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ABSTRACT

We propose Step-by-Step Coding (SBSC): a multi-turn math reasoning framework
that enables Large Language Models (LLMs) to generate sequence of programs
for solving Olympiad level math problems. At each step/turn, by leveraging
the code execution outputs and programs of previous steps, the model generates
the next sub-task and the corresponding program to solve it. This way, SBSC,
sequentially navigates to reach the final answer. SBSC allows more granular,
flexible and precise approach to problem-solving compared to existing methods.
Extensive experiments highlight the effectiveness of SBSC in tackling competition
and Olympiad-level math problems. For Claude-3.5-Sonnet, we observe SBSC
(greedy decoding) surpasses existing state-of-the-art (SOTA) program generation
based reasoning strategies by absolute 10.7% on AMC12, 8% on AIME and 12.6%
on MathOdyssey. Given SBSC is multi-turn in nature, we also benchmark SBSC’s
greedy decoding against self-consistency decoding results of existing SOTA math
reasoning strategies and observe performance gain by absolute 6.2% on AMC,
6.7% on AIME and 7.4% on MathOdyssey. Scripts & Data is uploaded at this link.

1 INTRODUCTION

Mathematical reasoning has emerged as a critical benchmark to measure the advanced reasoning and
problem-solving abilities of the Large Language Models (LLMs) (Brown et al., 2020; Chowdhery
et al., 2022; Achiam et al., 2023; Reid et al., 2024; Anthropic, 2023; OpenAI, June, 2024). This is due
to the complex and creative nature of the numerous reasoning steps required to solve the problems.

Chain-of-Thought (Wei et al., 2022) and Scratchpad (Nye et al., 2021) prompting strategies helped
LLMs to solve a problem using a step-by-step thought process. Program-Aided Language (PAL)
(Gao et al., 2022) & Program-Of-Thought (POT) (Chen et al., 2022) introduced problem-solving via
program generation where the answer is obtained by executing the generated program. Tool-Integrated
Reasoning Agent (ToRA) (Gou et al., 2023) & Mathcoder (Wang et al., 2023a) introduced tool-
integrated math problem solving format where model outputs natural language reasoning followed
by program generation to solve the entire problem using a single code block and incorporates code-
interpreter output for either summarizing the program output to get the final answer and terminate; or
re-attempt the problem in the subsequent turn using the same format. For brevity, let’s call ToRA’s
defined way of tool-integrated reasoning (TIR) strategy as TIR-ToRA.

The current generation of advanced LLMs such as GPT-4o (Achiam et al., 2023), Claude-3.5-Sonnet
(Anthropic, 2023) and Gemini-ultra (Reid et al., 2024) have achieved high scores on elementary
GSM8k (Cobbe et al., 2021) high-school level MATH (Hendrycks et al., 2021) by leveraging these
reasoning strategies via in-context learning (Brown et al., 2020; Chowdhery et al., 2022). Multiple
studies (Yu et al., 2023b; Yue et al., 2023; Toshniwal et al., 2024; Gou et al., 2023; Wang et al., 2023a;
Mitra et al., 2024; Beeching et al., 2024; Shao et al., 2024) have tried supervised fine-tuning (SFT)
approach to distill these reasoning formats using a propriety models like GPT4 (Achiam et al., 2023).
These studies show significant performance improvement over GSM8K and MATH benchmarks.

1.1 MOTIVATION

However, recent math specific competition and Olympiad-level benchmarking on Math Odyssey
(Fang et al., 2024), OlymiadBench (He et al., 2024), and the American Invitational Mathematics
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Examination (AIME) & the American Mathematics Competitions (AMC) (Beeching et al., 2024;
DeepSeek-AI et al., 2024; Reid et al., 2024) questions show that the state-of-the-art (SOTA), both
generalist and specialist, LLMs continue to struggle with advanced math reasoning. These results
highlights the limitation of the existing math prompting techniques. (Tong et al., 2024) highlights the
severe bias towards easy problems that exists in the SOTA SFT datasets which originates primarily
due to the ineffectiveness of the current prompting strategies in complex math problem-solving.
Often, multiple chains are generated via self-consistency decoding (Wang et al., 2022) and majority
voting is done to boost the accuracy which is unlike how humans solve problems.

Fundamentally, both PAL & TIR-ToRA generate a single program block to solve the entire problem.
Additionally, TIR-ToRA framework allows the model to re-attempt the program generation in case
of execution error. These approaches show improved performance over COT on elementary & high
school level math problems. However, solving olympiad-level math problem requires coming up
with complex and creative solution that constitutes of numerous elaborate intermediate steps which
eventually leads to the answer. Often, it is not feasible to solve a complex problem entirely using a
single program block and as a result, these prompting strategies fail to systematically address each
detailed step of the problem-solving process. It tends to overlook specified constraints, edge cases or
necessary simplifications, which are often encountered in Olympiad-level problems.

1.2 OUR CONTRIBUTION

Olympiad level math problem-solving can be viewed as solving/exploring an intermediate sub-
task/key-concept in depth; and discovering + solving the next critical sub-task dynamically basis the
accumulated knowledge of previous sub-tasks/key-concepts explorations. To this end, we propose
Step-by-Step Coding framework (SBSC) which is a multi-turn math reasoning framework that
leverages existing programming (Naman Jain, 2024) and in-context learning skills (Brown et al.,
2020) of the current generation of LLMs, particularly Claude-3.5-Sonnet (Anthropic, 2023) & GPT-4o
(OpenAI, June, 2024). In each turn, it leverages code-interpreter results and knowledge of previous
sub-tasks solutions or concept-explorations to define and programmatically solve the next sub-task.
Thus it uses code generation as the reasoning strategy to solve an intermediate sub-task or explore
an intermediate concept/step. Thus, providing detailed focus to each step of problem solving unlike
PAL & TIR-ToRA. SBSC allows an intermediate key-step to be discovered, and be explored and
refined (if needed) before being appended to the chain of steps whereas in PAL & TIR-ToRA all the
intermediate steps are always stitched together.

We investigate the performance of SBSC on last 11 years of AIME & AMC-12 questions. We
also benchmark on Olympiad-subset of MathOdyssey dataset along with math questions from
OlympiadBench. We compare our method (greedy decoding) against greedy-decoding generation
of existing reasoning strategies: COT, PAL & TIR-ToRA. We also show SBSC (greedy decoding)
effectiveness by benchmarking against self-consistency decoding results of COT, PAL & TIR-ToRA.
We conduct extensive ablations to understand the benefits of our approach such as sensitivity to
exemplars, topic-wise analysis and measuring improvement in program refinement/debugging ability
over TIR-ToRA due to the granular nature of SBSC process.

2 SBSC: STEP-BY-STEP CODING FRAMEWORK

Solving complex math problems, such as competition or Olympiad-level ones, involves creative
thinking, applying diverse mathematical knowledge, and dynamically creating subsequent strategies
as new insights emerge. One must discover sub-tasks dynamically, rigorously explore intermediate
concepts, and carefully handle constraints and edge-cases. Since PAL & TIR-ToRA generates single
code block (even during self-correction step; incase of TIR-ToRA) to solve a problem, they lack the
flexibility or granularity to emulate this. To address this, we introduce SBSC.

SBSC is a multi-turn, code-generation based math reasoning prompting strategy where at each turn:
the model generates an intermediate sub-task and corresponding program to solve that sub-task by
leveraging the outputs of the previous turns. At the end of each turn, code interpreter is used to
execute the program block to generate the solution for the intermediate sub-task. The intermediate
sub-task depends on the results of the previous turns and the question. The code snippet for the ith

sub-task directly incorporates the execution results of the previous code snippets by directly defining
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them as variables and symbols. This way SBSC makes LLMs generate sequence of programs over
multiple turns to solve complex math problems.

(a) Example multi-turn SBSC response for an AIME problem. Pink boxes denote the sub-task si at the i-th step,
blue boxes denote the program ci to solve si and >>> denote the corresponding execution output oi. The red
curly brackets indicate reusing outputs from earlier steps.

(b) Example TIR-ToRA response for the same problem, which is not solved correctly. In first turn, it tries to
solves the problem at once using a rational and program. It encounters error and in second turn, tries to fix the
entire approach and solve again but the solution is incorrect.

Figure 1: Comparison of SBSC and TIR-ToRA frameworks for same AIME problem

Our inference procedure is inspired by ToRA (Gou et al., 2023). Solution chain is initialized with
the Prompt p containing method instructions followed by exemplars and the current question q. At
each step, LLM G first outputs a subtask si. If si generation ends with stop-word "###END OF
CODE", we extract the final answer. Else, it continues to generate program code ci ending with
stop-word ““‘output”. We then pass ci to code interpreter and obtain the execution message or
output oi ← E(ci). The solution chain is updated by concatenating it with si,ci,oi and loop continues

3
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till we get "###END OF CODE". For the ith turn and ⊕ denoting concatenation, the sequential
process can be generalised as (except for the last turn where just the final answer is generated) :

si ⊕ ci ∼ G(· | p⊕ q ⊕ (s1 ⊕ c1 ⊕ o1)⊕ (s2 ⊕ c2 ⊕ o2)⊕ ......(si−1 ⊕ ci−1 ⊕ oi−1)) (1)

Step-wise sequential approach of SBSC ensures that every part of the problem is addressed with
exact precision, reducing the risk of errors that might arise from false assumptions or skipped steps.
In case the code execution for any step results in an erroneous output, SBSC is better able to rectify
that particular step. In depth understanding of SBSC (multiple examples & comparisons) at A.2.

We present example responses from both SBSC and TIR-ToRA for a problem from AIME in figures
1a and 1b respectively. As seen in case of TIR-ToRA, the initial program generated by the model
runs into an execution error. At the next turn, it attempts to rectify the error and comes up with a new
approach and the corresponding program. This time, the code executes correctly but due to reasoning
error the final answer is wrong. On the other hand, we see that SBSC is progressing step-by-step,
tackling individual sub-tasks with separate programs and utilising outputs of previous steps. In the
third step, it runs into a code execution error but succeeds in rectifying it using a different approach
in the very next turn. Further, we observe SBSC checking the validity of the generated solutions in
the fourth step before proceeding with the final step and ultimately reaches the correct answer.

2.1 SBSC EXEMPLAR DESIGN

To enable SBSC framework in LLMs, we rely on in-context learning abilities (Brown et al., 2020) of
LLMs as explored by multiple previous works such as (Chen et al., 2022; Gao et al., 2022; Gou et al.,
2023) etc. We also use a system prompt similar to previous works. With respect to exemplar design,
to enable program generation, we borrow learning from PAL (Gao et al., 2022) & POT (Chen et al.,
2022) to have meaningful variable names in the code and using natural language comments within
programs(Chen et al., 2022). To enable intermediate tool (code interpreter) usage, we leverage the
use of stop words similar to in (Gou et al., 2023). Sample SBSC exemplars can be found at A.5, A.6.

3 EXPERIMENT

3.1 BENCHMARK DATASETS

We mainly use problems from 4 popular math competition datasets for benchmarking our performance:
AIME, AMC, MathOdyssey (Fang et al., 2024) and OlympiadBench (He et al., 2024), covering
multiple domains, mainly: Algebra, Combinatorics, Number Theory and Geometry. We use problems
of last 11 years from AMC and AIME, obtaining questions and answers (Q&A) in LATEX format
from the AoPS Wiki website. MathOdyssey (Fang et al., 2024), a popular benchmark for LLM math
reasoning, consists of problems of varying difficulties. We include the 148 problems belonging to
olympiad-level competitions. OlympiadBench is another challenging benchmark for LLMs containing
olympiad-level multilingual scientific problems. We select only math related questions, in english
language.

