
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SBSC: STEP-BY-STEP CODING FOR IMPROVING MATH-
EMATICAL OLYMPIAD PERFORMANCE

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose Step-by-Step Coding (SBSC): a multi-turn math reasoning framework
that enables Large Language Models (LLMs) to generate sequence of programs
for solving Olympiad level math problems. At each step/turn, by leveraging
the code execution outputs and programs of previous steps, the model generates
the next sub-task and the corresponding program to solve it. This way, SBSC,
sequentially navigates to reach the final answer. SBSC allows more granular,
flexible and precise approach to problem-solving compared to existing methods.
Extensive experiments highlight the effectiveness of SBSC in tackling competition
and Olympiad-level math problems. For Claude-3.5-Sonnet, we observe SBSC
(greedy decoding) surpasses existing state-of-the-art (SOTA) program generation
based reasoning strategies by absolute 10.7% on AMC12, 8% on AIME and 12.6%
on MathOdyssey. Given SBSC is multi-turn in nature, we also benchmark SBSC’s
greedy decoding against self-consistency decoding results of existing SOTA math
reasoning strategies and observe performance gain by absolute 6.2% on AMC,
6.7% on AIME and 7.4% on MathOdyssey. Scripts & Data is uploaded at this link.

1 INTRODUCTION

Mathematical reasoning has emerged as a critical benchmark to measure the advanced reasoning and
problem-solving abilities of the Large Language Models (LLMs) (Brown et al., 2020; Chowdhery
et al., 2022; Achiam et al., 2023; Reid et al., 2024; Anthropic, 2023; OpenAI, June, 2024). This is due
to the complex and creative nature of the numerous reasoning steps required to solve the problems.

Chain-of-Thought (Wei et al., 2022) and Scratchpad (Nye et al., 2021) prompting strategies helped
LLMs to solve a problem using a step-by-step thought process. Program-Aided Language (PAL)
(Gao et al., 2022) & Program-Of-Thought (POT) (Chen et al., 2022) introduced problem-solving via
program generation where the answer is obtained by executing the generated program. Tool-Integrated
Reasoning Agent (ToRA) (Gou et al., 2023) & Mathcoder (Wang et al., 2023a) introduced tool-
integrated math problem solving format where model outputs natural language reasoning followed
by program generation to solve the entire problem using a single code block and incorporates code-
interpreter output for either summarizing the program output to get the final answer and terminate; or
re-attempt the problem in the subsequent turn using the same format. For brevity, let’s call ToRA’s
defined way of tool-integrated reasoning (TIR) strategy as TIR-ToRA.

The current generation of advanced LLMs such as GPT-4o (Achiam et al., 2023), Claude-3.5-Sonnet
(Anthropic, 2023) and Gemini-ultra (Reid et al., 2024) have achieved high scores on elementary
GSM8k (Cobbe et al., 2021) high-school level MATH (Hendrycks et al., 2021) by leveraging these
reasoning strategies via in-context learning (Brown et al., 2020; Chowdhery et al., 2022). Multiple
studies (Yu et al., 2023b; Yue et al., 2023; Toshniwal et al., 2024; Gou et al., 2023; Wang et al., 2023a;
Mitra et al., 2024; Beeching et al., 2024; Shao et al., 2024) have tried supervised fine-tuning (SFT)
approach to distill these reasoning formats using a propriety models like GPT4 (Achiam et al., 2023).
These studies show significant performance improvement over GSM8K and MATH benchmarks.

1.1 MOTIVATION

However, recent math specific competition and Olympiad-level benchmarking on Math Odyssey
(Fang et al., 2024), OlymiadBench (He et al., 2024), and the American Invitational Mathematics

1

https://anonymous.4open.science/r/SBSC-69D3

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Examination (AIME) & the American Mathematics Competitions (AMC) (Beeching et al., 2024;
DeepSeek-AI et al., 2024; Reid et al., 2024) questions show that the state-of-the-art (SOTA), both
generalist and specialist, LLMs continue to struggle with advanced math reasoning. These results
highlights the limitation of the existing math prompting techniques. (Tong et al., 2024) highlights the
severe bias towards easy problems that exists in the SOTA SFT datasets which originates primarily
due to the ineffectiveness of the current prompting strategies in complex math problem-solving.
Often, multiple chains are generated via self-consistency decoding (Wang et al., 2022) and majority
voting is done to boost the accuracy which is unlike how humans solve problems.

Fundamentally, both PAL & TIR-ToRA generate a single program block to solve the entire problem.
Additionally, TIR-ToRA framework allows the model to re-attempt the program generation in case
of execution error. These approaches show improved performance over COT on elementary & high
school level math problems. However, solving olympiad-level math problem requires coming up
with complex and creative solution that constitutes of numerous elaborate intermediate steps which
eventually leads to the answer. Often, it is not feasible to solve a complex problem entirely using a
single program block and as a result, these prompting strategies fail to systematically address each
detailed step of the problem-solving process. It tends to overlook specified constraints, edge cases or
necessary simplifications, which are often encountered in Olympiad-level problems.

1.2 OUR CONTRIBUTION

Olympiad level math problem-solving can be viewed as solving/exploring an intermediate sub-
task/key-concept in depth; and discovering + solving the next critical sub-task dynamically basis the
accumulated knowledge of previous sub-tasks/key-concepts explorations. To this end, we propose
Step-by-Step Coding framework (SBSC) which is a multi-turn math reasoning framework that
leverages existing programming (Naman Jain, 2024) and in-context learning skills (Brown et al.,
2020) of the current generation of LLMs, particularly Claude-3.5-Sonnet (Anthropic, 2023) & GPT-4o
(OpenAI, June, 2024). In each turn, it leverages code-interpreter results and knowledge of previous
sub-tasks solutions or concept-explorations to define and programmatically solve the next sub-task.
Thus it uses code generation as the reasoning strategy to solve an intermediate sub-task or explore
an intermediate concept/step. Thus, providing detailed focus to each step of problem solving unlike
PAL & TIR-ToRA. SBSC allows an intermediate key-step to be discovered, and be explored and
refined (if needed) before being appended to the chain of steps whereas in PAL & TIR-ToRA all the
intermediate steps are always stitched together.

We investigate the performance of SBSC on last 11 years of AIME & AMC-12 questions. We
also benchmark on Olympiad-subset of MathOdyssey dataset along with math questions from
OlympiadBench. We compare our method (greedy decoding) against greedy-decoding generation
of existing reasoning strategies: COT, PAL & TIR-ToRA. We also show SBSC (greedy decoding)
effectiveness by benchmarking against self-consistency decoding results of COT, PAL & TIR-ToRA.
We conduct extensive ablations to understand the benefits of our approach such as sensitivity to
exemplars, topic-wise analysis and measuring improvement in program refinement/debugging ability
over TIR-ToRA due to the granular nature of SBSC process.

2 SBSC: STEP-BY-STEP CODING FRAMEWORK

Solving complex math problems, such as competition or Olympiad-level ones, involves creative
thinking, applying diverse mathematical knowledge, and dynamically creating subsequent strategies
as new insights emerge. One must discover sub-tasks dynamically, rigorously explore intermediate
concepts, and carefully handle constraints and edge-cases. Since PAL & TIR-ToRA generates single
code block (even during self-correction step; incase of TIR-ToRA) to solve a problem, they lack the
flexibility or granularity to emulate this. To address this, we introduce SBSC.

SBSC is a multi-turn, code-generation based math reasoning prompting strategy where at each turn:
the model generates an intermediate sub-task and corresponding program to solve that sub-task by
leveraging the outputs of the previous turns. At the end of each turn, code interpreter is used to
execute the program block to generate the solution for the intermediate sub-task. The intermediate
sub-task depends on the results of the previous turns and the question. The code snippet for the ith

sub-task directly incorporates the execution results of the previous code snippets by directly defining

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

them as variables and symbols. This way SBSC makes LLMs generate sequence of programs over
multiple turns to solve complex math problems.

(a) Example multi-turn SBSC response for an AIME problem. Pink boxes denote the sub-task si at the i-th step,
blue boxes denote the program ci to solve si and >>> denote the corresponding execution output oi. The red
curly brackets indicate reusing outputs from earlier steps.

(b) Example TIR-ToRA response for the same problem, which is not solved correctly. In first turn, it tries to
solves the problem at once using a rational and program. It encounters error and in second turn, tries to fix the
entire approach and solve again but the solution is incorrect.

Figure 1: Comparison of SBSC and TIR-ToRA frameworks for same AIME problem

Our inference procedure is inspired by ToRA (Gou et al., 2023). Solution chain is initialized with
the Prompt p containing method instructions followed by exemplars and the current question q. At
each step, LLM G first outputs a subtask si. If si generation ends with stop-word "###END OF
CODE", we extract the final answer. Else, it continues to generate program code ci ending with
stop-word ““‘output”. We then pass ci to code interpreter and obtain the execution message or
output oi ← E(ci). The solution chain is updated by concatenating it with si,ci,oi and loop continues

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

till we get "###END OF CODE". For the ith turn and ⊕ denoting concatenation, the sequential
process can be generalised as (except for the last turn where just the final answer is generated) :

si ⊕ ci ∼ G(· | p⊕ q ⊕ (s1 ⊕ c1 ⊕ o1)⊕ (s2 ⊕ c2 ⊕ o2)⊕(si−1 ⊕ ci−1 ⊕ oi−1)) (1)

Step-wise sequential approach of SBSC ensures that every part of the problem is addressed with
exact precision, reducing the risk of errors that might arise from false assumptions or skipped steps.
In case the code execution for any step results in an erroneous output, SBSC is better able to rectify
that particular step. In depth understanding of SBSC (multiple examples & comparisons) at A.2.

We present example responses from both SBSC and TIR-ToRA for a problem from AIME in figures
1a and 1b respectively. As seen in case of TIR-ToRA, the initial program generated by the model
runs into an execution error. At the next turn, it attempts to rectify the error and comes up with a new
approach and the corresponding program. This time, the code executes correctly but due to reasoning
error the final answer is wrong. On the other hand, we see that SBSC is progressing step-by-step,
tackling individual sub-tasks with separate programs and utilising outputs of previous steps. In the
third step, it runs into a code execution error but succeeds in rectifying it using a different approach
in the very next turn. Further, we observe SBSC checking the validity of the generated solutions in
the fourth step before proceeding with the final step and ultimately reaches the correct answer.

2.1 SBSC EXEMPLAR DESIGN

To enable SBSC framework in LLMs, we rely on in-context learning abilities (Brown et al., 2020) of
LLMs as explored by multiple previous works such as (Chen et al., 2022; Gao et al., 2022; Gou et al.,
2023) etc. We also use a system prompt similar to previous works. With respect to exemplar design,
to enable program generation, we borrow learning from PAL (Gao et al., 2022) & POT (Chen et al.,
2022) to have meaningful variable names in the code and using natural language comments within
programs(Chen et al., 2022). To enable intermediate tool (code interpreter) usage, we leverage the
use of stop words similar to in (Gou et al., 2023). Sample SBSC exemplars can be found at A.5, A.6.

3 EXPERIMENT

3.1 BENCHMARK DATASETS

We mainly use problems from 4 popular math competition datasets for benchmarking our performance:
AIME, AMC, MathOdyssey (Fang et al., 2024) and OlympiadBench (He et al., 2024), covering
multiple domains, mainly: Algebra, Combinatorics, Number Theory and Geometry. We use problems
of last 11 years from AMC and AIME, obtaining questions and answers (Q&A) in LATEX format
from the AoPS Wiki website. MathOdyssey (Fang et al., 2024), a popular benchmark for LLM math
reasoning, consists of problems of varying difficulties. We include the 148 problems belonging to
olympiad-level competitions. OlympiadBench is another challenging benchmark for LLMs containing
olympiad-level multilingual scientific problems. We select only math related questions, in english
language.

3.1.1 DATASET PROCESSING DETAILS:

First, we filter out all questions having reference images associated. Second, we process the questions
to have integer type answers if they are already not in that format. All AIME problems have a
unique integer answer ranging from 0 to 999, while AMC-12 problems are of Multiple Choice
Question(MCQ) format. Similar to NuminaMath (Beeching et al., 2024), we remove all the answer
choices from each AMC-12 question and modify the question, wherever necessary, to ensure an
integer answer. In case of OlympiadBench and MathOdyssey, we simply modify the question as
needed. For this, we prompt GPT-4o to append an additional line at the end of each problem as
suitable. Following is an example for demonstration:

Original Question: An urn contains one red ball and one blue ball. A box of extra red and blue balls
lies nearby. George performs the following operation four times: he draws a ball from the urn at
random and then takes a ball of the same color from the box and returns those two matching balls
to the urn. After the four iterations the urn contains six balls. What is the probability that the urn

4

https://artofproblemsolving.com/wiki/index.php/

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

contains three balls of each color?
Answer: 1

5

Modified Question: An urn contains one red ball and one blue ball. A box of extra red and blue
balls lies nearby. George performs the following operation four times: he draws a ball from the urn at
random and then takes a ball of the same color from the box and returns those two matching balls
to the urn. After the four iterations the urn contains six balls. What is the probability that the urn
contains three balls of each color? If the answer is represented as a fraction m

n in its simplest terms,
what is the value of m+n?
Integer Answer: 6

Final test set, contains 330 AIME, 475 AMC-12, 158 MathOdyssey & 504 OlympiadBench problems.

3.2 BASELINE & CONFIGURATIONS

We benchmark against three prompting/reasoning strategies: COT (Wei et al., 2022), PAL (Gao et al.,
2022) TIR-ToRA (Gou et al., 2023). We use gpt-4o-2024-05-13 and Claude-3.5-Sonnet
as base LLMs for our experiments. For all datasets and all reasoning frameworks, we use 4-shot
setting. Maximum number of turns (n) SBSC is set to 15. For greedy decoding inference, we use
temperature=0 and max_tokens=1024 and also, we run 3 times and report average. For
greedy decoding of TIR-ToRA, we keep n = 15 as well (Note: this is because although in TIR-
ToRA strategy the model attempts to solve the entire problem in the single turn, in case of execution
error or readjustment it tries to re-attempt in subsequent turns). We also benchmark SBSC’s greedy
decoding results against self-consistency (SC) (Wang et al., 2022) decoding results (majority@7) of
COT, PAL & TIR-TORA. We do this primarily for two reasons: First, SBSC takes multiple turns
before arriving at the final answer (on average 6-7 turns per problem , Table 3 in Appendix A.1) and
Secondly, to benchmark against the reliance of the current existing prompting strategies on majority
voting for boosting accuracy. For SC decoding, we use temperature=0.7 and top_p=0.9.
Note: we experimentally observe that for n > 4, there is insignificant increase in accuracy for
TIR-ToRA so we set n=4 for TIR-ToRA during SC decoding.

