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ABSTRACT

With the emergence of neural audio codecs, which encode multiple streams of
discrete tokens from audio, large language models have recently gained attention
as a promising approach for zero-shot Text-to-Speech (TTS) synthesis. Despite
the ongoing rush towards scaling paradigms, audio tokenization ironically am-
plifies the scalability challenge, stemming from its long sequence length and the
complexity of modelling the multiple sequences. To mitigate these issues, we
present CLaM-TTS that employs a probabilistic residual vector quantization to
(1) achieve superior compression in the token length, and (2) allow a language
model to generate multiple tokens at once, thereby eliminating the need for cas-
caded modeling to handle the number of token streams. Our experimental results
demonstrate that CLaM-TTS is better than or comparable to state-of-the-art neural
codec-based TTS models regarding naturalness, intelligibility, speaker similarity,
and inference speed. In addition, we examine the impact of the pretraining extent
of the language models and their text tokenization strategies on performances.

1 INTRODUCTION

Large language models (LLMs), characterized by a considerable number of model parameters and
trained on massive text data, have demonstrated remarkable zero-shot learning capabilities (Brown
et al., |2020; |Chung et al., 2022} |Kaplan et al) [2020). While scaling paradigm affects not only
the natural language processing domain but also other fields such as image generation (Ramesh
et al., 2021} Saharia et al.} |2022), image recognition (Radford et al., |2021), and speech recogni-
tion (Baevski et al., 2020b; [Radford et al.| [2023)), significant challenges in their efficient training
and inference simultaneously arise. In the realm of image processing, discretizing image represen-
tation (Razavi et al., 2019; Ramesh et al., 2021} [Esser et al.,|2021)) has been shown to mitigate these
issues by effectively reducing the input length to a manageable size.

Language modeling in the speech domain has become feasible with the emergence of neural audio
codecs (Zeghidour et al., 2021} [Défossez et al., [2023)) that enable high-fidelity audio tokenization.
For Text-to-Speech (TTS) synthesis, there have been several attempts to adopt the LLMs for zero-
shot TTS, which namely synthesize the diverse speech of any human voice (Zhang et al., |2023;
Wang et al.l 2023; Kharitonov et al., 2023; Rubenstein et al., 2023). These attempts move away
from the previous research direction to train models on curated high-quality recording datasets and
produce human-like voices on benchmark datasets (Li et al., 2019} Kim et al.|[2021}; | Tan et al.| |2024;
Casanova et al., 2022). It is demonstrated that, by training LLMs on tens of thousands of hours of
diverse audio data, zero-shot adaptation can be accomplished with just a few seconds of audio input.

Despite the significant advancements in TTS at scale, it still poses challenges to further scale up the
models. Neural audio codecs typically generate multiple sequences of audio tokens. For instance,
Encodec (Défossez et al., 2023) encodes a 5-second speech into 8 sequences of 375 audio tokens.
Several work (Kharitonov et al., [2023; Borsos et al.,2023b) employ the semantic tokens from self-
supervised speech representation learning (Chung et al., [2021)) as an intermediary between text and
audio tokens. Although semantic tokens compress information more concisely than audio tokens, a
5-second speech segment still demands 125 semantic tokens, presenting a hurdle even setting aside
the further complexities of audio token modeling from them.
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Figure 1: An overview of CLaM-TTS. Training of CLaM-TTS unfolds in two stages: (a) we train a
Mel-VAE that encodes a mel-spectrogram to the discrete latent representation from using probabilis-
tic RVQ; (b) using the pre-trained residual vector quantizer from the first-stage, a latent language
model, a Gaussian mixture (GM) based latent transformer decoder is trained; The decoder aims to
predict latent variables that, when quantized, match with the ground-truth audio tokens.

In this work, we aim to bring the capability of efficient training and inference of large-language
models within the TTS domain. To this end, we propose an improved Codec Language Model-based
TTS (CLaM-TTS) system that encodes speech into multiple token sequences similar to existing
methods but in a more concise way. With CLaM-TTS, all multiple tokens at each timestep in these
sequences are generated through a single autoregressive step of a language model, eliminating the
need for iterative generative modeling along the number of sequences. The core of our method lies
in the probabilistic discrete representation learning, ensuring that all discrete latent codes participate
in the training process, resulting in a high-quality autoencoder for speech. Furthermore, we provide
a principled framework enabling a latent language model to efficiently generate a stack of tokens
at once; the latent language model produces a continuous latent audio representation and converts
it to a discrete representation with the proposed probabilistic quantization method. We scale up the
training dataset to 100K hours. Our experimental findings indicate that CLaM-TTS either surpasses
or is on par with leading zero-shot neural codec-based TTS models in aspects such as naturalness,
intelligibility, speaker similarity, and inference speed. Furthermore, we investigate how the depth of
pretraining in the language models and their methods of text tokenization influence TTS outcomes.
Our generated samples are available on our demo page{ﬂ

2 RELATED WORK

Neural audio codec The neural discrete representation learning within a variational autoencoder
(VAE) framework, called the vector-quantized VAE (VQ-VAE), has been proven effective in encod-
ing raw-waveforms into discrete tokens (Baevski et al., [2020a), employed as a speech codec (Oord
et al., |2017; |Garbacea et al) 2019). Similar to VQ-VAE, the neural audio codec methods usually
use a framework that jointly trains an encoder, a decoder, and a quantizer (Li et al.; |[Zeghidour et al.
20215 Jiang et al., |2022; Jayashankar et al.| 2022; |Défossez et al., [ 2023; | Kumar et al., 2023} Wu et al.}
2023)). [Zeghidour et al.|(2021)) pioneers using residual vector quantization (RVQ) (Grayl, [1984; |Va-
suki & Vanathil 2006; [Lee et al. 2022) in a neural audio codec model. It operates efficiently on
clean and noisy speech and music, even at low bitrates. EnCodec (Défossez et al., [2023) employs a
similar model structure with improved training efficiency and stability to achieve a downsampling
rate of 320 for input waveforms. [Kumar et al.|(2023) identify the issue of codebook under-utilization
in EnCodec and improve the codebook utilization with the techniques introduced in|Yu et al.|(2021)
resulting in state-of-the-art performance as a neural audio codec.

1https ://clam-tts.github.io
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Building on these advancements, we focus more on the discrete representation learning of speech
rather than general audio and optimize the compression level to be suitable for the TTS task. In other
words, we compress mel-spectrograms rather than raw waveforms, delegating the task of converting
mel-spectrograms back into raw waveforms to standard vocoders.