3.1.1 DATASET PROCESSING DETAILS:

First, we filter out all questions having reference images associated. Second, we process the questions
to have integer type answers if they are already not in that format. All AIME problems have a
unique integer answer ranging from 0 to 999, while AMC-12 problems are of Multiple Choice
Question(MCQ) format. Similar to NuminaMath (Beeching et al., 2024), we remove all the answer
choices from each AMC-12 question and modify the question, wherever necessary, to ensure an
integer answer. In case of OlympiadBench and MathOdyssey, we simply modify the question as
needed. For this, we prompt GPT-4o to append an additional line at the end of each problem as
suitable. Following is an example for demonstration:

Original Question: An urn contains one red ball and one blue ball. A box of extra red and blue balls
lies nearby. George performs the following operation four times: he draws a ball from the urn at
random and then takes a ball of the same color from the box and returns those two matching balls
to the urn. After the four iterations the urn contains six balls. What is the probability that the urn
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contains three balls of each color?
Answer: 1

5

Modified Question: An urn contains one red ball and one blue ball. A box of extra red and blue
balls lies nearby. George performs the following operation four times: he draws a ball from the urn at
random and then takes a ball of the same color from the box and returns those two matching balls
to the urn. After the four iterations the urn contains six balls. What is the probability that the urn
contains three balls of each color? If the answer is represented as a fraction m

n in its simplest terms,
what is the value of m+n?
Integer Answer: 6

Final test set, contains 330 AIME, 475 AMC-12, 158 MathOdyssey & 504 OlympiadBench problems.

3.2 BASELINE & CONFIGURATIONS

We benchmark against three prompting/reasoning strategies: COT (Wei et al., 2022), PAL (Gao et al.,
2022) TIR-ToRA (Gou et al., 2023). We use gpt-4o-2024-05-13 and Claude-3.5-Sonnet
as base LLMs for our experiments. For all datasets and all reasoning frameworks, we use 4-shot
setting. Maximum number of turns (n) SBSC is set to 15. For greedy decoding inference, we use
temperature=0 and max_tokens=1024 and also, we run 3 times and report average. For
greedy decoding of TIR-ToRA, we keep n = 15 as well (Note: this is because although in TIR-
ToRA strategy the model attempts to solve the entire problem in the single turn, in case of execution
error or readjustment it tries to re-attempt in subsequent turns). We also benchmark SBSC’s greedy
decoding results against self-consistency (SC) (Wang et al., 2022) decoding results (majority@7) of
COT, PAL & TIR-TORA. We do this primarily for two reasons: First, SBSC takes multiple turns
before arriving at the final answer (on average 6-7 turns per problem , Table 3 in Appendix A.1) and
Secondly, to benchmark against the reliance of the current existing prompting strategies on majority
voting for boosting accuracy. For SC decoding, we use temperature=0.7 and top_p=0.9.
Note: we experimentally observe that for n > 4, there is insignificant increase in accuracy for
TIR-ToRA so we set n=4 for TIR-ToRA during SC decoding.

Note: PAL (Gao et al., 2022) work also reports a combined approach with Least-to-Most (L2M)
prompting strategy (Wang et al., 2022), L2M-PAL that is essentially two stage. We implemented it as
per the reported examples in the PAL work. We benchmark it on AMC + AIME dataset. We observe
that L2M-PAL at best matches PAL or TIR-ToRA scores. Detailed results available in appendix A.8.
Hence for our main results, we stick to PAL & TIR-ToRA along with self-consistency decoding due
to resource optimisation and wider adaption of those prompting strategies for math-problem solving.
For more discussion on L2M-PAL please check A.8.

3.3 PROMPTING/FEW-SHOT EXEMPLARS

For both AIME and AMC, we select 90 questions each, drawn from problems of years other than
those included in the evaluation datasets. These questions were prompted with COT, PAL, TIR-ToRA
and SBSC to generate corresponding solutions in accurate format. For each dataset, we create a subset
of 10 problems correctly solved by every method and finally select a combination of 4 exemplars
among them. For MathOdyssey as well as Olympiad Bench, we use AIME exemplars as these
datasets are of similar difficulty level. We provide the 4 chosen exemplars and system-prompts, used
in the main experiments, for different methods in Appendix (A.3, A.4, A.5, A.6) & repository here.

4 RESULTS

We report the percentage accuracy of all the methods with different base LLMs and across all the
benchmarking datasets in Table 1. On AMC dataset, SBSC shows an absolute improvement over
TIR-ToRA (greedy decoding) by roughly 11% using Claude-3.5-Sonnet and 7% using GPT-4o. SBSC
greedy decoding results outperforms SC decoding results of TIR-TORA by absolute 6% and 4%,
for Claude-3.5-Sonnet and GPT-4o respectively. We see similar absolute improvements in accuracy
on our AIME dataset too. SBSC outperforms its nearest competitor (PAL) by 8% and 6% with
greedy settings and SC settings by 6.7% and 3.7%, for Claude-3.5-Sonnet and GPT-4o respectively.
For MathOdyssey, SBSC improves by as much as 12.6% and 7% over TIR-ToRA while showing
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Table 1: Benchmarking SBSC against different math reasoning methods across 3 datasets:We report
the average accuracy( in percentage unit) over 3 runs. Best result in each setting is highlighted in
bold & second best is underlined. Absolute improvement in performance by SBSC over the previous
best method in each setting is indicated in subscript.

Method AMC AIME MathOdyssey Olympiad Bench
greedy maj@7 greedy maj@7 greedy maj@7 greedy maj@7

Claude-3.5-Sonnet
COT 31.16 35.79 9.09 10.91 11.89 16.89 39.35 42.46
PAL 35.79 36.42 27.48 28.79 27.23 31.01 41.07 44.44
TIR-ToRA 38.59 43.16 24.64 26.67 27.23 32.43 47.69 50.60
SBSC (Ours) 49.33↑10.7 −↑6.2 35.45↑8 −↑6.7 39.86↑12.6 −↑7.4 53.31↑5.6 −↑2.7

GPT-4o
COT 35.94 37.47 10.39 12.12 13.51 17.57 41.80 47.22
PAL 36.48 38.11 24.63 26.97 15.74 20.27 41.67 46.43
TIR-ToRA 37.33 40.42 22.42 25.45 19.59 23.64 43.32 49.61
SBSC (Ours) 44.55↑7.2 −↑4.1 30.7↑6.1 −↑3.7 26.55↑7 −↑2.9 48.74↑5.4 −↓0.87

improvement of 7.4% and 3% over its SC variant, for Claude-3.5-Sonnet & GPT-4o respectively.
On OlympiadBench, for GPT-4o, SBSC matches SC results of TIR-ToRA and is better than the
second best greedy variant by more than 5%. While for Claude-3.5-Sonnet, SBSC shows an absolute
improvement of nearly 6% and 3% over TIR-ToRA in greedy and SC setting respectively. Standard
deviation values at A.7.

5 ABLATIONS & ANALYSIS

5.1 SENSITIVITY TO EXEMPLARS

Figure 2: Effect of Number of Exemplars Figure 3: Sensitivity to choice of Exemplars

We study the effect of number/choice of examples in prompting on SBSC’s performance using
Claude-3.5-Sonnet on a subset of AIME and AMC data. As shown in Figure 2, we observe a notable
increase in performance when increasing the examples from 2 to 4, which then starts to saturate as
we further increase the number of examples to 6 and 8. This justifies our decision of using a 4-shot
setting. To understand if the choice of exemplars affect the accuracy or not, we conduct a sensitivity
analysis. We randomly sample 4 exemplars out of the already created pool of 10 exemplars three
times to create 3 variations of 4-shot prompts: v1, v2, and v3. In Figure 3, we can see that the
performance remains stable irrespective of the exemplars used.

5.2 SBSC EXEMPLAR TUNING

Natural language comments present within a program have proven to be useful (Gao et al., 2022). So,
in each of the SBSC exemplars, we provide suitable comments in natural language within the Python
program for each turn to help guide the model.

6
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Table 2: SBSC performance comparison across prompt variations using Claude-3.5-Sonnet

Full Prompt Without Comments Without Line 1

AMC 3 Yrs 67 62 60
AIME 3 Yrs 27 19 16

For few-shot learning, apart from relevant exemplars, the LLM also benefits from a general instruction
at the beginning (Zheng et al., 2024; Gou et al., 2023; Wang et al., 2023a) that provides a guideline or
context about how the model should approach the task, particularly those requiring logical reasoning,
multi-step operations, etc. This can be specially useful when the task requires a more nuanced
understanding and when the instructions need to be followed rigorously, as is the case with SBSC.
Kindly refer to A.5 and A.6 for detailed prompts.

In particular, we highlight one line from the instructions part of the prompt wherein, the model is
specifically being instructed to invoke a code rectification step to ensure that the error is not propagated
further, leading to a wrong answer. It also ensures the model focuses only on the intermediate step. :
If the executed code snippet returns an error, use it to correct the current step’s code snippet.
DO NOT restart solving from Step 1. 1

In Table 2, we study the importance of these two components in particular: the comments within
the code snippets and line 1 mentioned above. Our findings suggest that removal of either of these
components lead to a significant decrease in the performance, indicating how each of them are crucial
aspects of our exemplar prompts.

5.3 CODE DEBUGGING ABILITY

Figure 4: Comparison of Debugging Abilities

We present the superior ability of our method to resolve an error related to code execution. If at
any step of the trajectory chain, the program returns an execution error, we consider that to be an
error step. We visually represent this, using Claude-3.5-Sonnet responses across AMC, AIME and
MathOdyssey datasets in Figure 4, where we see that SBSC is able to recover from even multiple
wrong steps and reach the correct final answer quite easily when compared to TIR-ToRA whose
performance drops steeply on increasing error steps. This can be attributed to the fact that SBSC,
being precise and granular, tackles only a focused part of the problem and finds it easier to correct its
mistakes compared to TIR-ToRA which tries to correct the program at the problem level.

5.4 TOPIC-WISE ANALYSIS

We use GPT-4o-mini (OpenAI, June, 2024) to classify problems from AIME and AMC, while
MathOdyssey and OlympiadBench already contained topic labels. Our test set primarily comprised
of: Algebra, Arithmetic, Combinatorics, Number Theory and Geometry. In this study, we benchmark
the solutions obtained using Claude-3.5-Sonnet. As can be seen in Figure 5, our method outperforms

7
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Figure 5: Topic breakdown analysis

TIR-ToRA in all the individual topics and across all the 4 datasets, thereby proving beneficial for
all topics. This highlights the generalisation ability of our approach extending to different types and
complexities of problems.

5.5 SBSC ACCURACY CORRELATION WITH CODING CAPABILITIES OF LLMS

We study the correlation of code related capabilities of the LLMs with respect to their success with
SBSC. Since coding capabilities of a model is pivotal towards successfully following and executing
our SBSC approach, we make a comparison involving LLMs with varying coding abilities. Figure
6 shows that the SBSC scores are correlated to the code generation abilities of the corresponding
models for all cases that were evaluated on a subset of AIME and AMC data. The code-generation
scores were taken from LiveCodeBench (Naman Jain, 2024) benchmark.

