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Abstract

Reinforcement learning (RL) in large or infinite state spaces is notoriously challeng-
ing, both theoretically (where worst-case sample and computational complexities
must scale with state space cardinality) and experimentally (where function ap-
proximation and policy gradient techniques often scale poorly and suffer from
instability and high variance). One line of research attempting to address these
difficulties makes the natural assumption that we are given a collection of base
or constituent policies (possibly heuristic) upon which we would like to improve
in a scalable manner. In this work we aim to compete with the max-following
policy, which at each state follows the action of whichever constituent policy has
the highest value. The max-following policy is always at least as good as the best
constituent policy, and may be considerably better. Our main result is an efficient
algorithm that learns to compete with the max-following policy, given only access
to the constituent policies (but not their value functions). In contrast to prior work
in similar settings, our theoretical results require only the minimal assumption
of an ERM oracle for value function approximation for the constituent policies
(and not the global optimal policy or the max-following policy itself) on samplable
distributions. We illustrate our algorithm’s experimental effectiveness and behavior
on several robotic simulation testbeds.

1 Introduction

Computationally efficient RL algorithms are known for simple environments with small state spaces
such as tabular Markov decision processes (MDPs) [Kearns and Singh, 2002, Brafman and Tennen-
holtz, 2002], but practical applications often require dealing with large or even infinite state spaces.
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Learning efficiently in these cases requires computational complexity independent of the state space,
but this is statistically impossible without strong assumptions on the class of MDPs [Jaksch et al.,
2010, Lattimore and Hutter, 2012, Du et al., 2019, Domingues et al., 2021]. Even in structured MDPs
that admit statistically efficient algorithms, learning an optimal policy can still be computationally
intractable [Kane et al., 2022, Golowich et al., 2024].

These obstacles to practical RL motivate the study of ensembling methods [Lee et al., 2021, Peer
et al., 2021, Chen et al., 2021, Hiraoka et al., 2022], which assume access to multiple sub-optimal
policies for the same MDP and aim to leverage these constituent policies to improve upon them.
There are now several provably efficient ensembling algorithms, but their guarantees require strong
assumptions on the representation of the target policy learned by the algorithm. Brukhim et al. [2022]
use the boosting framework for ensembling developed in the supervised learning setting [Freund and
Schapire, 1997] to learn an optimal policy, assuming access to a weak learner for a parameterized
policy class. To efficiently converge to an optimal policy, the target policy must be expressible as a
depth-two circuit over policies from a base class which is efficiently weak-learnable. The convergence
guarantees additionally require strong bounds on the worst-case distance between state-visitation
distributions of the target policy and policies from the base class.

Another line of ensembling work considers a weaker objective than learning an optimal policy [Cheng
et al., 2020, Liu et al., 2023, 2024]. These works instead aim to learn a policy competitive with a max-
aggregation policy, which take whichever action maximizes the advantage function with respect to a
max-following policy at the current state. When these works have provable guarantees, they require
the assumption that the target max-aggregation policy can be approximated in an online-learnable
parametric class, as well as the assumption that policy gradients within the class can be efficiently
estimated with low variance and bias.

Our goal is to learn a policy competitive with a similar but incomparable benchmark to that of Cheng
et al. [2020] under comparatively weak assumptions. We give an efficient algorithm for learning a
policy competitive with a max-following policy (Definition 2.1), assuming the learner has access to
a squared-error regression oracle for the value functions of the constituent policies. Our algorithm
exclusively queries this oracle on distributions over states that are efficiently samplable, thereby
reducing the problem of learning a max-following competitive policy to supervised learning of value
functions. Notably, our learnability assumptions pertain only to the value functions of the constituent
policies and not to the more complicated class of max-following benchmark policies or their value
functions. Our algorithm is simple and effective, which we demonstrate empirically in Section 5.

It is natural to wonder if access to an oracle such as ours could be leveraged to instead efficiently
learn an optimal policy, obviating the need for weaker benchmarks (and our results). However, it
was recently shown by [Golowich et al., 2024] that learning an optimal policy in a particular family
of block MDPs is computationally intractable under reasonable cryptographic assumptions, even
when the learner has access to a squared-error regression oracle. Their oracle captures a general
class of regression tasks that includes value function estimation, and therefore also captures our
oracle assumption. Our work shows that when we instead consider the simpler objective of efficiently
learning a policy that competes with max-following, a regression oracle is in fact sufficient. We leave
open the interesting question of whether such an oracle is necessary.

1.1 Results

Our main contribution is a novel algorithm for improving upon a set of K given policies that is oracle
efficient with respect to a squared-error regression oracle, and therefore scalable in large state spaces
(Algorithm 1, Theorem 3.1). We consider the episodic RL setting in which the learner interacts
with its environment for episodes of a fixed length H . The algorithm incrementally constructs an
improved policy over H iterations, learning an improved policy for step h ∈ [H] of the episode
at iteration h. This incremental approach allows the algorithm to explicitly construct efficiently
samplable distributions over states visited by the improved policy at step h by simply executing the
current policy for h steps. It can then query its oracle to obtain approximate value functions for all
constituent policies with respect to this distribution. This in turn allows the algorithm to learn an
improved policy for step h+1 by following the policy with highest estimated value. By incrementally
constructing an improved policy over steps of the episode, we can avoid making assumptions like
those of Brukhim et al. [2022] about the overlap between state-visitation distributions of the target
policy and the intermediate policies constructed by the algorithm.
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Because our oracle only gives us approximate value functions, we take as our benchmark class the
set of approximate max-following policies (Definition 2.3). This is a superset of the class of max-
following policies and contains all policies that at each state follow the action of some constituent
policy with near-maximum value at that state. In Section 4, we prove that for any set of constituent
policies, the worst approximate max-following policy is competitive with the best constituent policy
(Lemma 4.1) and provide several example MDPs illustrating how our benchmark relates to other
natural benchmarks.