Large-scale TTS AudioLM (Borsos et al.,[2023a)) is a language model directly trained on audio to-
kens. In AudioLM, semantic tokens are first generated. These tokens originate from self-supervised
discrete speech representation methods (Hsu et al.| 2021} |(Chung et al., 2021) that have previously
been utilized for speech resynthesis or generation without text (Lakhotia et al., [2021}; [Polyak et al.|
2021;Nguyen et al.,[2023). Following this, the model produces acoustic tokens of neural audio codes
given the semantic tokens. [Wang et al.[(2023)) propose the first neural codec language model, Vall-E,
for text-to-speech that utilizes a pre-trained neural audio codec, EnCodec (Défossez et al.| [2023).
In a different approach, following AudioLM, text-to-speech has been realized by applying language
modeling to generate the semantic tokens from text, as demonstrated by |Kharitonov et al.| (2023).
A shared characteristic among these neural codec language models is their two-stage pipeline; they
autoregressively generate coarse-grained audio tokens and decode them into fine-grained represen-
tations. Recent work in music generation hints at an efficient way to eliminate the second-stage
modeling by interleaving audio tokens in a delayed pattern (Copet et al.| [2023)), but its application
in TTS remains unexplored.

Given the complexities in modeling long audio sequences, several studies have incorporated
phonemes and durations to alleviate the need for speech synthesizers to predict speech rates (Shen
et al., 2023 |Le et al.,2023;|Jiang et al., 2023). Some work shows that non-autoregressive generative
models, such as a diffusion model and flow-matching (Ho et al.| | 2020; Lipman et al., 2023)), can pro-
duce diverse and natural-sounding speech with large-scale training. A hybrid method is utilized in
another approach, employing non-autoregressive architecture except prosody modeling (Jiang et al.,
2023)). This method aligns with previous work that applies VQ-VAE:s to capture fine-grained speech
features so that the prosody is controllable by them (Sun et al., 2020; Ren et al., 2022]).

To address the challenges associated with neural codec language models while not relying on the
phoneme and its duration that requires significant domain expertise, we design a language model that
generates from coarse to fine-grained tokens without needing a two-stage pipeline. Our approach is
similar to recent work that utilizes pre-trained language models, Spectron (Nachmani et al., 2023)
and SoundStorm (Borsos et al., [2023b). While Spectron employs pre-trained transformer decoders
to directly model the mel-spectrogram and then fine-tunes it, our method preserves the pre-trained
text encoder and decodes speech tokens that are shorter than the mel-spectrogram using a latent
transformer decoder. SoundStorm freezes a pre-trained text encoder similar to ours, but it generates
semantic tokens and subsequently decodes acoustic tokens using an iterative generative model.

3 PRELIMINARIES

Building upon the approach proposed by [Wang et al.| (2023)), we explore zero-shot TTS through the
lens of neural codec language modeling task. We consider a setting that includes two types of data:
(1) text data and (ii) mel-spectrogram representation of its corresponding speech data, denoted by =
and y, respectively. We model a sequence of T discrete codes c¢1.7 := {c1,...,cr} from latent
representations zj.p of a mel-spectrogram y, using the framework of a Variational Autoencoder
(VAE) with Residual Vector Quantization (RVQ). Here, ¢; represents the D-depth of quantized,
discrete codes. We interchangeably use ¢, 1.p with ¢;. Subsequently, a neural language model
pe(c1.r|x) is employed, aiming to predict ¢1.1 from the text transcript . During the inference
phase, the language model generates c;.7 for a given text o, which is subsequently transformed into
speech through the VAE decoder and a pre-trained vocoder.

3.1 RESIDUAL-QUANTIZED VARIATIONAL AUTOENCODER (RQ-VAE)

An RQ-VAE (Lee et al., 2022) is a neural network architecture representing data as discrete codes
using residual vector quantization. It comprises of three components: (1) an encoder parameterized
by ¢ that maps data y into a sequence of latent representations z1.7; (2) a residual vector quantizer
RQw (+), converting the latent vector z; at each time ¢ into the discrete code representation Ci1:p =
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RQy (2:), or the corresponding quantized embedding Z;; and (3) a decoder parameterized by w that
reconstructs the data § from a sequence of the quantized latent representations Z1.7.

Here ¢; 1.p represents the set {c;1,...,¢;, p} with D indicating the total depth of the quantizer.

The latent representation from the encoder is quantized through the multi-stage nearest-neighbour

lookup over the codebook embeddings, of which the vocab size is V. The process is defined as
finding the optimal code from the codebook, which minimizes the residual error at each depth d:

. 2

cta= argmin ||ryq—1 — ey(c;d)|",

Tiq =Tid—1 — eyp(cra;d) foralld e [1,D], (1)
ce{l,...,V}

where r; o = 2z; and ey (¢; d) corresponds to the ¢-th embedding vector in the codebook at depth d.

The sum of embeddings 25:1 ey (c,q; d) becomes the quantized latent representation £;, which is
converted back to the input space through the decoder. The codebook embeddings are updated with
the clustered latents by the exponential moving average updates (Razavi et al., [2019).

3.2 MEAN-FIELD VARIATIONAL INFERENCE

Consider a latent variable model characterized by a joint distribution py, (24, ¢¢,1:p) parameterized
by 1. Here, z, denotes an observed random variable, c; 1.p indicates a set of latent random vari-
ables {ct 1, .. ., Ci,p }. In this model, variational inference is a method to approximate the intractable
distribution py, (¢t 1. p|z¢) by solving an optimization problem with respect to parameters of approx-
imate distribution ¢(c;,1.p|z;). We can derive a lower bound on the marginal log-likelihood py; (2;),
known as the evidence lower bound (ELBO) (Blei et al., [ 2017):

Pzp(zt |Ct,1;D)P(Ct,1;D)
q(es,1:p|2e)

IOng(zt) = log Z pdl(zt‘ct,l:D)p(ct,l:D) > Eq(ctﬁl:p‘zt) log

Ct,1:D

Mean-field variational inference (Koller & Friedman, [2009; Blei et al.,[2017) is a specific approach
of variational inference that assumes the independence among the latent variables conditioned on
the observed variable: g(c;.1.p|z:) = HdD:1 q(ct,alz). We can show that each optimal variational
posterior distribution ¢*(¢¢ 4|z¢), which maximizes the ELBO, satisfies:

q*(cralze) < exp (Eq(e, |20 108 Py (2t|2t,a, 2, —a)p(Ctd, €t,-a)]) 2)

where ¢, _4 denotes the latent varibles of all depth ¢; 1.p except ¢; 4. An iterative coordinate ascent
algorithm based on Eq. E]can be used to update the distribution ¢ (Bishop & Nasrabadil [2006), and
the complexity of the algorithm mainly lies on the computation of the expectation over g(c;,—q|2¢).

4 METHOD

4.1 MEL-VAE

We aim to develop a neural codec that can generate discrete speech codes within a short sequence
length to make speech audios suitable for language model utilization. To achieve this, we em-
ploy a RQ-VAE that compresses mel-spectrograms of speech audios (see Fig. [Th). We introduce
a variational inference based method for learning residual codewords to address the codeword col-
lapse issue found in conventional vector quantization methods (Kaiser et al.,[2018}Roy et al., 2018;,
Zeghidour et al., 2021} [Kumar et al., [2023]).

We illustrate Mel-VAE similar to RQ-VAE following most of notations from Sec. [3.1] The encoder
maps a mel-spectrogram y into a sequence of latent representations zi.7, and a residual vector
quantizer RQ,,(+), converting the latent vector z; at each time ¢ into the discrete code representation

¢y, or its corresponding quantized embedding 2, = 25:1 ey (ct,q; d). The decoder reconstructs the
mel-spectrogram ¢ from a sequence of quantized latent representations 2.7.