Note: PAL (Gao et al., 2022) work also reports a combined approach with Least-to-Most (L2M)
prompting strategy (Wang et al., 2022), L2M-PAL that is essentially two stage. We implemented it as
per the reported examples in the PAL work. We benchmark it on AMC + AIME dataset. We observe
that L2M-PAL at best matches PAL or TIR-ToRA scores. Detailed results available in appendix A.8.
Hence for our main results, we stick to PAL & TIR-ToRA along with self-consistency decoding due
to resource optimisation and wider adaption of those prompting strategies for math-problem solving.
For more discussion on L2M-PAL please check A.8.

3.3 PROMPTING/FEW-SHOT EXEMPLARS

For both AIME and AMC, we select 90 questions each, drawn from problems of years other than
those included in the evaluation datasets. These questions were prompted with COT, PAL, TIR-ToRA
and SBSC to generate corresponding solutions in accurate format. For each dataset, we create a subset
of 10 problems correctly solved by every method and finally select a combination of 4 exemplars
among them. For MathOdyssey as well as Olympiad Bench, we use AIME exemplars as these
datasets are of similar difficulty level. We provide the 4 chosen exemplars and system-prompts, used
in the main experiments, for different methods in Appendix (A.3, A.4, A.5, A.6) & repository here.

4 RESULTS

We report the percentage accuracy of all the methods with different base LLMs and across all the
benchmarking datasets in Table 1. On AMC dataset, SBSC shows an absolute improvement over
TIR-ToRA (greedy decoding) by roughly 11% using Claude-3.5-Sonnet and 7% using GPT-4o. SBSC
greedy decoding results outperforms SC decoding results of TIR-TORA by absolute 6% and 4%,
for Claude-3.5-Sonnet and GPT-4o respectively. We see similar absolute improvements in accuracy
on our AIME dataset too. SBSC outperforms its nearest competitor (PAL) by 8% and 6% with
greedy settings and SC settings by 6.7% and 3.7%, for Claude-3.5-Sonnet and GPT-4o respectively.
For MathOdyssey, SBSC improves by as much as 12.6% and 7% over TIR-ToRA while showing

5

https://anonymous.4open.science/r/SBSC-69D3

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Benchmarking SBSC against different math reasoning methods across 3 datasets:We report
the average accuracy(in percentage unit) over 3 runs. Best result in each setting is highlighted in
bold & second best is underlined. Absolute improvement in performance by SBSC over the previous
best method in each setting is indicated in subscript.

Method AMC AIME MathOdyssey Olympiad Bench
greedy maj@7 greedy maj@7 greedy maj@7 greedy maj@7

Claude-3.5-Sonnet
COT 31.16 35.79 9.09 10.91 11.89 16.89 39.35 42.46
PAL 35.79 36.42 27.48 28.79 27.23 31.01 41.07 44.44
TIR-ToRA 38.59 43.16 24.64 26.67 27.23 32.43 47.69 50.60
SBSC (Ours) 49.33↑10.7 −↑6.2 35.45↑8 −↑6.7 39.86↑12.6 −↑7.4 53.31↑5.6 −↑2.7

GPT-4o
COT 35.94 37.47 10.39 12.12 13.51 17.57 41.80 47.22
PAL 36.48 38.11 24.63 26.97 15.74 20.27 41.67 46.43
TIR-ToRA 37.33 40.42 22.42 25.45 19.59 23.64 43.32 49.61
SBSC (Ours) 44.55↑7.2 −↑4.1 30.7↑6.1 −↑3.7 26.55↑7 −↑2.9 48.74↑5.4 −↓0.87

improvement of 7.4% and 3% over its SC variant, for Claude-3.5-Sonnet & GPT-4o respectively.
On OlympiadBench, for GPT-4o, SBSC matches SC results of TIR-ToRA and is better than the
second best greedy variant by more than 5%. While for Claude-3.5-Sonnet, SBSC shows an absolute
improvement of nearly 6% and 3% over TIR-ToRA in greedy and SC setting respectively. Standard
deviation values at A.7.

5 ABLATIONS & ANALYSIS

5.1 SENSITIVITY TO EXEMPLARS

Figure 2: Effect of Number of Exemplars Figure 3: Sensitivity to choice of Exemplars

We study the effect of number/choice of examples in prompting on SBSC’s performance using
Claude-3.5-Sonnet on a subset of AIME and AMC data. As shown in Figure 2, we observe a notable
increase in performance when increasing the examples from 2 to 4, which then starts to saturate as
we further increase the number of examples to 6 and 8. This justifies our decision of using a 4-shot
setting. To understand if the choice of exemplars affect the accuracy or not, we conduct a sensitivity
analysis. We randomly sample 4 exemplars out of the already created pool of 10 exemplars three
times to create 3 variations of 4-shot prompts: v1, v2, and v3. In Figure 3, we can see that the
performance remains stable irrespective of the exemplars used.

5.2 SBSC EXEMPLAR TUNING

Natural language comments present within a program have proven to be useful (Gao et al., 2022). So,
in each of the SBSC exemplars, we provide suitable comments in natural language within the Python
program for each turn to help guide the model.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: SBSC performance comparison across prompt variations using Claude-3.5-Sonnet

Full Prompt Without Comments Without Line 1

AMC 3 Yrs 67 62 60
AIME 3 Yrs 27 19 16

For few-shot learning, apart from relevant exemplars, the LLM also benefits from a general instruction
at the beginning (Zheng et al., 2024; Gou et al., 2023; Wang et al., 2023a) that provides a guideline or
context about how the model should approach the task, particularly those requiring logical reasoning,
multi-step operations, etc. This can be specially useful when the task requires a more nuanced
understanding and when the instructions need to be followed rigorously, as is the case with SBSC.
Kindly refer to A.5 and A.6 for detailed prompts.

In particular, we highlight one line from the instructions part of the prompt wherein, the model is
specifically being instructed to invoke a code rectification step to ensure that the error is not propagated
further, leading to a wrong answer. It also ensures the model focuses only on the intermediate step. :
If the executed code snippet returns an error, use it to correct the current step’s code snippet.
DO NOT restart solving from Step 1. 1

In Table 2, we study the importance of these two components in particular: the comments within
the code snippets and line 1 mentioned above. Our findings suggest that removal of either of these
components lead to a significant decrease in the performance, indicating how each of them are crucial
aspects of our exemplar prompts.

5.3 CODE DEBUGGING ABILITY

Figure 4: Comparison of Debugging Abilities

We present the superior ability of our method to resolve an error related to code execution. If at
any step of the trajectory chain, the program returns an execution error, we consider that to be an
error step. We visually represent this, using Claude-3.5-Sonnet responses across AMC, AIME and
MathOdyssey datasets in Figure 4, where we see that SBSC is able to recover from even multiple
wrong steps and reach the correct final answer quite easily when compared to TIR-ToRA whose
performance drops steeply on increasing error steps. This can be attributed to the fact that SBSC,
being precise and granular, tackles only a focused part of the problem and finds it easier to correct its
mistakes compared to TIR-ToRA which tries to correct the program at the problem level.

5.4 TOPIC-WISE ANALYSIS

We use GPT-4o-mini (OpenAI, June, 2024) to classify problems from AIME and AMC, while
MathOdyssey and OlympiadBench already contained topic labels. Our test set primarily comprised
of: Algebra, Arithmetic, Combinatorics, Number Theory and Geometry. In this study, we benchmark
the solutions obtained using Claude-3.5-Sonnet. As can be seen in Figure 5, our method outperforms

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 5: Topic breakdown analysis

TIR-ToRA in all the individual topics and across all the 4 datasets, thereby proving beneficial for
all topics. This highlights the generalisation ability of our approach extending to different types and
complexities of problems.

5.5 SBSC ACCURACY CORRELATION WITH CODING CAPABILITIES OF LLMS

We study the correlation of code related capabilities of the LLMs with respect to their success with
SBSC. Since coding capabilities of a model is pivotal towards successfully following and executing
our SBSC approach, we make a comparison involving LLMs with varying coding abilities. Figure
6 shows that the SBSC scores are correlated to the code generation abilities of the corresponding
models for all cases that were evaluated on a subset of AIME and AMC data. The code-generation
scores were taken from LiveCodeBench (Naman Jain, 2024) benchmark.

Figure 6: SBSC accuracy correlation with coding ability of LLMs

5.6 SBSC + SELF-CONSISTENCY

Self-consistency (SC) decoding (Wang et al., 2022) has proven to be effective in boosting accuracy
via sampling multiple chains and taking a majority voting. We employ SC decoding to assess the
upper bound of our approach. For this study, we use temperature=0.7 and top_p=0.7.

We generate 7 chains using Claude-3.5-Sonnet for each problem of last 3 years of AMC and AIME;
and consider the majority voted answer as the prediction to be compared against the ground truth.
We notice from Figure 7 that the maj@7 accuracy is higher than that of greedy decoding, following
the usual trend with other prompting approaches like COT, PAL, etc.

8

https://livecodebench.github.io/leaderboard.html

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 7: SBSC scores with Self-Consistency (maj@7)

6 RELATED WORK

In recent times, numerous developments in multiple research directions have taken place to enhance
the math ability of the LLMs. One of the major ones has been along the prompting and thinking
strategies such as Chain-of-Thought (COT) method (Wei et al., 2022; Kojima et al., 2022) that has
shown to evoke multi-step thinking in LLMs before arriving at the answer. These methods struggle
with complex and symbolic computations. For this, PAL (Gao et al., 2022) & POT (Chen et al., 2022)
suggest making LLMs perform reasoning by writing program and offloading the computations to
code interpreter. Another line of research has been around pre-training and supervised fine-tuning
(SFT). Multiple studies (Shao et al., 2024; Ying et al., 2024; DeepSeek-AI et al., 2024; Azerbayev
et al., 2023; Lewkowycz et al., 2022; Paster et al., 2023; Taylor et al., 2022) have shown pre-training
LLMs on high-quality maths tokens results in increased mathematical knowledge and reasoning
abilities. Recent approaches (Yu et al., 2023b; Gou et al., 2023; Yue et al., 2023; Wang et al., 2023a;
Shao et al., 2024; Toshniwal et al., 2024; Mitra et al., 2024; Beeching et al., 2024; Yin et al., 2024;
Tong et al., 2024) have tried query/problem augmentation along with creating synthetic reasoning
paths/trajectories using a teacher model like GPT4 (Achiam et al., 2023) for SFT. These methods
showed significant improvement in the math reasoning abilities of the model. Also, some studies
(Wang et al., 2023b; Yu et al., 2023a; Xi et al., 2024; Chen et al., 2024; Lightman et al., 2023b)
provide an alternative to manual annotations for process supervision (Lightman et al., 2023a).

7 CONCLUSION

We introduce SBSC, a multi-turn math reasoning framework that tries to enable LLMs to solve
complex math problems. SBSC pursues the solution, step-by-step with each turn dedicated to a
step, and arrives at final answer via multiple turns. At each turn, an intermediate sub-task and its
corresponding program solution is generated leveraging the execution outputs and solutions of all the
previous sub-tasks. We show performance improvements of SBSC over TIR-ToRA, PAL & COT
on challenging math problems. We also show that greedy-decoding results of SBSC outperforms
self-consistency results of other prompting strategies.

8 FUTURE WORK

Given the detailed, dynamic and flexible step-wise nature of problem-solving along with the fact that
its leverage program generation to conclude a key-intermediate step, we believe SBSC reasoning
format could be highly useful for guided decoding strategies such as in Outcome-Supervised Value
Model (Yu et al., 2023a), AlphaMATH (Chen et al., 2024), Q* framework (Wang et al., 2024). It
would be well suited for step-wise preference optimisation for reasoning such as in (Lai et al., 2024).
SBSC trajectories could be used also for imitation learning via SFT.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

OpenAI Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim ing Bao, Mo Bavarian, Jeff
Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny Bog-
donoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles
Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Benjamin Chess, Chester Cho, Casey Chu, Hyung Won
Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah
Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien
Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Sim’on Posada Fish-
man, Juston Forte, Is abella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun
Gogineni, Gabriel Goh, Raphael Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray,
Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter
Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain,
Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie
Jonn, Heewoo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish
Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Hendrik
Kirchner, Jamie Ryan Kiros, Matthew Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kon-
drich, Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan,
Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Ma teusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel P. Mossing, Tong Mu, Mira Murati, Oleg Murk, David M’ely,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Ouyang Long, Cullen O’Keefe, Jakub W. Pachocki, Alex Paino, Joe Palermo, Ashley Pantu-
liano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alexandre Passos, Mikhail Pavlov,
Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Pondé
de Oliveira Pinto, Michael Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea
Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack W. Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick
Ryder, Mario D. Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David
Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah
Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama,
Ian Sohl, Benjamin D. Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie
Summers, Ilya Sutskever, Jie Tang, Nikolas A. Tezak, Madeleine Thompson, Phil Tillet, Amin
Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cer’on
Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss, Carroll L. Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welin-
der, Jiayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich,
Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah
Yoo, Kevin Yu, Qim ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang,
Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical
report. 2023. URL https://api.semanticscholar.org/CorpusID:257532815.

Anthropic. Introducing claude 3.5, 2023. URL https://www-cdn.anthropic.com/
fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_
Addendum.pdf.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. ArXiv, abs/2310.10631, 2023. URL https://api.semanticscholar.
org/CorpusID:264172303.

10

https://api.semanticscholar.org/CorpusID:257532815
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/Model_Card_Claude_3_Addendum.pdf
https://api.semanticscholar.org/CorpusID:264172303
https://api.semanticscholar.org/CorpusID:264172303

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Edward Beeching, Shengyi Costa Huang, Albert Jiang, Jia Li, Benjamin Lipkin, Zihan Qina,
Kashif Rasul, Ziju Shen, Roman Soletskyi, and Lewis Tunstall. Numinamath 7b tir. https:
//huggingface.co/AI-MO/NuminaMath-7B-TIR, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Jeff Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Ma teusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. ArXiv, abs/2005.14165, 2020. URL
https://api.semanticscholar.org/CorpusID:218971783.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervision
without process. ArXiv, abs/2405.03553, 2024. URL https://api.semanticscholar.
org/CorpusID:269605484.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks. Trans. Mach. Learn. Res.,
2023, 2022. URL https://api.semanticscholar.org/CorpusID:253801709.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam M.
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier García, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon
Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark Díaz,
Orhan Firat, Michele Catasta, Jason Wei, Kathleen S. Meier-Hellstern, Douglas Eck, Jeff Dean, Slav
Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways. ArXiv, abs/2204.02311,
2022. URL https://api.semanticscholar.org/CorpusID:247951931.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. ArXiv, abs/2110.14168, 2021. URL
https://api.semanticscholar.org/CorpusID:239998651.

DeepSeek-AI, Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y. Wu,
Yukun Li, Huazuo Gao, Shirong Ma, Wangding Zeng, Xiao Bi, Zihui Gu, Hanwei Xu, Damai
Dai, Kai Dong, Liyue Zhang, Yishi Piao, Zhibin Gou, Zhenda Xie, Zhewen Hao, Bing-Li Wang,
Jun-Mei Song, Deli Chen, Xin Xie, Kang Guan, Yu mei You, Aixin Liu, Qiushi Du, Wenjun Gao,
Xuan Lu, Qinyu Chen, Yaohui Wang, Chengqi Deng, Jiashi Li, Chenggang Zhao, Chong Ruan,
Fuli Luo, and Wenfeng Liang. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. ArXiv, abs/2406.11931, 2024. URL https://api.semanticscholar.
org/CorpusID:270562723.