Finally, we demonstrate the practical feasibility of our algorithm using a heuristic version on a set
of robotic manipulation tasks from the CompoSuite benchmark Mendez et al. [2022], Hussing et al.
[2023]. We demonstrate that in all cases, the max-following policy we find is at least as good as the
constituent policies and in several cases outperforms it significantly.

1.2 Related work

As discussed above, our work is related to a recent line of research learning a max-aggregation
policy [Cheng et al., 2020, Liu et al., 2023, 2024], which can be viewed as a one-step look-ahead
max-following policy and is incomparable to the class of max-following policies (see the appendix
of Cheng et al. [2020] for example MDPs demonstrating this fact). These works all assume online
learnability of the target policy class, which is strictly stronger than our batch learnability assumption
for constituent policy value functions.

The work of Cheng et al. [2020] proposes an algorithm (MAMBA) that uses policy gradient methods,
and the convergence of the learned policy to their benchmark depends on the bias and variance of
those policy gradients. Liu et al. [2023, 2024] builds on the work of [Cheng et al., 2020]. Their
algorithm MAPS-SE modifies MAMBA to promote exploration when there is uncertainty about which
constituent policy has the greatest value at a state, via an upper confidence bound (UCB) approach to
policy selection. Reducing uncertainty about the constituent policies’ value functions reduces the bias
and variance of the gradient estimates, improving convergence guarantees. However, policy gradient
techniques are known to generally have high variance [Wu et al., 2018], and this appears to affect the
practical performance of MAPS-SE in certain cases (see Section 5 for additional discussion). Sekhari
et al. [2024] consider the problem of imitation learning from multiple noisy experts using selective
sampling. For queried experts, their algorithm invokes an online regression oracle assumption. As
mentioned above, this assumption is stronger than batch learnability. Ultimately, their regret analysis
depends upon a margin term which computes the number of time steps where the Bayes optimal
classifier is confused about what the best action to take at the sampled state is. This could be costly
when the value functions of the experts are close for many of the sampled states. Moreover, they
assume deterministic dynamics at every time step.

The boosting approach to policy ensembling of Brukhim et al. [2022] also necessitates very strong
assumptions. This follows from the computational separation in Golowich et al. [2024], which shows
that our oracle assumption is insufficient to learn an optimal policy, whereas the assumptions made
in Brukhim et al. [2022] enable convergence to optimality.

There are other lines of work on policy improvement, which consider improving upon a single base
policy and therefore do not address the challenge of ensembling [Sun et al., 2017, Schulman et al.,
2015, Chang et al., 2015]. Barreto et al. [2017, 2020], Alegre et al. [2024] consider the problem
of Generalized Policy Improvement (GPI) by decomposing complex tasks into a set of multiple
smaller tasks where they use transfer learning. However, they make strong assumptions about the
joint representation of rewards (tasks) as linear in successor feature representations, which may be
challenging to explicitly learn in MDPs that are not tabular. Zaki et al. [2022] consider the setting of
access to M base controllers with the aim of optimally combining them to produce a controller that
is competitive with the base set. They approach this problem with the aim of considering a single
controller from the softmax policy class over the base set of policies that is competitive with all the
others, but not in a state-dependent manner. Empirical work on ensemble imitation learning (IL) also
studies the problem of leveraging multiple base policies for learning [Li et al., 2018, Kurenkov et al.,
2019], but these works lack provable guarantees of efficient convergence to a meaningful benchmark.
[Song et al., 2023] provide a survey of a variety of more complex techniques to ensemble policies,
mainly from a practical perspective.
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2 Preliminaries

We consider an episodic fixed-horizon Markov decision process (MDP) [Puterman, 1994] which we
formalize as a tupleM = (S,A, R, P, µ0, H) where S is the set of states, A the set of actions, R is
a reward function, P the transition dynamics, µ0 a distribution over starting states and H the horizon
[Sutton and Barto, 2018]. [N ] will denote the set {0, ..., N − 1}. In the beginning, an initial state s0
is sampled from µ0. At any time h ∈ [H], the agent is in some state sh ∈ S and chooses an action
ah ∈ A based on a function πh mapping from states to distributions over actions Π : S 7→ ∆(A). As
a consequence, the agent traverses to a new next state sh+1 sampled from P (·|sh, ah) and obtains a
reward R(sh, ah). Without loss of generality, we assume that rewards bounded within [0, 1]. The
sequence of functions πh used by the agent is referred to as its policy, and is denoted π = {πh}h∈[H].
A trajectory is the sequence of (state, action) pairs taken by the agent over an episode of length H ,
and is denoted τ = {(sh, ah)}h∈[H]. We will use the notation τ ∼ π(µ0) to refer to sampling a
trajectory by first sampling a starting state s0 ∼ µ0, and then executing policy π from s0.

The goal of the learner is to maximize the expected cumulative reward Es0∼µ0,P [
∑H−1

t=0 R(st, at)]
over episodes of length H . We further define the value function as the expected cumulative return of
following some policy π from some state s as V π(s) = Es0∼µ0,P [

∑H−1
t=0 R(st, at)|π, s0 = s]. Due

to the finite horizon of the episodic setting, we will also need to refer to the expected cumulative
reward from state s under policy π from time h ∈ [H]. We denote this time-specific value function
by V π

h (s) = EP [
∑H−1

t=h R(st, at)|π, sh = s]. Finally, the key object of interest is a max-following
policy. Given access to a set of k arbitrarily defined policies Πk = {πk}Kk=1 and their respective
value functions which we denote by the shorthand V πk = V k, a max-following policy is defined as a
policy that at every step follows the action of the policy with the highest value in that state.
Definition 2.1 (Max-following policy class). Fix a set of policies Πk for a common MDPM and an
episode length H . The class of max-following policies Πk

max is defined

Πk
max = {π : ∀h ∈ [H],∀s ∈ S, πh(s) = πk∗

(s) for some k∗ ∈ argmax
k∈[K]

V k
h (s)}

Note that for any collection of constituent policies Πk there may be many max-following policies,
due to ties between the value functions. Different max-following policies may have different expected
return, and we refer the reader to Observation 4.5 for an example demonstrating this fact.

