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Abstract

An ever-growing body of work has shown that machine learning systems can be system-
atically biased against certain sub-populations defined by attributes like race or gender.
Data imbalance and under-representation of certain populations in the training datasets
have been identified as potential causes behind this phenomenon. However, understanding
whether data imbalance with respect to a specific demographic group may result in biases
for a given task and model class is not simple. An approach to answering this question is
to perform controlled experiments, where several models are trained with different imbal-
ance ratios and then their performance is evaluated on the target population. However, in
the absence of ground-truth annotations at deployment for a new target population, most
fairness metrics cannot be computed. In this work, we explore an alternative method to
study potential bias issues based on the output discrepancy of pools of models trained on
different demographic groups. Models within a pool are otherwise identical in terms of
architecture, hyper-parameters, and training scheme. Our hypothesis is that the output
consistency between models may serve as a proxy to anticipate biases concerning demo-
graphic groups. In other words, if models tailored to different demographic groups produce
inconsistent predictions, then biases are more prone to appear in the task under analy-
sis. We formulate the Demographically-Informed Prediction Discrepancy Index (DIPDI)
and validate our hypothesis in numerical experiments using both synthetic and real-world
datasets. Our work sheds light on the relationship between model output discrepancy and
demographic biases and provides a means to anticipate potential bias issues in the absence
of ground-truth annotations. Indeed, we show how DIPDI could provide early warnings
about potential demographic biases when deploying machine learning models on new and
unlabeled populations that exhibit demographic shifts.

1 Introduction

Machine learning (ML) models are susceptible to exhibiting biases against certain subpopulations defined
in terms of sensitive demographic characteristics such as gender, age, or race. Examples of such biases can
be found in a variety of fields, including predictive policing Angwin et al. (2016), facial analysis Buolamwini
& Gebru (2018), and healthcare Chen et al. (2019); Ricci Lara et al. (2022). Factors that contribute to
biased models may include the data used for training and evaluation, as well as decisions made during the
development process Suresh & Guttag (2019). As ML applications in the real world become increasingly
widespread, it is important to evaluate models to ensure that they are not only accurate but also produce
fair and ethical results.

In particular, under-representation of certain demographic groups has been identified as one of the main
causes of bias when developing predictive systems. For example, gender imbalance in X-ray medical imaging
datasets has been shown to have a significant impact on the performance of assisted diagnosis systems for
thoracic diseases based on convolutional neural networks Larrazabal et al. (2020), and under-representation
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of ethnic groups has also been found to influence model performance for cardiac image segmentation Puyol-
Antón et al. (2021). However, in other tasks, such data imbalance has not been associated with unequal
performance. In Petersen et al. (2022) for example, the authors found that in the case of Alzheimer’s disease
prediction from brain magnetic resonance images (MRI), gender imbalance in the training dataset did not lead
to a clear pattern of improved model performance for the majority group. A similar phenomenon was observed
in Kinyanjui et al. (2020), where the authors studied under-representation of skin color when analyzing
dermoscopic images for skin cancer detection, and did not observe such disparities. This observation was
then challenged by another study Groh et al. (2021) which found disparities in performance arising from
training a neural network on only a subset of skin types. In all, it is not always a fact that data imbalance will
result in biased automated systems. To complicate matters further, even when the presence of biases can be
assessed the during development of an automated tool, these properties may not transfer under distribution
shifts Schrouff et al. (2022), for instance, once the model is deployed. This is a problem for fairness metrics
which require ground-truth annotations, which are expensive to obtain and may not be available before
deployment. Given these issues, a valid question that one may then ask is: can we anticipate whether
models will exhibit biases with respect to data imbalance in terms of a particular protected attribute in the
absence of ground-truth annotations?