With the assumptions that ¢(c;1.p|2¢) = Hle q(ct,alz) and p(cq,q, ¢ —q) is uniformly dis-
tributed, mean-field variational inference yields the condition of such distribution as the following

(see Eq.[2):
q"(ct,alzt) o< exp(By(c, _y|z,) [l0g Py (zi|et.a, e, —a)]), 3)
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where the latents follows a normal distribution: py(2¢|c:) = N'(z1; Y 4 ep(ct.a; d), a5, I).

However, the mutual interdependence of codes at every depth in the latter equation makes it difficult
to solve it without an iterative approach. Instead of using an iterative coordinate update approach,
we approximate Eq(c, _,|z,) [10g py (2t]ct,a, €t,—a)] pointwisely as log py (z¢|eta, ¢; ;) for all d,
where ¢; 1., = RQy (2¢). The posterior then has a form: ¢*(c;,a|21) o py(2t|ct.a, €; _y).

We independently optimize the codebook embeddings at each depth d, in a variational inference
framework:

L(Va; 21, ¢; _g) = Ege ey alz0) [~ 108 Py (2tlera i _g)] 4)

* D *
L(¢; ztvct,l:D) = Zd:l L(tha; 24, ct,fd)' (5)
The other modules of Mel-VAE, including the encoder parameters ¢ and the decoder parameters w,
are trained with commitment loss, reconstruction loss, and adversarial losses.

‘C(w7 ¢7 Y, ct,l:D) - A7|y - 7)\ + )\CHZ - Zd ew(ct,d; d)H2 + /\a['advv (6)
where A, A;, and )\, corresponds to coefficients of the reconstruction loss, commitment loss, and ad-
versarial losses, respectively. For adversarial training, we adopt the multi-length discriminator (Chen
et al., 2020) that distinguishes mel-spectrograms at different lengths and a modified multi-resolution
spectrogram discriminator (Lee et al., 2023)) that accepts mel-spectrogram rather than linear spectro-
gram. We combine the least squares GAN objective (Mao et al.,2017) and the L1 feature matching
loss (Kumar et al.,[2023) into a loss function denoted by L4, .

4.2 LATENT LANGUAGE MODELING

We propose a conditional speech code language model given text  aimed at enhancing the efficiency
of the model. This improvement stems from the insight that speech codes are generated through
vector quantization. Our approach leverages this by predicting the vector itself, which can then be
converted into multiple tokens at each layer via residual vector quantization. This is a departure
from previous methods that predict speech code tokens sequentially.

Specifically, rather than directly predicting tokens from text, we consider a continuous latent repre-
sentation z; of speech that can be converted into a speech code using residual vector quantization:

T T T
p0(01:T|93) = Hp@(ct‘mac<t) = H/p&(ctvzt|wvc<t)dzt = H/pg(zt\m,c<t)p¢(ct|zt)dzt,
t=1 t=1 t=1

where c.; indicate ¢y.;—1, and we employ p, ¢¢|z:), the probabilistic quantizer distribution learned
together with the Mel-VAE model (see Sec.[4.1), as a replacement of py(ct|z:, @, c<¢). Here, we
define the conditional distribution py(z¢|®, c<;) as a Gaussian mixture model:

po(zile, e<) = Y4, po(kla, ct)N (zi; po k@, ct), 03 1),
In this model, we can derive the following variational lower bound on the log-likelihood:

T
log pe(c|z) > Z]Eq(mm,:;gt) [—Drr(py(ziles)||po(zi|x, c<t, k) 4 log pe(klx, <) + B(¥, ¢;)]
t=1

= :CVB(G) + 3(1/% ct)’

for any ¢(k|z, c<¢). The derivation of the lower bound and the definition of B(%), ¢;) are provided
in Appendix Here, we set ¢(k|x, c<;) x exp(—Drr(py(zile)||pe(zi|x, c<i, k))).

With the second loss Leos(6), which is associated with training a binary classifier to identify the
end of speech (EOS), the total loss for training the latent language model is the sum of the two
losses above: £(6) = Lyg(0) + Leos(0).

As shown in Fig.[I] we implement an autoregressive latent model that yields three distinctive outputs:
the mixture weights and the means of the Gaussian mixture distribution as well as the probability of
concluding the generation. Specifically, it incorporates a transformer decoder followed three parallel
modules, comprising (1) a prediction layer with softmax activation for pg (k|x, c<¢); (2) a prediction
layer for pg(k,x,c<t); (3) a binary classifier layer for EOS prediction. Additionally, we use the
pre-trained quantizer RQ,,(-) of Mel-VAE.
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4.3 MODEL ARCHITECTURE AND INFERENCE

Model Architecture For the Mel-VAE, we adopt a causal 1d convolutional U-Net, a variant of the
model used in Ho et al.| (2020). We remove the skip connections and attention layers and append
1-d ConvNeXt (Liu et al., |2022) blocks used in [Siuzdak|(2023) to the final layer of the decoder. We
employ 32-stage residual vector quantization with a codebook size of 1,024 for each depth. For the
text-to-code latent language model, we adopt a transformer-based encoder-decoder LM, especially
a pre-trained ByT5-large’| (Xue et al. 2021a) similar to Borsos et al.| (2023b). We keep the text
encoder frozen. Please refer to Appendix |C|for more detailed model configuration.

Inference The text-to-code generation unfolds in three steps: (1) at time step ¢, we randomly se-
lect k from the distribution pg(k|x, c<¢); (2) following this, randomly sample the latent vector z;
from pg(z¢|x, <4, k). Consequently, at time step ¢, the discrete code is obtained through the learned
quantizer, ¢; = RQy(2z;); (3) if the probability of EOS exceeeds 0.5, conclude the generation, or
proceed to step, otherwise. Subsequently, the generated codes are decoded to mel-spectrograms us-
ing the decoder of Mel-VAE, then converted to raw-waveforms through an off-the-shelf pre-trained
vocoder, BigVGAN (Lee et al., [2023).

5 EXPERIMENTAL SETUP

Training Dataset We employ 100K hours of over 12K distinct speakers’ speech-transcript dataset
spanning 11 languages: English, Korean, Chinese, Japanese, German, Dutch, French, Spanish, Ital-
ian, Portuguese, and Polish. We train two models: (1) CLaM-en: an English-only model on 55K-
hour English dataset and (2) CLaM-multi: a multilingual model trained on 11-language dataset.
We provide details of dataset for each language in Appendix and data pre-processing in Ap-

pendix [B.2]and

Training (1) Mel-VAE: We train the model on 4 NVIDIA A100 40GB GPUs for around 2M
steps. Each GPU processes a size one minibatch containing concatenated mel-spectrograms of
several audios. We trim the trailing end to have it precisely 32,768 frames long. We use Adam
optimizer (Kingma & Bal [2015)) with a constant learning rate of 0.0002 throughout the training. (2)
Text-to-code: We train only the decoder and use a learned codebook from Mel-VAE. The model is
trained on 4 NVIDIA A100 40GB GPUs for around 4M steps with dynamic batching while keeping
a maximum code size of 2,560. We use AdamW optimizer (Loshchilov & Hutter, [2019), and the
learning rate is fixed to 0.0002 throughout the training. Throughout all our experiments, during the
model inference, we sample k using top-p sampling (Holtzman et al., 2020) with 0.5 and z is sam-
pled with temperature (Kingma & Dhariwall, 2018)) of 2.6, which matches the empirical standard
deviation in our validation dataset.