Meng Fang, Xiangpeng Wan, Fei Lu, Fei Xing, and Kai Zou. Mathodyssey: Benchmark-
ing mathematical problem-solving skills in large language models using odyssey math data.
ArXiv, abs/2406.18321, 2024. URL https://api.semanticscholar.org/CorpusID:
270737739.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. ArXiv, abs/2211.10435, 2022. URL
https://api.semanticscholar.org/CorpusID:253708270.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan,
and Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving.
ArXiv, abs/2309.17452, 2023. URL https://api.semanticscholar.org/CorpusID:
263310365.

11

https://huggingface.co/AI-MO/NuminaMath-7B-TIR
https://huggingface.co/AI-MO/NuminaMath-7B-TIR
https://api.semanticscholar.org/CorpusID:218971783
https://api.semanticscholar.org/CorpusID:269605484
https://api.semanticscholar.org/CorpusID:269605484
https://api.semanticscholar.org/CorpusID:253801709
https://api.semanticscholar.org/CorpusID:247951931
https://api.semanticscholar.org/CorpusID:239998651
https://api.semanticscholar.org/CorpusID:270562723
https://api.semanticscholar.org/CorpusID:270562723
https://api.semanticscholar.org/CorpusID:270737739
https://api.semanticscholar.org/CorpusID:270737739
https://api.semanticscholar.org/CorpusID:253708270
https://api.semanticscholar.org/CorpusID:263310365
https://api.semanticscholar.org/CorpusID:263310365

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. Olympiad-
bench: A challenging benchmark for promoting agi with olympiad-level bilingual multimodal
scientific problems. ArXiv, abs/2402.14008, 2024. URL https://api.semanticscholar.
org/CorpusID:267770504.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Xi-
aodong Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
ArXiv, abs/2103.03874, 2021. URL https://api.semanticscholar.org/CorpusID:
232134851.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. ArXiv, abs/2205.11916, 2022. URL https://api.
semanticscholar.org/CorpusID:249017743.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms, 2024. URL https://arxiv.
org/abs/2406.18629.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative rea-
soning problems with language models. ArXiv, abs/2206.14858, 2022. URL https://api.
semanticscholar.org/CorpusID:250144408.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023a. URL
https://arxiv.org/abs/2305.20050.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harrison Edwards, Bowen Baker, Teddy Lee,
Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step.
ArXiv, abs/2305.20050, 2023b. URL https://api.semanticscholar.org/CorpusID:
258987659.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking
the potential of slms in grade school math. ArXiv, abs/2402.14830, 2024. URL https://api.
semanticscholar.org/CorpusID:267897618.

Alex Gu Wen-Ding Li Fanjia Yan Tianjun Zhang Sida Wang Armando Solar-Lezama Koushik Sen
Ion Stoica Naman Jain, King Han. Livecodebench: Holistic and contamination free evaluation of
large language models for code. arXiv preprint, 2024.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and
Augustus Odena. Show your work: Scratchpads for intermediate computation with language
models, 2021. URL https://arxiv.org/abs/2112.00114.

OpenAI. "hello gpt-4o.", June, 2024. URL https://openai.com/index/
hello-gpt-4o/.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text. ArXiv, abs/2310.06786, 2023. URL https:
//api.semanticscholar.org/CorpusID:263829563.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy P. Lillicrap, Jean-
Baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, Ioannis
Antonoglou, Rohan Anil, Sebastian Borgeaud, Andrew M. Dai, Katie Millican, Ethan Dyer, Mia
Glaese, Thibault Sottiaux, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, James
Molloy, Jilin Chen, Michael Isard, Paul Barham, Tom Hennigan, Ross McIlroy, Melvin Johnson,
Johan Schalkwyk, Eli Collins, Eliza Rutherford, Erica Moreira, Kareem W. Ayoub, Megha Goel,
Clemens Meyer, Gregory Thornton, Zhen Yang, Henryk Michalewski, Zaheer Abbas, Nathan
Schucher, Ankesh Anand, Richard Ives, James Keeling, Karel Lenc, Salem Haykal, Siamak

12

https://api.semanticscholar.org/CorpusID:267770504
https://api.semanticscholar.org/CorpusID:267770504
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:232134851
https://api.semanticscholar.org/CorpusID:249017743
https://api.semanticscholar.org/CorpusID:249017743
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://api.semanticscholar.org/CorpusID:250144408
https://api.semanticscholar.org/CorpusID:250144408
https://arxiv.org/abs/2305.20050
https://api.semanticscholar.org/CorpusID:258987659
https://api.semanticscholar.org/CorpusID:258987659
https://api.semanticscholar.org/CorpusID:267897618
https://api.semanticscholar.org/CorpusID:267897618
https://arxiv.org/abs/2112.00114
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/hello-gpt-4o/
https://api.semanticscholar.org/CorpusID:263829563
https://api.semanticscholar.org/CorpusID:263829563

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shakeri, Pranav Shyam, Aakanksha Chowdhery, Roman Ring, Stephen Spencer, Eren Sezener,
Luke Vilnis, Oscar Chang, Nobuyuki Morioka, George Tucker, Ce Zheng, Oliver Woodman, Nithya
Attaluri, Tomás Kociský, Evgenii Eltyshev, Xi Chen, Timothy Chung, Vittorio Selo, Siddhartha
Brahma, Petko Georgiev, Ambrose Slone, Zhenkai Zhu, James Lottes, Siyuan Qiao, Ben Caine,
Sebastian Riedel, Alex Tomala, Martin Chadwick, J Christopher Love, Peter Choy, Sid Mittal,
Neil Houlsby, Yunhao Tang, Matthew Lamm, Libin Bai, Qiao Zhang, Luheng He, Yong Cheng,
Peter Humphreys, Yujia Li, Sergey Brin, Albin Cassirer, Ying-Qi Miao, Lukás Zilka, Taylor Tobin,
Kelvin Xu, Lev Proleev, Daniel Sohn, Alberto Magni, Lisa Anne Hendricks, Isabel Gao, Santiago
Ontan’on, Oskar Bunyan, Nathan Byrd, Abhanshu Sharma, Biao Zhang, Mario Pinto, Rishika
Sinha, Harsh Mehta, Dawei Jia, Sergi Caelles, Albert Webson, Alex Morris, Becca Roelofs, Yifan
Ding, Robin Strudel, Xuehan Xiong, Marvin Ritter, Mostafa Dehghani, Rahma Chaabouni, Abhijit
Karmarkar, Guangda Lai, Fabian Mentzer, Bibo Xu, YaGuang Li, Yujing Zhang, Tom Le Paine,
Alex Goldin, Behnam Neyshabur, Kate Baumli, Anselm Levskaya, Michael Laskin, Wenhao
Jia, Jack W. Rae, Kefan Xiao, Antoine He, Skye Giordano, Lakshman Yagati, Jean-Baptiste
Lespiau, Paul Natsev, Sanjay Ganapathy, Fangyu Liu, Danilo Martins, Nanxin Chen, Yunhan Xu,
Megan Barnes, Rhys May, Arpi Vezer, Junhyuk Oh, Ken Franko, Sophie Bridgers, Ruizhe Zhao,
Boxi Wu, Basil Mustafa, Sean Sechrist, Emilio Parisotto, Thanumalayan Sankaranarayana Pillai,
Chris Larkin, Chenjie Gu, Christina Sorokin, Maxim Krikun, Alexey Guseynov, Jessica Landon,
Romina Datta, Alexander Pritzel, Phoebe Thacker, Fan Yang, Kevin Hui, A.E. Hauth, Chih-Kuan
Yeh, David Barker, Justin Mao-Jones, Sophia Austin, Hannah Sheahan, Parker Schuh, James
Svensson, Rohan Jain, Vinay Venkatesh Ramasesh, Anton Briukhov, Da-Woon Chung, Tamara
von Glehn, Christina Butterfield, Priya Jhakra, Matt Wiethoff, Justin Frye, Jordan Grimstad,
Beer Changpinyo, Charline Le Lan, Anna Bortsova, Yonghui Wu, Paul Voigtlaender, Tara N.
Sainath, Charlotte Smith, Will Hawkins, Kris Cao, James Besley, Srivatsan Srinivasan, Mark
Omernick, Colin Gaffney, Gabriela de Castro Surita, Ryan Burnell, Bogdan Damoc, Junwhan
Ahn, Andrew Brock, Mantas Pajarskas, Anastasia Petrushkina, Seb Noury, Lorenzo Blanco, Kevin
Swersky, Arun Ahuja, Thi Avrahami, Vedant Misra, Raoul de Liedekerke, Mariko Iinuma, Alex
Polozov, Sarah York, George van den Driessche, Paul Michel, Justin Chiu, Rory Blevins, Zach
Gleicher, Adrià Recasens, Alban Rrustemi, Elena Gribovskaya, Aurko Roy, Wiktor Gworek,
S’ebastien M. R. Arnold, Lisa Lee, James Lee-Thorp, Marcello Maggioni, Enrique Piqueras,
Kartikeya Badola, Sharad Vikram, Lucas Gonzalez, Anirudh Baddepudi, Evan Senter, Jacob
Devlin, James Qin, Michael Azzam, Maja Trebacz, Martin Polacek, Kashyap Krishnakumar,
Shuo yiin Chang, Matthew Tung, Ivo Penchev, Rishabh Joshi, Kate Olszewska, Carrie Muir,
Mateo Wirth, Ale Jakse Hartman, Joshua Newlan, Sheleem Kashem, Vijay Bolina, Elahe Dabir,
Joost R. van Amersfoort, Zafarali Ahmed, James Cobon-Kerr, Aishwarya B Kamath, Arnar Mar
Hrafnkelsson, Le Hou, Ian Mackinnon, Alexandre Frechette, Eric Noland, Xiance Si, Emanuel
Taropa, Dong Li, Phil Crone, Anmol Gulati, S’ebastien Cevey, Jonas Adler, Ada Ma, David Silver,
Simon Tokumine, Richard Powell, Stephan Lee, Michael B. Chang, Samer Hassan, Diana Mincu,
Antoine Yang, Nir Levine, Jenny Brennan, Mingqiu Wang, Sarah Hodkinson, Jeffrey Zhao, Josh
Lipschultz, Aedan Pope, Michael B. Chang, Cheng Li, Laurent El Shafey, Michela Paganini,
Sholto Douglas, Bernd Bohnet, Fabio Pardo, Seth Odoom, Mihaela Rosca, Cicero Nogueira dos
Santos, Kedar Soparkar, Arthur Guez, Tom Hudson, Steven Hansen, Chulayuth Asawaroengchai,
Ravichandra Addanki, Tianhe Yu, Wojciech Stokowiec, Mina Khan, Justin Gilmer, Jaehoon
Lee, Carrie Grimes Bostock, Keran Rong, Jonathan Caton, Pedram Pejman, Filip Pavetic, Geoff
Brown, Vivek Sharma, Mario Luvci’c, Rajkumar Samuel, Josip Djolonga, Amol Mandhane,
Lars Lowe Sjosund, Elena Buchatskaya, Elspeth White, Natalie Clay, Jiepu Jiang, Hyeontaek
Lim, Ross Hemsley, Jane Labanowski, Nicola De Cao, David Steiner, Sayed Hadi Hashemi, Jacob
Austin, Anita Gergely, Tim Blyth, Joe Stanton, Kaushik Shivakumar, Aditya Siddhant, Anders
Andreassen, Carlos L. Araya, Nikhil Sethi, Rakesh Shivanna, Steven Hand, Ankur Bapna, Ali
Khodaei, Antoine Miech, Garrett Tanzer, Andy Swing, Shantanu Thakoor, Zhufeng Pan, Zachary
Nado, Stephanie Winkler, Dian Yu, Mohammad Saleh, Lorenzo Maggiore, Iain Barr, Minh
Giang, Thais Kagohara, Ivo Danihelka, Amit Marathe, Vladimir Feinberg, Mohamed Elhawaty,
Nimesh Ghelani, Dan Horgan, Helen Miller, Lexi Walker, Richard Tanburn, Mukarram Tariq,
Disha Shrivastava, Fei Xia, Chung-Cheng Chiu, Zoe C. Ashwood, Khuslen Baatarsukh, Sina
Samangooei, Fred Alcober, Axel Stjerngren, Paul Komarek, Katerina Tsihlas, Anudhyan Boral,
Ramona Comanescu, Jeremy Chen, Ruibo Liu, Dawn Bloxwich, Charlie Chen, Yanhua Sun,
Fangxiaoyu Feng, Matthew Mauger, Xerxes Dotiwalla, Vincent Hellendoorn, Michael Sharman,
Ivy Zheng, Krishna Haridasan, Gabriel Barth-Maron, Craig Swanson, Dominika Rogozi’nska,
Alek Andreev, Paul Kishan Rubenstein, Ruoxin Sang, Dan Hurt, Gamaleldin Elsayed, Ren shen