Typical approaches to identify biases in ML models involve subgroup analysis and controlled experiments
where both demographic and target labels are available Larrazabal et al. (2020); Buolamwini & Gebru (2018);
Glocker et al. (2021). Model performance across demographic groups is commonly evaluated employing one
or more metrics Corbett-Davies & Goel (2018) with the implicit assumption that the presence or absence of
biases during development will be representative of the behaviour of these models when applied to previously
unseen data at deployment. Recent findings regarding how fairness properties transfer across distribution
shifts in real-world healthcare applications due to changes in geographic location, population demographics
or even environmental conditions, warn us about the risks of this assumption Schrouff et al. (2022). A
system that did not exhibit strong biases in the source population may begin to do so when the target
population changes. This is particularly concerning in applications like healthcare, where collecting expert
annotations on large datasets can be costly and time-consuming Ricci Lara et al. (2022), meaning that
fairness metrics requiring labels may not be computed, with the result of biases going unnoticed. In this
context, developing methods that can be used without the need for ground truth in the target population
becomes highly relevant. In this paper, we are interested in exploring ways to anticipate potential bias issues
that may arise in the context of a given task for a novel unlabeled target population. We do so by proxy:
using an index that we call Demographically-Informed Prediction Discrepancy Index (DIPDI), which can be
computed in the absence of ground truth annotations. We show in numerical experiments on both synthetic
and real-world datasets that this index is indeed indicative of bias proneness, providing an early warning for
potential fairness issues in these settings.

2 Related work

The implicit assumption that model assessment during development is representative of its behaviour at
deployment is not unique to fairness studies. Indeed, anticipating whether a model will systematically fail
or not when ground-truth annotations are not available is a current topic of interest in the field, and one
way to tackle this issue is to look at predictive uncertainty Gal et al. (2016). Intuitively, if a well-calibrated
model systematically makes highly uncertain predictions for certain individuals, then chances are that
these predictions will have a higher failure rate for those individuals. In this context, recent studies have
analyzed the relation between fairness and uncertainty, postulating that uncertainty estimates can be
used to obtain fairer models, improve decision-making, and build trust in automated systems Bhatt et al.
(2021). For example, Lu et al. (2021) analyzed how alternative uncertainty estimation methods can be
used to evaluate subgroup disparities in mammography image analysis, while Stone et al. (2022) leveraged
epistemic uncertainty estimates to mitigate minority group biases during training. The work Dusenberry
et al. (2020) discusses the role of model uncertainty in predictive models for Electronic Health Record
(EHR), and shows how it can change across different patient subgroups, in terms of ethnicity, gender and
age, considering Bayesian and deep ensemble approaches for uncertainty estimation. Even though in this
work we do not directly rely on the notion of uncertainty, our study is highly influenced by this idea, as it
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explores the use of output discrepancy for a set of models as a way of anticipating bias issues. This notion
is closely related to ensemble variance, usually employed as a measure of uncertainty for ensemble methods
Lakshminarayanan et al. (2017); Pividori et al. (2016); Larrazabal et al. (2021). Another important concept
in our study is that of consistency Wang et al. (2020), defined as the ability of a set of multiple trained
learners to reproduce an output for the same input Wang et al. (2020). According to this concept, model
outputs are analyzed irrespective of whether they are correct or incorrect, and as such, it does not require
ground-truth annotations to be computed. This idea will be central to our study.

Contributions: Here we present a methodology to understand whether biases with respect to a given
demographic attribute are prone to arise in a new unlabeled dataset. We do so by analyzing the output
consistency of a pool of models, where each model is trained on separate demographic groups, but is otherwise
identical in terms of architecture, hyper-parameters and training scheme. We introduce a new index, DIPDI,
based on the following hypothesis: if models specialized in different demographic groups produce inconsistent
and highly discrepant predictions for the same test data, then the task under analysis is prone to be biased
against that specific demographic attribute.

We validate our hypothesis using synthetic and real-world datasets, focusing on a simple task: age estimation
from face photos and X-ray images, using three real-world datasets and considering different cases of demo-
graphic imbalance in the training data. Our results indicate that DIPDI can be used to anticipate potential
bias issues in the absence of ground truth labels, and confirm the association between output discrepancy
and bias proneness. We also assess the behaviour of DIPDI for unseen populations with demographic shifts,
showing how it can be used to measure bias proneness in dynamic contexts. Moreover, since our metric does
not require expert annotations to be computed, it could help to anticipate bias issues in real-world scenarios
and give early warnings when deploying machine learning models on new, unlabeled populations.