Baselines We compare the proposed model with the following four baselines: (1)
YourTTS (Casanova et al., [2022)), a zero-shot TTS built on VITS (Kim et al., 2021) which is flow-
based end-to-end TTS (representing Conventional TTS), (2) Vall-E (Wang et al., [2023) and (3)
SPEAR-TTS (Kharitonov et al [2023) (representing Neural Codec LM), and (4) VoiceBox (Le
et al., [2023), a flow-matching-based TTS model trained on large-scale training data (representing
Non-Autoregressive Model with Phoneme Input and Duration).

Metrics (1) Intelligibility and Robustness: We measure these attributes by character error rate
(CER) and word error rate (WER) of the synthesized transcription from generated speech concerning
the input text. We follow the procedure in Wang et al.|(2023). In English-only Evaluation, we syn-
thesize the transcription by using the automatic speech recognition (ASR) model, the CTC-based
HuBERT—LargeE] (Hsu et al., |2021) model pre-trained on LibriLight (Kahn et al., 2020) and then
fine-tuned on LibriSpeech (Panayotov et al 2015). In the Multilingual Evaluation, we use Ope-
nAI’s Whisper (Radford et al.| [2023) mode We adopt NVIDIA’s NeMo—text—processini] (Zhang
et al., |2021}; |[Bakhturina et al., [2022) for text normalization; (2) Speak Similarity: We assess the
speaker similarity of two separate speech audio clips by following the same procedure outlined
in|Wang et al.| (2023). We employ WavLM-TDCNNP|(Chen et al.,|2022) which outputs the embed-

https://huggingface.co/google/byt5-large
https://huggingface.co/facebook/hubert-large-1s960-ft
https://github.com/openai/whisper/blob/main/model-card.md; "large-v2”
https://github.com/NVIDIA/NeMo-text-processing
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https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
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ding vector representing the speaker’s voice attribute. We measure the cosine similarity between the
two embedding vectors to get a score in [—1, 1], where a higher score indicates a higher speaker
similarity of the audios. We borrow the definition of SIM-o and SIM-r from Le et al.|(2023). SIM-o
measures the similarity between the generated and the original target speeches, while SIM-r mea-
sures the similarity concerning the target speech reconstructed from the original speech by Mel-
VAE and the pre-trained vocoder; (3) Subjective Speech Quality: We measure the quality of the
generated speech from human evaluations via three types of Mean Opinion Score (MOS) (Ribeiro
et al.,2011): 1) Quality MOS (QMOS) for an overall audio assessment, ii) Similarity MOS (SMOS)
to measure speaker similarity between the prompt and the generated speech, and iii) Comparative
MOS (CMOS) to compare our model with available baselines. Detailed settings of subjective tests
are described in Sec.

Tasks We measure the performances of the proposed model under two different tasks: 1) continu-
ation: Given a text and corresponding initial 3 seconds of the Ground Truth speech as a prompt, the
task is to seamlessly synthesize the subsequent portion of the speech, and 2) cross-sentence: The
model is given a text, a 3-second speech segment, and its corresponding transcript (the transcript is
different from the text). The task is to synthesize a speech reading the text in the style of the pro-
vided 3-second speech. We include our samples across the tasks discussed above, covering speaker
diversity, text prompting, and other aspects, on our demo page.

6 EXPERIMENTAL RESULTS

6.1 ENGLISH-ONLY EVALUATIONS

Evaluation Methodology We evaluate performances of CLaM-en across continuation and cross-
sentence tasks. Following the evaluation setting in [Wang et al.| (2023)), we employ a subset of the
LibriSpeech test-clean dataset. This subset comprises speech clips ranging from 4 to 10 seconds,
each with a corresponding transcript. Note that YourTTS has official checkpoints, Vall-E has an
unofficial checkpoin and others do not have checkpoints. We use checkpoints of YourTTS and
Vall-E for evaluations. We compare the other baselines with ours via the performances reported in
their papers (Wang et al., 2023} |[Kharitonov et al.l [2023; |Le et al.| [2023)). Since SPEAR-TTS and
VoiceBox also evaluate using the same approach with Vall-E, they can be directly compared with
our model as well. Details of evaluation are provided in Appendix

Analysis Tab.[T]and[2]show the results of continuation and cross-sentence task, respectively. Ours
offers great performances for all measures, ranking either first or second, except SIM-r in cross-
sentence task.

It is worth noting that VoiceBox (Le et al.,|2023), a phoneme-based duration model, shows better per-
formances than ours. However, it requires both phoneme and duration for speech synthesis, whereas
our model directly employs a pretrained language model. This allows for the seamless integration
of LMs, which are trained across a broad spectrum of texts and tasks, enabling a plug-and-play
methodology. Experimental results of training several T5 variants is shown in Appendix [D.2] illus-
trating the trade-off between leveraging the inherent capacity of LMs and ensuring robustness. We
also compare the end-to-end inference time for a 10-second utterance. Our method is faster than the
generation speed of Vall-E reported in |Le et al|(2023). While ours is faster than VoiceBox with 64
decoding steps, VoiceBox can use fewer iterations of decoding steps. Tab. 3] presents the subjective
audio evaluations. CLaM-en significantly outperforms the baseline, YourTTS, in quality and intel-
ligibility, as indicated by QMOS. Our adherence to the prompt audio surpasses that of the baseline,
as measured by the SMOS. The comparative scores (CMOS) highlight CLaM-en’s proximity to the
Ground Truth regarding naturalness, clarity, and comprehensibility. Overall, CLaM-en’s generated
speech naturalness, quality, intelligibility, and similarity exceed the baseline.

6.2 MULTILINGUAL EVALUATIONS

We evaluate our model, CLaM-multi trained on the multilingual dataset. On the test set, we measure
WER, CER, and SIM-o which are defined in Sec. E} Here, we only consider continuation task in
this experiment since we cannot get full alignmnets between audio and text for all languages and
datasets. Tab.[4]shows the partial results of the multilingual continuation task. We sample a hundred

7https ://github.com/lifeiteng/vall-e
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Table 1: Performances for the English-only continuation task. The boldface indicates the best
result, the underline denotes the second best, and the asterisk denotes the score reported in the
baseline paper. Ours offers great performances for all measures, ranking either first or second. The
inference time indicates the generation time of 10s speech.

Model WER| CER| SIM-o1 SIM-rt1 Inference Time |
Ground Truth 2.2% 0.61* 0.754* 0.754* n/a
YourTTS (Casanova et al.,[2022) 7.57 3.06 0.3928 - -

Vall-E (Wang et al.| [2023) 3.8% - 0.452%* 0.508%* ~6.2s*
Vall-E (unofficial) 3.81 1.58 0.2875 0.3433 -
Voicebox (Le et al., 2023) 2.0* - 0.593* 0.616* ~6.4s* (64 NFE)
CLaM-en B 2.36 0.79 0.4767 0.5128 4.15s

Table 2: Performances for the English-only cross-sentence task.

