.25 70.92
Qwen2.5-Math-7B 85.44 59.10 53.19 78.79 69.13
Qwen2.5-Math-72B 88.70 67.10 53.62 81.63 72.76
JiuZhang-8B (Ours) 81.20 60.38 60.43 80.49 70.62

Table 4: Model Performance Metrics (General and Specific Models)

7 CONCLUSION

In this study, we investigated the enhancement of mathematical reasoning capabilities in large lan-
guage models (LLMs) through alternative pre-training strategies. Our findings led to the develop-
ment of JiuZhang-8B, a competitive model that outperforms most 7B models and exhibit comparable
capabilities to much larger models despite being trained on fewer tokens. Future work should ex-
pand in two key areas. First, we need to refine data synthesis methods. While we have demonstrated
the effectiveness of synthetic data, our current approaches are relatively naive. Second, we should
explore the role and impact of alignment processes during post-training. Investigating these aspects
will help further improve the mathematical reasoning capabilities of the model.
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A DETAILED EXPERIMENT PREPARATION

A.1 TRAINING DATA DETAILS

The training data utilized in our study is categorized into three distinct groups: 1) General cor-
pus, encompassing scientific texts from the ArXiv subset of RedPajama (Computer, 2023), code
datasets from AlgebraicStack (Azerbayev et al., 2023) and StarCoder (Li et al., 2023), along with
natural language datasets from the C4 and Wikipedia subsets of RedPajama (Computer, 2023). The
inclusion of general data helps prevent the model from experiencing catastrophic forgetting, where
it might lose previously acquired knowledge during specialized training. Moreover, maintaining a
broad base of general knowledge ensures the stability and robustness of the model, enabling it to
retain a well-rounded understanding and perform effectively across various tasks. 2) Mathematical
corpus is designed to enhance the model’s proficiency in mathematics, primarily comprising general
mathematical content extracted from sources like CommonCrawl web pages. The main objective is
to imbue the pre-trained model with foundational mathematical knowledge, including terminology,
theorems, proofs, etc. To achieve this, we have directly utilized OpenWebMath (Paster et al., 2023),
a resource shown to effectively improve mathematical capabilities, as demonstrated in (Azerbayev
et al., 2023). 3) Problem-solving data, which we believe can more efficiently enhance the model’s
reasoning abilities. We collected 25 million pieces of problem-solving data, including those from
open-source resources such as NuminaMath (LI et al., 2024) and Lila (Mishra et al., 2023), as well
as proprietary data. Among them, 14 million pieces were used as seed data for augmentation to
create our synthetic data. Overall, using the Llama2 (Touvron et al., 2023) to conduct experiments
on RQs, we employed 48.3B tokens from the general corpus, 13.7B from the mathematical corpus,
7.2B from problem-solving data and 30.54B from synthetic data.
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A.2 BASE MODEL SELECTION

The selection of the base model is pivotal in shaping our conclusions, as it directly influences the
reliability and applicability of our findings. To ensure that our exploration of research questions
yields practically valuable insights, we have chosen to base our study on mainstream models. Con-
sidering that OpenWebMath may have been widely incorporated into recent LLMs, introducing this
mathematical corpus might not produce the desired effect. Therefore, we selected Llama2 (Touvron
et al., 2023), which was released prior to OpenWebMath (Paster et al., 2023), as our base model.
This decision aims to enhance the robustness of our conclusions.