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wang, Dave Lacey, Anastasija Ili’c, Yao Zhao, Woohyun Han, Lora Aroyo, Chimezie Iwuanyanwu,
Vitaly Nikolaev, Balaji Lakshminarayanan, Sadegh Jazayeri, Raphael Lopez Kaufman, Mani
Varadarajan, Chetan Tekur, Doug Fritz, Misha Khalman, David Reitter, Kingshuk Dasgupta,
Shourya Sarcar, T. Ornduff, Javier Snaider, Fantine Huot, Johnson Jia, Rupert Kemp, Nejc Trdin,
Anitha Vijayakumar, Lucy Kim, Christof Angermueller, Li Lao, Tianqi Liu, Haibin Zhang, David
Engel, Somer Greene, Anais White, Jessica Austin, Lilly Taylor, Shereen Ashraf, Dangyi Liu,
Maria Georgaki, Irene Cai, Yana Kulizhskaya, Sonam Goenka, Brennan Saeta, Kiran Vodrahalli,
Christian Frank, Dario de Cesare, Brona Robenek, Harry Richardson, Mahmoud Alnahlawi,
Christopher Yew, Priya Ponnapalli, Marco Tagliasacchi, Alex Korchemniy, Yelin Kim, Dinghua
Li, Bill Rosgen, Kyle Levin, Jeremy Wiesner, Praseem Banzal, Praveen Srinivasan, Hongkun Yu,
cCauglar Unlu, David Reid, Zora Tung, Daniel F. Finchelstein, Ravin Kumar, Andre Elisseeff,
Jin Huang, Ming Zhang, Rui Zhu, Ricardo Aguilar, Mai Gim’enez, Jiawei Xia, Olivier Dousse,
Willi Gierke, Soheil Hassas Yeganeh, Damion Yates, Komal Jalan, Lu Li, Eri Latorre-Chimoto,
Duc Dung Nguyen, Ken Durden, Praveen Kallakuri, Yaxin Liu, Matthew Johnson, Tomy Tsai, Alice
Talbert, Jasmine Liu, Alexander Neitz, Chen Elkind, Marco Selvi, Mimi Jasarevic, Livio Baldini
Soares, Albert Cui, Pidong Wang, Alek Wenjiao Wang, Xinyu Ye, Krystal Kallarackal, Lucia Loher,
Hoi Lam, Josef Broder, Daniel Niels Holtmann-Rice, Nina Martin, Bramandia Ramadhana, Daniel
Toyama, Mrinal Shukla, Sujoy Basu, Abhi Mohan, Nicholas Fernando, Noah Fiedel, Kim Paterson,
Hui Li, Ankush Garg, Jane Park, Donghyun Choi, Diane Wu, Sankalp Singh, Zhishuai Zhang, Amir
Globerson, Lily Yu, John Carpenter, Félix de Chaumont Quitry, Carey Radebaugh, Chu-Cheng Lin,
Alex Tudor, Prakash Shroff, Drew Garmon, Dayou Du, Neera Vats, Han Lu, Shariq Iqbal, Alexey
Yakubovich, Nilesh Tripuraneni, James Manyika, Haroon Qureshi, Nan Hua, Christel Ngani,
Maria Abi Raad, Hannah Forbes, Anna Bulanova, Jeff Stanway, Mukund Sundararajan, Victor
Ungureanu, Colton Bishop, Yunjie Li, Balaji Venkatraman, Bo Li, Chloe Thornton, Salvatore
Scellato, Nishesh Gupta, Yicheng Wang, Ian Tenney, Xihui Wu, Ashish Shenoy, Gabriel Carvajal,
Diana Gage Wright, Ben Bariach, Zhuyun Xiao, Peter Hawkins, Sid Dalmia, Cl’ement Farabet,
Pedro Valenzuela, Quan Yuan, Christoper A. Welty, Ananth Agarwal, Mianna Chen, Wooyeol
Kim, Brice Hulse, Nandita Dukkipati, Adam Paszke, Andrew Bolt, Elnaz Davoodi, Kiam Choo,
Jennifer Beattie, Jennifer Prendki, Harsha Vashisht, Rebeca Santamaria-Fernandez, Luis C. Cobo,
Jarek Wilkiewicz, David Madras, Ali Elqursh, Grant Uy, Kevin Ramirez, Matt Harvey, Tyler
Liechty, Heiga Zen, Jeff Seibert, Clara Huiyi Hu, A. Ya. Khorlin, Maigo Le, Asaf Aharoni, Megan
Li, Lily Wang, Sandeep Kumar, Alejandro Lince, Norman Casagrande, Jay Hoover, Dalia El
Badawy, David Soergel, Denis Vnukov, Matt Miecnikowski, Jiimsa, Anna Koop, Praveen Kumar,
Thibault Sellam, Daniel Vlasic, Samira Daruki, Nir Shabat, John Zhang, Guolong Su, Kalpesh
Krishna, Jiageng Zhang, Jeremiah Liu, Yi Sun, Evan Palmer, Alireza Ghaffarkhah, Xi Xiong, Victor
Cotruta, Michael Fink, Lucas Dixon, Ashwin Sreevatsa, Adrian Goedeckemeyer, Alek Dimitriev,
Mohsen Jafari, Remi Crocker, Nicholas Fitzgerald, Aviral Kumar, Sanjay Ghemawat, Ivan Philips,
Frederick Liu, Yannie Liang, Rachel Sterneck, Alena Repina, Marcus Wu, Laura Knight, Marin
Georgiev, Hyo Lee, Harry Askham, Abhishek Chakladar, Annie Louis, Carl Crous, Hardie Cate,
Dessie Petrova, Michael Quinn, Denese Owusu-Afriyie, Achintya Singhal, Nan Wei, Solomon
Kim, Damien Vincent, Milad Nasr, Christopher A. Choquette-Choo, Reiko Tojo, Shawn Lu,
Diego de Las Casas, Yuchung Cheng, Tolga Bolukbasi, Katherine Lee, Saaber Fatehi, Rajagopal
Ananthanarayanan, Miteyan Patel, Charbel El Kaed, Jing Li, Jakub Sygnowski, Shreyas Rammohan
Belle, Zhe Chen, Jaclyn Konzelmann, Siim Poder, Roopal Garg, Vinod Koverkathu, Adam Brown,
Chris Dyer, Rosanne Liu, Azade Nova, Jun Xu, Junwen Bai, Slav Petrov, Demis Hassabis, Koray
Kavukcuoglu, Jeffrey Dean, Oriol Vinyals, and Alexandra Chronopoulou. Gemini 1.5: Unlocking
multimodal understanding across millions of tokens of context. ArXiv, abs/2403.05530, 2024.
URL https://api.semanticscholar.org/CorpusID:268297180.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Jun-Mei Song, Mingchuan Zhang, Y. K. Li,
Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. ArXiv, abs/2402.03300, 2024. URL https://api.semanticscholar.
org/CorpusID:267412607.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas Scialom, Anthony S. Hartshorn, Elvis
Saravia, Andrew Poulton, Viktor Kerkez, and Robert Stojnic. Galactica: A large language model
for science. ArXiv, abs/2211.09085, 2022. URL https://api.semanticscholar.org/
CorpusID:253553203.

14

https://api.semanticscholar.org/CorpusID:268297180
https://api.semanticscholar.org/CorpusID:267412607
https://api.semanticscholar.org/CorpusID:267412607
https://api.semanticscholar.org/CorpusID:253553203
https://api.semanticscholar.org/CorpusID:253553203

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yuxuan Tong, Xiwen Zhang, Rui Wang, Rui Min Wu, and Junxian He. Dart-math: Difficulty-
aware rejection tuning for mathematical problem-solving. ArXiv, abs/2407.13690, 2024. URL
https://api.semanticscholar.org/CorpusID:271270574.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthiran, Daria Gitman, Fei Jia, and Igor Gitman.
Openmathinstruct-1: A 1.8 million math instruction tuning dataset. ArXiv, abs/2402.10176, 2024.
URL https://api.semanticscholar.org/CorpusID:267681752.

Chaojie Wang, Yanchen Deng, Zhiyi Lyu, Liang Zeng, Jujie He, Shuicheng Yan, and Bo An.
Q*: Improving multi-step reasoning for llms with deliberative planning, 2024. URL https:
//arxiv.org/abs/2406.14283.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang,
Linqi Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in
llms for enhanced mathematical reasoning. ArXiv, abs/2310.03731, 2023a. URL https:
//api.semanticscholar.org/CorpusID:263671510.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Y.Wu, and Zhi-
fang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations.
ArXiv, abs/2312.08935, 2023b. URL https://api.semanticscholar.org/CorpusID:
266209760.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Huai hsin Chi, and Denny Zhou. Self-
consistency improves chain of thought reasoning in language models. ArXiv, abs/2203.11171,
2022. URL https://api.semanticscholar.org/CorpusID:247595263.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Huai hsin Chi, F. Xia, Quoc
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
ArXiv, abs/2201.11903, 2022. URL https://api.semanticscholar.org/CorpusID:
246411621.

Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, Wei He, Yiwen Ding, Shichun
Liu, Xin Guo, Junzhe Wang, Honglin Guo, Wei Shen, Xiaoran Fan, Yuhao Zhou, Shihan Dou, Xiao
Wang, Xinbo Zhang, Peng Sun, Tao Gui, Qi Zhang, and Xuanjing Huang. Training large language
models for reasoning through reverse curriculum reinforcement learning. ArXiv, abs/2402.05808,
2024. URL https://api.semanticscholar.org/CorpusID:267547500.

Shuo Yin, Weihao You, Zhilong Ji, Guoqiang Zhong, and Jinfeng Bai. Mumath-code: Combining tool-
use large language models with multi-perspective data augmentation for mathematical reasoning.
ArXiv, abs/2405.07551, 2024. URL https://api.semanticscholar.org/CorpusID:
269756851.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe Zhou,
Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang, Kai Chen,
and Dahua Lin. Internlm-math: Open math large language models toward verifiable reasoning.
ArXiv, abs/2402.06332, 2024. URL https://api.semanticscholar.org/CorpusID:
267617098.

Fei Yu, Anningzhe Gao, and Benyou Wang. Ovm, outcome-supervised value models for planning in
mathematical reasoning. In NAACL-HLT, 2023a. URL https://api.semanticscholar.
org/CorpusID:265221057.

Long Long Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T. Kwok,
Zheng Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical
questions for large language models. ArXiv, abs/2309.12284, 2023b. URL https://api.
semanticscholar.org/CorpusID:262084051.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu
Chen. Mammoth: Building math generalist models through hybrid instruction tuning.
ArXiv, abs/2309.05653, 2023. URL https://api.semanticscholar.org/CorpusID:
261696697.

15

https://api.semanticscholar.org/CorpusID:271270574
https://api.semanticscholar.org/CorpusID:267681752
https://arxiv.org/abs/2406.14283
https://arxiv.org/abs/2406.14283
https://api.semanticscholar.org/CorpusID:263671510
https://api.semanticscholar.org/CorpusID:263671510
https://api.semanticscholar.org/CorpusID:266209760
https://api.semanticscholar.org/CorpusID:266209760
https://api.semanticscholar.org/CorpusID:247595263
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:246411621
https://api.semanticscholar.org/CorpusID:267547500
https://api.semanticscholar.org/CorpusID:269756851
https://api.semanticscholar.org/CorpusID:269756851
https://api.semanticscholar.org/CorpusID:267617098
https://api.semanticscholar.org/CorpusID:267617098
https://api.semanticscholar.org/CorpusID:265221057
https://api.semanticscholar.org/CorpusID:265221057
https://api.semanticscholar.org/CorpusID:262084051
https://api.semanticscholar.org/CorpusID:262084051
https://api.semanticscholar.org/CorpusID:261696697
https://api.semanticscholar.org/CorpusID:261696697

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V Le,
and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models,
2024. URL https://arxiv.org/abs/2310.06117.

Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schu-
urmans, Olivier Bousquet, Quoc Le, and Ed Huai hsin Chi. Least-to-most prompting en-
ables complex reasoning in large language models. ArXiv, abs/2205.10625, 2022. URL
https://api.semanticscholar.org/CorpusID:248986239.

A APPENDIX

A.1 NUMBER OF STEPS IN SBSC

In Table 3, we present the number of turns taken per question by SBSC responses obtained using
Claude-3.5-Sonnet across the different datasets.

Table 3: Table showing number of turns/steps used by SBSC

Number of turns or steps AMC AIME MathOdyssey
2 21 12 8
3 57 19 17
4 101 47 19
5 79 51 21
6 63 43 28
7 41 43 14
8 42 31 10
9 12 18 8

others 59 66 23
Average turns or steps/Problem 6.0 6.9 6.4

A.2 UNDERSTANDING SBSC IN DETAIL

In this section, we demonstrate some scenarios where SBSC has been successful while TIR-ToRA
has failed, with the help of some example questions and investigating the responses obtained from
the two models.

Let’s consider the question in Example 1, involving a geometric progression of numbers written in
logarithmic form, which TIR-ToRA gets wrong.The method uses a binary search technique, which
is not very precise when dealing with exact values required for mathematical problems, especially
when fractions are involved.The solution uses a function to check whether the logarithms form a
geometric progression which introduces additional complexity and potential inaccuracies because it
involves comparing ratios that may not be exactly equal due to floating-point arithmetic.Also, this
single-turn method tends to overlook specified constraints or necessary simplifications, which are
often encountered in Olympiad level problems and instead makes false assumptions.
The question in Example 2 is an example scenario where TIR-ToRA fails because it makes an
incorrect assumption. It misinterprets the Lipschitz condition and incorrectly makes a simpler
assumption that the difference f(800)− f(400) is equal to the maximum possible difference, which
is 200. While the magnitude of the difference is bounded by 200, it does not mean that the actual
difference will always be 200. Iterative solutions, as are often the only way out in single program
based solutions, can sometimes lead to infinite loops, especially in cases where the stopping condition
is not clearly defined or understood by the LLM.
As can be seen in Example 3, the single code is unable to take advantage of the factorization of 2020,
which is key to solving the problem efficiently and instead iterates over a very large range of potential
values for m, leading to inefficiency. The upper bound 2020 is extremely large and the sheer number
of iterations causes a timeout.
Example 4 presents a scenario where TIR-ToRA makes up an assumption about the problem and

16

https://arxiv.org/abs/2310.06117
https://api.semanticscholar.org/CorpusID:248986239

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

writes the code for terminating a loop accordingly, which leads to a timeout error, as the incorrect
assumption leads to an infinite loop. It lacks intermediate checks that would provide insights into
whether the sequence terms are of the form t

t+1 , which is crucial for solving the problem and would
have enabled it to chalk out the termination conditions suitably.

On the other hand, our Step-By-Step Coding method enforces a decomposition of the problem into
smaller sub-task. Each sub-task is tackled independently by the LLM, which generates code to solve
it and then uses the resulting output to suitably proceed to the next sub-task and this process continues
till the final answer is reached. Such an approach ensures that every part of the problem is addressed
with exact precision, reducing the risk of errors that might arise from skipped steps. Dividing the
problem into multiple sub-tasks also allows it to make necessary simplifications that would make the
future sub-tasks, and hence the entire problem, easier to solve.
Going back to the problem in Example 1, SBSC starts by defining the logarithms and setting up the
equations based on the geometric progression condition. It then simplifies the equations to reduce
them to a more manageable form, eliminating unnecessary complexity and allowing straightforward
solving. Throughout the problem, it uses precise mathematical formulations of the problem, ensuring
the solution is accurate. Since this method isn’t trying to solve the entire problem at one go, it doesn’t
need to make any assumptions to simplify the problem statement.
For the question in Example 2, it correctly interprets the problem, keeps applying the given Lipschitz
condition as it solves each sub-task and finds the correct maximum possible value of f(f(800))−
f(f(400)). By systematically checking for constraints and edge cases at each stage, our method
guarantees that solutions are not only accurate but also valid under all possible conditions. This is
particularly crucial for problems with intricate conditions or multiple solution paths. Additionally,
our process explicitly defines loop conditions to ensure that termination criteria are clear, allowing
for correction if issues like infinite loops arise.
For the problem in Example 3, the first sub-task correctly identified by SBSC is to factorize the large
number 2020 into smaller powers, paving the path towards an efficient solution. In the subsequent
steps, it takes care of constraints like ensuring that m and n are integers and avoids over-counting by
properly iterating over valid powers, giving us the correct answer.
Likewise, in Example 4, we see that our method generates each term of the sequence one at a time,
allowing for intermediate checks to confirm whether each term is of the desired form t

t+1 . Thus,
it accurately identifies the terms that meet the required condition and ensures that only the correct
indices are considered. This avoids the infinite loop risk and ensures the correctness of each step
before moving on. We also notice that the model runs into an error at the first sub-task itself but based
on the corresponding code output, it is able to take an alternate approach and successfully solves the
sub-task, moving onto later ones. This example also highlights our superior code debugging ability,
as discussed earlier.