Model WER| CER] SIM-o? SIM-r{
YourTTS (Casanova et al.[[2022) 7.92 (7.7%) 3.18 0.3755 (0.337%) -

Vall-E (Wang et al.;,|2023) 5.9% - - 0.580*
Vall-E (unofficial) 7.63 3.65 0.3031 0.3700
SPEAR-TTS (Kharitonov et al.,|2023) - 1.92% - 0.560%*
Voicebox (Le et al.;[2023) 1.9* - 0.662* 0.681*
CLaM-en 5.11 2.87 0.4951 0.5382

random samples from the test set of each dataset, ranging from 4 to 20 seconds, and average the
scores of three trials. Refer to Tab. [T0|for evaluation on other languages and datasets.

6.3 ABLATION STUDY

Effectiveness of Proposed RVQ To demonstrate the effect of the proposed RVQ on Mel-VAE,
we conduct an ablation study by assessing speech reconstruction capability. We train two Mel-
VAEs: one with the proposed RVQ and the other with the baseline RVQ (Défossez et al.,[2023)). We
train both for 500k steps on the same training dataset described in Sec.[5} The generated speech is
compared to the Ground Truth speech using two metrics: Perceptual Evaluation of Speech Quality
(PESQ) (Rix et al.l|2001) and Virtual Speech Quality Objective Listener (ViSQOL) (Chinen et al.,
2020) in speech mode. For evaluation, we randomly select 1,800 samples from the test set of each
dataset, proportional to the size of each dataset, each being at least 3 seconds long. The scores of
these samples are then averaged for comparison. Tab. [5h shows that ours is more effective than the
baseline RVQ. See Fig. [2|to verify the superior codebook usage of our approach. We also compare
the fully trained Mel-VAE with Encodec at 6K bitrates (Défossez et al., |2023)), which is widely
employed in neural codec language models (Wang et al.,[2023} [Zhang et al.| 2023). Tab.[5p confirms
that ours outperforms Encodec in speech reconstruction performance across both measures.

Comparision of Pre-trained LM and Input Variants Our language model is based on TS5 (Raffel
et al., 2020). We conduct an ablation studty to compare T3, its variants and a phoneme encoder of
comparable size. The results indicate that ByTS5 surpasses other T5 variants with the sole exception
of the phoneme model. This suggests that: 1) the more the pretraining phase is leveraged, the greater
the potential increase in TTS performance, and 2) in moderate-sized language modeling, phonemes
remain an effective input representation. For the experimental results and a comprehensive analysis,

refer to Appendix

In addition to the ablation studies presented, we have conducted further experiments detailed in the
appendix, which explore the effects of codeword emitting rate on speech codec quality and language
modeling as well as the scale of training data on model efficacy. For comprehensive results and
discussions, refer to Appendix [D.3|and [D.4]

7  DISCUSSION

Choice of Codeword Rate Our approach enjoys a 10Hz codeword rate for efficient modeling.
We set the codeword rate following the average phoneme rate in English speech (Roach, 2009)
since phoneme is the minimum spoken unit. Nevertheless, we conjecture this may have to be ad-
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Table 3: Human evaluations with 40 LibriSpeech test-clean speakers show CLaM-en’s speech gen-
eration surpasses the baseline in quality, intelligibility, similarity, and naturalness, nearing Ground
Truth. QMOS and SMOS scores include a 95% confidence interval.

Model QMOS SMOS CMOS (vs. CLaM-en)
YourTTS (Casanova et al.;[2022)) | 2.39+0.19 2.32+0.21 -1.68
CLaM-en 3.87+0.12 3.49+0.14 0.00
Ground Truth 4.45+0.09 4.18+0.15 +0.63

Table 4: Performances of CLaM-multi for the multilingual continuation task.

Language / Dataset WER| CER| SIM-of
English / MLS English 8.71 5.19 0.4000
English (HuBERT) / MLS English | 7.71 3.19 0.4000
German / MLS German 9.63 4.11 0.4219
Dutch / MLS Dutch 12.25 4.97 0.5983
French / MLS French 10.29 4.08 0.5671
Spanish / MLS Spanish 4.02 1.91 0.5292
Italian / MLS Italian 19.70 5.19 0.5459
Portuguese / MLS Portuguese 9.66 3.72 0.5658
Polish / MLS Polish 14.70 5.34 0.5519

Table 5: Effectiveness of our proposed RVQ. The results show that ours outperforms the conven-
tional RVQ in (a) and Encodec in (b) across both measures, even with a higher compression rate.

(a) (b)
Model PESQt ViSQOL? Model PESQt ViSQOL?
ours + BigVGAN 2.63 4.48 ours + BigVGAN 2.95 4.66
RVQ + BigVGAN 2.54 4.44 Encodec 2.59 4.26

justed depending on the language or speaker. A more compressed codeword rate, for example, SHz,
might lead to more significant information loss than their efficiency. There exists an efficiency-
performance tradeoff for rates above 10Hz, which can be optimized as needed.

Robustness We have noticed some words can be muddled, omitted, or repeated, which predom-
inantly stems from autoregressive modeling. We will address it by employing non-autoregressive
architecture or improving the attention mechanism in future work.

Expressiveness 100K hours of training data may not ensure a complete representation of all voice
types, especially accentuated ones. Our datasets predominantly capture audiobook reading styles,
leading to limited diversity in speaking styles. We believe that increasing the model and data size
can significantly tackle the expressiveness challenges in zero-shot TTS.

Instruction Prompting We suggest various ways to use the full knowledge of the language model.
One can incorporate speaker metadata into each transcript to perform various intriguing tasks. Such
tasks might include synthesizing speech or even conversations characterized by specific genders,
voice ages, or accents. We leave the other tasks for future work.

8 CONCLUSION

We introduce CLaM-TTS, which leverages mean-field variational inference based probabilistic
residual vector quantization (1) achieving significant compression in token length, and (2) allow-
ing a latent language model to generate multiple tokens at once, thereby eliminating the need for
cascaded modeling to handle the number of token streams. We scale up the training dataset to 100K
hours. We empirically show that CLaM-TTS is better than or comparable to state-of-the-art neu-
ral codec-based TTS models regarding naturalness, intelligibility, speaker similarity, and inference
speed.



Published as a conference paper at ICLR 2024

9 ACKNOWLEDGMENTS

The authors would like to thank Kangwook Lee for helpful discussions, as well as Beomsoo Kim,
Gibum Seo, and Dongwon Kim for their essential support throughout the processes of data handling
and evaluation of the implementation.

