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Figure 6: Topological Deep Learning Domains. Nodes in blue, (hyper)edges in pink, and faces in
dark red. Figure adopted from Papillon et al.| (2023).

A  DOMAINS OF TOPOLOGICAL DEEP LEARNING

We summarize the different discrete domains leveraged within TDL and, in doing so, contextualize
how combinatorial complexes generalize all of them. To that end, we will closely follow the
description of [Papillon et al.|(2023), using as well its very clarifying Figure[6, We recommend this
survey for a high-level overview of TDL literature, and the more extensive work of [Hajij et al.
for a detailed mathematical formulation of the field. From left to right in Figure [6, the different
domains in TDL are:

TRADITIONAL DISCRETE DOMAINS

Set / Pointcloud. A collection of points called nodes without any additional structure.

Graph. A set of points (nodes) connected with edges that denote pairwise relationships.

SET + PART-WHOLE RELATIONS

Simplicial Complex. A generalization of a graph that incorporates hierarchical part-whole relations
through the multi-scale construction of cells. Nodes are rank O-cells that can be combined to form
edges (rank 1 cells). Edges are, in turn, combined to form faces (rank 2 cells), which are combined
to form volumes (rank 3 cells), and so on. In particular, each cell ¢ in a simplicial complex must
contain all lower dimensional cells 7 such that 7 C ¢. Therefore, faces must be triangles, volumes
must be tetrahedrons, and so forth.

Cellular Complex. A generalization of an simplicial complex in which cells are not limited to
simplexes, but may instead take any shape: faces can involve more than three nodes, volumes more
than four faces, and so on. This flexibility endows CCs with greater expressivity than simplicial
complexes (Bodnar et al.,|2021a), but still edges only connect pairs of nodes.

SET + SET-TYPE RELATIONS

Hypergraph: A generalization of a graph, in which higher-order edges called hyperedges can
connect arbitrary sets of two or more nodes. Connections in HGs represent set-type relationships, in
which participation in an interaction is not implied by any other relation in the system. This makes
HGs an ideal choice for data with abstract and arbitrarily large interactions of equal importance, such
as semantic text and citation networks.

SET + PART-WHOLE AND SET-TYPE RELATIONS

Combinatorial Complex: A structure that combines features of hypergraphs and cellular com-
plexes. Like a hypergraph, edges may connect any number of nodes. Like a cellular complex, cells
can be combined to form higher-ranked structures. Hence, combinatorial complexes generalize all
other topological domains.
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B PROOFS

B.1 PROOF OF GENERALITY

The proof is straightforward. It is sufficient to set wy(H,Gy) to
{D,en(o) YN k(o) (hl,h!)},cc in qg) as all y € N(o) are part of the node set Cyr of the
strictly augmented Hasse graph of A/ by definition.

B.2 PROOF OF EQUIVARIANCE

As for GNNs, an amenable property for GCCNNSs is the awareness w.r.t. relabeling of the cells. In
other words, given that the order in which the cells are presented to the networks is arbitrary -because
CCs, like (undirected) graphs, are purely combinatorial objects-, one would expect that if the order
changes, the output changes accordingly. To formalize this concept, we need the following notions.

Matrix Representation of a Neighborhood. Assume again to have a combinatorial complex C
containing C' := |C| cells and a neighborhood function N on it. Assume again to give an arbitrary
labeling to the cells in the complex, and denote the i-th cell with o;. The matrix representation of
the neighborhood function is a matrix Ny € RE*¢ such that N, ; = 1 if the o; € N(0;) or zero

otherwise. We notice that the submatrix N N € RICVIXICxT obtained by removing all the zero rows
and columns is the adjacency matrix of the strictly augmented Hasse graph Gc,, induced by N.