Figure 6: SBSC accuracy correlation with coding ability of LLMs

5.6 SBSC + SELF-CONSISTENCY

Self-consistency (SC) decoding (Wang et al., 2022) has proven to be effective in boosting accuracy
via sampling multiple chains and taking a majority voting. We employ SC decoding to assess the
upper bound of our approach. For this study, we use temperature=0.7 and top_p=0.7.

We generate 7 chains using Claude-3.5-Sonnet for each problem of last 3 years of AMC and AIME;
and consider the majority voted answer as the prediction to be compared against the ground truth.
We notice from Figure 7 that the maj@7 accuracy is higher than that of greedy decoding, following
the usual trend with other prompting approaches like COT, PAL, etc.
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Figure 7: SBSC scores with Self-Consistency (maj@7)

6 RELATED WORK

In recent times, numerous developments in multiple research directions have taken place to enhance
the math ability of the LLMs. One of the major ones has been along the prompting and thinking
strategies such as Chain-of-Thought (COT) method (Wei et al., 2022; Kojima et al., 2022) that has
shown to evoke multi-step thinking in LLMs before arriving at the answer. These methods struggle
with complex and symbolic computations. For this, PAL (Gao et al., 2022) & POT (Chen et al., 2022)
suggest making LLMs perform reasoning by writing program and offloading the computations to
code interpreter. Another line of research has been around pre-training and supervised fine-tuning
(SFT). Multiple studies (Shao et al., 2024; Ying et al., 2024; DeepSeek-AI et al., 2024; Azerbayev
et al., 2023; Lewkowycz et al., 2022; Paster et al., 2023; Taylor et al., 2022) have shown pre-training
LLMs on high-quality maths tokens results in increased mathematical knowledge and reasoning
abilities. Recent approaches (Yu et al., 2023b; Gou et al., 2023; Yue et al., 2023; Wang et al., 2023a;
Shao et al., 2024; Toshniwal et al., 2024; Mitra et al., 2024; Beeching et al., 2024; Yin et al., 2024;
Tong et al., 2024) have tried query/problem augmentation along with creating synthetic reasoning
paths/trajectories using a teacher model like GPT4 (Achiam et al., 2023) for SFT. These methods
showed significant improvement in the math reasoning abilities of the model. Also, some studies
(Wang et al., 2023b; Yu et al., 2023a; Xi et al., 2024; Chen et al., 2024; Lightman et al., 2023b)
provide an alternative to manual annotations for process supervision (Lightman et al., 2023a).

7 CONCLUSION

We introduce SBSC, a multi-turn math reasoning framework that tries to enable LLMs to solve
complex math problems. SBSC pursues the solution, step-by-step with each turn dedicated to a
step, and arrives at final answer via multiple turns. At each turn, an intermediate sub-task and its
corresponding program solution is generated leveraging the execution outputs and solutions of all the
previous sub-tasks. We show performance improvements of SBSC over TIR-ToRA, PAL & COT
on challenging math problems. We also show that greedy-decoding results of SBSC outperforms
self-consistency results of other prompting strategies.

8 FUTURE WORK

Given the detailed, dynamic and flexible step-wise nature of problem-solving along with the fact that
its leverage program generation to conclude a key-intermediate step, we believe SBSC reasoning
format could be highly useful for guided decoding strategies such as in Outcome-Supervised Value
Model (Yu et al., 2023a), AlphaMATH (Chen et al., 2024), Q* framework (Wang et al., 2024). It
would be well suited for step-wise preference optimisation for reasoning such as in (Lai et al., 2024).
SBSC trajectories could be used also for imitation learning via SFT.
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A APPENDIX

A.1 NUMBER OF STEPS IN SBSC

In Table 3, we present the number of turns taken per question by SBSC responses obtained using
Claude-3.5-Sonnet across the different datasets.

Table 3: Table showing number of turns/steps used by SBSC

Number of turns or steps AMC AIME MathOdyssey
2 21 12 8
3 57 19 17
4 101 47 19
5 79 51 21
6 63 43 28
7 41 43 14
8 42 31 10
9 12 18 8

others 59 66 23
Average turns or steps/Problem 6.0 6.9 6.4

A.2 UNDERSTANDING SBSC IN DETAIL

In this section, we demonstrate some scenarios where SBSC has been successful while TIR-ToRA
has failed, with the help of some example questions and investigating the responses obtained from
the two models.

Let’s consider the question in Example 1, involving a geometric progression of numbers written in
logarithmic form, which TIR-ToRA gets wrong.The method uses a binary search technique, which
is not very precise when dealing with exact values required for mathematical problems, especially
when fractions are involved.The solution uses a function to check whether the logarithms form a
geometric progression which introduces additional complexity and potential inaccuracies because it
involves comparing ratios that may not be exactly equal due to floating-point arithmetic.Also, this
single-turn method tends to overlook specified constraints or necessary simplifications, which are
often encountered in Olympiad level problems and instead makes false assumptions.
The question in Example 2 is an example scenario where TIR-ToRA fails because it makes an
incorrect assumption. It misinterprets the Lipschitz condition and incorrectly makes a simpler
assumption that the difference f(800)− f(400) is equal to the maximum possible difference, which
is 200. While the magnitude of the difference is bounded by 200, it does not mean that the actual
difference will always be 200. Iterative solutions, as are often the only way out in single program
based solutions, can sometimes lead to infinite loops, especially in cases where the stopping condition
is not clearly defined or understood by the LLM.
As can be seen in Example 3, the single code is unable to take advantage of the factorization of 2020,
which is key to solving the problem efficiently and instead iterates over a very large range of potential
values for m, leading to inefficiency. The upper bound 2020 is extremely large and the sheer number
of iterations causes a timeout.
Example 4 presents a scenario where TIR-ToRA makes up an assumption about the problem and
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writes the code for terminating a loop accordingly, which leads to a timeout error, as the incorrect
assumption leads to an infinite loop. It lacks intermediate checks that would provide insights into
whether the sequence terms are of the form t

t+1 , which is crucial for solving the problem and would
have enabled it to chalk out the termination conditions suitably.

On the other hand, our Step-By-Step Coding method enforces a decomposition of the problem into
smaller sub-task. Each sub-task is tackled independently by the LLM, which generates code to solve
it and then uses the resulting output to suitably proceed to the next sub-task and this process continues
till the final answer is reached. Such an approach ensures that every part of the problem is addressed
with exact precision, reducing the risk of errors that might arise from skipped steps. Dividing the
problem into multiple sub-tasks also allows it to make necessary simplifications that would make the
future sub-tasks, and hence the entire problem, easier to solve.
Going back to the problem in Example 1, SBSC starts by defining the logarithms and setting up the
equations based on the geometric progression condition. It then simplifies the equations to reduce
them to a more manageable form, eliminating unnecessary complexity and allowing straightforward
solving. Throughout the problem, it uses precise mathematical formulations of the problem, ensuring
the solution is accurate. Since this method isn’t trying to solve the entire problem at one go, it doesn’t
need to make any assumptions to simplify the problem statement.
For the question in Example 2, it correctly interprets the problem, keeps applying the given Lipschitz
condition as it solves each sub-task and finds the correct maximum possible value of f(f(800))−
f(f(400)). By systematically checking for constraints and edge cases at each stage, our method
guarantees that solutions are not only accurate but also valid under all possible conditions. This is
particularly crucial for problems with intricate conditions or multiple solution paths. Additionally,
our process explicitly defines loop conditions to ensure that termination criteria are clear, allowing
for correction if issues like infinite loops arise.
For the problem in Example 3, the first sub-task correctly identified by SBSC is to factorize the large
number 2020 into smaller powers, paving the path towards an efficient solution. In the subsequent
steps, it takes care of constraints like ensuring that m and n are integers and avoids over-counting by
properly iterating over valid powers, giving us the correct answer.
Likewise, in Example 4, we see that our method generates each term of the sequence one at a time,
allowing for intermediate checks to confirm whether each term is of the desired form t

t+1 . Thus,
it accurately identifies the terms that meet the required condition and ensures that only the correct
indices are considered. This avoids the infinite loop risk and ensures the correctness of each step
before moving on. We also notice that the model runs into an error at the first sub-task itself but based
on the corresponding code output, it is able to take an alternate approach and successfully solves the
sub-task, moving onto later ones. This example also highlights our superior code debugging ability,
as discussed earlier.

Example Question 1: There is a unique positive real number x such that the three numbers log8 2x,
log4 x , andlog2 x , in that order, form a geometric progression with positive common ratio. The
number x can be written as m

n , where m and n are relatively prime positive integers. Find m + n

Incorrect solution by TIR-ToRA

Let’s approach this problem step-by-step:
1. Define a function to check if three numbers form a geometric progression.
2. Use binary search to find x that satisfies the condition.
3. Convert x to a fraction and return the sum of its numerator and denominator.

import math
from fractions import Fraction
def solution():

# Function to check if three numbers form
#a geometric progression
def is_geometric_progression(a, b, c):

ratio1 = b / a
ratio2 = c / b
return math.isclose(ratio1, ratio2) and ratio1 > 1

# Binary search to find x
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left, right = 1, 1000
while right - left > 1e-10:

x = (left + right) / 2
log8_2x = math.log(2*x, 8)
log4_x = math.log(x, 4)
log2_x = math.log(x, 2)
if is_geometric_progression(log8_2x, log4_x, log2_x):

break
elif (log4_x / log8_2x) > (log2_x / log4_x):

left = x
else:

right = x
# Convert x to a fraction
frac = Fraction(x).limit_denominator()
return frac.numerator + frac.denominator

result = solution()
print(f"\\boxed{{{result}}}")

>>> output:
\boxed{2}

The answer is 2

Correct solution by SBSC:

Let’s solve this problem step by step using SymPy-based Python code.
Step 1: Define the symbols and set up the equations

from sympy import symbols, log, Eq, solve
# Define symbols
x, r = symbols('x r')
# Define the three logarithms
log1 = log(2*x, 8)
log2 = log(x, 4)
log3 = log(x, 2)
# Set up equations for geometric progression
eq1 = Eq(log2 / log1, r)
eq2 = Eq(log3 / log2, r)
print("Equation 1:", eq1)
print("Equation 2:", eq2)

>>> output
Equation 1: Eq(log(8)*log(x)/(log(4)*log(2*x)), r)
Equation 2: Eq(log(4)/log(2), r)

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 2: Simplify the equations

from sympy import symbols, log, Eq, solve, simplify
# Define symbols
x, r = symbols('x r')
# Define the three logarithms
log1 = log(2*x, 8)
log2 = log(x, 4)
log3 = log(x, 2)
# Set up equations for geometric progression
eq1 = Eq(log2 / log1, r)
eq2 = Eq(log3 / log2, r)
# Simplify equations
eq1_simplified = simplify(eq1)
eq2_simplified = simplify(eq2)
print("Simplified Equation 1:", eq1_simplified)
print("Simplified Equation 2:", eq2_simplified)
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>>> output:
Simplified Equation 1: Eq(r, 3*log(x)/(2*log(x) + 2*log(2)))
Simplified Equation 2: Eq(r, 2)