10 ETHICS STATEMENTS

CLaM-TTS is a zero-shot TTS model that leverages a pre-trained large language model, offering
efficient learning and inference at a vast scale. The model’s capability to produce any voice and
mimic with only minimal voice input presents potential dangers, including spoofing misuse. Given
the escalating risks associated with such models, it should be imperative to develop a detection
model to identify audio outputs from the model and to establish a rigorous protocol for evaluating
its effectiveness.
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For the implementation of our model, we provide Fig. [I] and description of the model architecture
in Sec. 4.3 along with the hyperparameters of the model configuration in Tab. To ensure the
reproducibility of our experiments, we also share details, including a list and statistics of our training
data in Sec.[5]and Appx. data preprocessing procedures in Appx. and Appx.[B.3] training
configuration and the evaluation methodology in Sec. [5} If our potential legal concerns can be
addressed, we are prepared to progressively disclose, for research purposes, the inference code,
pre-trained weights, and ultimately, the full training implementation.
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A VARIATIONAL LOWER BOUND
We have
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where (a) follows from the modeling assumption that ¢; is independent of  and c<; given z;; (b)
follows from the assumption that p(¢;) is uniformly distributed for all ¢; and (c) follows by Jensen’s
inequality.

We assume that an unobserved discrete random variable & is involved in generating the latent vector
z; by some random process.
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B ADDITIONAL DETAILS OF EXPERIMENT

B.1 DATASET STATISTICS

The training datasets for each language are as follows:
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English: 1) Multilingual LibriSpeech (MLS) (Pratap et al., 2020)), a multi-speaker and multilingual
transcribed speech dataset sourced from LibriVox audiobooks. 2) GigaSpeech (Chen et al., [2021])
consists of multi-domain speeches, such as audiobooks, podcasts and YouTube along with human
transcriptions. The audio dataset includes multiple speakers but lacks associated speaker informa-
tion. 3) LibriTTS-R (Koizumi et al.,|2023)) is a restored version of the LibriTTS (Zen et al., 2019)
corpus which shares the identical metadata with LibriTTS. 4) VCTK (Veaux et al., 2016) and 5)
LJSpeech (Ito & Johnson, 2017) are multi-speaker and single-speaker English datasets, respectively,
widely used in speech synthesis community.

Korean: 1) A[Hub 1 features recordings of everyday people reading provided script sentences.
2) AIHub 1f] has recordings of 50 professional voice actors for seven emotions (joy, surprised,
sad, angry, scared, hate, neutral), five speaking styles (narrating, reading, news-like, dialogic, broad-
casting), and three vocal ages (kid, young, old). 3) KsponSpeech (Bang et al.| [2020) consists of
2,000 speakers and each recording has an individual freely talking about various topics in a quiet
environment. The transcription follows specific guidelines regarding laughing, breathing, and a few
more.

Chinese: WeNetSpeech (Zhang et al., 2022) is similar to GigaSpeech, comprising multi-domain
speeches without speaker information.

Japanese: 1) ReazonSpeech (Fujimoto) is a labelled dataset made up of roughly 19,000 hours
of broadcasted speech. It involves multiple speakers without speaker information. 2) Koko-
roSpeech (lida, [2021) contains recordings of a single speaker reading 14 novel books.

Others: The datasets feature seven language subsets from MLS: German, Dutch, French, Spanish,
Italian, Portuguese, and Polish.

Tab. @ shows detailed statistics of each dataset. For the LJSpeech, VCTK, KokoroSpeech, and
ReazonSpeech datasets, 99% of the entire dataset is used for training. If a specific training set is
predefined, we use it as-is.

B.2 DATA PRE-PROCESSING

Note that Gigaspeech, WeNetSpeech, and ReazonSpeech do not provide speaker labels. For the
datasets, we exclude audio instances that contain two or more speakers using an open-source speaker
diarization model We also compute the SNR of the audios in three datasets using waveform
amplitude distribution analysis (WADA) (Kim & Stern, [2008)). Audios with WADA-SNR > 20dB
are only included in our training set.

We preprocess the large datasets to efficiently store and iterate over them. Audio metadata is first
constructed in the parquelE] format. Parquet, storing data column-wise, offers high compression
rates and reduces I/O overhead, making it suitable for metadata storage. Parquet contains speaker
attributes (name, gender, accent, emotion, and age), audio path, length, sample rate, and text. The
constructed metadata is combined with audio data read as byte streams to form datasets using web-
dataset Specifically, audio byte streams are paired with JSON data from parquet, and every 10k
pairs are stored as a single TAR file. Storing data in this manner facilitates the addition of metadata
items or text forms (e.g., phoneme, normalized text) in the future.

We utilize the stored speaker metadata as a part of the text prompt. The speaker attributes are
appended in front of each text. One example would look like the following.

man, old, neutral: We have to reduce the number of plastic bags.

Please check our demo page E] for text prompting applications.

$https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=
100&aihubDataSe=realm&dataSetSn=542

https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=
100&aihubDataSe=realm&dataSetSn=466

“https://huggingface.co/pyannote/speaker-diarization-2.1

Uhttps://parquet.apache.org/

Zhttps://webdataset.github.io/webdataset/

Bhttps://clam-tts.github.io

18


https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=542
https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=542
https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=466
https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=realm&dataSetSn=466
https://huggingface.co/pyannote/speaker-diarization-2.1
https://parquet.apache.org/
https://webdataset.github.io/webdataset/
https://clam-tts.github.io

Published as a conference paper at ICLR 2024

Table 6: Statistics of datasets for different languages. We blank the number of speakers when the
original dataset doesn’t provide speaker information.

Lang Dataset Train / Total (hrs) # Speakers (Train) Rate (Hz)
MLS 44,659.74 / 44,691.05 5,490 16,000
GigaSpeech 9,997.82 / 10,050.65 - 16,000
English LibriTTS-R 730.00/769.97 2,456 24,000
VCTK 40.63 /41.04 109 48,000
LJSpeech 23.68/23.92 1 22,050
AIHub 14 8,086.04 /9,110.43 3,495 48,000
Korean AlIHub 15 836.78 /951.98 50 48,000
Ksponspeech 965.15/975.54 2,000 16,000
Chinese WeNetSpeech 10,005.41 / 10,063.67 - 16,000
Japanese ReazonSpeech 18,846.81/19,037.18 - 16,000
KokoroSpeech 58.11/58.69 1 22,050
German MLS German 1,966.51/1,995.08 176 16,000
Dutch MLS Dutch 1,554.24/1,579.76 40 16,000
French MLS French 1,076.58 / 1,096.72 142 16,000
Spanish MLS Spanish 917.68/937.68 86 16,000
Italian MLS Italian 247.38 /257.83 65 16,000
Portuguese | MLS Portuguese 160.96 / 168.35 42 16,000
Polish MLS Polish 103.65/107.87 11 16,000

B.3 APPROXIMATION FOR AUDIO RESAMPLING

We pre-process the audio dataset to create mel-spectrograms with the same resolution. We first
revisit the audio resampling process before describing our method. Let us denote the resampled
audio, its sample rate, and its corresponding mel-spectrogram as Aiqrget, Starget> and Migrget
respectively. The original audio and its sample rate can be labelled as Agyyrce and Sgoyrce- Please
note that our proposed model uses the mel-spectrogram as both input and output, making M;,;.ges
our final goal for the data processing. First, we apply the STFT to Agource to obtain frequency
domain components. We then perform linear interpolation in the frequency domain to adjust the
number of samples per second to match Sy, gc+. Due to the occurrence of aliasing, a Low-pass filter
is applied. Next, we use the inverse STFT (ISTFT) to acquire the upsampled Aqge¢. Finally, we
apply the STFT again to derive M;qrget-