3 Demographically-Informed Prediction Discrepancy Index (DIPDI)

3.1 Quantifying output discrepancy within and between demographically-informed sets of models

Given two sets of predictive models A = {A1, A2} and B = {B1, B2}, we are interested in analyzing how
the output discrepancy of models within the same set compares to the output discrepancy of models coming
from different sets when they are evaluated on samples from an unlabeled dataset D. For simplicity, we
exemplify the calculation of DIPDI for regression models, though the method can be readily extended to
other tasks. Here A(xk) : D −→ R+, where xk ∈ D can be images or other types of data for subject k, and
the output of A(xk) is a positive real number (e.g. the problem of regressing age from an X-ray image or a
face photography).

We then define an output discrepancy function ND(M1, M2), that takes as input two models M1 and M2,
and returns a number representing how different their outputs are on average when evaluated on all samples
from D. If M1 and M2 are regression models as in our example, then we can simply define ND as

ND(M1, M2) = 1
|D|

∑
xk∈D

|M1(xk) − M2(xk)| (1)

In other words, the output discrepancy is the average of the absolute difference between the predicted values
of models M1 and M2 for all subjects in the dataset. It returns a number closer to 0 when the outputs of
the two models for every data sample are similar, and higher if they tend to differ. Since we are interested
in analyzing the output discrepancy for models within and between sets, we consider the following ratio as
an indicator of relative output discrepancy:

ΦD(A,B) = log
[

ND(A1, B1)ND(A2, B2)
ND(A1, A2)ND(B1, B2)

]
. (2)
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This inter-model prediction discrepancy will be close to 0 when the output discrepancy for models within
the same set (numerator) is similar to that of models coming from different sets (denominator), and it will
be greater than 0 when the discrepancy for models coming from different sets is greater than that of models
coming from the same set. When applied to models trained on different demographic groups, we refer to this
diverse set of models as a demographically-informed pool and ΦD becomes our Demographically-Informed
Prediction Discrepancy Index (DIPDI). This will be the case, for example, when models in A are trained on
male individuals while models in B are trained on female individuals.

3.2 DIPDI as a proxy for anticipating bias issues

Our goal is to anticipate whether biases may arise with respect to a particular protected attribute a in a
novel dataset before annotated labels become available. The task at hand here is age regression and the
protected attribute a indicates the gender of the patient, which for simplicity we take as male (a = M) or
female (a = F ). We create two sets of models (age regressors): A, where models Ai are trained only on male
patients, i.e. a = M ; and B, where models Bi are trained only on female patients, i.e. a = F . We say that
this constitutes a demographically-informed pool of models, as each of them was trained on individuals from
a particular demographic group characterized by the protected attribute a. Let us also have a fixed dataset
D that will be used as the novel target population where potential biases would want to be flagged. D is
a balanced dataset according to the protected attribute a (but unlabeled with respect to output class, i.e.
without the reference age). In our example, this means that D is composed of 50% male and 50% female
patients.

Our hypothesis is that for larger values of ΦD(A,B), computed for a pool of models comprising sets A and
B, biases are more likely to emerge. In other words, we hypothesize that inconsistencies between the output
discrepancy of models trained on highly unbalanced datasets with respect to the protected attribute a will
tend to co-occur with potential bias issues. To confirm our hypothesis, we first look for biases with respect
to a using ground-truth annotations in the target population (following a strategy similar to Larrazabal
et al. (2020)), by computing performance gaps in terms of absolute error (using the ground-truth of each
sub-population). Then we calculate DIPDI, which does not require ground-truth labels for D, and verify if
it produces results that are in line with the conclusions we drew when using the annotations. As a sanity
check, we incorporate control experiments where we break the assumption that sets A and B are trained on
different demographic groups, and show that in these cases DIPDI returns values close to 0.

4 Experimental validation

We start by verifying the behaviour of DIPDI under controlled conditions using synthetic data. Then, we
perform a set of experiments to assess if age estimation from face and x-ray images is prone to be biased
with respect to gender, particularly when a certain subgroup is underrepresented Larrazabal et al. (2020).
We show that DIPDI anticipates potential biases against the minority group when training data is highly
imbalanced in gender representation for the tasks of age estimation from X-ray and facial images (Section
4.3). To this end, we employ ground-truth annotations for the target population to compute performance
gaps in terms of mean absolute errors for models trained with different imbalance ratios, in the different
subgroups. Then, we proceed to compute DIPDI (which does not require ground-truth labels) in the target
population. We show that bias gaps tend to occur for larger DIPDI values (Section 4.4). We conclude the
study by showing how DIPDI can serve to anticipate potential bias issues at deployment in populations
with demographic shifts, when target annotations are not yet available.