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 3: Solve the equations

from sympy import symbols, log, Eq, solve, simplify
# Define symbols
x, r = symbols('x r')
# Define the simplified equations
eq1 = Eq(r, 3*log(x)/(2*log(x) + 2*log(2)))
eq2 = Eq(r, 2)
# Solve the system of equations
solution = solve((eq1, eq2), (x, r))
print("Solution:", solution)

>>> output
Solution: [(1/16, 2)]

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 4: Extract the value of x and convert to a fraction

from sympy import symbols,log,Eq, solve, simplify, Rational
# Define symbols
x, r = symbols('x r')
# Define the solution from the previous step
solution = [(Rational(1, 16), 2)]
# Extract the value of x
x_value = solution[0][0]
print("x =", x_value)
# Convert x to a fraction
m = x_value.numerator
n = x_value.denominator
print("x as a fraction: {}/{}".format(m, n))

>>> output
x = 1/16
x as a fraction: 1/16

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 5: Calculate m + n

from sympy import symbols,log,Eq, solve, simplify, Rational
# Define symbols
x, r = symbols('x r')
# Define the solution from the previous step
solution = [(Rational(1, 16), 2)]
# Extract the value of x
x_value = solution[0][0]
# Convert x to a fraction
m = x_value.numerator
n = x_value.denominator
# Calculate m + n
result = m + n
print("m =", m)
print("n =", n)
print("m + n =", result)

>>> output:
m = 1
n = 16
m + n = 17
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### END OF CODE
The final answer is 17

Example Question 2: Consider functions f that satisfy |f(x) − f(y)| ≤ 0.5|x − y| for all real
numbers x and y. Of all such functions that also satisfy the equation f(300) = f(900), what is the
greatest possible value of f(f(800)− f(f(400)))?

Incorrect solution by TIR-ToRA:

To solve this problem, we need to consider the properties of the given function and find the
maximum possible difference between f(f(800)) and f(f(400)). Let’s solve it using python:

def solution():
#Given: |f(x) - f(y)| <= 0.5|x - y| for all real x and y
#Also, f(300) = f(900)
#Maximum difference between f(800) and f(400)
max_diff_800_400 = 0.5 * (800 - 400) # 200
#Maximum value of f(800) - f(400)
max_f800_f400 = max_diff_800_400 # 200
#Maximum difference between f(f(800)) and f(f(400))
max_final_diff = 0.5 * max_f800_f400 # 100
return max_final_diff

result = solution()
print(f"\\boxed{{{result}}}")

>>> output:
\boxed{100}

The answer is 100

Correct solution by SBSC:

Let’s approach this problem step by step using SymPy-based Python code where appropriate.
Step 1: Understand the given condition The condition |f(x) - f(y)| 1/2|x - y| implies that f is a
Lipschitz continuous function with Lipschitz constant 1/2. This means f doesn’t change too
rapidly.
Step 2: Analyze the equation f(300)=f(900).This equation tells us that f takes the same value at
x=300 and x=900. Let’s call this value k.
from sympy import symbols, Abs
k = symbols('k')
print(f"f(300) = f(900) = {k}")

>>> output:
f(300) = f(900) = k

Let’s continue solving this problem step by step.
Step 3: Apply the Lipschitz condition to f(800) and f(400) We can use the Lipschitz condition
to find bounds for f(800) and f(400) in terms of k.
from sympy import symbols, Abs, Min, Max
k = symbols('k')
# For f(800)
f_800_min = k - Abs(800 - 900)/2
f_800_max = k + Abs(800 - 900)/2
# For f(400)
f_400_min = k - Abs(400 - 300)/2
f_400_max = k + Abs(400 - 300)/2
print(f"f(800) is between {f_800_min} and {f_800_max}")
print(f"f(400) is between {f_400_min} and {f_400_max}")

>>> output:
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f(800) is between k - 50 and k + 50
f(400) is between k - 50 and k + 50

Let’s continue solving this problem step by step.
Step 4: Analyze f(f(800)) and f(f(400)) Now we need to apply the Lipschitz condition again
to f(f(800)) and f(f(400)).

from sympy import symbols, Abs, Min, Max
k = symbols('k')
# For f(f(800))
ff_800_min = k - Abs(k + 50 - k)/2
ff_800_max = k + Abs(k - 50 - k)/2
# For f(f(400))
ff_400_min = k - Abs(k + 50 - k)/2
ff_400_max = k + Abs(k - 50 - k)/2
print(f"f(f(800)) is between {ff_800_min} and {ff_800_max}")
print(f"f(f(400)) is between {ff_400_min} and {ff_400_max}")

>>> output
f(f(800)) is between k - 25 and k + 25
f(f(400)) is between k - 25 and k + 25

Let’s continue solving this problem step by step.
Step 5: Calculate the maximum possible difference Now we need to find the maximum possible
value of f(f(800))− f(f(400)).

from sympy import symbols, Abs, Min, Max
k = symbols('k')
# Maximum possible difference
max_diff = (k + 25) - (k - 25)
print(f"The maximum possible difference f(f(800))-f(f(400))
is {max_diff}")

>>> output:
The maximum possible difference f(f(800)) - f(f(400)) is 50

### END OF CODE
The final answer is 50

Example Question 3: Find the number of ordered pairs of positive integers (m,n) such that
m2n = 2020

Incorrect solution by TIR-ToRA:

Let’s approach this problem step-by-step:

1. Iterate through possible values of m up to the square root of 202̂0
2. For each m, check if m2 divides 2020 evenly
3. Return the total count of valid pairs

import math
def solution():

count = 0
target = 20**20
for m in range(1, int(math.sqrt(target)) + 1):

if target % (m**2) == 0:
n = target // (m**2)
count += 1

return count
result = solution()
print(f"The number of ordered pairs (m,n) is:
f"\\boxed{{{result}}}"")
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>>> output:
TimeoutError: [Errno 110] Connection timed out

Looks like we got a timeout error, let’s try a different approach that should not result in any
error:

import math
def solution():

count = 0
target = 20**20
for m in range(1, int(math.sqrt(target)) + 1):

if target % (m**2) == 0:
n = target // (m**2)
count += 1

return count
result = solution()
print(f"The number of ordered pairs (m,n) is:
f"\\boxed{{{result}}}"")

>>> output:
TimeoutError: [Errno 110] Connection timed out

...
This loop continues without ultimately getting an answer.

Correct solution by SBSC:

Let’s approach this problem step by step using SymPy-based Python code.
Step 1: Define the equation and initialize variables

from sympy import symbols,Eq,solve, divisors, prime_factors
m, n = symbols('m n', positive=True, integer=True)
equation = Eq(m**2 * n, 20**20)
print("Equation:", equation)

>>> output:
ImportError: cannot import name 'prime_factors' from 'sympy'

I apologize for the error. It seems the ‘prime factors‘ function is not available in the version of
SymPy you’re using. Let’s modify our approach and use the ‘factorint‘ function instead, which
is more commonly available. Here’s the corrected code:
Step 1: Define the equation and initialize variables

from sympy import symbols, Eq, solve, divisors, factorint
m, n = symbols('m n', positive=True, integer=True)
equation = Eq(m**2 * n, 20**20)
print("Equation:", equation)

>>> output
Equation: Eq(m**2*n, 104857600000000000000000000)

Let’s continue solving this problem step by step.
Step 2: Factor 2020 and analyze its structure

from sympy import symbols, Eq, solve, divisors, factorint
m, n = symbols('m n', positive=True, integer=True)
equation = Eq(m**2 * n, 20**20)
# Factor 20^20
factorization = factorint(20**20)
print("Factorization of 20^20:", factorization)
# Analyze the structure
power_of_2 = factorization[2]
power_of_5 = factorization[5]
print("Power of 2:", power_of_2)
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print("Power of 5:", power_of_5)

>>> output
Factorization of 20^20: {2: 40, 5: 20}
Power of 2: 40
Power of 5: 20

Let’s continue solving this problem step by step.
Step 3: Determine possible values for m and n

from sympy import symbols, Eq, solve, divisors, factorint
m, n = symbols('m n', positive=True, integer=True)
equation = Eq(m**2 * n, 20**20)
# Factor 20^20
factorization = factorint(20**20)
power_of_2 = factorization[2]
power_of_5 = factorization[5]
# Initialize counter for valid pairs
valid_pairs = 0
# Iterate through possible values of m
for m_power_of_2 in range(0, power_of_2 + 1, 2):

for m_power_of_5 in range(0, power_of_5 + 1):
# Calculate m
m_value = 2**m_power_of_2 * 5**m_power_of_5
# Calculate corresponding n
n_power_of_2 = power_of_2 - 2*m_power_of_2
n_power_of_5 = power_of_5 - m_power_of_5
# Check if n is a positive integer
if n_power_of_2 >= 0 and n_power_of_5 >= 0:

valid_pairs += 1
print("Number of valid (m,n) pairs:", valid_pairs)

>>> output
Number of valid (m,n) pairs: 231

### END OF CODE
The final answer is 231

Example Question 4: Consider the sequence (ak)_k ≥ 1of positive rational numbers defined
by a1 = 2020

2021 and for k ≥ 1 , if ak = m
n for relatively prime positive integers m and n , then

ak+1 = m+18
n+19 . Determine the sum of all positive integers j such that the rational number aj can be

written in the form t
t+1 for some positive integer t

Incorrect solution by TIR-ToRA:

Let’s proceed step-by-step:
1. Generate the sequence of fractions starting from a1 = 2020

2021 .

2. For each term, check if it is in the form t
t+1 for some integer t. If so, add its index to a

running sum.
3. Generate the next term using the given formula.
4. Continue this process until we cycle back to the initial fraction. The sum of indices

where the fraction is in the form t
t+1 is our final answer.

from fractions import Fraction
def next_term(a):

return Fraction(a.numerator + 18, a.denominator + 19)
def is_of_form_t_over_t_plus_1(frac):

return frac.denominator == frac.numerator + 1
def solution():
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a = Fraction(2020, 2021)
j_sum = 0
j = 1
while True:

if is_of_form_t_over_t_plus_1(a):
j_sum += j

a = next_term(a)
j += 1
# Check if we've reached the initial fraction again
if a == Fraction(2020, 2021):

break
return j_sum

result = solution()
print(f"\\boxed{{{result}}}")

Similar to the earlier example, this code results in a TimeOut error and then the loop keeps repeating.