We assume access to a value function oracle that allows us to approximate a value function of a policy
under a samplable distribution at any specified time h ∈ [H]. This oracle is intended to capture the
common assumption that the value function of a policy can be efficiently well-approximated by a
function from a fixed parameterized class. In practice, one might imagine implementing this oracle
as a neural network minimizing the squared error to a target value function.
Definition 2.2 (Oracle for π value function estimates). We denote by Oπ an oracle satisfying
the following guarantee for a policy π. For any α ∈ (0, 1], and any h ∈ [H], given as input a
time h ∈ [H] and sampling access to any efficiently samplable distribution µ, the oracle outputs
V̂ π
h ← Oπ(α, µ, h) such that Es∼µ[(V̂

π
h (s)− V π

h (s))2] ≤ α. We use the notation Oπ
α = Oπ(α, ·, ·)

to denote Oπ with fixed accuracy parameter α. We will also use the shorthand Ok = Oπk

.

Looking ahead to Section 3, we note that for every distribution µ on which Algorithm 1 queries an
oracle, µ is not only efficiently samplable, but samplable by executing an explicitly constructed policy
πsamp for h steps in MDPM, starting from µ0. Thus, for any distribution µ, policy πk, and time h for
which we query Ok, we could efficiently obtain an unbiased estimate of Es∼µ[V

k
h (s)] by following

a known πsamp for h steps from µ0, and then switching to πk for the remainder of the episode. We
mention this to highlight that our oracle is not eliding any technical obstacles to sampling in the
episodic setting. It is simply abstracting the supervised learning task of converting unbiased estimates
of Es∼µ[V

k
h (s)] into an approximation V̂ k

h with small squared error with respect to µ.

Lastly, we define our benchmark class of policies. Given a set of constituent policies Πk, our
benchmark defines for each state and time a set of permissible actions: any action taken by a policy
πt ∈ Πk for which the value V t

h(s) is sufficiently close to the maximum value maxk∈[K] V
k
h (s). The

class of approximate max-following policies is then any policy that exclusively takes permissible
actions. We refer the reader to Section 4 for further explanation of this benchmark.
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Definition 2.3 (Approximate max-following policies). We define a set of β-good policies at state
s ∈ S and time h ∈ [H], selected from a set Πk, as follows.

Tβ,h(s) = {π ∈ Πk : V π
h (s) ≥ max

k∈[K]
V k
h (s)− β}.

Then we define the set of approximate max-following policies for Πk to be

Πk∗

β = {π : ∀h ∈ [H],∀s ∈ S, πh(s) = πt
h(s) for some πt ∈ Tβ,h(s)}.

3 The MaxIteration learning algorithm

In this section, we introduce our algorithm for learning an approximate max-following policy,
MaxIteration (Algorithm 1. This algorithm learns a good approximation of a max-following policy
at step h, assuming access to a good approximation of a max-following policy for all previous steps.

For the first step (h = 0), the algorithm learns a good approximation V̂ k
0 for all constituent policies πk

on the starting distribution µ0. These approximate value functions can in turn be used to define the first
action taken by the approximate max-following policy, namely π̂0(s) = πargmaxk V̂ k

0 (s)(s). Following
π̂0(s) from µ0 generates a samplable distribution over states µ1(s) = Es0∼µ0

[P (s|s0, π̂0(s0))], and
so our oracle assumption allows us to obtain good estimates V̂ k

1 with respect to µ1 for all πk. We can
then define the second action of the approximate max-following policy, and so on, for all H steps.

Notice that sampling from µh does not require that the agent can reset the environment at will. It only
requires what is typically required in the episodic setting – that the agent explores for an episode of H
steps, where H is finite and fixed across all of training. After these H steps, the agent is then reset to a
state sampled from the distribution over starting states. The distributions µh are (informally) defined
as follows: at iteration h ∈ [H] of our algorithm, the agent has already learned a good approximate
max-following policy for the first h steps of the episode. The distribution µh is the distribution over
states visited by the agent at step h if it begins from a state drawn from the starting state distribution
and then follows the approximate max-following policy it has learned thus far for h steps. That
means to sample from µh, the oracle can simply run the approximate max-following policy for h
steps to arrive at a state sh, which is a sample from µh. It can then do anything for the remainder of
the episode, and so does not need to reset at arbitrary time steps. In practice, since the oracle needs to
produce a good approximation of the value function V k

h at time h for policy πk on states sampled
from µh, one should think of it as using the remainder of the episode to obtain an unbiased estimate
of the expectation of V k

h on the distribution µh. That is, once it has sampled a state sh by running
the approximate max-following policy for h steps, it just executes policy πk for the remainder of the
episode. The accumulated reward obtained by following policy πk from state sh for steps h through
H gives the oracle an unbiased estimate of Esh∼µh

[V k
h (sh)]. To implement this oracle assumption,

one could use many such unbiased estimates as training data to train a neural network, to learn a good
approximate value function for πk at time h on distribution µh.

Algorithm 1 MaxIterationMα (Πk)

1: for h ∈ [H] do
2: for k ∈ [K] do
3: let µh be the distribution sampled by executing the following procedure:
4: sample a starting state s0 ∼ µ0

5: for i ∈ [h] do
6: si+1 ∼ P ( · | si, πargmaxk V̂ k

i (si)(si))
7: end for
8: output sh
9: V̂ k

h ← Ok
α(µh, h)

10: end for
11: end for
12: return policy π̂ = {π̂h}h∈[H] where π̂h(s) = πargmaxk∈[K] V̂

k
h (s)(s)
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Theorem 3.1. For any ε ∈ (0, 1], any MDP M with starting state distribution µ0, any episode
length H , and any K policies Πk defined on M, let α ∈ Θ( ε3

KH4 ) and β ∈ Θ( ε
H ). Then

MaxIterationMα (Πk) makes O(HK) oracle queries and outputs π̂ such that

E
s0∼µ0

[
V π̂(s0)

]
≥ min

π∈Πk∗
β

E
s0∼µ0

[V π(s0)]−O(ε).