Permutation Equivariance. Let C be combinatorial complex, N¢ a collection of neighborhoods on it,
and N = {Nr} aen, the set collecting the corresponding neighborhood matrices. Let P € RE*¢
be a permutation matrix. Finally, denote by PH the permuted embeddings and by {PNAPT} nren.,
the permuted neighborhood matrices. We say that a function f : (H',B) — H'* is cell permutation

equivariant if f (PHl, {PNNPT}NGNC) =Pf (H', {Ny}nen) for any permutation matrix

P. Intuitively, the permutation matrix changes the arbitrary labeling of the cells, and a permutation
equivariant function is a function that reflects the change in its output.

Proof of Proposition 2. We follow the approach from (Bodnar et al.| 2021a). Given any permuta-
tion matrix P, for a cell o;, let us denote its permutation as op(;) with an abuse of notation. Let

h'! be the output embedding of cell o; for the I-th layer of a GCCN taking (H', {N}xens)
as input, and h’t! be the output embedding of cell op(;) for the same GCCN layer taking

OP (i)
(PHl, {PNAPT} pe Nc) as input. To prove the permutation equivariance, it is sufficient to show

that hf,fl = hf;;l(i) as the update function ¢ is row-wise, i.¢., it independently acts on each cell. To do
so, we show that the (multi-)set of embeddings being passed to the neighborhood message function,
aggregation, and update functions are the same for the two cells o; and op(;). The neighborhood

message functions act on the strictly augmented Hasse graph of G, of NV, thus we work with the
submatrix N »r. The neighborhood message function is assumed to be node permutation equivariant,
i.e., denoting again the embeddings of the cells in G¢,, with ch v € RIC~IXF" and identifying
Ge,, with N, it holds that wN(PCNHlCN, PCNNNP?;N) = PchN(HlCN, Ny ), where P¢,; is
the submatrix of P given by the rows and the columns corresponding to the cells in G¢,,. This
assumption, together with the assumption that the inter-neighborhood aggregation is assumed to be
cell permutation invariant, i.e. ®Ne/\/¢ PchN(HlCN, Ny) = Qrene wN(HlCN, Ny/), trivially
makes the overall composition of the neighborhood message function with the inter-neighborhood ag-
gregation cell permutation invariant. This fact, together with the fact that the (labels of) the neighbors
of the cell ; in AV are given by the nonzero elements of the i-th row of N 7, or the corresponding

row of N > and that the columns and rows of N A are permuted in the same way the rows of the
feature matrix Hé - are permuted, implies

[Nnlij = [Pexy NAPE P, () Pe,, () ©

thus that o; and op ;) receive the same neighborhood message from the neighboring cells in N, for

all V' € Nc.
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B.3 PROOF OF EXPRESSIVITY

Before proving Proposition 3, we first recall the notion of homomorphism of a combinatorial com-
plexes (CC) from (Hajij et al.,[2023) and generalize it to the notion of isomorphism of combinatorial
complexes.

Definition 1 (CC-Homomorphism (Hajij et al.| 2023: ). A homomorphism from a CC (S, X1,1kq)
to a CC (Sa, Xy, 1ks), also called a CC-homomorphism, is a function f : X; — X that satisfies
the following conditions: 1. If z,y € A} satisfy @ C y, then f(z) C f(y). 2. If x € X}, then

rki (z) > tko(f(2)).

Definition 2 (CC-Isomorphism). A isomorphism from a CC (S, X1,1k;) to a CC (Ss, Xs, k),
also called a CC-isomorphism, is an invertible CC-homomorphism whose inverse is also a CC-
isomorphism.

Then, we propose three WL tests, called CCWL, k-CCWL and GCWL, tailored to the message
passing schemes of CCNNs and GCNNs respectively. These tests rely on the color refinement
schemes defined next. The main structure of the coloring schemes is the same, only the color update
differs in the refinement steps.

Definition 3 (Weisfeiler-Leman (WL) tests on combinatorial complexes). Let K be a combinatorial
complex. Let N a neighborhood on K. Given a sub-module wy, the w-neighborhood given by N/
and w is the set of cells in |C /| that contribute to the image of wys. The scheme proceeds as follows:

e Initialization: Cells o are initialized with the same color.