Correct solution by SBSC:

Let’s solve this problem step by step using SymPy-based Python code.
Step 1: Define the sequence and initial value

from sympy import Rational, gcd
def next_term(a):

m, n = a.numerator, a.denominator
return Rational(m + 18, n + 19)

a = [Rational(2020, 2021)]
print(f"a[1] = {a[0]}")

>>> output
a[1] = 2020/2021

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 2: Generate the sequence until we find a term of the form t/(t+1)

from sympy import Rational, gcd
def next_term(a):

m, n = a.numerator, a.denominator
return Rational(m + 18, n + 19)

a = [Rational(2020, 2021)]
j = 1
result = []
while True:

if a[-1].denominator == a[-1].numerator + 1:
result.append(j)
print(f"Found a[{j}] = {a[-1]} of the form t/(t+1)")

j += 1
a.append(next_term(a[-1]))
if j > 100: # Limit to prevent infinite loop

break
print(f"Indices found: {result}")

>>> output
Found a[1] = 2020/2021 of the form t/(t+1)
Found a[2] = 1019/1020 of the form t/(t+1)
Found a[8] = 161/162 of the form t/(t+1)
Found a[18] = 31/32 of the form t/(t+1)
Found a[30] = 19/20 of the form t/(t+1)
Indices found: [1, 2, 8, 18, 30]

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 3: Calculate the sum of the indicesfrom sympy import Rational, gcd
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def next_term(a):
m, n = a.numerator, a.denominator
return Rational(m + 18, n + 19)

a = [Rational(2020, 2021)]
j = 1
result = []
while True:

if a[-1].denominator == a[-1].numerator + 1:
result.append(j)

j += 1
a.append(next_term(a[-1]))
if j > 100: # Limit to prevent infinite loop

break
sum_of_indices = sum(result)
print(f"Indices found: {result}")
print(f"Sum of indices: {sum_of_indices}")

>>> output
Indices found: [1, 2, 8, 18, 30]
Sum of indices: 59

### END OF CODE
The final answer is 59

A.3 PAL EXEMPLARS

In this section, we provide the prompts for Program-Aided Language models (PAL) method. We
initially used the default prompt as mentioned in the original PAL paper, but the results were poor.
We noticed that the response often contained textual reasoning before or after the program, which
isn’t the desired format for PAL. Hence, we modify the instructions to confine the responses only to
include Python program and subsequently, also notice improved accuracy.

For AIME
Let’s use python program to solve math problems.
DO NOT USE ANY TEXTUAL REASONING.
Your response must start with: “‘python
Your response must end with: print(result)

Here are some examples you may refer to.

Example Problem: A frog begins at P0 = (0, 0) and makes a sequence of jumps according to
the following rule: from Pn = (xn, yn), the frog jumps to Pn+1, which may be any of the points
(xn + 7, yn + 2), (xn + 2, yn + 7), (xn − 5, yn − 10), or (xn − 10, yn − 5). There are M points
(x, y) with |x| + |y| ≤ 100 that can be reached by a sequence of such jumps. Find the remainder
when M is divided by 1000.

Example Solution:

def solution():
jumps = [(7, 2), (2, 7), (-5, -10), (-10, -5)]
# Set to keep track of all reachable points, starting from the origin
(0, 0).
reachable = set([(0, 0)])
# Queue to process points, starting with the origin (0, 0).
queue = [(0, 0)]
# Breadth-first search (BFS) to explore reachable points.
while queue:

# Pop the first point from the queue.
x, y = queue.pop(0)
# Iterate over all possible jumps.
for dx, dy in jumps:

# Calculate new coordinates after the jump.
nx, ny = x + dx, y + dy
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# Check if the Manhattan distance is within 100 and the point
hasn't been visited.

if abs(nx) + abs(ny) <= 100 and (nx, ny) not in reachable:
# Add the new point to the reachable set.
reachable.add((nx, ny))
# Add the new point to the queue to explore further.
queue.append((nx, ny))

return len(reachable) % 1000
result = solution()
print(result)

Example Problem: The AIME Triathlon consists of a half-mile swim, a 30-mile bicycle ride, and
an eight-mile run. Tom swims, bicycles, and runs at constant rates. He runs fives times as fast as he
swims, and he bicycles twice as fast as he runs. Tom completes the AIME Triathlon in four and a
quarter hours. How many minutes does he spend bicycling?

Example Solution:
from sympy import symbols, Eq, solve, Rational
def solution():

x = symbols('x')
# Set up the equation
eq = Eq(Rational(1,2)/x + 30/(10*x) + 8/(5*x), Rational(17,4))
# Solve the equation
solution = solve(eq)[0]
# Calculate bicycling time in hours
bike_time = 30 / (10 * solution)
# Convert to minutes
bike_time_minutes = int(bike_time * 60)
return bike_time_minutes

result = solution()
print result

Example Problem: Let S be the increasing sequence of positive integers whose binary representation
has exactly 8 ones. Let N be the 1000th number in S . Find the remainder when N is divided by
1000

Example Solution:
def solution():

count = 0 # Initialize a counter to track how many numbers have been
found
n = 1 # Start checking numbers from 1 upwards
while count < 1000: # Continue the loop until we find the 1000th
number

# Check if the binary representation of the number 'n' has
exactly 8 '1's

if bin(n).count('1') == 8:
count += 1 # Increment the counter when a number with 8 '1's

is found
# If this is the 1000th such number, return the remainder of

n divided by 1000
if count == 1000:

return n % 1000
n += 1 # Move to the next number

result = solution()
print(result)

Example Problem: Two geometric sequences a1, a2, a3, . . . and b1, b2, b3, . . . have the same com-
mon ratio, with a1 = 27 b1 = 99 , and a15 = b11 . Find a9

Example Solution:
def solution():

# Initialize known values
a1 = 27
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b1 = 99
# Calculate the common ratio
# We know that a15 = b11, so:
# a1 * r^14 = b1 * r^10
# 27 * r^14 = 99 * r^10
# 27 * r^4 = 99
# r^4 = 99/27 = 11/3
r = (11/3) ** (1/4)
# Calculate a9
a9 = a1 * (r ** 8)
return round(a9)

result = solution()
print(result)

For AMC:
Let’s use python program to solve math problems.
DO NOT USE ANY TEXTUAL REASONING.
Your response must start with: “‘python
Your response must end with: print(result)

Here are some examples you may refer to.

Example Problem: Small lights are hung on a string 6 inches apart in the order red, red, green,
green, green, red, red, green, green, green, and so on continuing this pattern of 2 red lights followed
by 3 green lights. How many feet separate the 3rd red light and the 21st red light? Note: 1 foot is
equal to 12 inches.

Example Solution:

def solution():
# Find position of 3rd red light
n_3rd = 3
complete_cycles_3rd = (n_3rd - 1) // 2
remaining_lights_3rd = (n_3rd - 1) % 2
pos_3rd = complete_cycles_3rd * 5 * 6 + remaining_lights_3rd * 6
# Find position of 21st red light
n_21st = 21
complete_cycles_21st = (n_21st - 1) // 2
remaining_lights_21st = (n_21st - 1) % 2
pos_21st = complete_cycles_21st * 5 * 6 + remaining_lights_21st * 6
# Calculate the distance in inches
distance_inches = pos_21st - pos_3rd
# Convert to feet
distance_feet = distance_inches / 12
return distance_feet

result = solution()
print(result)

Example Problem: A fruit salad consists of blueberries, raspberries, grapes, and cherries. The fruit
salad has a total of 280 pieces of fruit. There are twice as many raspberries as blueberries, three times
as many grapes as cherries, and four times as many cherries as raspberries. How many cherries are
there in the fruit salad?

Example Solution:

from sympy import symbols, Eq, solve
def solution():

# Define the symbols for the variables
b, r, g, c = symbols('b r g c')
# Define the equations based on the problem statement
eq1 = Eq(r, 2*b) # Equation 1: r = 2b
eq2 = Eq(g, 3*c) # Equation 2: g = 3c
eq3 = Eq(c, 4*r) # Equation 3: c = 4r
eq4 = Eq(b + r + g + c, 280) # Equation 4: b + r + g + c = 280
# Solve the system of equations
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sol = solve((eq1, eq2, eq3, eq4))
return sol[c]

result = solution()
print(result)

Example Problem: Last summer 30% of the birds living on Town Lake were geese, 25% were
swans, 10% were herons, and 35% were ducks. What percent of the birds that were not swans were
geese?

Example Solution:

def solution():
# Total percentage of all birds
total = 100
# Percentages of each bird type
geese = 30
swans = 25
herons = 10
ducks = 35
# Calculate percentage of birds that are not swans
not_swans = total - swans
# Calculate percentage of geese among birds that are not swans
geese_among_not_swans = (geese / not_swans) * 100
# Round to nearest whole number
return round(geese_among_not_swans)

result = solution()
print(result)

Example Problem: At a twins and triplets convention, there were 9 sets of twins and 6 sets of triplets,
all from different families. Each twin shook hands with all the twins except his/her siblings and with
half the triplets. Each triplet shook hands with all the triplets except his/her siblings and with half the
twins. How many handshakes took place?

Example Solution:

def solution():
# Number of twins and triplets
twins = 9 * 2
triplets = 6 * 3
# Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2
# Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2
# Handshakes between twins and triplets
twin_triplet_handshakes = (twins * triplets) // 2
# Total handshakes
total_handshakes = twin_handshakes + triplet_handshakes +
twin_triplet_handshakes
return total_handshakes

result = solution()
print(result)

A.4 TIR-TORA EXEMPLARS

For AIME
Integrate step-by-step reasoning and Python code to solve math problems using the following
guidelines:

- Analyze the question and write functions to solve the problem; the function should not take any
arguments.
- Present the final result in LaTeX using a ‘ ‘ without any units.
- Utilize the ‘pi‘ symbol and ‘Rational“ from Sympy for π and fractions, and simplify all fractions
and square roots without converting them to decimal values.
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Once you get the code output, just display the output answer within ‘ ‘ and terminate.

Here are some examples you may refer to:

Example Problem: A frog begins at P0 = (0, 0) and makes a sequence of jumps according to
the following rule: from Pn = (xn, yn), the frog jumps to Pn+1, which may be any of the points
(xn + 7, yn + 2), (xn + 2, yn + 7), (xn − 5, yn − 10), or (xn − 10, yn − 5). There are M points
(x, y) with |x| + |y| ≤ 100 that can be reached by a sequence of such jumps. Find the remainder
when M is divided by 1000.

Example Solution:
Let’s approach this problem step-by-step:

1. We need to find all points (x, y) that the frog can reach within the given constraint |x| + |y|
100.

2. We’ll use a breadth-first search (BFS) algorithm to explore all possible points.

3. We’ll keep track of visited points to avoid revisiting them.

4. We’ll count the number of unique points visited.

Here’s the Python code to solve this:

from collections import deque
def count_reachable_points():

# Possible jumps
jumps = [(7, 2), (2, 7), (-5, -10), (-10, -5)]
# Set to store visited points
visited = set([(0, 0)])
# Queue for BFS
queue = deque([(0, 0)])
while queue:

x, y = queue.popleft()
for dx, dy in jumps:

new_x, new_y = x + dx, y + dy
# Check if the new point is within the constraint and not

visited
if abs(new_x) + abs(new_y) <= 100 and (new_x, new_y) not in

visited:
visited.add((new_x, new_y))
queue.append((new_x, new_y))

# Count of reachable points is the size of visited set
M = len(visited)
# Return the remainder when M is divided by 1000
return M % 1000

result = count_reachable_points()
print(f"\\boxed{{{result}}}")

>>> output
\boxed{373}

The answer is 373

Example Problem: The AIME Triathlon consists of a half-mile swim, a 30-mile bicycle ride, and
an eight-mile run. Tom swims, bicycles, and runs at constant rates. He runs fives times as fast as he
swims, and he bicycles twice as fast as he runs. Tom completes the AIME Triathlon in four and a
quarter hours. How many minutes does he spend bicycling?