Proof. For all h ∈ [H], k ∈ [K], let V̂ k
h denote the approximate value function obtained from

Ok
α(µh, h) in Algorithm 1. We then define, for every h ∈ [H], the set of states for which some ap-

proximate value function V̂ k
h (s) has large absolute error (Bh) and the set of bad trajectories (Bτ ) that

pass through a state in Bh for any h ∈ [H] : Bh = {s ∈ S : ∃k ∈ [K] s.t. |V̂ k
h (s)− V k

h (s)| ≥ ε
2H }

and Bτ = {{(sh, ah)}h∈[H] : ∃h ∈ [H] s.t. sh ∈ Bh}. We will show that there exists an approx-
imate max-following policy π ∈ Πk∗

β such that for any trajectory τ ′ ̸∈ Bτ , Prτ∼π̂(µ0)[τ = τ ′] =

Prτ∼π(µ0)[τ = τ ′]. We then bound the probability Prτ∼π̂(µ0)[τ ∈ Bτ ], and the contribution to
Es0∼µ0 [V

π(s0)] from these trajectories, proving the claim.

Let V k∗

h (s) denote the value of the policy that π̂ follows at time h and state s. From the definition of
the bad set Bh and the setting of β ∈ Θ( ε

H ), for any state s ̸∈ Bh,

V k∗

h (s) ≥ V̂ k∗

h (s)− ε
2H ≥ max

k∈[K]
V̂ k
h (s)− ε

2H ≥ max
k∈[K]

V k
h (s)− β.

In other words, if a state s is not bad at time h, then π̂h(s) = πk
h(s) for a policy πk that has value

V k
h (s) within β of the true max value maxk∈[K] V

k
h (s). It then follows from the definition of the

class of approximate max-following policies Πk∗

β (Definition 2.3) that there exists some π ∈ Πk∗

β

such that for all h ∈ [H], for all s ̸∈ Bh, π̂h(s) = πh(s).

For any trajectory τ ′, Prτ∼π̂(µ0)[τ = τ ′] = Prµ0
[s0] ·

∏H−1
h=0 P (sh+1|sh, π̂h(sh)). Then for any

trajectory τ ′ ̸∈ Bτ , Prτ∼π̂(µ0)[τ = τ ′] = Prτ∼π(µ0)[τ = τ ′], and therefore

E
τ∼π̂(µ0)

[
H−1∑
h=0

R(sh, ah) | τ ̸∈ Bτ

]
= E

τ∼π(µ0)

[
H−1∑
h=0

R(sh, ah) | τ ̸∈ Bτ

]

For τ ∈ Bτ , we have lower and upper-bounds Eτ∼π̂(µ0)[
∑H−1

h=0 R(sh, ah) | τ ∈ Bτ ] ≥ 0 and

Eτ∼π(µ0)[
∑H−1

h=0 R(sh, ah) | τ ∈ Bτ ] ≤ H . We can then write:

E
s0∼µ0

[
V π̂(s0)

]
= E

τ∼π̂(µ0)

[
H−1∑
h=0

R(sh, ah) | τ ̸∈ Bτ

]
· Pr
τ∼π̂(µ0)

[τ ̸∈ Bτ ]

+ E
τ∼π̂(µ0)

[
H−1∑
h=0

R(sh, ah) | τ ∈ Bτ

]
· Pr
τ∼π̂(µ0)

[τ ∈ Bτ ]

≥ E
τ∼π̂(µ0)

[
H−1∑
h=0

R(sh, ah) | τ ̸∈ Bτ

]
· Pr
τ∼π̂(µ0)

[τ ̸∈ Bτ ]

= E
τ∼π(µ0)

[
H−1∑
h=0

R(sh, ah) | τ ̸∈ Bτ

]
· Pr
τ∼π(µ0)

[τ ̸∈ Bτ ]

≥ E
τ∼π(µ0)

[
H−1∑
h=0

R(sh, ah)

]
−H · Pr

τ∼π(µ0)
[τ ∈ Bτ ] (using law of total probability and upper bound on rewards)

≥ min
π∈Πk∗

β

E
s0∼µ0

[V π(s0)]−H · Pr
τ∼π(µ0)

[τ ∈ Bτ ].

It remains to upper-bound Prτ∼π(µ0)[τ ∈ Bτ ]. We have already argued Prτ∼π(µ0)[τ ∈ Bτ ] =

Prτ∼π̂(µ0)[τ ∈ Bτ ]. Observing that Prτ∼π̂(µ0)[τ ∈ Bτ ] ≤
∑H−1

h=0 Prτ∼π̂(µ0)[sh ∈ Bh], it is
sufficient to show Prτ∼π̂(µ0)[sh ∈ Bh] ∈ O( ε

H2 ) to prove the claim. For all h ∈ [H], let
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µh(s) = Prτ∼π̂(µ0)[sh = s], and note that this is the distribution supplied to the oracle at iter-
ation h of Algorithm 1. It follows from our oracle assumption (Definition 2.2) that for all k ∈ [K],
Esh∼µh

[(V̂ k(sh)− V k(sh))
2] < α. We apply Markov’s inequality to conclude that for all k ∈ [K],

Pr
sh∼µh

[|V̂ k
h (sh)− V k

h (sh)| ≥ ε
2H ] < 4αH2

ε2 ∈ O( ε
KH2 ).

Union bounding over the K constituent policies gives Prsh∼µh
[sh ∈ Bh] ∈ O( ε

H2 ), from the defini-
tion of Bh. Union bounding over the trajectory length H , we then have Prτ∼π̂(µ0)[τ ∈ Bτ ] ∈ O( ε

H ).
It follows that

E
s0∼µ0

[
V π̂(s0)

]
≥ min

π∈Πk∗
β

E
s0∼µ0

[V π(s0)]−O(ε),

completing the proof.