Our approach, in contrast, is as follows: To determine M;,,4ct, We adjust the pre-set FFT size
(which is also the same as window size) and hop size according to the ratio of Ssource 10 Starget-
Using the value, we produce a linear spectrogram and then apply a mel-filter bank to generate a
mel-spectrogram. We refer to it as Myqrge¢ and regard it as an approximation for M;q,ge:. Unlike

Miqrget, the process of obtaining M,,.gc¢ does not actually change the number of audio samples,
which can lead to inaccuracies at high frequencies. However, due to the nature of mel-spectrograms,
it can be disregarded in regions of important low-frequency features. The advantage of deriving
Myqrget is that we only need to apply the STFT once, and there’s no need to store any audio in
between. It allowed us to use datasets with different sample rates without time and storage con-
sumption due to audio resampling.

In the mini-batch training scheme, we first randomly sample the amount of data up to the pre-defined
maximum audio length per batch from the train set and sort them by sample rate. Then we determine
the ratio of each data sample rate over the target to modify FFT size (window size) and hop size,
respectively. The mel-spectrogram calculated by these STFT parameters is input to our model.

B.4 DETAILS OF ENGLISH-ONLY EVALUATION
We average the result over three repetitions of each experiment with a randomly selected set of

prompts per trial. In WER and CER evaluation on continuation task, we include prompt reconstruc-
tion at the beginning of the generated speech. Meanwhile, we exclude reconstructed prompts in SIM
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evaluation on the same task. Recall that our model takes the speech prompt together with the cor-
responding transcript. In cross-sentence task, we use Montreal Forced Aligner (MFA) (McAulifte
et al.,2017) to align transcript and audio. We randomly select a starting point at the beginning of
a word in audio and use subsequent 3-second audio for baselines. Otherwise, we use the audio and
text that include as many words as possible within the subsequent 3-second duration. This yields
audio clips whose average length is around 2.7 seconds. We name it as word-based prompting.

B.5 SUBJECTIVE EVALUATION

We carry out evaluations using Amazon Mechanical Turk (MTurk In QMOS, we direct eval-
uators to assess the quality and clarity of each recording, considering sound quality and clarity of
speech. For SMOS, evaluators gauge the likeness of samples to the provided speech prompts, taking
into account the speaker similarity, style, acoustics, and background disturbances. In CMOS, evalu-
ators compare overall quality of a synthesized sample to that of a reference. Using the given scale,
they judge whether the synthesized version was superior or inferior to the reference.

QMOS and SMOS employ a 1 to 5 scale of integer, where 5 signifies top quality. CMOS uses a
scale from -3 (indicating the synthesized speech is much worse than the reference) to 3 (indicating
it’s much better), with 1-unit intervals. For QMOS, SMOS, and CMOS, samples garner 10, 6, and
12 ratings respectively. We omit evaluators whose average scores deviate by two standard deviations
or more from the mean over every evaluator. All evaluators are US-based.

Table 7: The detailed model configurations of Mel-VAE.

Module Configuration Value
Encoder hidden §iz§ ’ 256
channel multiplication  [1, 1, 2, 2]
dropout 0.0
Decoder hidden §iz§ . 256
channel multiplication  [1, 1, 2, 2]
dropout 0.0
ConvNeXt hidden layer 80
Depth 32
Probabilistic RVQ Vocab Size 1024
Channel Size 512

Table 8: The detailed model configurations of Text-to-Code.

Module Configuration Value
Encoder hidden size 1536
Number of Heads 16
Number of Layers 36
Feedforward Dimension 3840
dropout 0.1
Decoder hidden size 1536
Number of Heads 16
Number of Layers 12
Feedforward Dimension 3840
dropout 0.1
Weight Predictor Dimension (k) 2048
Latent MoG label smoothing 0.01

“https://www.mturk.com/
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C MODEL CONFIGURATIONS AND IMPLEMENTATION DETAILS

C.1 MOoODEL CONFIGURATIONS

We provide detailed model configurations in Tab.[7]and 8]

C.2 IMPLEMENTATION DETAILS

MelVAE Our embedding vector of residual vector quantization is structured to decrease in length
with each increasing depth d, denoted as ey, (¢; 4; d). This configuration ensures that embeddings at
higher depths capture more detailed features. The formulation for this parameterization is given by:

ey(ct,a; d)
. d
= ay ’ci'l/)(ct,da ) ,
€y (cta; d)l
D
where g = exp(maz_scale_logit,) Z softmax(scale_logitsy,);. )
i=d

Here, ay dynamically adjusts the scale of embedding vectors at the depth d, with the trainable
parameters of the residual vector quantizer being max_scale_logity, scale_logitsy, and €y (cy q; d).

Latent MoG We present an efficient approach to managing the number of mixtures, k, in the
Mixture of Gaussians (MoG) of our latent language model. The dimensionality of the MoG output
is directly proportional to both & and the dimension m of the mean vector pg(k, z,C<;) € R™.
This dimensionality can become unwieldy as k increases. To address the challenge of managing the
excessive size of the output weight, we employ a strategy to compress it. This approach yields a low-
rank prediction fig(k, z, C<¢) € R™ and a projection matrix M € R™*"™, where n < m, effectively
enabling us to represent pg(k, x, C<y) as Mfig(k, xz, C<;). This compression facilitates more effi-
cient computation of the training loss, which involves calculating the L2 distance between the mean
vector yg(k, z, C~;) and the quantized latent representation of speech 2; as ||2; — ug(k, z, C -t)||2.
The equation is expanded as follows:
12e — po(k, 2, <o) |2

= ||2t - M/le(k7 x, c<t)

=2/ 2+ fio(k, v, c<t) T (MT M)fig(k,x, c<t) — 2(M7 2) 1o (k, z, c<t). (10)

I?

Precomputing M7 M and M7 2, in Eq.|10|significantly reduces memory usage during L2 distance
computation. For numerical stability, we apply spectral normalization (Miyato et al., [2018)) to M.
In practice, we use all these techniques when k& > 512.

D ADDITIONAL RESULTS

D.1 DURATION-BASED PROMPTING

In duration-based prompting, we randomly pick one utterance from the target speaker and choose
a 3-second segment. We then use the same model from Sec. [5] which is OpenAI’'s Whisper, to
transcribe this segment, and input this audio-text pair as a prompt. However, this method introduces
transcription errors from Whisper, causing our model to include incorrect text at the beginning of
generated speech and hence to have poor WER and CER performances.

Tab. [0] shows the results that word-based prompting is more effective than duration-based in our
character-based Text-to-Code model.

D.2 COMPARISON OF T5 VARIANTS
We compare the performance of the available TS5 variants: 1) TS5, which approaches every NLP

task as a text-to-text conversion, regardless of whether it’s translation, summarization, or question-
answering. 2) mT5 (Xue et al. 2021b), a multilingual variant of T5 handling multiple languages
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Table 9: Results of comparison between (word-based) cross-sentence and (duration-based) cross-
sentence task.