A.3 EVALUATION DATSETS

Considering both the risk of dataset contamination and the scope of capabilities, we expanded the
evaluation set to include GAOKAO and ZHONGKAO, in addition to GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021). The GAOKAO dataset comprises both GAOKAO-2023 and
GAOKAO-2024, derived from the most recent Chinese National College Entrance Examinations.
We converted the problem format into math word problems, translated the questions, and retained
235 items after review. Similarly, the ZHONGKAO dataset is sourced from the 2023 Chinese High-
School Entrance Examination and includes 658 translated math word problems. Both GAOKAO
and ZHONGKAO datasets were created after the release of Llama2 (Touvron et al., 2023), which
strengthens our conclusion. These additional datasets provide coverage of different dimensions of
ability compared to GSM8K and MATH. From the perspectives of general knowledge, math knowl-
edge, and reasoning steps. GAOKAO is similar to MATH but demands more general knowledge,
while ZHONGKAO is akin to GSM8K but may require more mathematical knowledge and fewer
reasoning steps. Detailed ability dimensions can be found in Appendix B. We believe this expanded
evaluation set will lead to a more comprehensive assessment and serve as a valuable reference for
subsequent improvement.

A.4 DEDUPLICATION AND DECONTAMINATION

We used the MinHash deduplication Lee et al. (2022) framework to remove entire documents con-
taining duplicate text that exceeds a certain threshold from the training data. Specifically, we set a
threshold of 2048 bytes for deduplication to improve the quality of the training data. Additionally,
we set a threshold of 100 bytes to remove any data from the training set that contains more than 100
bytes of overlapping text with subsets of the train and test sets in the evaluation data. We believe this
can account for some contamination caused by simple paraphrasing. (Notably, in the case of Open-
webmath (Paster et al., 2023), we removed 2594 contaminated documents, which had a significant
impact on the conclusions during our initial experiments.)

A.5 EVALUATION METRICS

The evaluation process comprises three stages: model inference, answer comparison, and statistical
scoring. During model inference, we utilize both zero-shot and few-shot prompt templates for each
dataset. For the zero-shot approach, we employ a simple Chain-of-Thought (CoT) prompt (Kojima
et al., 2023). In the few-shot approach, we use 8-shot and 4-shot settings for the GSM8K and
MATH datasets, respectively, and apply the same few-shot settings from GSM8K and MATH to
the ZHONGKAO and GAOKAO datasets. For answer comparison, we use an answer comparison
model (Tianqiao, 2024) to address issues related to the irregular output of the base models, such as
inconsistent stopping criteria and extracting answers from CoT prompts. In the statistical scoring
stage, we select the higher accuracy between the zero-shot and few-shot approaches for each dataset
to ensure the reliability and robustness of the results, given that some models perform better in zero-
shot settings while others prefer few-shot settings. Finally, we report the arithmetic mean of the
accuracies across the four datasets as the average accuracy.

B ABILITY DIMENSIONS OF THE FOUR EVALUATION SETS

GSM8K, MATH, ZHONGKAO, and GAOKAO, four evaluation sets, were introduced to enrich the
dimensions of the evaluation, as shown in Table 5 with example problems.
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To preliminarily understand the differences in capabilities across various dimensions of the evalua-
tion process, we attempted to define three capability dimensions: general knowledge, math knowl-
edge, and reasoning steps. As Table 6 illustrates, each capability dimension is divided into three
levels, with requirements progressively increasing from Level 1 to Level 3. General knowledge
describes the demands for understanding common sense, such as the fact that a day consists of
24 hours; math knowledge refers to the complexity of mathematical knowledge, including arith-
metic, elementary, and advanced mathematics; reasoning steps describe the depth of reasoning.
Figure 3 displays the performance of the four evaluation sets across different dimensions. Overall,
GAOKAO and MATH represent similar capability dimensions, but GAOKAO might require some
general knowledge for certain problems. ZHONGKAO and GSM8K both demand a higher level of
general knowledge, but differ in their requirements for math knowledge and reasoning steps.

Furthermore, as shown in Figure 4, we analyzed the data distribution of problems in the datasets to
clarify the data distribution of different evaluation sets and the impact of different data distributions
on out-of-distribution (OOD) capabilities as discussed in Section 5.2. Specifically, we sampled up
to 1,000 problems from the evaluation sets and used t-SNE for dimensionality reduction, with the
visualization shown in 4(a) and the cosine similarity situation in 4(b). It is evident that MATH,
ZHONGKAO, and GAOKAO have certain correlations, whereas GSM8K exhibits the largest distri-
butional difference. This may also explain why different evaluation sets perform differently in terms
of OOD capabilities, as discussed in Table 2 and related conclusions.