4 The approximate max-following benchmark

In this section, we provide additional context for our benchmark class of approximate max-following
policies. We show that the worst policy in our benchmark class competes with the best fixed policy
from the set of constituent policies. We also provide examples of MDPs that showcase properties of
the set of (approximate) max-following policies.
Lemma 4.1 (Worst approximate max-following policy competes with best fixed policy). For any
ε ∈ (0, 1] and any episode length H , let β ∈ Θ( ε

H ). Then for any MDP M with starting state
distribution µ0, and any K policies Πk defined onM,

min
π∈Πk∗

β

E
s0∼µ0

[
V π̂(s0)

]
≥ max

k∈[K]
E

s0∼µ0

[
V k(s0)

]
−O(ε).

We defer the proof of Lemma 4.1 to Appendix B.

It is an immediate corollary of Theorem 3.1 and Lemma 4.1 that the policy learned by Algorithm 1
competes with the best constituent policy.
Corollary 4.2. For any ε ∈ (0, 1], any MDPM with starting state distribution µ0, any episode
length H , and any K policies Πk defined onM, let α ∈ Θ( ε3

KH4 ), and let π̂ denote the policy output
by MaxIterationMα (Πk). Then

E
s0∼µ0

[
V π̂(s0)

]
≥ max

k∈[K]
E

s0∼µ0

[
V k(s0)

]
−O(ε).

We provide diagrams of MDPs as examples for the observations that we make below. States in S
are denoted by the labels on the nodes. Actions in A are indicated by arrows from given states with
deterministic transition dynamics and the rewards R(s, a) are labeled over the corresponding arrows.
Arrows may be omitted for transitions that are self-loops with reward 0.
Observation 4.3. The worst approximate max-following policy can be arbitrarily better than the
best constituent policy.

Consider in Figure 1a two policies on this MDP: π0(s) = right and π1(s) = left, for all s ∈ S . Note
that for any episode length H ≥ 2, for all k ∈ {0, 1}, maxs∈S V k(s) = 2. For any β < 1, Πk∗

β

comprises policies π such that π(s0) = right, π(s2) = left, and π(s1) ∈ {right, left}. Therefore for
any episode length H , and state s ∈ S, minπ∈Πk∗

β
V π(s) = H . In this example, any approximate

max-following policy is also an optimal policy, whose gap in expected return with the best constituent
policy can be made arbitrarily large by increasing H .
Observation 4.4. A max-following policy cannot always compete with an optimal policy.

In Figure 1b, consider policies π0(s) = right, π1(s) = left, and π2(s) = up, for all s ∈ S. At state
s2, π0 is the only policy with non-zero value. Thus, any max-following policy will take action right
from s2, receiving reward ε and then reward 0 for the remainder of the episode. Given a starting state
distribution supported entirely on s2, for any episode length H ≥ 3, the optimal policy will obtain
cumulative reward H − 2, whereas any max-following policy will only obtain reward ε.
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(a) MDP in which two policies going either
only left or right obtain low return but max-
following them would be optimal.
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(b) MDP with A = {right, left, up} where starting from
s2, max-following is far worse than optimal and starting
from s0, different max-following policies have different
values (depending on tie-breaking).

Figure 1: Examples of MDPs with max-following policy performance comparison
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(a) MDP where small value approximation errors
at s0 hinder max-following. Arrows representing
transition dynamics are color-coded red to indicate
actions taken by π0 and blue to indicate actions
taken by π1.
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(b) MDP where the max-following value
function is piecewise linear, but constituent
policy’s values are affine functions of the
state for fixed actions.

Figure 2: Examples for Observation 4.6 and Observation 4.7

Observation 4.5. Different max-following policies may have different expected cumulative reward.

We again consider Figure 1b, but suppose now the starting state distribution is supported entirely
on s0. For all k ∈ [3], V k(s0) = 0 and so a max-following policy may take any action from s0. A
max-following policy that always takes actions left or up from s0 will only ever obtain cumulative
reward 0, but a max-following policy that takes action right will move to s1 and (so long as more
than one step remains in the episode) will then take action up and move to state s4, where it will stay
to obtain cumulative reward H − 2.

If the value functions of constituent policies are exactly known, it is easy to construct a max-following
policy, but the learner may not have access to these functions. If the learner only has access to
approximations and follows whichever policy has the larger approximate value at the current state,
the resulting policy can have much lower expected cumulative reward than the max-following policy.
This is true even for state-wise bounds on the value approximation error. This observation previously
motivated our definition of the approximate max-following class (Definition 2.3).

Observation 4.6. Small value function approximation errors can be an obstacle to learning a
max-following policy.

In Figure 2a, we again consider policies π0(s) = right and π1(s) = left for all states s ∈ S, color
coding the actions taken by π0 with red and π1 with blue in Figure 2a. For starting state distribution
supported entirely on s0, a max-following policy π will take action π(s0) = left, π(s2) = right, and
π(s3) = left for the remainder of the episode, obtaining reward H − 2 + 2ε. However, given only
approximate value functions V̂ k with state-wise absolute error bound |V̂ k

h (s)− V k
h (s)| ≤ ε for all

states s and times h, the policy π̂ that takes action πk∗

h (s) for k∗ = argmaxk∈[2] V̂
k
h (s) can have
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much lower expected cumulative reward than a max-following policy. For example if V̂ 0
0 (s0) = ε

and V̂ 1
0 (s0) = 0 in our Figure 2a example, then π̂ will have expected return 0.

Observation 4.7. A max-following policy’s value function is not always of the same parametric class
as the constituent policies’ value functions.