Example Question 1: There is a unique positive real number x such that the three numbers log8 2x,
log4 x , andlog2 x , in that order, form a geometric progression with positive common ratio. The
number x can be written as m

n , where m and n are relatively prime positive integers. Find m + n

Incorrect solution by TIR-ToRA

Let’s approach this problem step-by-step:
1. Define a function to check if three numbers form a geometric progression.
2. Use binary search to find x that satisfies the condition.
3. Convert x to a fraction and return the sum of its numerator and denominator.

import math
from fractions import Fraction
def solution():

Function to check if three numbers form
#a geometric progression
def is_geometric_progression(a, b, c):

ratio1 = b / a
ratio2 = c / b
return math.isclose(ratio1, ratio2) and ratio1 > 1

Binary search to find x

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

left, right = 1, 1000
while right - left > 1e-10:

x = (left + right) / 2
log8_2x = math.log(2*x, 8)
log4_x = math.log(x, 4)
log2_x = math.log(x, 2)
if is_geometric_progression(log8_2x, log4_x, log2_x):

break
elif (log4_x / log8_2x) > (log2_x / log4_x):

left = x
else:

right = x
Convert x to a fraction
frac = Fraction(x).limit_denominator()
return frac.numerator + frac.denominator

result = solution()
print(f"\\boxed{{{result}}}")

>>> output:
\boxed{2}

The answer is 2

Correct solution by SBSC:

Let’s solve this problem step by step using SymPy-based Python code.
Step 1: Define the symbols and set up the equations

from sympy import symbols, log, Eq, solve
Define symbols
x, r = symbols('x r')
Define the three logarithms
log1 = log(2*x, 8)
log2 = log(x, 4)
log3 = log(x, 2)
Set up equations for geometric progression
eq1 = Eq(log2 / log1, r)
eq2 = Eq(log3 / log2, r)
print("Equation 1:", eq1)
print("Equation 2:", eq2)

>>> output
Equation 1: Eq(log(8)*log(x)/(log(4)*log(2*x)), r)
Equation 2: Eq(log(4)/log(2), r)

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 2: Simplify the equations

from sympy import symbols, log, Eq, solve, simplify
Define symbols
x, r = symbols('x r')
Define the three logarithms
log1 = log(2*x, 8)
log2 = log(x, 4)
log3 = log(x, 2)
Set up equations for geometric progression
eq1 = Eq(log2 / log1, r)
eq2 = Eq(log3 / log2, r)
Simplify equations
eq1_simplified = simplify(eq1)
eq2_simplified = simplify(eq2)
print("Simplified Equation 1:", eq1_simplified)
print("Simplified Equation 2:", eq2_simplified)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

>>> output:
Simplified Equation 1: Eq(r, 3*log(x)/(2*log(x) + 2*log(2)))
Simplified Equation 2: Eq(r, 2)

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 3: Solve the equations

from sympy import symbols, log, Eq, solve, simplify
Define symbols
x, r = symbols('x r')
Define the simplified equations
eq1 = Eq(r, 3*log(x)/(2*log(x) + 2*log(2)))
eq2 = Eq(r, 2)
Solve the system of equations
solution = solve((eq1, eq2), (x, r))
print("Solution:", solution)

>>> output
Solution: [(1/16, 2)]

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 4: Extract the value of x and convert to a fraction

from sympy import symbols,log,Eq, solve, simplify, Rational
Define symbols
x, r = symbols('x r')
Define the solution from the previous step
solution = [(Rational(1, 16), 2)]
Extract the value of x
x_value = solution[0][0]
print("x =", x_value)
Convert x to a fraction
m = x_value.numerator
n = x_value.denominator
print("x as a fraction: {}/{}".format(m, n))

>>> output
x = 1/16
x as a fraction: 1/16

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 5: Calculate m + n

from sympy import symbols,log,Eq, solve, simplify, Rational
Define symbols
x, r = symbols('x r')
Define the solution from the previous step
solution = [(Rational(1, 16), 2)]
Extract the value of x
x_value = solution[0][0]
Convert x to a fraction
m = x_value.numerator
n = x_value.denominator
Calculate m + n
result = m + n
print("m =", m)
print("n =", n)
print("m + n =", result)

>>> output:
m = 1
n = 16
m + n = 17

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

END OF CODE
The final answer is 17

Example Question 2: Consider functions f that satisfy |f(x) − f(y)| ≤ 0.5|x − y| for all real
numbers x and y. Of all such functions that also satisfy the equation f(300) = f(900), what is the
greatest possible value of f(f(800)− f(f(400)))?

Incorrect solution by TIR-ToRA:

To solve this problem, we need to consider the properties of the given function and find the
maximum possible difference between f(f(800)) and f(f(400)). Let’s solve it using python:

def solution():
#Given: |f(x) - f(y)| <= 0.5|x - y| for all real x and y
#Also, f(300) = f(900)
#Maximum difference between f(800) and f(400)
max_diff_800_400 = 0.5 * (800 - 400) # 200
#Maximum value of f(800) - f(400)
max_f800_f400 = max_diff_800_400 # 200
#Maximum difference between f(f(800)) and f(f(400))
max_final_diff = 0.5 * max_f800_f400 # 100
return max_final_diff

result = solution()
print(f"\\boxed{{{result}}}")

>>> output:
\boxed{100}

The answer is 100

Correct solution by SBSC:

Let’s approach this problem step by step using SymPy-based Python code where appropriate.
Step 1: Understand the given condition The condition |f(x) - f(y)| 1/2|x - y| implies that f is a
Lipschitz continuous function with Lipschitz constant 1/2. This means f doesn’t change too
rapidly.
Step 2: Analyze the equation f(300)=f(900).This equation tells us that f takes the same value at
x=300 and x=900. Let’s call this value k.
from sympy import symbols, Abs
k = symbols('k')
print(f"f(300) = f(900) = {k}")

>>> output:
f(300) = f(900) = k

Let’s continue solving this problem step by step.
Step 3: Apply the Lipschitz condition to f(800) and f(400) We can use the Lipschitz condition
to find bounds for f(800) and f(400) in terms of k.
from sympy import symbols, Abs, Min, Max
k = symbols('k')
For f(800)
f_800_min = k - Abs(800 - 900)/2
f_800_max = k + Abs(800 - 900)/2
For f(400)
f_400_min = k - Abs(400 - 300)/2
f_400_max = k + Abs(400 - 300)/2
print(f"f(800) is between {f_800_min} and {f_800_max}")
print(f"f(400) is between {f_400_min} and {f_400_max}")

>>> output:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

f(800) is between k - 50 and k + 50
f(400) is between k - 50 and k + 50

Let’s continue solving this problem step by step.
Step 4: Analyze f(f(800)) and f(f(400)) Now we need to apply the Lipschitz condition again
to f(f(800)) and f(f(400)).

from sympy import symbols, Abs, Min, Max
k = symbols('k')
For f(f(800))
ff_800_min = k - Abs(k + 50 - k)/2
ff_800_max = k + Abs(k - 50 - k)/2
For f(f(400))
ff_400_min = k - Abs(k + 50 - k)/2
ff_400_max = k + Abs(k - 50 - k)/2
print(f"f(f(800)) is between {ff_800_min} and {ff_800_max}")
print(f"f(f(400)) is between {ff_400_min} and {ff_400_max}")

>>> output
f(f(800)) is between k - 25 and k + 25
f(f(400)) is between k - 25 and k + 25

Let’s continue solving this problem step by step.
Step 5: Calculate the maximum possible difference Now we need to find the maximum possible
value of f(f(800))− f(f(400)).

from sympy import symbols, Abs, Min, Max
k = symbols('k')
Maximum possible difference
max_diff = (k + 25) - (k - 25)
print(f"The maximum possible difference f(f(800))-f(f(400))
is {max_diff}")

>>> output:
The maximum possible difference f(f(800)) - f(f(400)) is 50

END OF CODE
The final answer is 50

Example Question 3: Find the number of ordered pairs of positive integers (m,n) such that
m2n = 2020

Incorrect solution by TIR-ToRA:

Let’s approach this problem step-by-step:

1. Iterate through possible values of m up to the square root of 202̂0
2. For each m, check if m2 divides 2020 evenly
3. Return the total count of valid pairs

import math
def solution():

count = 0
target = 20**20
for m in range(1, int(math.sqrt(target)) + 1):

if target % (m**2) == 0:
n = target // (m**2)
count += 1

return count
result = solution()
print(f"The number of ordered pairs (m,n) is:
f"\\boxed{{{result}}}"")

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

>>> output:
TimeoutError: [Errno 110] Connection timed out

Looks like we got a timeout error, let’s try a different approach that should not result in any
error:

import math
def solution():

count = 0
target = 20**20
for m in range(1, int(math.sqrt(target)) + 1):

if target % (m**2) == 0:
n = target // (m**2)
count += 1

return count
result = solution()
print(f"The number of ordered pairs (m,n) is:
f"\\boxed{{{result}}}"")

>>> output:
TimeoutError: [Errno 110] Connection timed out

...
This loop continues without ultimately getting an answer.

Correct solution by SBSC:

Let’s approach this problem step by step using SymPy-based Python code.
Step 1: Define the equation and initialize variables

from sympy import symbols,Eq,solve, divisors, prime_factors
m, n = symbols('m n', positive=True, integer=True)
equation = Eq(m**2 * n, 20**20)
print("Equation:", equation)

>>> output:
ImportError: cannot import name 'prime_factors' from 'sympy'

I apologize for the error. It seems the ‘prime factors‘ function is not available in the version of
SymPy you’re using. Let’s modify our approach and use the ‘factorint‘ function instead, which
is more commonly available. Here’s the corrected code:
Step 1: Define the equation and initialize variables

from sympy import symbols, Eq, solve, divisors, factorint
m, n = symbols('m n', positive=True, integer=True)
equation = Eq(m**2 * n, 20**20)
print("Equation:", equation)

>>> output
Equation: Eq(m**2*n, 104857600000000000000000000)

Let’s continue solving this problem step by step.
Step 2: Factor 2020 and analyze its structure

from sympy import symbols, Eq, solve, divisors, factorint
m, n = symbols('m n', positive=True, integer=True)
equation = Eq(m**2 * n, 20**20)
Factor 20^20
factorization = factorint(20**20)
print("Factorization of 20^20:", factorization)
Analyze the structure
power_of_2 = factorization[2]
power_of_5 = factorization[5]
print("Power of 2:", power_of_2)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

print("Power of 5:", power_of_5)

>>> output
Factorization of 20^20: {2: 40, 5: 20}
Power of 2: 40
Power of 5: 20

Let’s continue solving this problem step by step.
Step 3: Determine possible values for m and n

from sympy import symbols, Eq, solve, divisors, factorint
m, n = symbols('m n', positive=True, integer=True)
equation = Eq(m**2 * n, 20**20)
Factor 20^20
factorization = factorint(20**20)
power_of_2 = factorization[2]
power_of_5 = factorization[5]
Initialize counter for valid pairs
valid_pairs = 0
Iterate through possible values of m
for m_power_of_2 in range(0, power_of_2 + 1, 2):

for m_power_of_5 in range(0, power_of_5 + 1):
Calculate m
m_value = 2**m_power_of_2 * 5**m_power_of_5
Calculate corresponding n
n_power_of_2 = power_of_2 - 2*m_power_of_2
n_power_of_5 = power_of_5 - m_power_of_5
Check if n is a positive integer
if n_power_of_2 >= 0 and n_power_of_5 >= 0:

valid_pairs += 1
print("Number of valid (m,n) pairs:", valid_pairs)

>>> output
Number of valid (m,n) pairs: 231

END OF CODE
The final answer is 231

Example Question 4: Consider the sequence (ak)_k ≥ 1of positive rational numbers defined
by a1 = 2020

2021 and for k ≥ 1 , if ak = m
n for relatively prime positive integers m and n , then

ak+1 = m+18
n+19 . Determine the sum of all positive integers j such that the rational number aj can be

written in the form t
t+1 for some positive integer t

Incorrect solution by TIR-ToRA:

Let’s proceed step-by-step:
1. Generate the sequence of fractions starting from a1 = 2020

2021 .

2. For each term, check if it is in the form t
t+1 for some integer t. If so, add its index to a

running sum.
3. Generate the next term using the given formula.
4. Continue this process until we cycle back to the initial fraction. The sum of indices

where the fraction is in the form t
t+1 is our final answer.

from fractions import Fraction
def next_term(a):

return Fraction(a.numerator + 18, a.denominator + 19)
def is_of_form_t_over_t_plus_1(frac):

return frac.denominator == frac.numerator + 1
def solution():

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

a = Fraction(2020, 2021)
j_sum = 0
j = 1
while True:

if is_of_form_t_over_t_plus_1(a):
j_sum += j

a = next_term(a)
j += 1
Check if we've reached the initial fraction again
if a == Fraction(2020, 2021):

break
return j_sum

result = solution()
print(f"\\boxed{{{result}}}")

Similar to the earlier example, this code results in a TimeOut error and then the loop keeps repeating.

Correct solution by SBSC:

Let’s solve this problem step by step using SymPy-based Python code.
Step 1: Define the sequence and initial value

from sympy import Rational, gcd
def next_term(a):

m, n = a.numerator, a.denominator
return Rational(m + 18, n + 19)

a = [Rational(2020, 2021)]
print(f"a[1] = {a[0]}")

>>> output
a[1] = 2020/2021

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 2: Generate the sequence until we find a term of the form t/(t+1)

from sympy import Rational, gcd
def next_term(a):

m, n = a.numerator, a.denominator
return Rational(m + 18, n + 19)

a = [Rational(2020, 2021)]
j = 1
result = []
while True:

if a[-1].denominator == a[-1].numerator + 1:
result.append(j)
print(f"Found a[{j}] = {a[-1]} of the form t/(t+1)")

j += 1
a.append(next_term(a[-1]))
if j > 100: # Limit to prevent infinite loop

break
print(f"Indices found: {result}")

>>> output
Found a[1] = 2020/2021 of the form t/(t+1)
Found a[2] = 1019/1020 of the form t/(t+1)
Found a[8] = 161/162 of the form t/(t+1)
Found a[18] = 31/32 of the form t/(t+1)
Found a[30] = 19/20 of the form t/(t+1)
Indices found: [1, 2, 8, 18, 30]

Let’s continue solving this problem step by step using SymPy-based Python code.
Step 3: Calculate the sum of the indicesfrom sympy import Rational, gcd

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

def next_term(a):
m, n = a.numerator, a.denominator
return Rational(m + 18, n + 19)

a = [Rational(2020, 2021)]
j = 1
result = []
while True:

if a[-1].denominator == a[-1].numerator + 1:
result.append(j)

j += 1
a.append(next_term(a[-1]))
if j > 100: # Limit to prevent infinite loop

break
sum_of_indices = sum(result)
print(f"Indices found: {result}")
print(f"Sum of indices: {sum_of_indices}")

>>> output
Indices found: [1, 2, 8, 18, 30]
Sum of indices: 59

END OF CODE
The final answer is 59

A.3 PAL EXEMPLARS

In this section, we provide the prompts for Program-Aided Language models (PAL) method. We
initially used the default prompt as mentioned in the original PAL paper, but the results were poor.
We noticed that the response often contained textual reasoning before or after the program, which
isn’t the desired format for PAL. Hence, we modify the instructions to confine the responses only to
include Python program and subsequently, also notice improved accuracy.