4.1 DIPDI on synthetic data

Before proceeding with the evaluation of DIPDI in real data, we verify its behaviour under controlled
conditions using synthetic data. To do so, we simulate the predictions of two sets of models A = {A1, A2}
and B = {B1, B2} when evaluated on samples from a synthetic dataset D. We then systematically evaluate
DIPDI in scenarios with different levels of disagreement between A and B. The model discrepancy is here
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(a)

(b)

Figure 1: (a) Synthetic data construction. Examples of predicted ages simulated for models in A and B, for
increasing levels of prediction disparities (left to right). (b) DIPDI on synthetic data. Both σA and σB range
from 1 to 10. Each fold represents a new run of the experiment with different random seeds. The DIPDI
index is computed by averaging 3 simulations for each σA.

simulated by the addition of a stochastic value of varying size (disagreement level) to the output predictions
(Figure 1a). Additionally, we analyze the stability of our method as a function of the number of data samples
N = |D| in Appendix A.1.

We consider the task of age estimation, so the outputs of models in A and B are assumed to represent
predicted ages. We start with a fixed sample Y drawn from a uniform distribution of ages between 30 and
80, representing the ground-truth ages, yk ∈ Y. We simulate synthetic predictions for the models in A and
B by perturbing Y with Gaussian noise sampled from distributions nA ∼ N (0, σA) and nB ∼ N (0, σB).
Thus, for a fictitious data sample k with ground-truth label yk ∈ Y, the synthetic model predictions are
Ai(xk) = yk +nA and Bi(xk) = yk +nB. Varying the standard deviations allows us to create scenarios where
the predicted ages for the analysis groups are more or less similar, and then analyze the behaviour of DIPDI
under different discrepancy ratios (see Figure 1a).

DIPDI values for different discrepancy scenarios are displayed in Figure 1b, considering N = 1000 and σA
and σB values in the range [1-10]. Note that when the outputs of A and B are similarly perturbed (as shown
on the diagonal of each image), then Φ is close to 0. However, when perturbations are sampled from a wider
Gaussian in one set than the other (as shown outside the diagonal of each image), Φ tends to be higher than
0. This confirms the desired behaviour for our index: when intra-set predictions are more consistent than
inter-set predictions, the index returns larger values.

4.2 DIPDI on real scenarios: datasets and experimental setup

We conduct experiments on the task of age estimation using convolutional neural networks (CNNs), employ-
ing three public databases: ChestX-ray14 Wang et al. (2017), UTKFace Zhang et al. (2017) and IMDB-WIKI
Rothe et al. (2018). All experiments were performed using PyTorch Paszke et al. (2017) on an NVIDIA Titan
X GPU.1

1Our code is publicly available at XXXXXXXXXXX
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ChestX-ray14 dataset. The ChestX-ray14 dataset contains 112,120 high-resolution frontal-view radio-
graphs of 30,805 unique patients with age and gender labels. Each image is annotated with up to 14 different
chest disease labels extracted from radiology reports using natural language processing techniques. We use
the ChestX-ray14 dataset to perform subgroup analysis in terms of gender and to evaluate DIPDI in models
trained to perform age estimation from radiological images. We use here for gender the binary labels reported
in the dataset, i.e. male and female. In order to perform these experiments, we collect the “healthy" subjects
from the ChestX-ray14 dataset, i.e. those labeled as “No Finding", meaning that none of the 14 pathologies
was diagnosed. We do so to avoid potential confounds arising for instance from varying disease prevalence
across demographic sub-groups. Subsequently, one image per patient was randomly selected, resulting in a
total of 22,850 images. This database was divided into 5 folds using a stratified cross-validation strategy,
where each fold is balanced by gender. For each cross validation instance, one fold is used to evaluate the
model and the remaining 4 folds are used to train the model, which are further sub-divided into training
(90%) and validation (10%) subsets for hyper-parameter tuning and model selection.

For all experiments on ChestX-ray14 we used a DenseNet-121 Huang et al. (2017) that had been pre-trained
on ImageNet Russakovsky et al. (2015). The last layer of the network was replaced with an adaptive pooling
layer, followed by a single-output neuron layer to predict age. The models were trained for 50 epochs using
the Adam optimizer Kingma & Ba (2014) with default parameters and the mean absolute error (MAE) loss
function.