As a simple first example, consider an MDP with states S = [0, 1] and actions A = {−1, 1}.
Every action leads to a self-loop (for all a ∈ A, P (s|s, a) = 1) and for a fixed action, rewards are
affine functions of the state (e.g. R(s,−1) = 1 − s and R(s, 1) = s). We consider two policies:
π0(s) = −1 and π1(s) = 1 for all s ∈ S. Notice that for episode length H , V 0(s) = HR(s,−1)
and V 1(s) = HR(s, 1). Since the dynamics keep the state at the same fixed place independent of
the action, the max-following policy at state s will simply be the max of the two individual value
functions at s and therefore its parametric class will be piecewise linear, unlike the constituent
policies’ which are affine (see Figure 2b). To provide a more complex MDP example, we consider
a traditional control problem with continuous state and action spaces: the discrete linear quadratic
regulator. In this example the constituent linear policies have quadratic value functions, but the
max-following policy is not of the same parametric class. See Appendix A for further discussion.

5 Experiments

We proceed to examine our MaxIteration algorithm in a set of experiments that uses neural network
function approximation as oracles. These experiments aim to provide a scenario to demonstrate
the usefulness of max-following. While previous works in this line of research have studied the
ability to integrate knowledge from the constituent policies to increase performance of a learnable
policy [Cheng et al., 2020, Liu et al., 2023, 2024] our algorithm offers an alternative approach. We
consider a common scenario from the field of robotics where one has access to older policies from a
robotic simulator that were used in previous projects. As long as the dynamics of the MDP of interest
do not differ, such old policies can be simply be re-used in new applications. In such cases, training
completely from scratch can be incredibly expensive due to the vast search space [Schulman et al.,
2017, Haarnoja et al., 2018]. We note that this setup is related to the one used by Barreto et al. [2017,
2020] but we do not put any constraints on the reward functions.

Experimental setup A recent robotic simulation benchmark called CompoSuite [Mendez et al.,
2022] and its corresponding offline datasets [Hussing et al., 2023] offer an instantiation of such a
scenario. CompoSuite consists of four axes: robot arms, objects, objectives and obstacles. Tasks
are simply constructed by combining one element from each axis.We consider tasks with a fixed
IIWA robotic manipulator and no obstacle. This leaves us with a total of 16 tasks. These 16 tasks
are randomly grouped into pairs of two. Each group is one experiment where the policies trained on
tasks correspond to our constituents. To create a new target task, we change one element per task,
creating novel combinations for each group. For example, we start with the constituent policies that
can 1) put and place a box into a trashcan and 2) push a plate. The target task can be to push the
box. We train our constituent policies on the expert datasets using the offline RL algorithm Implicit
Q-learning [Kostrikov et al., 2022] (IQL). This ensures we obtain very strong constituent policies for
their respective tasks. After training the constituents, we run MaxIteration and the baselines for a
short amount of time in the simulator. We report mean performance and standard error over 5 seeds
using an evaluation of 32 episodes.

Algorithms For practical purposes, we use a heuristic version of MaxIteration which does not
re-compute the max-following policy at every step h but rather after multiple steps. For our baselines,
we ran the code provided by [Liu et al., 2023] to train the MAPS algorithm but were unable to obtain
non-trivial return even after a reasonable amount of tuning. MAPS has been shown to have difficulties
with leveraging very performant constituent policies such as the ones we are using (see the Walker
experiment by Liu et al. [2023] in Figure 1 (d) in which the algorithm struggles to be competitive
with the best, high-return constituent policy). They conjecture that in this case, their estimates of
the constituent value functions will be less accurate in early training, resulting in gradient estimates
with large bias and variance, weakening their convergence guarantees. We provide an evaluation of
MaxIteration on tasks originally used by Liu et al. [2023] in Appendix C.3.

For now, we opt to use IQL’s in fine-tuning capabilities that offer a policy improvement style method
on top of the best-performing constituent policy for comparison. Fine-tuning provides a strong
baseline in the sense that it has access to the already trained value functions of the constituent policies
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providing it with inherently more starting information. For comparability, we limit the number of
episodes available for fine-tuning to the same number of episodes available for training MaxIteration.
For more details we refer to Appendix C.

Experimental Results Figure 3 contains a set of demonstrative results. The full results are deferred
to Appendix C. The selected results in Figure 3 highlight three properties of MaxIteration:

1. There are cases where max-following not only increases the return but actually leads to solving a
task successfully even when none of the constituent policies achieve success.

2. With successful constituent policies, max-following can significantly increase the success rate.
3. max-following can sometimes increase return but not necessarily lead to success demonstrating

the need to better understand which attributes make up good constituent policies in the future.
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Figure 3: Policies 0 and 1 correspond to the pre-trained policies using IQL on the intial tasks above
the arrow in each graph. That is, in the left most subfigure, Policy 0 corresponds to the policy of
picking and placing a dumbbell, whereas Policy 1 corresponds to the policy of moving a box into the
trashcan. Mean return and success rate over 5 seeds of MaxIteration compared to fine-tuning IQL
on selected tasks. Error-bars correspond to standard error. Full bars correspond to returns and red
lines indicate the success rate of each algorithm. MaxIteration can yield improvements in return but
increased return does not always yield success.

The results in Appendix C demonstrate that in all cases, MaxIteration is at least as good as the
best constituent policy which is not the case for algorithms from prior work [Liu et al., 2023] as
discussed earlier. Moreover, MaxIteration consistently leads to greater return improvement than
fine-tuning given the same amount of data. Fine-tuning with substantially more resources would
eventually surpass the performance of MaxIteration as MaxIteration is limited to competing with
the max-following benchmark which can be suboptimal.

6 Conclusion

We introduce MaxIteration, an algorithm to efficiently learn a policy that is competitive with the
approximate max-following benchmark (and hence also with all constituent policies). We provide
empirical evidence that max-following utilizing skill-learning enables us to learn how to complete
tasks that it would be inefficient to learn from scratch, but that are superior to other individually
trained experts for fixed given skills.