Model WER CER SIM-o
CLaM-en (word-based) from Tab. 5.11 2.87  0.4951
CLaM-en (duration-based) 8.68 5.69 0.5026

Table 10: Results of Multilingual continuation task. The scores of WeNetSpeech are absent because
our ASR tool doesn’t recognize the generated Chinese speech. Since Japanese lacks spacing, WER
measurement is not feasible.

Lang Dataset WER| CER| SIM-ot
GigaSpeech 9.75 2.86 0.3738
LibriTTS-R 3.12 0.96 0.5112
VCTK 1.48 0.73 0.3849
LJSpeech 6.55 4.75 0.5879
GigaSpeech 16.90 4.74 0.3738
English LibriTTS-R 4.33 0.74 0.5112

English

(HuBERT) VCTK 5.26 1.98 0.3849
LJSpeech 7.65 3.10 0.5879

AIHub 14 20.21 1.80 0.5423

Korean AIHub 15 13.08 2.35 0.5280

Ksponspeech 30.24  20.02  0.4488

Chinese WeNetSpeech - - 0.2600
Japanese ReazonSpeech - 49.37  0.2699
p KokoroSpeech - 1146  0.5653

within one model. 3) ByT5, which is trained on byte sequences rather than subword tokens. 4)
Flan-T5 (Chung et al., |2022), which employs prompting for pre-training. 5) T5-lm-adapt, another
TS model pre-trained on denoising and fine-tuned as a prefix language model. And to compare
the case where the Text-to-Code model receives phoneme sequence as an input, we employ 6) a
phoneme encoder XPhoneBert (The Nguyen et al.l 2023) that is of the same size with an encoder of
t5-base. We train only the decoders with identical decoder structures across both settings. For each
variant, we implement Text-to-Code with each base architecture and train it on the same Mel-VAE
code following Sec.[.2] All models are initialized using pre-trained weights. Then, we evaluate the
models in a continuation task, measuring WER, CER, and SIM-o. We use the MLS English subset
for training and follow the training procedures described in Sec.[5} Evaluations are conducted on the
LibriSpeech test-clean set as outlined in Sec. [6.1]

Tab. |11 shows that ByT5 outperforms the other variants of the TS5 model except that the phoneme
model. Notably, ByTS5 significantly surpasses TS by merely changing the input format. Flan-T5
and T5-Im-adapt also demonstrate better performance than TS by pre-training and fine-tuning as a
prefix language model. The results imply that fine-tuning ByT5 as a prefix language model might
yield even better results if then trained as Text-to-Code. The superior results of phoneme variant
demonstrate why many TTS studies have preferred phonemes over characters. Despite its remark-
able performance, we choose byT5 as the base model. The reason for this is that while large-scale
pretrained models based on text, like byT5, have been released and researched, phoneme-based en-
coders have seen only small-scale models made available and studied due to the limited phoneme
data. It is still understood that using phonemes as input is effective, and both text and phonemes can
be selectively chosen based on their scalability and robustness. We leave this exploration for future
work.

D.3 EFFECTS OF CODEWORD EMITTING RATE

We conducted additional ablation studies to analyze the impact of varying codeword rates in the
proposed framework. The results demonstrate a trade-off: reducing the code emitting frequency
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Table 11: Results of continuation task of T5 variants. All models are base model.

Model WER| CER| SIM-of
ByT5 2.79 1.00  0.3879
T5-Im-adapt 2.88 1.17 0.3821
Flan-T5 2.92 1.21 0.3802
mT5 4.62 2.56 0.3762
T5 9.48 7.04 0.3634
T5-phoneme | 2.62 0.96 0.3943

degrades audio quality while increasing it diminishes language modeling performance. This finding
shows that we chose the codeword rate that operates at a sweet spot in this trade-off.

The quality of reconstructed audios from Mel-VAE: We compared the performances of Mel-
VAE:s trained with different codeword rates. The codeword rate in each Mel-VAE was adjusted ac-
cording to the downsampling factor when generating latent representations from mel-spectrograms.
We employed downsampling factors: 16, 8 (ours), and 4; and measured PESQ and ViSQOL of the
reconstructed audio from each model. Tab. |12| shows that the audio reconstruction quality of the
Mel-VAEs deteriorates as the downsampling factor increases.

Table 12: Results of audio reconstruction of different Mel-VAEs.

Model PESQT ViSQOLT
Mel-VAE-df8 (default) | 2.95 .66
Mel-VAE-df4 3.10 4.74
Mel-VAE-df16 242 4.35

Text-to-code language model performances: We trained identical latent language models to gen-
erate codes for each of the Mel-VAEs and measured WER, CER, and speaker similarity. Similar to
the trend in reconstructed audio quality, Tab.[I3|shows that a higher code emitting frequency tends to
increase speaker similarity. However, intelligibility, measured by WER and CER, performed better
with a 16-fold compression compared to a 4-fold compression. This suggests that the longer the
code length predicted, the more challenging it is for latent language models. Moreover, the default
setting of an 8-fold compression shows the best intelligibility, indicating that our setting finds a
sweet spot in balancing audio quality and latent language model prediction in the trade-off. We also
reported the end-to-end inference time of 10s speech, varying with frequency.

Table 13: Results of continuation task and the inference time of different Mel-VAEs.

Model WER| CER| SIM-of Inference Time|
ByT5-base-df8 (default) 2.79 1.00 0.3879 3.46s
ByT5-base-df4 4.56 2.32 04117 6.87s
ByT5-base-df16 3.20 1.19 0.3629 1.88s

D.4 EFFECTS OF DATA SCALE

The results in Tab. show that the performance of our model improves with an increase in the
volume of training data. Specifically, we trained ByT5-base models on different sizes of training
datasets: 1. (small dataset) 50% of the MLS English subset; 2. (normal dataset) the full MLS English
subset; and 3. (large dataset) a comprehensive English dataset that includes MLS English subset,
Gigaspeech, LibriTTS-R, VCTK, and LJSpeech. We observed a noticeable degradation in perfor-
mances (WER, CER, and speaker similarity) when the small dataset was employed. Conversely,
training on the large dataset resulted in a performance enhancement in speaker similarity while
maintaining WER and CER compared to the model trained on the normal dataset. This evidence
strongly indicates that scaling up training data can significantly boost our model’s performance.
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Table 14: Results of continuation task of different dataset sizes.

Dataset WER| CER| SIM-of
Small (22K hr) 3.06 1.15 0.3851
Normal (44K hr) | 2.79 1.00 0.3879
Large (55K hr) 2.79 0.98 0.4001

embedding/0 [ o] embedding/s (MENGEEBIEHOTOUS) ombedding/16 (melvae-ablation-ours embedding/24 [EVASHBEIONOUE) ombedding/31 | melvae-ablation-ours

L

Figure 2: The codebook usages of the probabilistic RVQ and prior RVQ method during training.
The code book usages are plotted for the Oth, 8th, 16th, 24th, and 31st depths, from left to right.
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