UTKFace dataset. The UTKFace dataset is a collection of over 20,000 facial images spanning ages from
0 to 116, annotated for age, gender, and ethnicity. It exhibits diverse variations in pose, facial expression,
lighting, occlusion, and resolution. Images were filtered to include ages from 10 to 100 and followed the same
training settings as applied in the case of ChestX-ray14. This dataset is utilized for subgroup analysis and
assessing DIPDI in age estimation models.

We employed a VGG-16 architecture Simonyan & Zisserman (2014), pretrained on ImageNet, with the final
layer replaced by adaptive pooling and a single-output neuron layer for age prediction.

IMDB-WIKI dataset. The IMDB-WIKI dataset consists of 523,051 face images of 20,284 celebrities
collected from IMDB and Wikipedia with age and gender labels. Age is estimated from the date of birth
and the year when the photo was taken. The IMBD-WIKI dataset is used to perform subgroup analysis and
to evaluate DIPDI for models trained to perform age estimation from facial images.

We used a VGG-19 architecture Simonyan & Zisserman (2014) pre-trained on ImageNet. We added a single-
output neuron layer with ReLU activation and fine-tuned the last four layers. The models were trained with
a MAE loss for 10 epochs using the Adam optimizer with default parameters.

4.3 Assessing the impact of gender imbalance for age estimation in a supervised setting

Age estimation from X-ray images. We analyze the impact of gender imbalance in age estimation from
radiological images by performing a supervised subgroup evaluation. The aim is to understand if the age
estimation task is prone to be biased with respect to gender if a certain subgroup is under-represented. We
will then see if the proposed DIPDI can predict such behaviour without ground-truth annotations. We train
models with different degrees of gender imbalance and then examine their performance separately in male
and female subgroups. We consider three cases of gender imbalance in training: 100-0 (100% male), 50-50
(50% male and 50% female), and 0-100 (100% female). Each model was run 10 times with different random
seeds. Importantly, the test set is fixed, and male and female subgroups in the test population are equal in
size. This means that every model is evaluated on equal footing.

The MAE on the ChestX-ray14 is shown in Figure 2a. The results show that an imbalance in the protected
attribute leads to a significant difference in performance across subgroups. For example, when testing on
female subjects, models trained only on male (100-0) data have higher MAE than models trained on female
images. The same happens when testing on female individuals: models trained only on female data (0-100)
significantly outperform those trained on male data. Moreover, the differences between male and female
subgroups are less significant when the training data is balanced (50-50). These results are consistent with
previous observations reported by Larrazabal et al. (2020) in the context of disease prediction from X-ray
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(a) (b) (c)

Figure 2: Mean absolute error (MAE) for age estimation on ChestX-ray14, UTKFace, and IMDB-WIKI
by subgroup (male and female). Trained models with different degrees of male-female imbalance (100-0,
50-50, and 0-100) are shown in blue shades. Note how for a given test subgroup (e.g. male patients), the
model trained on patients of the same gender significantly outperforms the other. This confirms that age
estimation from both X-ray and face images is prone to gender bias if proper care is not taken when creating
the training databases

images. Appendix A.2 contains supplementary results for ChestX-ray14 including additional statistics and
metrics.

Age estimation from face images. We also perform a similar analysis to study the impact of gender
imbalance in age estimation from facial images. For UTKFace, we followed the same procedure as for ChestX-
ray14. Figure 2b shows the MAE results for models trained with varying degrees of gender imbalance and
tested on male and female subgroups over 5 folds. These results demonstrate a significant performance
disparity across subgroups resulting from an imbalance in the protected attribute.

In the case of IMDB-WIKI, we train an ensemble of 5 models with different degrees of male-female imbalance
and then evaluate their performance separately in male and female subgroups. We perform 20-fold cross-
validation with a 60/20/20 ratio for the training, validation, and test sets.

The MAE is shown in Figure 2c for these experiments. We observe that the models perform best in the
subgroup (either male or female) that is most represented in training, but their performance deteriorates in
the other subgroup. We include additional results for UTKFace as well as a more fine-grained study with
different imbalanced degrees for IMDB-WIKI in Appendix A.2.