Example Solution:
Let’s approach this problem step-by-step:

1. Let’s define variables:
- Let x be Tom’s swimming speed in miles per hour
- Then 5x is his running speed in miles per hour
- And 10x is his bicycling speed in miles per hour
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2. We can set up equations based on the given information:
- Swimming time: 0.5 / x hours
- Bicycling time: 30 / (10x) hours
- Running time: 8 / (5x) hours

3. The total time is 4.25 hours, so we can set up an equation:
0.5/x + 30/(10x) + 8/(5x) = 4.25

4. Let’s solve this equation and find the bicycling time.

Here’s the Python code to solve this:

from sympy import symbols, Eq, solve, Rational
def solve_triathlon():

x = symbols('x')
# Set up the equation
eq = Eq(Rational(1,2)/x + 30/(10*x) + 8/(5*x), Rational(17,4))
# Solve the equation
solution = solve(eq)[0]
# Calculate bicycling time in hours
bike_time = 30 / (10 * solution)
# Convert to minutes
bike_time_minutes = int(bike_time * 60)
return f"\\boxed{{{bike_time_minutes}}}"

print(solve_triathlon())

>>> output:
\boxed{150}

The answer is 150

Example Problem: Let S be the increasing sequence of positive integers whose binary representation
has exactly 8 ones. Let N be the 1000th number in S . Find the remainder when N is divided by
1000

Example Solution:
Let’s approach this step-by-step:

1. We need to generate the sequence S of numbers with exactly 8 ones in their binary represen-
tation.

2. We’ll find the 1000th number in this sequence.

3. Finally, we’ll calculate the remainder when this number is divided by 1000.

Here’s the Python code to solve this:

def count_ones(n):
return bin(n).count('1')

def solution():
count = 0
n = 1
while count < 1000:

if count_ones(n) == 8:
count += 1
if count == 1000:

return n % 1000
n += 1

result = solution()
print(result)

>>> output:
\boxed{32}

The answer is 32
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Example Problem: Two geometric sequences a1, a2, a3, . . . and b1, b2, b3, . . . have the same com-
mon ratio, with a1 = 27 b1 = 99 , and a15 = b11 . Find a9

Example Solution:
Let’s approach this step-by-step:

1. Let’s denote the common ratio as r.

2. We can express a and b in terms of their first terms and r.

3. We can then equate these expressions to find r.

4. Once we have r, we can calculate a.

Here’s the Python code to solve this:

from sympy import symbols, Eq, solve, Rational
def find_a9():

r = symbols('r')
# a = a * r
# b = b * r
# a = b
eq = Eq(27 * r**14, 99 * r**10)
# Solve for r
solution = solve(eq)
# We expect only one positive real solution
r_value = [sol for sol in solution if sol.is_real and sol > 0][0]
# Calculate a
a9 = 27 * r_value**8
return a9

result = find_a9()
print(f"\\boxed{{{result}}}")

>>> output
\boxed{363}

The answer is 363

For AMC

Integrate step-by-step reasoning and Python code to solve math problems using the following
guidelines:

- Analyze the question and write functions to solve the problem; the function should not take any
arguments. - Present the final result in LaTeX using a ‘ ‘ without any units. - Utilize the ‘pi‘ symbol
and ‘Rational“ from Sympy for π and fractions, and simplify all fractions and square roots without
converting them to decimal values.

Once you get the code output, just display the output answer within ‘ ‘ and terminate. Here are some
examples you may refer to:

Example Problem: Small lights are hung on a string 6 inches apart in the order red, red, green,
green, green, red, red, green, green, green, and so on continuing this pattern of 2 red lights followed
by 3 green lights. How many feet separate the 3rd red light and the 21st red light? Note: 1 foot is
equal to 12 inches.

Example Solution:
Let’s approach this step-by-step:

1. First, we need to understand the pattern of lights:
- Every 5 lights (2 red + 3 green) complete one cycle of the pattern.
- Each cycle is 30 inches long (5 lights * 6 inches).

2. We need to find how many complete cycles are between the 3rd and 21st red lights:
- 3rd red light is at the end of the 2nd cycle (as each cycle has 2 red lights).
- 21st red light is at the end of the 11th cycle (as 21 ÷ 2 = 10.5, rounded up to 11).
- So there are 9 complete cycles between them (11 - 2 = 9).
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3. Calculate the distance:
- 9 cycles * 30 inches per cycle = 270 inches
- Convert 270 inches to feet: 270 ÷ 12 = 22.5 feet

Here’s the Python code to solve this:

from sympy import Rational
def calculate_distance():

lights_per_cycle = 5
inches_per_light = 6
inches_per_cycle = lights_per_cycle * inches_per_light
start_cycle = 2 # 3rd red light is at the end of 2nd cycle
end_cycle = 11 # 21st red light is at the end of 11th cycle
cycles_between = end_cycle - start_cycle
total_inches = cycles_between * inches_per_cycle
total_feet = Rational(total_inches, 12)
return f"\\boxed{{{total_feet}}}"

print(calculate_distance())

>>> output:
\boxed{45/2}

The answer is 45/2

Example Problem: A fruit salad consists of blueberries, raspberries, grapes, and cherries. The fruit
salad has a total of 280 pieces of fruit. There are twice as many raspberries as blueberries, three times
as many grapes as cherries, and four times as many cherries as raspberries. How many cherries are
there in the fruit salad?

Example Solution:
Let’s approach this problem step-by-step:

1. Let’s define variables for each fruit:
b = number of blueberries
r = number of raspberries
g = number of grapes
c = number of cherries

2. We can set up equations based on the given information:
r = 2b (twice as many raspberries as blueberries)
g = 3c (three times as many grapes as cherries)
c = 4r (four times as many cherries as raspberries)

3. We also know that the total number of fruits is 280:
b + r + g + c = 280

4. Now, let’s write a Python function to solve this system of equations:

from sympy import symbols, Eq, solve
def solve_fruit_salad():

b, r, g, c = symbols('b r g c')
eq1 = Eq(r, 2*b)
eq2 = Eq(g, 3*c)
eq3 = Eq(c, 4*r)
eq4 = Eq(b + r + g + c, 280)
solution = solve((eq1, eq2, eq3, eq4))
return f"\\boxed{{{solution[c]}}}"

print(solve_fruit_salad())

>>> output:
\boxed{64}

The answer is 64
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Example Problem: Last summer 30% of the birds living on Town Lake were geese, 25% were
swans, 10% were herons, and 35% were ducks. What percent of the birds that were not swans were
geese?

Example Solution:
Let’s approach this step-by-step:

1. First, we need to calculate the percentage of birds that were not swans.

2. Then, we’ll calculate what percentage of this non-swan group were geese.

Here’s the Python code to solve this:

from sympy import Rational
def calculate_geese_percentage():

# Total percentage of birds
total = 100
# Percentage of swans
swans = 25
# Percentage of non-swans
non_swans = total - swans
# Percentage of geese among all birds
geese = 30
# Calculate the percentage of geese among non-swans
geese_among_non_swans = Rational(geese, non_swans) * 100
# Simplify the fraction
result = geese_among_non_swans.simplify()
return f"\\boxed{{{result}}}"

print(calculate_geese_percentage())

>>> output
\boxed{40}

The answer is 40

Example Problem: At a twins and triplets convention, there were 9 sets of twins and 6 sets of triplets,
all from different families. Each twin shook hands with all the twins except his/her siblings and with
half the triplets. Each triplet shook hands with all the triplets except his/her siblings and with half the
twins. How many handshakes took place?

Example Solution:
Let’s approach this problem step-by-step:

1. Calculate the number of handshakes between twins

2. Calculate the number of handshakes between triplets

3. Calculate the number of handshakes between twins and triplets

4. Sum up all handshakes

Here’s the Python code to solve this:

from sympy import Rational
def calculate_handshakes():

# Number of twins and triplets
twins = 9 * 2
triplets = 6 * 3
# Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2 # Each twin shakes
hands with all but 1 other twin
# Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2 # Each triplet
shakes hands with all but 2 other triplets
# Handshakes between twins and triplets
twin_triplet_handshakes = twins * triplets * Rational(1, 2) # Each
twin shakes hands with half the triplets
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# Total handshakes
total_handshakes = twin_handshakes + triplet_handshakes +
twin_triplet_handshakes
return f"\\boxed{{{int(total_handshakes)}}}"

print(calculate_handshakes())

>>> output
\boxed{441}

The answer is 441

A.5 SBSC PROMPT FOR AMC

You are given a math problem and you need to think of a stepwise approach/process to be followed to
solve the problem. Use sympy-based python code to codify each of these steps in sequential manner.
You must end each of your code snippet with a print statement followed by output in the next line.
Use the results from the output of the code snippets of each step and continue to the next step until
you finish the final step and solve the problem completely.
In each new code block, you must define the variables and symbols again based on the previous code
snippets or their outputs as suitable.
Use sympy in appropriate way, as and when required.
Once you complete the last step, write this line: ### END OF CODE
Then just print the final numeric answer (without any units) like this: The final answer is boxed{}.
If the executed code snippet returns an error, use it to correct the current step’s code snippet. DO
NOT restart solving from Step 1.

Here are a few examples for your reference.

Example Problem: Small lights are hung on a string 6 inches apart in the order red, red, green,
green, green, red, red, green, green, green, and so on continuing this pattern of 2 red lights followed
by 3 green lights. How many feet separate the 3rd red light and the 21st red light? Note: 1 foot is
equal to 12 inches.

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the pattern and calculate the number of lights in one complete pattern

from sympy import symbols, Rational
# Define the number of red and green lights in one pattern
red_lights_per_pattern = 2
green_lights_per_pattern = 3
# Calculate total lights in one pattern
lights_per_pattern = red_lights_per_pattern + green_lights_per_pattern
print(f"Number of lights in one complete pattern: {lights_per_pattern}")

>>> output:
Number of lights in one complete pattern: 5

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Calculate the number of complete patterns between the 3rd and 21st red lights

from sympy import symbols, Rational
# Define the number of red lights we're considering
start_red_light = 3
end_red_light = 21
# Calculate the number of red lights between the 3rd and 21st (inclusive)
red_lights_between = end_red_light - start_red_light + 1
# Calculate the number of complete patterns
complete_patterns = (red_lights_between - 1) // 2
print(f"Number of complete patterns between the 3rd and 21st red lights:

{complete_patterns}")

>>> output:
Number of complete patterns between the 3rd and 21st red lights: 9
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Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Calculate the total number of lights between the 3rd and 21st red lights

from sympy import symbols, Rational
# Define the number of red and green lights in one pattern
red_lights_per_pattern = 2
green_lights_per_pattern = 3
lights_per_pattern = red_lights_per_pattern + green_lights_per_pattern
# Number of complete patterns
complete_patterns = 9
# Calculate total lights
total_lights = complete_patterns * lights_per_pattern + 1 # +1 for the

21st red light
print(f"Total number of lights between the 3rd and 21st red lights (

inclusive): {total_lights}")

>>> output:
Total number of lights between the 3rd and 21st red lights (inclusive):

46

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Calculate the total distance in inches

from sympy import symbols, Rational
# Total number of lights
total_lights = 46
# Distance between lights in inches
distance_between_lights = 6
# Calculate total distance in inches
total_distance_inches = (total_lights - 1) * distance_between_lights
print(f"Total distance in inches: {total_distance_inches}")

>>> output:
Total distance in inches: 270

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Convert the distance from inches to feet

from sympy import symbols, Rational
# Total distance in inches
total_distance_inches = 270
# Convert inches to feet
inches_per_foot = 12
total_distance_feet = Rational(total_distance_inches, inches_per_foot)
print(f"Total distance in feet: {total_distance_feet}")

>>> output:
Total distance in feet: 45/2

### END OF CODE

The final answer is
45

2

Example Problem: A fruit salad consists of blueberries, raspberries, grapes, and cherries. The fruit
salad has a total of 280 pieces of fruit. There are twice as many raspberries as blueberries, three times
as many grapes as cherries, and four times as many cherries as raspberries. How many cherries are
there in the fruit salad?