Limitations and Future Work Our goal in this work has been to learn a policy that competes with
an approximate max-following policy under minimal assumptions. However, we still assume efficient
batch learnability of constituent value functions, which will not always be feasible in practice. While
it seems likely that our oracle assumption is necessary for learning an approximate max-following
policy, we leave proving this claim for future work. We also leave consideration of alternative
ensembling approaches to future work. Max-value ensembling is sensitive to slight differences in the
values between constituent policies whereas, e.g., softmax takes into account the relative ‘weighting’
of values. In addition, it would be interesting to characterize the amount of improvement we can
obtain over our constituent policies or prove conditions under which our approximate max-following
policy is competitive with a true max-following policy or the optimal policy. One could also extend
this analysis to ensembling methods like softmax and study the nature of guarantees in that setting.
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Extending beyond MDPs to the partially observable setting, and to the discounted infinite-horizon
setting, would also add richness to the class of problems we could consider.
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A MDP Examples

A.1 LQR max-following parametric class vs. constituent policies

min
{ut}∞

t=0

∞∑
t=0

γt(xT
t Qxt + uT

t Rut)

subject to xt+1 = Axt +But + wt,

To motivate the use of max-following policies in a richer class of MDPs, we consider a traditional
control problem with continuous state and action spaces: the discrete linear quadratic regulator. Note
that here we analyze the infinite horizon discounted case so that we can analyze the time-invariant
value function, but episodic analogues exist. Consider the following setting where γ ∈ [0, 1] is a
discount factor, and wt ∼ N (0, σ2I). Here, we consider the simple case where Q,R,A = I and
B = (1 + ϵ)I . We know that the optimal policy is of the form u = −K∗x [Bertsekas, 2012] and
we set two policies that are only stable along one component and unstable along the other of the
form u1 = −K1x and u2 = −K2x. It is important to note that the value functions of the individual
policies and the optimal policies have exact quadratic forms like V (x) = xTPx+ q, but the max-
following policy is not necessarily within the same parametric class. For example, P1 is the solution
to the Lyapunov equation P1 = (I +KT

1 K1 + γ(A−K1)
TP1(A−K1)) and q1 = γ

1−γσ
2 tr(P1).

A similar formula exists for policy 2.

In LQR, for the K1,K2 controllers described above, a max-following policy is able to attain higher
value than the individual expert policies that have an unstable direction in one axis. Moreover, we
see that the optimal policy is obviously superior to all the other policies, but that a max-following
policy is more competitive with it than the other individual expert policies. A max-following policy
is ultimately able to benefit from the stabilizing component of each axis of the individual policies,
which ultimately lets it perform better than any given individual one.

B Additional Proofs

Lemma 4.1 (Worst approximate max-following policy competes with best fixed policy). For any
ε ∈ (0, 1] and any episode length H , let β ∈ Θ( ε

H ). Then for any MDP M with starting state
distribution µ0, and any K policies Πk defined onM,

min
π∈Πk∗

β

E
s0∼µ0

[
V π̂(s0)

]
≥ max

k∈[K]
E

s0∼µ0

[
V k(s0)

]
−O(ε).

Proof. We will prove the claim inductively, showing that for all C ∈ [H], if we run any approximate
max-following policy for C steps, and then continue following the policy πk chosen at step C for the
rest of the episode, then our expected return is not much worse than if we had followed any fixed πk

for the whole episode.

Somewhat more formally, recalling the definition of the set of approximate max-following policies
Πk∗

β (Definition 2.3), at every time h ∈ [H] and state s ∈ S, a policy π ∈ Πk∗

β takes action πt
h(s)

for a πt ∈ Πk such that V t
h(s) ≥ maxk∈[K] V

k
h (s) − β. Letting πt(s,h) denote the πt ∈ Πk that π

follows at state s and time h, we will show that if at some step C ∈ [H] we have

E
s0∼µ0,P

[
C∑

h=0

R(sh, πh(sh)) +

H−1∑
h=C+1

R(sh, π
t(sC ,C)
h (sh))

]
≥ max

k∈[K]
E

s0∼µ0

[
V k(s0)

]
−O( ε(C+1)

H ),

for all π ∈ Πk∗

β , then the same holds for C + 1 for all π.

In the base case, C = 0, the claim

E
s0∼µ0,P

[
H−1∑
h=0

R(sh, π
t(s0,0)
h (sh))

]
≥ max

k∈[K]
E

s0∼µ0

[
V k(s0)

]
−O( ε

H )
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for all π ∈ Πk∗

β and all πk ∈ Πk, follows straightforwardly from the definition of Πk∗

β and setting of
β ∈ Θ( ε

H ), since

E
s0∼µ0,P

[
H−1∑
h=0

R(sh, π
t(s0,0)
h (sh))

]
= E

s0∼µ0

[V πt(s0,0)

(s0)]

≥ E
s0∼µ0

[
max
k∈[K]

V k(s0)−O( ε
H )

]
≥ max

k∈[K]
E

s0∼µ0

[
V k(s0)

]
−O( ε

H ).

We now prove the inductive step. We wish to show that if at step C, we have for some π ∈ Πk∗

β

E
s0∼µ0,P

[
C∑

h=0

R(sh, πh(sh)) +

H−1∑
h=C+1

R(sh, π
t(sC ,C)
h (sh))

]
≥ max

k∈[K]
E

s0∼µ0

[
V k(s)

]
−O( ε(C+1)

H ),

then continuing to follow π at step C + 1 and following πt(sC+1,C+1) thereafter reduces expected
return by O( ε

H ). Now if πC+1(sC+1) = πt
C+1(sC+1) for πt ∈ Πk, it must be the case that

V t
C+1(sC+1) ≥ max

k∈[K]
V k
C+1(sC+1)−O( ε

H ),

otherwise π ̸∈ Πk∗

β . It follows that

E
s0∼µ0,P

[
C+1∑
h=0

R(sh, πh(sh)) +

H−1∑
h=C+2

R(sh, π
t(sC+1,C+1)
h (sh))

]

= E
s0∼µ0,P

[
C∑

h=0

R(sh, πh(sh)) + V
t(sC+1,C+1)
C+1 (sC+1)

]
(by definition of V and πC+1(sC+1))

≥ E
s0∼µ0,P

[
C∑

h=0

R(sh, πh(sh)) + max
k∈[K]