4.4 Computing DIPDI for age estimation models without ground-truth

In the previous section we confirmed that age estimation is a task prone to be biased with respect to gender
by computing error gaps between subgroups using ground-truth age annotations. Now, we want to study if
it is possible to measure such bias proneness in a given population without ground-truth labels using DIPDI.
We are interested in analyzing if output discrepancy for demography-aware model sets can be used as a
proxy for anticipating potential fairness problems in specific ML tasks. To this end, we compute DIPDI in
the same three settings where we explicitly evaluated biases in the previous section.

In all datasets, ChestX-ray14, UTKFace and IMDB-WIKI, we consider different scenarios of gender imbal-
ance for the set of models A and B to be evaluated. First, we consider training populations consisting of
only males (100-0), only females (0-100), and equal numbers of males and females (50-50). Two comparisons
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A, B ChestX-ray14 UTKFace IMDB-Wiki
50-50, 50-50 -0.041 (0.056) 0.021 (0.030) -0.106 (0.200)
100-0, 0-100 0.516 (0.078) 0.834 (0.107) 0.993 (0.309)

Table 1: DIPDI (mean ± std) for age estimation on ChestX-ray14, UTKFace and IMDB-WIKI according to
group definition (rows) over 5 folds. Groups A and B represent two pairs of models. Each pair was trained
on different male/female proportions: only males (0-100), only females (0-100), and equal males/females
(50-50). Test folds are balanced with respect to the male-female ratio.

are made: i) 50-50 vs 50-50, representing cases where both A and B are groups of models trained with
data from the same demographic sub-group; and ii) 100-0 vs 0-100, representing cases where A and B are
groups of models trained with data from different demographic sub-group. To control for finite-size sampling
variability, we split the training data into four random disjoint partitions, so that no data is shared between
models even when they are trained for the same demographic sub-group. Then DIPDI is computed on the
held-out test set (i.e. the unlabeled data D), which is balanced by gender. Additional control experiments
for DIPDI are included in Appendix A.3.

Table 4 shows DIPDI for age estimation on ChestX-ray14, UTKFace and IMDB-WIKI. Note that, in all
scenarios, the index values are very close to 0 when comparing sets of models trained in the same population
(row 1), but higher than 0 when comparing models from different populations (row 2), in line with the
absence or presence of biases as a function of data imbalance shown in the previous section (recall Figure
2). Taken together these results demonstrate the co-occurrence between higher DIPDI and bias proneness:
models that are less prone to bias, i.e. those coming from the same demographic population, produce more
consistent outputs when evaluated on a target population. This output stability is clearly evidenced by
index values close to 0 in row 1 for both datasets. In contrast, the index returns significantly higher values
when it comes to models trained with different demographic subgroups, where biases are in turn more prone
to appear, as shown in our previous supervised analysis (Section 4.3). Importantly, note that no labels were
required in the target population D when computing DIPDI.

4.5 Anticipating potential demographic biases in domain shift scenarios with DIPDI

We have highlighted in the previous section the role of DIPDI in identifying potential demographic biases
in populations that lack ground-truth annotations. Now, we turn our attention to a new challenge: demon-
strating how DIPDI can deal with domain shift scenarios even when ground-truth data is unavailable. Prior
research has identified the vulnerability of fairness properties of machine learning models when deployed
on datasets differing from those used during model development Schrouff et al. (2022). In this context, we
leverage DIPDI as an unsupervised alternative to traditional fairness metrics for understanding bias in new
datasets with population shifts.

Our experiment involves a target population that is always balanced by gender, and we introduce shifts by
altering the age distribution within one gender group (either male or female, but not both). Specifically, we
increase the proportion of individuals with ages exceeding a predefined limit (set at 45 in our experiments),
while maintaining the age distribution within the non-shifted group. For each shift scenario considered, we
calculate both the DIPDI and the MAE difference between male and female models when tested separately
on male and female subsets. For the male subset, we calculate the MAE difference by subtracting the MAE
of a female-trained model from that of a male-trained model. Similarly, for the female subset, we subtract
the MAE of a male-trained model from that of a female-trained model. Note that the calculation of MAE
requires access to ground truth annotations, whereas DIPDI does not.