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.
Step 1: Define the variables and set up the equations

from sympy import symbols, Eq, solve
# Define symbols for each type of fruit
b, r, g, c = symbols('b r g c')
# Set up equations based on the given information
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eq1 = Eq(b + r + g + c, 280) # Total pieces of fruit
eq2 = Eq(r, 2*b) # Twice as many raspberries as blueberries
eq3 = Eq(g, 3*c) # Three times as many grapes as cherries
eq4 = Eq(c, 4*r) # Four times as many cherries as raspberries
print("Equations:")
print(eq1)
print(eq2)
print(eq3)
print(eq4)

>>> output:
Equations:
Eq(b + c + g + r, 280)
Eq(r, 2*b)
Eq(g, 3*c)
Eq(c, 4*r)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Solve the system of equations
from sympy import symbols, Eq, solve
# Define symbols for each type of fruit
b, r, g, c = symbols('b r g c')
# Set up equations based on the given information
eq1 = Eq(b + r + g + c, 280) # Total pieces of fruit
eq2 = Eq(r, 2*b) # Twice as many raspberries as blueberries
eq3 = Eq(g, 3*c) # Three times as many grapes as cherries
eq4 = Eq(c, 4*r) # Four times as many cherries as raspberries
# Solve the system of equations
solution = solve((eq1, eq2, eq3, eq4))
print("Solution:")
print(solution)

>>> output:
Solution:
{b: 8, c: 64, g: 192, r: 16}

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Extract the number of cherries from the solution
from sympy import symbols, Eq, solve
# Define symbols for each type of fruit
b, r, g, c = symbols('b r g c')
# Set up equations based on the given information
eq1 = Eq(b + r + g + c, 280) # Total pieces of fruit
eq2 = Eq(r, 2*b) # Twice as many raspberries as blueberries
eq3 = Eq(g, 3*c) # Three times as many grapes as cherries
eq4 = Eq(c, 4*r) # Four times as many cherries as raspberries
# Solve the system of equations
solution = solve((eq1, eq2, eq3, eq4))
# Extract the number of cherries
cherries = solution[c]
print(f"The number of cherries in the fruit salad is: {cherries}")

>>> output:
The number of cherries in the fruit salad is: 64

END OF CODE The final answer is 64

Example Problem: Last summer 30% of the birds living on Town Lake were geese, 25% were
swans, 10% were herons, and 35% were ducks. What percent of the birds that were not swans were
geese?

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the percentages of each type of bird
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from sympy import symbols, Rational
geese = Rational(30, 100)
swans = Rational(25, 100)
herons = Rational(10, 100)
ducks = Rational(35, 100)
print(f"Percentage of geese: {geese}")
print(f"Percentage of swans: {swans}")
print(f"Percentage of herons: {herons}")
print(f"Percentage of ducks: {ducks}")

>>> output:
Percentage of geese: 3/10
Percentage of swans: 1/4
Percentage of herons: 1/10
Percentage of ducks: 7/20

Let’s continue with the next steps to solve this problem. Step 2: Calculate the percentage of birds
that are not swans

from sympy import symbols, Rational
geese = Rational(30, 100)
swans = Rational(25, 100)
herons = Rational(10, 100)
ducks = Rational(35, 100)
not_swans = 1 - swans
print(f"Percentage of birds that are not swans: {not_swans}")

>>> output:
Percentage of birds that are not swans: 3/4

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Calculate the percentage of geese among the birds that are not swans

from sympy import symbols, Rational
geese = Rational(30, 100)
swans = Rational(25, 100)
herons = Rational(10, 100)
ducks = Rational(35, 100)
not_swans = 1 - swans
geese_among_not_swans = geese / not_swans
print(f"Percentage of geese among birds that are not swans: {

geese_among_not_swans}")

>>> output:
Percentage of geese among birds that are not swans: 2/5

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Convert the fraction to a percentage

from sympy import symbols, Rational
geese = Rational(30, 100)
swans = Rational(25, 100)
herons = Rational(10, 100)
ducks = Rational(35, 100)
not_swans = 1 - swans
geese_among_not_swans = geese / not_swans
percentage = geese_among_not_swans * 100
print(f"Percentage of geese among birds that are not swans: {percentage}%

")

>>> output:
Percentage of geese among birds that are not swans: 40%

### END OF CODE
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The final answer is 40

Example Problem: At a twins and triplets convention, there were 9 sets of twins and 6 sets of triplets,
all from different families. Each twin shook hands with all the twins except his/her siblings and with
half the triplets. Each triplet shook hands with all the triplets except his/her siblings and with half the
twins. How many handshakes took place?

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the given information

from sympy import symbols, Rational
# Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
# Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
print(f"Number of twins: {twins}")
print(f"Number of triplets: {triplets}")

>>> output:
Number of twins: 18
Number of triplets: 18

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Calculate handshakes between twins

from sympy import symbols, Rational
# Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
# Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
# Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2 # Each twin shakes hands

with all twins except self and sibling
print(f"Handshakes between twins: {twin_handshakes}")

>>> output
Handshakes between twins: 144

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Calculate handshakes between triplets

from sympy import symbols, Rational
# Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
# Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
# Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2
# Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2 # Each triplet

shakes hands with all triplets except self and two siblings
print(f"Handshakes between triplets: {triplet_handshakes}")

>>> output
Handshakes between triplets: 135

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Calculate handshakes between twins and triplets
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from sympy import symbols, Rational
# Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
# Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
# Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2
# Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2
# Handshakes between twins and triplets
twin_triplet_handshakes = twins * (triplets // 2) # Each twin shakes

hands with half the triplets
print(f"Handshakes between twins and triplets: {twin_triplet_handshakes}"

)

>>> output:
Handshakes between twins and triplets: 162

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Calculate the total number of handshakes
from sympy import symbols, Rational
# Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
# Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
# Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2
# Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2
# Handshakes between twins and triplets
twin_triplet_handshakes = twins * (triplets // 2)
# Total handshakes
total_handshakes = twin_handshakes + triplet_handshakes +

twin_triplet_handshakes
print(f"Total number of handshakes: {total_handshakes}")

>>> output
Total number of handshakes: 441

### END OF CODE

The final answer is 441

A.6 SBSC PROMPT FOR AIME

You are given a math problem and you need to think of a stepwise approach/process to be followed to
solve the problem. Use sympy-based python code to codify each of these steps in sequential manner.
You must end each of your code snippet with a print statement followed by output in the next line.
Use the results from the output of the code snippets of each step and continue to the next step until
you finish the final step and solve the problem completely.
In each new code block, you must define the variables and symbols again based on the previous code
snippets or their outputs as suitable.
Use sympy in appropriate way, as and when required.
Once you complete the last step, write this line: ### END OF CODE
Then just print the final numeric answer (without any units) like this: The final answer is boxed{}.
If the executed code snippet returns an error, use it to correct the current step’s code snippet. DO
NOT restart solving from Step 1.

Here are a few examples for your reference.
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Example Problem: A frog begins at P0 = (0, 0) and makes a sequence of jumps according to
the following rule: from Pn = (xn, yn), the frog jumps to Pn+1, which may be any of the points
(xn + 7, yn + 2), (xn + 2, yn + 7), (xn − 5, yn − 10), or (xn − 10, yn − 5). There are M points
(x, y) with |x| + |y| ≤ 100 that can be reached by a sequence of such jumps. Find the remainder
when M is divided by 1000.

Example Solution: Let’s approach this problem step by step using SymPy-based Python code.

Step 1: Import necessary libraries and define the jump rules

from sympy import symbols, Abs
import numpy as np
# Define the possible jumps from any position (x, y)
def jumps(x, y):

return [
(x + 7, y + 2), # Jump by (7, 2)
(x + 2, y + 7), # Jump by (2, 7)
(x - 5, y - 10), # Jump by (-5, -10)
(x - 10, y - 5) # Jump by (-10, -5)

]
print("Jump rules defined.")

>>> output
Jump rules defined.

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Implement a breadth-first search to find all reachable points

from sympy import symbols, Abs
import numpy as np
from collections import deque
# Reuse the jumps function to define possible moves
def jumps(x, y):

return [
(x + 7, y + 2),
(x + 2, y + 7),
(x - 5, y - 10),
(x - 10, y - 5)

]
# Define the breadth-first search (BFS) function
def bfs():

queue = deque([(0, 0)]) # Start BFS from the point (0, 0)
visited = set([(0, 0)]) # Keep track of visited points to avoid
reprocessing
# Process each point in the queue
while queue:

x, y = queue.popleft()
for nx, ny in jumps(x, y): # Try all possible jumps from the

current point
if (nx, ny) not in visited and abs(nx) + abs(ny) <= 100:

visited.add((nx, ny)) # Mark the new point as visited
queue.append((nx, ny)) # Add the new point to the queue

to explore further
return len(visited) y

M = bfs()
print(f"Number of reachable points (M): {M}")

>>> output:
Number of reachable points (M): 1373

Let’s continue with the final step to solve this problem. Step 3: Calculate the remainder when M is
divided by 1000

from sympy import symbols, Abs
import numpy as np
M = 1373 # M_value from previous step
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# Find the remainder when M is divided by 1000
remainder = M % 1000
print(f"Remainder when M is divided by 1000: {remainder}")

>>> output
Remainder when M is divided by 1000: 373

### END OF CODE

The final answer is 373

Example Problem: The AIME Triathlon consists of a half-mile swim, a 30-mile bicycle ride, and
an eight-mile run. Tom swims, bicycles, and runs at constant rates. He runs fives times as fast as he
swims, and he bicycles twice as fast as he runs. Tom completes the AIME Triathlon in four and a
quarter hours. How many minutes does he spend bicycling?