For AIME
Let’s use python program to solve math problems.
DO NOT USE ANY TEXTUAL REASONING.
Your response must start with: “‘python
Your response must end with: print(result)

Here are some examples you may refer to.

Example Problem: A frog begins at P0 = (0, 0) and makes a sequence of jumps according to
the following rule: from Pn = (xn, yn), the frog jumps to Pn+1, which may be any of the points
(xn + 7, yn + 2), (xn + 2, yn + 7), (xn − 5, yn − 10), or (xn − 10, yn − 5). There are M points
(x, y) with |x| + |y| ≤ 100 that can be reached by a sequence of such jumps. Find the remainder
when M is divided by 1000.

Example Solution:

def solution():
jumps = [(7, 2), (2, 7), (-5, -10), (-10, -5)]
Set to keep track of all reachable points, starting from the origin
(0, 0).
reachable = set([(0, 0)])
Queue to process points, starting with the origin (0, 0).
queue = [(0, 0)]
Breadth-first search (BFS) to explore reachable points.
while queue:

Pop the first point from the queue.
x, y = queue.pop(0)
Iterate over all possible jumps.
for dx, dy in jumps:

Calculate new coordinates after the jump.
nx, ny = x + dx, y + dy

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Check if the Manhattan distance is within 100 and the point
hasn't been visited.

if abs(nx) + abs(ny) <= 100 and (nx, ny) not in reachable:
Add the new point to the reachable set.
reachable.add((nx, ny))
Add the new point to the queue to explore further.
queue.append((nx, ny))

return len(reachable) % 1000
result = solution()
print(result)

Example Problem: The AIME Triathlon consists of a half-mile swim, a 30-mile bicycle ride, and
an eight-mile run. Tom swims, bicycles, and runs at constant rates. He runs fives times as fast as he
swims, and he bicycles twice as fast as he runs. Tom completes the AIME Triathlon in four and a
quarter hours. How many minutes does he spend bicycling?

Example Solution:
from sympy import symbols, Eq, solve, Rational
def solution():

x = symbols('x')
Set up the equation
eq = Eq(Rational(1,2)/x + 30/(10*x) + 8/(5*x), Rational(17,4))
Solve the equation
solution = solve(eq)[0]
Calculate bicycling time in hours
bike_time = 30 / (10 * solution)
Convert to minutes
bike_time_minutes = int(bike_time * 60)
return bike_time_minutes

result = solution()
print result

Example Problem: Let S be the increasing sequence of positive integers whose binary representation
has exactly 8 ones. Let N be the 1000th number in S . Find the remainder when N is divided by
1000

Example Solution:
def solution():

count = 0 # Initialize a counter to track how many numbers have been
found
n = 1 # Start checking numbers from 1 upwards
while count < 1000: # Continue the loop until we find the 1000th
number

Check if the binary representation of the number 'n' has
exactly 8 '1's

if bin(n).count('1') == 8:
count += 1 # Increment the counter when a number with 8 '1's

is found
If this is the 1000th such number, return the remainder of

n divided by 1000
if count == 1000:

return n % 1000
n += 1 # Move to the next number

result = solution()
print(result)

Example Problem: Two geometric sequences a1, a2, a3, . . . and b1, b2, b3, . . . have the same com-
mon ratio, with a1 = 27 b1 = 99 , and a15 = b11 . Find a9

Example Solution:
def solution():

Initialize known values
a1 = 27

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

b1 = 99
Calculate the common ratio
We know that a15 = b11, so:
a1 * r^14 = b1 * r^10
27 * r^14 = 99 * r^10
27 * r^4 = 99
r^4 = 99/27 = 11/3
r = (11/3) ** (1/4)
Calculate a9
a9 = a1 * (r ** 8)
return round(a9)

result = solution()
print(result)

For AMC:
Let’s use python program to solve math problems.
DO NOT USE ANY TEXTUAL REASONING.
Your response must start with: “‘python
Your response must end with: print(result)

Here are some examples you may refer to.

Example Problem: Small lights are hung on a string 6 inches apart in the order red, red, green,
green, green, red, red, green, green, green, and so on continuing this pattern of 2 red lights followed
by 3 green lights. How many feet separate the 3rd red light and the 21st red light? Note: 1 foot is
equal to 12 inches.

Example Solution:

def solution():
Find position of 3rd red light
n_3rd = 3
complete_cycles_3rd = (n_3rd - 1) // 2
remaining_lights_3rd = (n_3rd - 1) % 2
pos_3rd = complete_cycles_3rd * 5 * 6 + remaining_lights_3rd * 6
Find position of 21st red light
n_21st = 21
complete_cycles_21st = (n_21st - 1) // 2
remaining_lights_21st = (n_21st - 1) % 2
pos_21st = complete_cycles_21st * 5 * 6 + remaining_lights_21st * 6
Calculate the distance in inches
distance_inches = pos_21st - pos_3rd
Convert to feet
distance_feet = distance_inches / 12
return distance_feet

result = solution()
print(result)

Example Problem: A fruit salad consists of blueberries, raspberries, grapes, and cherries. The fruit
salad has a total of 280 pieces of fruit. There are twice as many raspberries as blueberries, three times
as many grapes as cherries, and four times as many cherries as raspberries. How many cherries are
there in the fruit salad?

Example Solution:

from sympy import symbols, Eq, solve
def solution():

Define the symbols for the variables
b, r, g, c = symbols('b r g c')
Define the equations based on the problem statement
eq1 = Eq(r, 2*b) # Equation 1: r = 2b
eq2 = Eq(g, 3*c) # Equation 2: g = 3c
eq3 = Eq(c, 4*r) # Equation 3: c = 4r
eq4 = Eq(b + r + g + c, 280) # Equation 4: b + r + g + c = 280
Solve the system of equations

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

sol = solve((eq1, eq2, eq3, eq4))
return sol[c]

result = solution()
print(result)

Example Problem: Last summer 30% of the birds living on Town Lake were geese, 25% were
swans, 10% were herons, and 35% were ducks. What percent of the birds that were not swans were
geese?

Example Solution:

def solution():
Total percentage of all birds
total = 100
Percentages of each bird type
geese = 30
swans = 25
herons = 10
ducks = 35
Calculate percentage of birds that are not swans
not_swans = total - swans
Calculate percentage of geese among birds that are not swans
geese_among_not_swans = (geese / not_swans) * 100
Round to nearest whole number
return round(geese_among_not_swans)

result = solution()
print(result)

Example Problem: At a twins and triplets convention, there were 9 sets of twins and 6 sets of triplets,
all from different families. Each twin shook hands with all the twins except his/her siblings and with
half the triplets. Each triplet shook hands with all the triplets except his/her siblings and with half the
twins. How many handshakes took place?

Example Solution:

def solution():
Number of twins and triplets
twins = 9 * 2
triplets = 6 * 3
Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2
Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2
Handshakes between twins and triplets
twin_triplet_handshakes = (twins * triplets) // 2
Total handshakes
total_handshakes = twin_handshakes + triplet_handshakes +
twin_triplet_handshakes
return total_handshakes

result = solution()
print(result)

A.4 TIR-TORA EXEMPLARS

For AIME
Integrate step-by-step reasoning and Python code to solve math problems using the following
guidelines:

- Analyze the question and write functions to solve the problem; the function should not take any
arguments.
- Present the final result in LaTeX using a ‘ ‘ without any units.
- Utilize the ‘pi‘ symbol and ‘Rational“ from Sympy for π and fractions, and simplify all fractions
and square roots without converting them to decimal values.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Once you get the code output, just display the output answer within ‘ ‘ and terminate.

Here are some examples you may refer to:

Example Problem: A frog begins at P0 = (0, 0) and makes a sequence of jumps according to
the following rule: from Pn = (xn, yn), the frog jumps to Pn+1, which may be any of the points
(xn + 7, yn + 2), (xn + 2, yn + 7), (xn − 5, yn − 10), or (xn − 10, yn − 5). There are M points
(x, y) with |x| + |y| ≤ 100 that can be reached by a sequence of such jumps. Find the remainder
when M is divided by 1000.

Example Solution:
Let’s approach this problem step-by-step:

1. We need to find all points (x, y) that the frog can reach within the given constraint |x| + |y|
100.

2. We’ll use a breadth-first search (BFS) algorithm to explore all possible points.

3. We’ll keep track of visited points to avoid revisiting them.

4. We’ll count the number of unique points visited.

Here’s the Python code to solve this:

from collections import deque
def count_reachable_points():

Possible jumps
jumps = [(7, 2), (2, 7), (-5, -10), (-10, -5)]
Set to store visited points
visited = set([(0, 0)])
Queue for BFS
queue = deque([(0, 0)])
while queue:

x, y = queue.popleft()
for dx, dy in jumps:

new_x, new_y = x + dx, y + dy
Check if the new point is within the constraint and not

visited
if abs(new_x) + abs(new_y) <= 100 and (new_x, new_y) not in

visited:
visited.add((new_x, new_y))
queue.append((new_x, new_y))

Count of reachable points is the size of visited set
M = len(visited)
Return the remainder when M is divided by 1000
return M % 1000

result = count_reachable_points()
print(f"\\boxed{{{result}}}")

>>> output
\boxed{373}

The answer is 373

Example Problem: The AIME Triathlon consists of a half-mile swim, a 30-mile bicycle ride, and
an eight-mile run. Tom swims, bicycles, and runs at constant rates. He runs fives times as fast as he
swims, and he bicycles twice as fast as he runs. Tom completes the AIME Triathlon in four and a
quarter hours. How many minutes does he spend bicycling?

Example Solution:
Let’s approach this problem step-by-step:

1. Let’s define variables:
- Let x be Tom’s swimming speed in miles per hour
- Then 5x is his running speed in miles per hour
- And 10x is his bicycling speed in miles per hour

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

2. We can set up equations based on the given information:
- Swimming time: 0.5 / x hours
- Bicycling time: 30 / (10x) hours
- Running time: 8 / (5x) hours

3. The total time is 4.25 hours, so we can set up an equation:
0.5/x + 30/(10x) + 8/(5x) = 4.25

4. Let’s solve this equation and find the bicycling time.

Here’s the Python code to solve this:

from sympy import symbols, Eq, solve, Rational
def solve_triathlon():

x = symbols('x')
Set up the equation
eq = Eq(Rational(1,2)/x + 30/(10*x) + 8/(5*x), Rational(17,4))
Solve the equation
solution = solve(eq)[0]
Calculate bicycling time in hours
bike_time = 30 / (10 * solution)
Convert to minutes
bike_time_minutes = int(bike_time * 60)
return f"\\boxed{{{bike_time_minutes}}}"

print(solve_triathlon())

>>> output:
\boxed{150}

The answer is 150

Example Problem: Let S be the increasing sequence of positive integers whose binary representation
has exactly 8 ones. Let N be the 1000th number in S . Find the remainder when N is divided by
1000

Example Solution:
Let’s approach this step-by-step:

1. We need to generate the sequence S of numbers with exactly 8 ones in their binary represen-
tation.

2. We’ll find the 1000th number in this sequence.

3. Finally, we’ll calculate the remainder when this number is divided by 1000.

Here’s the Python code to solve this:

def count_ones(n):
return bin(n).count('1')

def solution():
count = 0
n = 1
while count < 1000:

if count_ones(n) == 8:
count += 1
if count == 1000:

return n % 1000
n += 1

result = solution()
print(result)

>>> output:
\boxed{32}

The answer is 32

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Example Problem: Two geometric sequences a1, a2, a3, . . . and b1, b2, b3, . . . have the same com-
mon ratio, with a1 = 27 b1 = 99 , and a15 = b11 . Find a9

Example Solution:
Let’s approach this step-by-step:

1. Let’s denote the common ratio as r.

2. We can express a and b in terms of their first terms and r.

3. We can then equate these expressions to find r.

4. Once we have r, we can calculate a.

Here’s the Python code to solve this:

from sympy import symbols, Eq, solve, Rational
def find_a9():

r = symbols('r')
a = a * r
b = b * r
a = b
eq = Eq(27 * r**14, 99 * r**10)
Solve for r
solution = solve(eq)
We expect only one positive real solution
r_value = [sol for sol in solution if sol.is_real and sol > 0][0]
Calculate a
a9 = 27 * r_value**8
return a9

result = find_a9()
print(f"\\boxed{{{result}}}")

>>> output
\boxed{363}

The answer is 363

For AMC

Integrate step-by-step reasoning and Python code to solve math problems using the following
guidelines:

- Analyze the question and write functions to solve the problem; the function should not take any
arguments. - Present the final result in LaTeX using a ‘ ‘ without any units. - Utilize the ‘pi‘ symbol
and ‘Rational“ from Sympy for π and fractions, and simplify all fractions and square roots without
converting them to decimal values.

Once you get the code output, just display the output answer within ‘ ‘ and terminate. Here are some
examples you may refer to:

Example Problem: Small lights are hung on a string 6 inches apart in the order red, red, green,
green, green, red, red, green, green, green, and so on continuing this pattern of 2 red lights followed
by 3 green lights. How many feet separate the 3rd red light and the 21st red light? Note: 1 foot is
equal to 12 inches.

Example Solution:
Let’s approach this step-by-step:

1. First, we need to understand the pattern of lights:
- Every 5 lights (2 red + 3 green) complete one cycle of the pattern.
- Each cycle is 30 inches long (5 lights * 6 inches).

2. We need to find how many complete cycles are between the 3rd and 21st red lights:
- 3rd red light is at the end of the 2nd cycle (as each cycle has 2 red lights).
- 21st red light is at the end of the 11th cycle (as 21 ÷ 2 = 10.5, rounded up to 11).
- So there are 9 complete cycles between them (11 - 2 = 9).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

3. Calculate the distance:
- 9 cycles * 30 inches per cycle = 270 inches
- Convert 270 inches to feet: 270 ÷ 12 = 22.5 feet

Here’s the Python code to solve this:

from sympy import Rational
def calculate_distance():

lights_per_cycle = 5
inches_per_light = 6
inches_per_cycle = lights_per_cycle * inches_per_light
start_cycle = 2 # 3rd red light is at the end of 2nd cycle
end_cycle = 11 # 21st red light is at the end of 11th cycle
cycles_between = end_cycle - start_cycle
total_inches = cycles_between * inches_per_cycle
total_feet = Rational(total_inches, 12)
return f"\\boxed{{{total_feet}}}"

print(calculate_distance())

>>> output:
\boxed{45/2}

The answer is 45/2

Example Problem: A fruit salad consists of blueberries, raspberries, grapes, and cherries. The fruit
salad has a total of 280 pieces of fruit. There are twice as many raspberries as blueberries, three times
as many grapes as cherries, and four times as many cherries as raspberries. How many cherries are
there in the fruit salad?