Dataset Problem

GSM8K Josh decides to try flipping a house. He buys a house for $80,000 and
then puts in $50,000 in repairs. This increased the value of the house
by 150%. How much profit did he make?

MATH How many vertical asymptotes does the graph of y = 2
x2+x−6 have?

ZHONGKAO What is the opposite number of 4?

GAOKAO Given the sets M = {x | x+ 20}, N = {x | x− 1 < 0}, what is
M ∩N =?

Table 5: Example problems from four evaluation sets

Competency
Dimension

Level Definition

General Knowledge

1 Involves minimal General Knowledge

2 Less than 50% of the problems require General
Knowledge

3 More than 50% of the problems require General
Knowledge

Math Knowledge

1 Basic arithmetic operations

2 Requirements for the Chinese High School Entrance
Examination

3 Requirements for the Chinese National College Entrance
Examinations

Reasoning Steps

1 Within 1-3 steps

2 Within 3-5 steps

3 More than 5 steps

Table 6: Definitions of Competencies Across Different Levels
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Figure 3: Ability dimensions of four evaluation sets

Figure 4: (a) Data distribution of problems of the four evaluation sets. (b) Dataset similarity based
on data distribution calculation.

C DETAILED RESULTS OF BASE1, TEST1, TEST2 AND TEST3

The detailed results of Base1, Test1, Test2 and Test3 are in Table 7.

D DETAILED RESULTS OF COMPARISON OF ABILITIES ACQUISITION

The evaluation results across the four datasets are in Table 8. And the relationship between average
accuracy and SFT data quantity is in 5

E RELATED WORK

We discuss the related work on math continue pre-training. Llemma (Azerbayev et al., 2023) ini-
tially focused on continuing pre-training to enhance mathematical reasoning capabilities, collecting
open-source data including from OpenWebMath (Paster et al., 2023) and providing the Proof-Pile-2
dataset. They made preliminary attempts at continuous pre-training in the mathematics domain and
shared their experiences. DeepSeekMath (Shao et al., 2024) advanced the effects of mathematical
continuing pre-training by improving data quality, primarily training a fastText model to recall more
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Model GSM8K Math Gaokao Zhongkao Average

Llama2-7b 14.40 5.10 4.26 16.48 10.06

Base1 28.20 9.48 8.09 30.68 19.11

Test1 44.88 19.72 20.00 66.29 37.72

Test2 48.29 20.78 23.40 67.05 39.88

Test3 42.15 19.48 22.55 63.26 36.86

Table 7: Accuracy of the four experimental groups across the four evaluation set.

Model GSM8K Math Gaokao Zhongkao Average

Base1 28.20 9.48 8.09 30.68 19.11

Base1-1%SFT 31.08 12.10 12.34 39.39 23.73

Base1-10%SFT 32.37 13.74 11.49 42.42 25.01

Base1-20%SFT 34.65 16.26 13.62 46.40 27.73

Base1-50%SFT 36.92 19.34 14.04 57.20 31.88

Base1-SFT 42.84 21.88 18.30 59.47 35.62

Base2 47.84 20.12 22.98 67.05 39.50

Base2-1%SFT 51.40 27.10 25.96 69.70 43.54

Table 8: Model Performance Metrics with SFT

OpenWebMath-like mathematical web pages and iterating this process, which also provided reliable
experience for research beyond mathematical reasoning. InternLM-Math (Ying et al., 2024) uti-
lized open-source datasets and internal datasets and trained a scoring model to identify high-quality
datasets. Qwen2-Math (Yang et al., 2024a) and the more recent Qwen2.5-Math (Yang et al., 2024b)
have begun to focus on using synthetic data, effectively achieving significant improvements.
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Figure 5: The relationship between average accuracy and SFT data quantity.
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