Figure 3 presents the mean and standard error of DIPDI and MAE difference for age shift ratios ranging
from 0.5 to 0.9 (a shift ratio of 0.9, for example, implies 90% of the subpopulation is under 45, and 10% is at
or above 45). Note that when the shift affects the male subgroup (Fig. 3a), DIPDI tends to slightly increase,
and a corresponding slightly increasing difference is observed for both male and female test groups. On
the other hand, when the shift involves the female subgroup (Fig. 3b), the difference decreases for females
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(a)

(b)

Figure 3: Mean and standard error of DIPDI and MAE difference within domain shift scenarios for male (a)
and female (b) subgroups on the UTKFace dataset. The shift is induced by modifying the age distribution
of individuals under 45 years at increasing ratios for male and female test groups independently. Note that
in both cases of shift, the DIPDI tends to follow the behaviour of the difference curve, showing an increase
with increasing biases and a decrease with decreasing biases.

while remaining stable for males. In this case, DIPDI exhibits a corresponding decrease as biases within the
female group decrease. These experiments underscore the effectiveness of DIPDI in domain shift scenarios,
particularly when ground-truth annotations are unavailable. An increase in DIPDI during deployment,
compared to the development phase, can be interpreted as an indicator of intensifying bias proneness within
one or both demographic groups, whereas a decrease in DIPDI implies a potential reduction in bias within
these groups.

5 Discussion

In this work, we tackle the issue of anticipating potential demographic biases at deployment in the absence
of ground truth annotations. Typical methods designed to assess fairness require access to such annotations,
which may be available at training time but not when deploying models for previously unseen data. A
prototypical example of this would be a model trained on a public dataset which will then be applied to a
local population for which we do not have the corresponding annotations. Recent work has highlighted how
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distribution shifts may affect fairness Schrouff et al. (2022), resulting in a potential risk. While an explicit
fairness metric may not be computed, we argue that we can employ the discrepancy of output predictions as
a proxy to provide an early warning about potential demographic biases. We propose a concrete solution in
terms of an index, DIPDI, whose value indeed provides a measure for the proneness towards biased solutions.

Intuitively, we can think about output discrepancies in a set of models as a notion of uncertainty, similar to
that estimated via ensemble variance Lakshminarayanan et al. (2017). In that sense, our index quantifies
the relative uncertainty estimated when using models trained with data from different demographic groups
(numerator) and from the same demographic group (denominator). If both are similar (ratio equal to 1), then
we get a DIPDI value close to 0 (log ratio 1) indicating that the problem shows no early signs of bias with
respect to the analyzed demographic values. However, higher discrepancies (uncertainty) for models from
different demographic groups will lead to DIPDI values significantly larger than 0, indicating bias proneness
for the task under analysis. In particular, an increase in DIPDI from model development (training) to
deployment could be interpreted as a red flag, triggering further detailed assessment. We showed that
DIPDI can also be used to understand how fairness transfers across distributions, particularly in scenarios
involving population shifts where age changes differently for male and female groups.

Finally, we note that while we have expressed DIPDI here as a global population average, the same reasoning
could in principle be applied to population subsets defined by the intersection of multiple demographic traits,
or even on a subject-by-subject basis. Such predictive discrepancies as captured by DIPDI could serve to flag
subjects or sub-groups at higher risk of suffering biases, constituting another avenue of research to explore
in future work.
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A Appendix

A.1 DIPDI on synthetic data

Figure 4 illustrates the stability of DIPDI with the target population dataset size (N = |D|) based on
its behavior under controlled conditions using synthetic data. To do this, we simulated predictions from
two model sets, A and B, and evaluated DIPDI in scenarios with varying levels of disagreement between
these models, represented by stochastic discrepancies in their output predictions (see Figure 1 in the main
manuscript). We found consistent stability in the DIPDI index across scenarios of similar, discrepant, and
highly discrepant outputs, particularly when N exceeded 50.

Figure 4: DIPDI stability in terms of the number of data samples N (the size of D). Results are based on 10
runs for each pair of σA and σB, and displayed for three scenarios: no discrepancy (red), lower discrepancy
(blue) and higher discrepancy (green).
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A.2 Controlled subgroup analysis for age estimation

In this section, we provide additional results on for ChestX-ray14, UTKFace, and IMDB-WIKI datasets,
aiming to assess the impact of gender imbalance on age estimation, as discussed in Section 4.3 of the main
manuscript.