Example Solution:
Let’s approach this problem step-by-step:

1. Let’s define variables for each fruit:
b = number of blueberries
r = number of raspberries
g = number of grapes
c = number of cherries

2. We can set up equations based on the given information:
r = 2b (twice as many raspberries as blueberries)
g = 3c (three times as many grapes as cherries)
c = 4r (four times as many cherries as raspberries)

3. We also know that the total number of fruits is 280:
b + r + g + c = 280

4. Now, let’s write a Python function to solve this system of equations:

from sympy import symbols, Eq, solve
def solve_fruit_salad():

b, r, g, c = symbols('b r g c')
eq1 = Eq(r, 2*b)
eq2 = Eq(g, 3*c)
eq3 = Eq(c, 4*r)
eq4 = Eq(b + r + g + c, 280)
solution = solve((eq1, eq2, eq3, eq4))
return f"\\boxed{{{solution[c]}}}"

print(solve_fruit_salad())

>>> output:
\boxed{64}

The answer is 64

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Example Problem: Last summer 30% of the birds living on Town Lake were geese, 25% were
swans, 10% were herons, and 35% were ducks. What percent of the birds that were not swans were
geese?

Example Solution:
Let’s approach this step-by-step:

1. First, we need to calculate the percentage of birds that were not swans.

2. Then, we’ll calculate what percentage of this non-swan group were geese.

Here’s the Python code to solve this:

from sympy import Rational
def calculate_geese_percentage():

Total percentage of birds
total = 100
Percentage of swans
swans = 25
Percentage of non-swans
non_swans = total - swans
Percentage of geese among all birds
geese = 30
Calculate the percentage of geese among non-swans
geese_among_non_swans = Rational(geese, non_swans) * 100
Simplify the fraction
result = geese_among_non_swans.simplify()
return f"\\boxed{{{result}}}"

print(calculate_geese_percentage())

>>> output
\boxed{40}

The answer is 40

Example Problem: At a twins and triplets convention, there were 9 sets of twins and 6 sets of triplets,
all from different families. Each twin shook hands with all the twins except his/her siblings and with
half the triplets. Each triplet shook hands with all the triplets except his/her siblings and with half the
twins. How many handshakes took place?

Example Solution:
Let’s approach this problem step-by-step:

1. Calculate the number of handshakes between twins

2. Calculate the number of handshakes between triplets

3. Calculate the number of handshakes between twins and triplets

4. Sum up all handshakes

Here’s the Python code to solve this:

from sympy import Rational
def calculate_handshakes():

Number of twins and triplets
twins = 9 * 2
triplets = 6 * 3
Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2 # Each twin shakes
hands with all but 1 other twin
Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2 # Each triplet
shakes hands with all but 2 other triplets
Handshakes between twins and triplets
twin_triplet_handshakes = twins * triplets * Rational(1, 2) # Each
twin shakes hands with half the triplets

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Total handshakes
total_handshakes = twin_handshakes + triplet_handshakes +
twin_triplet_handshakes
return f"\\boxed{{{int(total_handshakes)}}}"

print(calculate_handshakes())

>>> output
\boxed{441}

The answer is 441

A.5 SBSC PROMPT FOR AMC

You are given a math problem and you need to think of a stepwise approach/process to be followed to
solve the problem. Use sympy-based python code to codify each of these steps in sequential manner.
You must end each of your code snippet with a print statement followed by output in the next line.
Use the results from the output of the code snippets of each step and continue to the next step until
you finish the final step and solve the problem completely.
In each new code block, you must define the variables and symbols again based on the previous code
snippets or their outputs as suitable.
Use sympy in appropriate way, as and when required.
Once you complete the last step, write this line: ### END OF CODE
Then just print the final numeric answer (without any units) like this: The final answer is boxed{}.
If the executed code snippet returns an error, use it to correct the current step’s code snippet. DO
NOT restart solving from Step 1.

Here are a few examples for your reference.

Example Problem: Small lights are hung on a string 6 inches apart in the order red, red, green,
green, green, red, red, green, green, green, and so on continuing this pattern of 2 red lights followed
by 3 green lights. How many feet separate the 3rd red light and the 21st red light? Note: 1 foot is
equal to 12 inches.

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the pattern and calculate the number of lights in one complete pattern

from sympy import symbols, Rational
Define the number of red and green lights in one pattern
red_lights_per_pattern = 2
green_lights_per_pattern = 3
Calculate total lights in one pattern
lights_per_pattern = red_lights_per_pattern + green_lights_per_pattern
print(f"Number of lights in one complete pattern: {lights_per_pattern}")

>>> output:
Number of lights in one complete pattern: 5

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Calculate the number of complete patterns between the 3rd and 21st red lights

from sympy import symbols, Rational
Define the number of red lights we're considering
start_red_light = 3
end_red_light = 21
Calculate the number of red lights between the 3rd and 21st (inclusive)
red_lights_between = end_red_light - start_red_light + 1
Calculate the number of complete patterns
complete_patterns = (red_lights_between - 1) // 2
print(f"Number of complete patterns between the 3rd and 21st red lights:

{complete_patterns}")

>>> output:
Number of complete patterns between the 3rd and 21st red lights: 9

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Calculate the total number of lights between the 3rd and 21st red lights

from sympy import symbols, Rational
Define the number of red and green lights in one pattern
red_lights_per_pattern = 2
green_lights_per_pattern = 3
lights_per_pattern = red_lights_per_pattern + green_lights_per_pattern
Number of complete patterns
complete_patterns = 9
Calculate total lights
total_lights = complete_patterns * lights_per_pattern + 1 # +1 for the

21st red light
print(f"Total number of lights between the 3rd and 21st red lights (

inclusive): {total_lights}")

>>> output:
Total number of lights between the 3rd and 21st red lights (inclusive):

46

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Calculate the total distance in inches

from sympy import symbols, Rational
Total number of lights
total_lights = 46
Distance between lights in inches
distance_between_lights = 6
Calculate total distance in inches
total_distance_inches = (total_lights - 1) * distance_between_lights
print(f"Total distance in inches: {total_distance_inches}")

>>> output:
Total distance in inches: 270

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Convert the distance from inches to feet

from sympy import symbols, Rational
Total distance in inches
total_distance_inches = 270
Convert inches to feet
inches_per_foot = 12
total_distance_feet = Rational(total_distance_inches, inches_per_foot)
print(f"Total distance in feet: {total_distance_feet}")

>>> output:
Total distance in feet: 45/2

END OF CODE

The final answer is
45

2

Example Problem: A fruit salad consists of blueberries, raspberries, grapes, and cherries. The fruit
salad has a total of 280 pieces of fruit. There are twice as many raspberries as blueberries, three times
as many grapes as cherries, and four times as many cherries as raspberries. How many cherries are
there in the fruit salad?

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.
Step 1: Define the variables and set up the equations

from sympy import symbols, Eq, solve
Define symbols for each type of fruit
b, r, g, c = symbols('b r g c')
Set up equations based on the given information

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

eq1 = Eq(b + r + g + c, 280) # Total pieces of fruit
eq2 = Eq(r, 2*b) # Twice as many raspberries as blueberries
eq3 = Eq(g, 3*c) # Three times as many grapes as cherries
eq4 = Eq(c, 4*r) # Four times as many cherries as raspberries
print("Equations:")
print(eq1)
print(eq2)
print(eq3)
print(eq4)

>>> output:
Equations:
Eq(b + c + g + r, 280)
Eq(r, 2*b)
Eq(g, 3*c)
Eq(c, 4*r)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Solve the system of equations
from sympy import symbols, Eq, solve
Define symbols for each type of fruit
b, r, g, c = symbols('b r g c')
Set up equations based on the given information
eq1 = Eq(b + r + g + c, 280) # Total pieces of fruit
eq2 = Eq(r, 2*b) # Twice as many raspberries as blueberries
eq3 = Eq(g, 3*c) # Three times as many grapes as cherries
eq4 = Eq(c, 4*r) # Four times as many cherries as raspberries
Solve the system of equations
solution = solve((eq1, eq2, eq3, eq4))
print("Solution:")
print(solution)

>>> output:
Solution:
{b: 8, c: 64, g: 192, r: 16}

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Extract the number of cherries from the solution
from sympy import symbols, Eq, solve
Define symbols for each type of fruit
b, r, g, c = symbols('b r g c')
Set up equations based on the given information
eq1 = Eq(b + r + g + c, 280) # Total pieces of fruit
eq2 = Eq(r, 2*b) # Twice as many raspberries as blueberries
eq3 = Eq(g, 3*c) # Three times as many grapes as cherries
eq4 = Eq(c, 4*r) # Four times as many cherries as raspberries
Solve the system of equations
solution = solve((eq1, eq2, eq3, eq4))
Extract the number of cherries
cherries = solution[c]
print(f"The number of cherries in the fruit salad is: {cherries}")

>>> output:
The number of cherries in the fruit salad is: 64

END OF CODE The final answer is 64

Example Problem: Last summer 30% of the birds living on Town Lake were geese, 25% were
swans, 10% were herons, and 35% were ducks. What percent of the birds that were not swans were
geese?

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the percentages of each type of bird

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

from sympy import symbols, Rational
geese = Rational(30, 100)
swans = Rational(25, 100)
herons = Rational(10, 100)
ducks = Rational(35, 100)
print(f"Percentage of geese: {geese}")
print(f"Percentage of swans: {swans}")
print(f"Percentage of herons: {herons}")
print(f"Percentage of ducks: {ducks}")

>>> output:
Percentage of geese: 3/10
Percentage of swans: 1/4
Percentage of herons: 1/10
Percentage of ducks: 7/20

Let’s continue with the next steps to solve this problem. Step 2: Calculate the percentage of birds
that are not swans

from sympy import symbols, Rational
geese = Rational(30, 100)
swans = Rational(25, 100)
herons = Rational(10, 100)
ducks = Rational(35, 100)
not_swans = 1 - swans
print(f"Percentage of birds that are not swans: {not_swans}")

>>> output:
Percentage of birds that are not swans: 3/4

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Calculate the percentage of geese among the birds that are not swans

from sympy import symbols, Rational
geese = Rational(30, 100)
swans = Rational(25, 100)
herons = Rational(10, 100)
ducks = Rational(35, 100)
not_swans = 1 - swans
geese_among_not_swans = geese / not_swans
print(f"Percentage of geese among birds that are not swans: {

geese_among_not_swans}")

>>> output:
Percentage of geese among birds that are not swans: 2/5

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Convert the fraction to a percentage

from sympy import symbols, Rational
geese = Rational(30, 100)
swans = Rational(25, 100)
herons = Rational(10, 100)
ducks = Rational(35, 100)
not_swans = 1 - swans
geese_among_not_swans = geese / not_swans
percentage = geese_among_not_swans * 100
print(f"Percentage of geese among birds that are not swans: {percentage}%

")

>>> output:
Percentage of geese among birds that are not swans: 40%

END OF CODE

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

The final answer is 40

Example Problem: At a twins and triplets convention, there were 9 sets of twins and 6 sets of triplets,
all from different families. Each twin shook hands with all the twins except his/her siblings and with
half the triplets. Each triplet shook hands with all the triplets except his/her siblings and with half the
twins. How many handshakes took place?

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the given information

from sympy import symbols, Rational
Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
print(f"Number of twins: {twins}")
print(f"Number of triplets: {triplets}")

>>> output:
Number of twins: 18
Number of triplets: 18

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Calculate handshakes between twins

from sympy import symbols, Rational
Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2 # Each twin shakes hands

with all twins except self and sibling
print(f"Handshakes between twins: {twin_handshakes}")

>>> output
Handshakes between twins: 144

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Calculate handshakes between triplets

from sympy import symbols, Rational
Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2
Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2 # Each triplet

shakes hands with all triplets except self and two siblings
print(f"Handshakes between triplets: {triplet_handshakes}")

>>> output
Handshakes between triplets: 135

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Calculate handshakes between twins and triplets

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

from sympy import symbols, Rational
Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2
Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2
Handshakes between twins and triplets
twin_triplet_handshakes = twins * (triplets // 2) # Each twin shakes

hands with half the triplets
print(f"Handshakes between twins and triplets: {twin_triplet_handshakes}"

)

>>> output:
Handshakes between twins and triplets: 162

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Calculate the total number of handshakes
from sympy import symbols, Rational
Number of sets of twins and triplets
twin_sets = 9
triplet_sets = 6
Number of individuals
twins = twin_sets * 2
triplets = triplet_sets * 3
Handshakes between twins
twin_handshakes = (twins * (twins - 2)) // 2
Handshakes between triplets
triplet_handshakes = (triplets * (triplets - 3)) // 2
Handshakes between twins and triplets
twin_triplet_handshakes = twins * (triplets // 2)
Total handshakes
total_handshakes = twin_handshakes + triplet_handshakes +

twin_triplet_handshakes
print(f"Total number of handshakes: {total_handshakes}")

>>> output
Total number of handshakes: 441

END OF CODE

The final answer is 441

A.6 SBSC PROMPT FOR AIME

You are given a math problem and you need to think of a stepwise approach/process to be followed to
solve the problem. Use sympy-based python code to codify each of these steps in sequential manner.
You must end each of your code snippet with a print statement followed by output in the next line.
Use the results from the output of the code snippets of each step and continue to the next step until
you finish the final step and solve the problem completely.
In each new code block, you must define the variables and symbols again based on the previous code
snippets or their outputs as suitable.
Use sympy in appropriate way, as and when required.
Once you complete the last step, write this line: ### END OF CODE
Then just print the final numeric answer (without any units) like this: The final answer is boxed{}.
If the executed code snippet returns an error, use it to correct the current step’s code snippet. DO
NOT restart solving from Step 1.

Here are a few examples for your reference.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Example Problem: A frog begins at P0 = (0, 0) and makes a sequence of jumps according to
the following rule: from Pn = (xn, yn), the frog jumps to Pn+1, which may be any of the points
(xn + 7, yn + 2), (xn + 2, yn + 7), (xn − 5, yn − 10), or (xn − 10, yn − 5). There are M points
(x, y) with |x| + |y| ≤ 100 that can be reached by a sequence of such jumps. Find the remainder
when M is divided by 1000.

Example Solution: Let’s approach this problem step by step using SymPy-based Python code.

Step 1: Import necessary libraries and define the jump rules

from sympy import symbols, Abs
import numpy as np
Define the possible jumps from any position (x, y)
def jumps(x, y):

return [
(x + 7, y + 2), # Jump by (7, 2)
(x + 2, y + 7), # Jump by (2, 7)
(x - 5, y - 10), # Jump by (-5, -10)
(x - 10, y - 5) # Jump by (-10, -5)

]
print("Jump rules defined.")

>>> output
Jump rules defined.