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the variables and set up the basic equations

from sympy import symbols, Eq, solve
# Define variables
s, b, r = symbols('s b r') # s: swim speed, b: bike speed, r: run speed
# Set up equations based on the given information
eq1 = Eq(r, 5*s) # Tom runs 5 times as fast as he swims
eq2 = Eq(b, 2*r) # Tom bicycles twice as fast as he runs
print("Equation 1:", eq1)
print("Equation 2:", eq2)

>>> output
Equation 1: Eq(r, 5*s)
Equation 2: Eq(b, 2*r)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Set up the equation for the total time

from sympy import symbols, Eq, solve
# Reuse earlier code
s, b, r = symbols('s b r')
eq1 = Eq(r, 5*s)
eq2 = Eq(b, 2*r)
# Total time equation (in hours)
total_time = 0.5/s + 30/b + 8/r #The AIME Triathlon consists of a half-

mile swim, a 30-mile bicycle ride, and an eight-mile run.
eq3 = Eq(total_time, 4.25) # Total time is 4.25 hours
print("Total time equation:", eq3)

>>> output:
Total time equation: Eq(0.5/s + 8/r + 30/b, 4.25)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Substitute the relationships between speeds into the total time equation

from sympy import symbols, Eq, solve, simplify
# Resue earlier code
s, b, r = symbols('s b r')
eq1 = Eq(r, 5*s)
eq2 = Eq(b, 2*r)
total_time = 0.5/s + 30/b + 8/r
eq3 = Eq(total_time, 4.25) # Total time is 4.25 hours
# Substitute r and b in terms of s to simplify the equation
eq3_substituted = eq3.subs([(r, 5*s), (b, 10*s)])
eq3_simplified = simplify(eq3_substituted)
print("Simplified equation:", eq3_simplified)
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>>> output:
Simplified equation: Eq(5.1/s, 4.25)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Solve for the swim speed (s)
from sympy import symbols, Eq, solve, simplify
# Redefine variables
s, b, r = symbols('s b r') # s: swim speed, b: bike speed, r: run speed
# Simplified equation from previous step
eq3_simplified = Eq(5.1/s, 4.25)
# Solve for s
s_solution = solve(eq3_simplified, s)
print("Swim speed (s):", s_solution[0])

>>> output
Swim speed (s): 1.20000000000000

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Calculate the bike speed (b)
from sympy import symbols, Eq, solve, simplify
# Redefine variables
s, b, r = symbols('s b r') # s: swim speed, b: bike speed, r: run speed
# Swim speed from previous step
s_value = 1.20000000000000
# Calculate bike speed
b_value = 10 * s_value # b = 2r = 2(5s) = 10s
print("Bike speed (b):", b_value)

>>> output
Bike speed (b): 12.0

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 6: Calculate the time spent bicycling
from sympy import symbols, Eq, solve, simplify
# Redefine variables
s, b, r = symbols('s b r') # s: swim speed, b: bike speed, r: run speed
# Bike speed from previous step
b_value = 12.0
# Calculate time spent bicycling
bike_distance = 30 # miles
bike_time = bike_distance / b_value # hours
# Convert to minutes
bike_time_minutes = bike_time * 60
print("Time spent bicycling (in minutes):", bike_time_minutes)

>>> output
Time spent bicycling (in minutes): 150.0

### END OF CODE

The final answer is 150

Example Problem: Let S be the increasing sequence of positive integers whose binary representation
has exactly 8 ones. Let N be the 1000th number in S . Find the remainder when N is divided by
1000

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Import necessary libraries and define a function to count ones in binary representation
from sympy import symbols, binomial
import math
# Function to count the number of '1's in the binary representation of a

number
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def count_ones(n):
return bin(n).count('1') # Convert n to binary and count occurrences
of '1'

print("Function to count ones in binary representation defined.")

>>> output:
Function to count ones in binary representation defined.

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Find the smallest number in the sequence S

from sympy import symbols, binomial
import math
# Reuse the function to count the number of '1's in binary
def count_ones(n):

return bin(n).count('1')
# The smallest number in the sequence S is represented by 8 consecutive

'1's in binary
smallest_number = int('1' * 8, 2) # Convert '11111111' (binary) to

decimal
print(f"The smallest number in sequence S is: {smallest_number}")

>>> output
The smallest number in sequence S is: 255

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Find the largest number in the sequence S

from sympy import symbols, binomial
import math
# Reuse the function to count the number of '1's in binary
def count_ones(n):

return bin(n).count('1')
smallest_number = int('1' * 8, 2)
# The largest number in sequence S is represented by 8 consecutive '1's

followed by 24 '0's
largest_number = int('1' * 8 + '0' * 24, 2) # Convert

'11111111000000000000000000000000' to decimal
print(f"The largest number in sequence S is: {largest_number}")

>>> output
The largest number in sequence S is: 4278190080

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Calculate the total number of elements in sequence S

from sympy import symbols, binomial
import math
def count_ones(n):

return bin(n).count('1')
smallest_number = int('1' * 8, 2)
largest_number = int('1' * 8 + '0' * 24, 2)
# Calculate the total number of elements in sequence S using binomial(32,

8)
# This represents the number of ways to choose 8 positions out of 32 bits

to set to '1'
total_elements = binomial(32, 8)
print(f"The total number of elements in sequence S is: {total_elements}")

>>> output
The total number of elements in sequence S is: 10518300

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Find the 1000th number in sequence S
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from sympy import symbols, binomial
import math
#Reuse all earlier code
def count_ones(n):

return bin(n).count('1')
smallest_number = int('1' * 8, 2)
largest_number = int('1' * 8 + '0' * 24, 2)
total_elements = binomial(32, 8)
# Find the 1000th number in the sequence
count = 0 # Initialize a counter for the sequence
N = smallest_number # Start from the smallest number in S
# Iterate through numbers and check for 8 '1's in the binary

representation
while count < 1000:

if count_ones(N) == 8: # If the current number has exactly 8 '1's
count += 1 # Increment the count

if count == 1000: # Stop if we've found the 1000th number
break

N += 1 # Move to the next number
print(f"The 1000th number (N) in sequence S is: {N}")

>>> output
The 1000th number (N) in sequence S is: 7032

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 6: Calculate the remainder when N is divided by 1000

from sympy import symbols, binomial
import math
def count_ones(n):

return bin(n).count('1')
N = 7032 # From the previous step
# Calculate the remainder when N is divided by 1000
remainder = N % 1000
print(f"The remainder when N is divided by 1000 is: {remainder}")

>>> output
The remainder when N is divided by 1000 is: 32

### END OF CODE

The final answer is 32

Example Problem: Two geometric sequences a1, a2, a3, . . . and b1, b2, b3, . . . have the same com-
mon ratio, with a1 = 27 b1 = 99 , and a15 = b11 . Find a9

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the variables and set up the initial conditions

from sympy import symbols, Eq, solve
# Define symbols
r = symbols('r') # common ratio
a1, b1 = 27, 99 # first terms of sequences a and b
print(f"a1 = {a1}, b1 = {b1}")
print("Common ratio is represented by r")

>>> output
a1 = 27, b1 = 99
Common ratio is represented by r

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Set up the equation for a15 = b11

from sympy import symbols, Eq, solve
# Redefine symbols
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r = symbols('r')
a1, b1 = 27, 99
# Set up the equation a15 = b11
eq = Eq(a1 * r**14, b1 * r**10)
print("Equation: a15 = b11")
print(f"Symbolically: {eq}")

>>> output
Equation: a15 = b11
Symbolically: Eq(27*r**14, 99*r**10)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Solve the equation for r

from sympy import symbols, Eq, solve
# Redefine symbols
r = symbols('r')
a1, b1 = 27, 99
# Set up the equation a15 = b11
eq = Eq(a1 * r**14, b1 * r**10)
# Solve for r
solution = solve(eq, r)
print("Solutions for r:")
print(solution)

>>> output
Solutions for r:
[0, -11**(1/4)*3**(3/4)/3, 11**(1/4)*3**(3/4)/3]

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Identify the correct value for r

from sympy import symbols, Eq, solve, N
# Reuse earlier code
r = symbols('r')
a1, b1 = 27, 99
eq = Eq(a1 * r**14, b1 * r**10)
solution = solve(eq, r)
# The correct value for r is the positive real solution
r_value = max(sol for sol in solution if sol.is_real)
print(f"The common ratio r is: {N(r_value, 6)}")

>>> output
The common ratio r is: 1.38378

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Calculate a9

from sympy import symbols, Eq, solve, N
# Reuse earlier code
r = symbols('r')
a1, b1 = 27, 99
eq = Eq(a1 * r**14, b1 * r**10)
solution = solve(eq, r)
r_value = max(sol for sol in solution if sol.is_real)
# Calculate a9
a9 = a1 * r_value**8
print(f"a9 = {N(a9, 10)}")

>>> output
a9 = 363.0000000

### END OF CODE

The final answer is 363
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A.7 RESULTS WITH STANDARD DEVIATIONS

We present the main table results along with standard deviation scores.

Table 4: Benchmarking SBSC against different math reasoning methods across three datasets.
We report average accuracy over 3 runs with standard deviation within parentheses. Best result in each
setting is highlighted in bold and second best is underlined. Absolute improvement in performance
by SBSC over the previous best method in each setting is indicated in subscript.

Method AMC AIME MathOdyssey Olympiad Bench
greedy maj@7 greedy maj@7 greedy maj@7 greedy maj@7

Claude-3.5-Sonnet
COT 31.16 (±1.0) 35.79 9.09 (±1.0) 10.91 11.89 (±0.6) 16.89 39.35 (±0.47) 42.46
PAL 35.79 (±1.0) 36.42 27.48 (±0.6) 28.79 27.23 (±0.6) 31.01 41.07 (±0.82) 44.44
TIR-ToRA 38.59 (±0.6) 43.16 24.64 (±3.2) 26.67 27.23 (±0.6) 32.43 47.69 (±0.47) 50.60
SBSC (Ours) 49.33 (±3.1)↑10.7 -↑6.2 35.45 (±1.7)↑8 -↑6.7 39.86 (±1.0)↑12.6 -↑7.4 53.31 (±0.94)↑5.6 -↑2.7

GPT-4o
COT 35.94 (±0.6) 37.47 10.39 (±2.1) 12.12 13.51 (±1.0) 17.57 41.80 (±1.89) 47.22
PAL 36.48 (±0.6) 38.11 24.63 (±0.6) 26.97 15.74 (±0.6) 20.27 41.67 (±2.16) 46.43
TIR-ToRA 37.33 (±2.5) 40.42 22.42 (±1.7) 25.45 19.59 (±2.6) 23.64 43.32 (±1.70) 49.61
SBSC (Ours) 44.55 (±0.6)↑7.2 -↑4.1 30.7 (±1.1)↑6.1 -↑3.7 26.55 (±1.1)↑7 -↑2.9 48.74 (±1.89))↑5.4 -↓0.87

A.8 LEAST-TO-MOST PROMPTING

Least-to-Most (L2M) (Zhou et al., 2022) is a two-stage prompting strategy where the aim is: in
first stage, to break down a complex problem into a series of simpler subproblems and then, in
second stage, solve these predefined subproblems. PAL (Gao et al., 2022) reported a L2M version
of PAL in their work. We follow the reported prompts and replicate it by designing exemplars for
both the stages. We find L2M-PAL inherits the same issues that PAL / TIR-TORA has. L2M-PAL
comes up with entire sub-problems at once and also its uses single program-block to solve those
sub-problems. SBSC dynamically generates the next sub-task and the corresponding program to solve
it leveraging the previous turns results. In Table 5, we show the results obtained from L2M + PAL
using Claude-3.5-Sonnet on our AMC and AIME test datasets. Even after allowing self-correction for
stage 2 with max turns n=15, L2M-PAL approaches PAL scores. Hence for our main results, we stick
to PAL & TIR-ToRA along with self-consistency (Shao et al., 2024) due to resource optimisation and
widee adaption of those prompting strategies for math-problem solving.

Table 5: Least-to-Most Prompting results on AIME and AMC

Method AMC AIME
greedy maj@7 greedy maj@7

COT 31.16 35.79 9.09 10.91
PAL 35.79 36.42 27.48 28.79
L2M-PAL (n=1) 33.47 38.53 25.45 28.79
L2M-PAL (n=15) 34.32 25.45
TIR-ToRA 38.59 43.16 24.64 26.67
SBSC (Ours) 49.33↑10.7 −↑6.2 35.45↑8 −↑6.7
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