A.2.1 Mean absolute error (ChestX-ray14 and UTKFace)

Tables 2 and 3 present results for ChestX-ray14 and UTKFace, reporting the mean absolute error (MAE)
values for male and female subgroups under different scenarios of gender imbalance in the training data.

Training (Male-Female) Testing on Male Testing on Female
Male (100-0) 4.508 (0.028) 5.602 (0.108)

Mixed (50-50) 4.634 (0.061) 4.632 (0.177)
Female (0-100) 5.209 (0.038) 4.432 (0.057)

Table 2: Mean absolute error (MAE) (mean ± std) for age estimation on ChestX-ray14 by subgroup (male
and female) across 5 folds, using trained models with different degrees of male-female imbalance: 100-0,
50-50, and 0-100.

Training (Male-Female) Testing on Male Testing on Female
Male (100-0) 5.950 (0.059) 8.534 (0.418)

Mixed (50-50) 6.200 (0.172) 5.757 (0.172)
Female (0-100) 7.139 (0.206) 5.446 (0.204)

Table 3: Mean absolute error (MAE) (mean ± std) for age estimation on UTKFace by subgroup (male and
female) across 5 folds, using trained models with different degrees of male-female imbalance: 100-0, 50-50,
and 0-100.

A.2.2 Cumulative score (ChestX-ray14 and UTKFace)

Figures 5 and 6 show cumulative score (CS) values for male and female subgroups in different gender
imbalance scenarios in the training data. The CS quantifies the proportion of test samples (N) for which
the absolute error e falls below a specified threshold of n years. This calculation is defined as follows:

CS(n) = Ne≤n

N
,

where Ne≤n represents the number of test images for which the absolute age error is less than or equal to
the corresponding threshold value.

A.2.3 Mean absolute error (IMDB-WIKI)

Figure 7 shows the results of the MAE corresponding to a 20-fold cross-validation for models trained with
different degrees of gender imbalance and evaluated on males, females, and the whole population. This is a
more fine-grained analysis than the one presented in Figure 2c of the main manuscript, aiming to observe
the effect of gender imbalance in more detail.

A.3 Computing DIPDI for age estimation models without ground-truth

Table 4 presents additional control experiments for DIPDI on ChestX-ray14, UTKFace and IMDB-WIKI
datasets as discussed in Section 4.4 of the main manuscript. We evaluated DIPDI in the same scenarios of
gender imbalance for the set of models A and B as previously examined biases: only males (100-0), only
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Figure 5: Cumulative score (CS) for age estimation on ChestX-ray14 by subgroup (male and female) aggre-
gated across all 5 folds, using trained models with different degrees of male-female imbalance: 100-0, 50-50,
and 0-100. The age threshold n ranges from 0 to 15 years.

Figure 6: Cumulative score (CS) for age estimation on UTKFace by subgroup (male and female) aggregated
across all 5 folds, using trained models with different degrees of male-female imbalance: 100-0, 50-50, and
0-100. The age threshold n ranges from 0 to 15 years.

females (0-100), and equal numbers of males and females (50-50). We observe that models from the same
population (rows 1 to 3) tend to produce DIPDI values close to 0, whereas models trained with different
demographic subgroups (row 4) exhibit higher DIPDI values, indicating a greater propensity to bias.
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Figure 7: Mean absolute error (MAE) for age estimation on IMDB-WIKI. Trained models with different
degrees of male-female imbalance and evaluated on males (green), females (orange), and the whole population
(purple).

A, B ChestX-ray14 UTKFace IMDB-Wiki
100-0, 100-0 0.004 (0.038) -0.007 (0.115) 0.053 (0.110)
50-50, 50-50 -0.041 (0.056) 0.021 (0.030) -0.106 (0.200)
0-100, 0-100 0.031 (0.081) 0.013 (0.180) -0.104 (0.154)
100-0, 0-100 0.516 (0.078) 0.834 (0.107) 0.993 (0.309)

Table 4: DIPDI (mean ± std) for age estimation on ChestX-ray14, UTKFace and IMDB-WIKI datasets
according to group definition (rows) over 5 folds. Groups A and B represent two pairs of models. Each pair
was trained on different male/female proportions. Test folds are balanced with respect to the male-female
ratio.
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