V k
C+1(sC+1)−O( ε

H )

]
(from π ∈ Π

k∗
β )

≥ E
s0∼µ0,P

[
C∑

h=0

R(sh, πh(sh)) + V
t(sC ,C)
C+1 (sC+1)−O( ε

H )

]

= E
s0∼µ0,P

[
C∑

h=0

R(sh, πh(sh)) +

H−1∑
h=C+1

R(sh, π
t(sC ,C)
h (sh))

]
−O( ε

H ) (by definition of V )

≥ max
k∈[K]

E
s0∼µ0

[
V k(s)

]
−O( ε(C+2)

H ) (by inductive hypothesis)

and so the claim holds for time C + 1, for any π ∈ Πk∗

β for which it holds for time C. We showed
the base case C = 0 hold for all π ∈ Πk∗

β , and therefore we have

E
s0∼µ0,P

[
C∑

h=0

R(sh, πh(sh)) +

H−1∑
h=C+1

R(sh, π
t(sC ,C)
h (sh))

]
≥ max

k∈[K]
E

s0∼µ0

[
V k(s)

]
−O( ε(C+1)

H )

for all C ∈ [H]. In particular, for C = H − 1 we conclude that

E
s0∼µ0,P

[
C∑

h=0

R(sh, πh(sh))

]
≥ max

k∈[K]
E

s0∼µ0

[
V k(s)

]
−O(ε)

and it follows that

min
π∈Πk∗

β

E
s0∼µ0

[
V π̂(s0)

]
≥ max

k∈[K]
E

s0∼µ0

[
V k(s0)

]
−O(ε).
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C Additional information about experiments

For our experiments, we use a heuristic version of MaxIteration that operates in rounds. First, the
algorithm collects a set of trajectories using every policy to initialize the respective value functions.
Then, in every round the algorithm for every policy exectues the max-following policy for β steps
and the switches to the respective constituent policy. At the end of each round, value functions of
constituent policies are updated. β is uniformly spaced along the full horizon and thus, depends on
the number of rounds and the horizon. The total number of episodes is an upper bound on the number
of samples collected which is what we determine to compare run-times between MaxIteration and
IQL. Finally, we use a γ discounting which has been shown to have regularizing effects on the value
function updates [Amit et al., 2020].

For IQL, we use the d3rlpy implementations [Seno and Imai, 2022] and code provided by Hussing
et al. [2023].

C.1 Hyperparameters

Both algorithms are run for 10, 000 steps initially (to initialize value functions for MaxIteration and
to pre-fill the buffer for IQL) before doing updates and then for 50, 000 steps for online training.

All neural networks use ReLU [Glorot et al., 2011] Multi-layer perceptrons with 2 layers and a hidden
dimension of 256 per layer.

Table 1: Hyperparameters for MaxIteration

Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Adam ε 1e− 8
Value Function Learning Rate 1e− 4
Number of rounds 50
Number of gradient steps per
round 40,000

Batch Size 64
γ 0.99

Table 2: Hyperparameters for Implicit Q-Learning

Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Adam ε 1e− 8
Actor Learning Rate 4e− 3
Critic Learning Rate 4e− 3
Batch Size #Tasks ×256
n_steps 1
γ 0.99
τ 0.005
n_critics 2
expectile 0.7
weight_temp 3.0
max_weight 100
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C.2 Full results on CompoSuite
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C.3 Results on DM Control

We run our MaxIteration algorithm on the DM Control benchmarks [Tunyasuvunakool et al., 2020]
similar to the MAPS [Liu et al., 2023] setup. In their setup, the constituent policies correspond to
different 3 checkpointed models in one run of the online Soft-Actor critic [Haarnoja et al., 2018]
algorithm. As a result, it is generally true that the latest checkpointed model will outperform the
previous two checkpoints meaning one constituent policy is strictly better everywhere than the others.
We report the final performance over 5 seeds using 16 evaluation trajectories in Figure 5. The
results show that our algorithm behaves as expected and always uses the best oracle. Without policy
improvement operator, this setup does not allow us to exceed the performance of the constituent
policies.
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Figure 5: Mean return over 5 seeds of MaxIteration on DM Control tasks [Tunyasuvunakool et al.,
2020]. Error-bars correspond to standard error. MaxIteration always selects the best performing
constituent policy.

C.4 Computational Resources

Our experiments were conducted using a total of 17 GPUs inclusing both server-grade (e.g., NVIDIA
RTX A6000s) and consumer-grade (e.g., NVIDIA RTX 3090) GPUs. Training the constituent policies
from offline data takes less than 2 hours. Our MaxIteration algorithm takes about 3 hours to train
while the baseline fine-tuning takes around 1 hour. A large chunk of the runtime cost stems from
executing the simulator.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and the results 1.1summary sections provide an overview of
our theoretical and experimental results. We then proceed to explain the setup in our
preliminaries 2 and provide our main theoretical results 3 immediately after. We also
provide our experimental 5 results at the end of the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations and possibilities for future work/open questions as
paragraph section(s) of the conclusion 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide extensive discussion of our setting and preliminaries 2 and cor-
responding proofs of theorems 3 about the nature of our assumptions about the oracle and
definitions and also about how they compare with corresponding theoretical works in the
literature.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We strongly follow the algorithmic description in 1 and any variations for the
practical implementation are discussed in Appendix C. We report all used hyperparameters
in Appendix C.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
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possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
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are making.
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• The answer NA means that the paper does not include experiments.
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the main claims of the paper.
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of the mean.
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of Normality of errors is not verified.
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error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the computational resources available and the runtimes of experi-
ments in Appendix C.4
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Answer: [Yes]
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concerns listed in the Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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• The authors should consider possible harms that could arise when the technology is
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technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: As this is a mainly theoretical work in nature, it is not quite applicable to this
work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
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12. Licenses for existing assets
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the authors.
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a
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• For existing datasets that are re-packaged, both the original license and the license of
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the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not provide any new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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asset is used.
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