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Implement a breadth-first search to find all reachable points

from sympy import symbols, Abs
import numpy as np
from collections import deque
Reuse the jumps function to define possible moves
def jumps(x, y):

return [
(x + 7, y + 2),
(x + 2, y + 7),
(x - 5, y - 10),
(x - 10, y - 5)

]
Define the breadth-first search (BFS) function
def bfs():

queue = deque([(0, 0)]) # Start BFS from the point (0, 0)
visited = set([(0, 0)]) # Keep track of visited points to avoid
reprocessing
Process each point in the queue
while queue:

x, y = queue.popleft()
for nx, ny in jumps(x, y): # Try all possible jumps from the

current point
if (nx, ny) not in visited and abs(nx) + abs(ny) <= 100:

visited.add((nx, ny)) # Mark the new point as visited
queue.append((nx, ny)) # Add the new point to the queue

to explore further
return len(visited) y

M = bfs()
print(f"Number of reachable points (M): {M}")

>>> output:
Number of reachable points (M): 1373

Let’s continue with the final step to solve this problem. Step 3: Calculate the remainder when M is
divided by 1000

from sympy import symbols, Abs
import numpy as np
M = 1373 # M_value from previous step

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Find the remainder when M is divided by 1000
remainder = M % 1000
print(f"Remainder when M is divided by 1000: {remainder}")

>>> output
Remainder when M is divided by 1000: 373

END OF CODE

The final answer is 373

Example Problem: The AIME Triathlon consists of a half-mile swim, a 30-mile bicycle ride, and
an eight-mile run. Tom swims, bicycles, and runs at constant rates. He runs fives times as fast as he
swims, and he bicycles twice as fast as he runs. Tom completes the AIME Triathlon in four and a
quarter hours. How many minutes does he spend bicycling?

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the variables and set up the basic equations

from sympy import symbols, Eq, solve
Define variables
s, b, r = symbols('s b r') # s: swim speed, b: bike speed, r: run speed
Set up equations based on the given information
eq1 = Eq(r, 5*s) # Tom runs 5 times as fast as he swims
eq2 = Eq(b, 2*r) # Tom bicycles twice as fast as he runs
print("Equation 1:", eq1)
print("Equation 2:", eq2)

>>> output
Equation 1: Eq(r, 5*s)
Equation 2: Eq(b, 2*r)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Set up the equation for the total time

from sympy import symbols, Eq, solve
Reuse earlier code
s, b, r = symbols('s b r')
eq1 = Eq(r, 5*s)
eq2 = Eq(b, 2*r)
Total time equation (in hours)
total_time = 0.5/s + 30/b + 8/r #The AIME Triathlon consists of a half-

mile swim, a 30-mile bicycle ride, and an eight-mile run.
eq3 = Eq(total_time, 4.25) # Total time is 4.25 hours
print("Total time equation:", eq3)

>>> output:
Total time equation: Eq(0.5/s + 8/r + 30/b, 4.25)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Substitute the relationships between speeds into the total time equation

from sympy import symbols, Eq, solve, simplify
Resue earlier code
s, b, r = symbols('s b r')
eq1 = Eq(r, 5*s)
eq2 = Eq(b, 2*r)
total_time = 0.5/s + 30/b + 8/r
eq3 = Eq(total_time, 4.25) # Total time is 4.25 hours
Substitute r and b in terms of s to simplify the equation
eq3_substituted = eq3.subs([(r, 5*s), (b, 10*s)])
eq3_simplified = simplify(eq3_substituted)
print("Simplified equation:", eq3_simplified)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

>>> output:
Simplified equation: Eq(5.1/s, 4.25)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Solve for the swim speed (s)
from sympy import symbols, Eq, solve, simplify
Redefine variables
s, b, r = symbols('s b r') # s: swim speed, b: bike speed, r: run speed
Simplified equation from previous step
eq3_simplified = Eq(5.1/s, 4.25)
Solve for s
s_solution = solve(eq3_simplified, s)
print("Swim speed (s):", s_solution[0])

>>> output
Swim speed (s): 1.20000000000000

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Calculate the bike speed (b)
from sympy import symbols, Eq, solve, simplify
Redefine variables
s, b, r = symbols('s b r') # s: swim speed, b: bike speed, r: run speed
Swim speed from previous step
s_value = 1.20000000000000
Calculate bike speed
b_value = 10 * s_value # b = 2r = 2(5s) = 10s
print("Bike speed (b):", b_value)

>>> output
Bike speed (b): 12.0

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 6: Calculate the time spent bicycling
from sympy import symbols, Eq, solve, simplify
Redefine variables
s, b, r = symbols('s b r') # s: swim speed, b: bike speed, r: run speed
Bike speed from previous step
b_value = 12.0
Calculate time spent bicycling
bike_distance = 30 # miles
bike_time = bike_distance / b_value # hours
Convert to minutes
bike_time_minutes = bike_time * 60
print("Time spent bicycling (in minutes):", bike_time_minutes)

>>> output
Time spent bicycling (in minutes): 150.0

END OF CODE

The final answer is 150

Example Problem: Let S be the increasing sequence of positive integers whose binary representation
has exactly 8 ones. Let N be the 1000th number in S . Find the remainder when N is divided by
1000

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Import necessary libraries and define a function to count ones in binary representation
from sympy import symbols, binomial
import math
Function to count the number of '1's in the binary representation of a

number

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

def count_ones(n):
return bin(n).count('1') # Convert n to binary and count occurrences
of '1'

print("Function to count ones in binary representation defined.")

>>> output:
Function to count ones in binary representation defined.

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Find the smallest number in the sequence S

from sympy import symbols, binomial
import math
Reuse the function to count the number of '1's in binary
def count_ones(n):

return bin(n).count('1')
The smallest number in the sequence S is represented by 8 consecutive

'1's in binary
smallest_number = int('1' * 8, 2) # Convert '11111111' (binary) to

decimal
print(f"The smallest number in sequence S is: {smallest_number}")

>>> output
The smallest number in sequence S is: 255

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Find the largest number in the sequence S

from sympy import symbols, binomial
import math
Reuse the function to count the number of '1's in binary
def count_ones(n):

return bin(n).count('1')
smallest_number = int('1' * 8, 2)
The largest number in sequence S is represented by 8 consecutive '1's

followed by 24 '0's
largest_number = int('1' * 8 + '0' * 24, 2) # Convert

'11111111000000000000000000000000' to decimal
print(f"The largest number in sequence S is: {largest_number}")

>>> output
The largest number in sequence S is: 4278190080

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Calculate the total number of elements in sequence S

from sympy import symbols, binomial
import math
def count_ones(n):

return bin(n).count('1')
smallest_number = int('1' * 8, 2)
largest_number = int('1' * 8 + '0' * 24, 2)
Calculate the total number of elements in sequence S using binomial(32,

8)
This represents the number of ways to choose 8 positions out of 32 bits

to set to '1'
total_elements = binomial(32, 8)
print(f"The total number of elements in sequence S is: {total_elements}")

>>> output
The total number of elements in sequence S is: 10518300

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Find the 1000th number in sequence S

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

from sympy import symbols, binomial
import math
#Reuse all earlier code
def count_ones(n):

return bin(n).count('1')
smallest_number = int('1' * 8, 2)
largest_number = int('1' * 8 + '0' * 24, 2)
total_elements = binomial(32, 8)
Find the 1000th number in the sequence
count = 0 # Initialize a counter for the sequence
N = smallest_number # Start from the smallest number in S
Iterate through numbers and check for 8 '1's in the binary

representation
while count < 1000:

if count_ones(N) == 8: # If the current number has exactly 8 '1's
count += 1 # Increment the count

if count == 1000: # Stop if we've found the 1000th number
break

N += 1 # Move to the next number
print(f"The 1000th number (N) in sequence S is: {N}")

>>> output
The 1000th number (N) in sequence S is: 7032

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 6: Calculate the remainder when N is divided by 1000

from sympy import symbols, binomial
import math
def count_ones(n):

return bin(n).count('1')
N = 7032 # From the previous step
Calculate the remainder when N is divided by 1000
remainder = N % 1000
print(f"The remainder when N is divided by 1000 is: {remainder}")

>>> output
The remainder when N is divided by 1000 is: 32

END OF CODE

The final answer is 32

Example Problem: Two geometric sequences a1, a2, a3, . . . and b1, b2, b3, . . . have the same com-
mon ratio, with a1 = 27 b1 = 99 , and a15 = b11 . Find a9

Example Solution: Let’s solve this problem step by step using SymPy-based Python code.

Step 1: Define the variables and set up the initial conditions

from sympy import symbols, Eq, solve
Define symbols
r = symbols('r') # common ratio
a1, b1 = 27, 99 # first terms of sequences a and b
print(f"a1 = {a1}, b1 = {b1}")
print("Common ratio is represented by r")

>>> output
a1 = 27, b1 = 99
Common ratio is represented by r

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 2: Set up the equation for a15 = b11

from sympy import symbols, Eq, solve
Redefine symbols

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

r = symbols('r')
a1, b1 = 27, 99
Set up the equation a15 = b11
eq = Eq(a1 * r**14, b1 * r**10)
print("Equation: a15 = b11")
print(f"Symbolically: {eq}")

>>> output
Equation: a15 = b11
Symbolically: Eq(27*r**14, 99*r**10)

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 3: Solve the equation for r

from sympy import symbols, Eq, solve
Redefine symbols
r = symbols('r')
a1, b1 = 27, 99
Set up the equation a15 = b11
eq = Eq(a1 * r**14, b1 * r**10)
Solve for r
solution = solve(eq, r)
print("Solutions for r:")
print(solution)

>>> output
Solutions for r:
[0, -11**(1/4)*3**(3/4)/3, 11**(1/4)*3**(3/4)/3]

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 4: Identify the correct value for r

from sympy import symbols, Eq, solve, N
Reuse earlier code
r = symbols('r')
a1, b1 = 27, 99
eq = Eq(a1 * r**14, b1 * r**10)
solution = solve(eq, r)
The correct value for r is the positive real solution
r_value = max(sol for sol in solution if sol.is_real)
print(f"The common ratio r is: {N(r_value, 6)}")

>>> output
The common ratio r is: 1.38378

Let’s continue with the next steps to solve this problem and leveraging the outputs of previous steps.
Step 5: Calculate a9

from sympy import symbols, Eq, solve, N
Reuse earlier code
r = symbols('r')
a1, b1 = 27, 99
eq = Eq(a1 * r**14, b1 * r**10)
solution = solve(eq, r)
r_value = max(sol for sol in solution if sol.is_real)
Calculate a9
a9 = a1 * r_value**8
print(f"a9 = {N(a9, 10)}")

>>> output
a9 = 363.0000000

END OF CODE

The final answer is 363

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

A.7 RESULTS WITH STANDARD DEVIATIONS

We present the main table results along with standard deviation scores.

Table 4: Benchmarking SBSC against different math reasoning methods across three datasets.
We report average accuracy over 3 runs with standard deviation within parentheses. Best result in each
setting is highlighted in bold and second best is underlined. Absolute improvement in performance
by SBSC over the previous best method in each setting is indicated in subscript.

Method AMC AIME MathOdyssey Olympiad Bench
greedy maj@7 greedy maj@7 greedy maj@7 greedy maj@7

Claude-3.5-Sonnet
COT 31.16 (±1.0) 35.79 9.09 (±1.0) 10.91 11.89 (±0.6) 16.89 39.35 (±0.47) 42.46
PAL 35.79 (±1.0) 36.42 27.48 (±0.6) 28.79 27.23 (±0.6) 31.01 41.07 (±0.82) 44.44
TIR-ToRA 38.59 (±0.6) 43.16 24.64 (±3.2) 26.67 27.23 (±0.6) 32.43 47.69 (±0.47) 50.60
SBSC (Ours) 49.33 (±3.1)↑10.7 -↑6.2 35.45 (±1.7)↑8 -↑6.7 39.86 (±1.0)↑12.6 -↑7.4 53.31 (±0.94)↑5.6 -↑2.7

GPT-4o
COT 35.94 (±0.6) 37.47 10.39 (±2.1) 12.12 13.51 (±1.0) 17.57 41.80 (±1.89) 47.22
PAL 36.48 (±0.6) 38.11 24.63 (±0.6) 26.97 15.74 (±0.6) 20.27 41.67 (±2.16) 46.43
TIR-ToRA 37.33 (±2.5) 40.42 22.42 (±1.7) 25.45 19.59 (±2.6) 23.64 43.32 (±1.70) 49.61
SBSC (Ours) 44.55 (±0.6)↑7.2 -↑4.1 30.7 (±1.1)↑6.1 -↑3.7 26.55 (±1.1)↑7 -↑2.9 48.74 (±1.89))↑5.4 -↓0.87

A.8 LEAST-TO-MOST PROMPTING

Least-to-Most (L2M) (Zhou et al., 2022) is a two-stage prompting strategy where the aim is: in
first stage, to break down a complex problem into a series of simpler subproblems and then, in
second stage, solve these predefined subproblems. PAL (Gao et al., 2022) reported a L2M version
of PAL in their work. We follow the reported prompts and replicate it by designing exemplars for
both the stages. We find L2M-PAL inherits the same issues that PAL / TIR-TORA has. L2M-PAL
comes up with entire sub-problems at once and also its uses single program-block to solve those
sub-problems. SBSC dynamically generates the next sub-task and the corresponding program to solve
it leveraging the previous turns results. In Table 5, we show the results obtained from L2M + PAL
using Claude-3.5-Sonnet on our AMC and AIME test datasets. Even after allowing self-correction for
stage 2 with max turns n=15, L2M-PAL approaches PAL scores. Hence for our main results, we stick
to PAL & TIR-ToRA along with self-consistency (Shao et al., 2024) due to resource optimisation and
widee adaption of those prompting strategies for math-problem solving.

Table 5: Least-to-Most Prompting results on AIME and AMC

Method AMC AIME
greedy maj@7 greedy maj@7

COT 31.16 35.79 9.09 10.91
PAL 35.79 36.42 27.48 28.79
L2M-PAL (n=1) 33.47 38.53 25.45 28.79
L2M-PAL (n=15) 34.32 25.45
TIR-ToRA 38.59 43.16 24.64 26.67
SBSC (Ours) 49.33↑10.7 −↑6.2 35.45↑8 −↑6.7

46

	Introduction
	Motivation
	Our Contribution

	SBSC: Step-by-Step Coding Framework
	SBSC Exemplar Design

	Experiment
	Benchmark datasets
	Dataset Processing Details:

	Baseline & Configurations
	Prompting/Few-shot Exemplars

	Results
	Ablations & Analysis
	Sensitivity to Exemplars
	SBSC Exemplar Tuning
	Code Debugging Ability
	Topic-wise Analysis
	SBSC accuracy correlation with coding capabilities of LLMs
	SBSC + Self-Consistency

	Related Work
	Conclusion
	Future Work
	Appendix
	Number of Steps in SBSC
	Understanding SBSC in Detail
	PAL Exemplars
	TIR-ToRA Exemplars
	SBSC Prompt for AMC
	SBSC Prompt for AIME
	Results with Standard Deviations
	 Least-to-Most Prompting