* Refinement: Given the color ¢! of cell o at iteration ¢, the refinement step computes its color at the
next iteration ¢ 1.

— The Combinatorial Complex WL test (CCWL) test updates colors by injectively mapping the
multi-sets of colors belonging to the cells of ¢ in the neighborhood N, using a perfect HASH
function:

it = HASH (¢, ciy(0)) . (10)

— The Combinatorial Complex k-WL test (k-CCWL) test updates colors by injectively mapping
the multi-sets of colors belonging to the cells of ¢ in the k-hop neighborhood associated with
N, using a perfect HASH function:

it =HASH (¢, ciy(0), 2 (0), ..., i (0)) - (11)

— The Generalized Combinatorial Complex WL test (GCWL) test updates colors by injectively
mapping the multi-sets of colors belonging to the cells of ¢ in the wxs-neighborhood of N,
N, using a perfect HASH function:

it = HASH (ct, ¢y () . (12)
e Termination: The algorithm stops when an iteration leaves the coloring unchanged.

Two combinatorial complexes are deemed non-isomorphic according to the CCWL, k-CCWL, and
GCWL respectively, if their color histograms differ upon termination of the scheme. If the histograms
are the same, we cannot conclude.

We now provide the proof of Proposition 3]

Proof. We aim to prove that GCWL is strictly more powerful than CCWL in distinguishing non-
isomorphic combinatorial complexes. Specifically, we demonstrate the existence of two combinatorial
complexes 7 and Ko that are indistinguishable by CCWL but distinguishable by GCWL.

Step 1: Relating CCWL, k-CCWL, and GCWL to Graph-Based WL Tests To establish the
relationship between these tests, we first note the following equivalences:

1. CCWL Test: The CCWL test on a combinatorial complex A with neighborhood structure
N is equivalent to the classical WL test on the strictly augmented Hasse graph Gar (K).
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K1 K2

a. Combinatorial
complex

b. Strictly augmented
Hasse graph for

N =N,

Figure 7: a. Pair of combinatorial complexes: x1 is an icosahedron polygon, and ks is five tetrahe-
drons. b. Strictly augmented Hasse graphs corresponding to each combinatorial complex, given a
choice of neighborhood N7 .

2. k-CCWL Test: The k-CCWL test on K with A corresponds to the k-WL test on the strictly
augmented Hasse graph G (K).

3. GCWL Test Generality: The GCWL test subsumes the k-CCWL test as a special case
by choosing a submodule wys that performs exactly & message-passing steps over the
neighborhood .

These equivalences establish that results on graph-based WL tests directly inform the relative
expressive power of CCWL, k-CCWL, and GCWL.

Step 2: Existence of Indistinguishable Complexes under CCWL Let ; and /C; be two com-
binatorial complexes with a neighborhood structure AV = Nfl, | (down-adjacency of faces). These
complexes are illustrated in Figure [7h.

The corresponding strictly augmented Hasse graphs G, and G (Fig. [7b) represent the 20 faces of
each complex as nodes, where each node has degree 3. Thus:

* Both G; and G, are 3-regular graphs.
* By definition, 3-regular graphs are indistinguishable by the WL test.

Since CCWL is equivalent to WL on Gr (from Step 1), the two complexes X'y and /Cy are indistin-
guishable by CCWL.

Step 3: Distinguishability of /C; and /C; under GCWL It is known that the k-WL test is strictly
more powerful than the WL test for & > 1. Specifically, there exist graphs (such as G; and G2) that
are indistinguishable by WL but distinguishable by k-WL for sufficiently large k. By the equivalences
established in Step 1, these graphs are also distinguishable by the £-CCWL test.

Now, consider a GCCN equipped with a submodule wys that performs k£ > 1 message-passing steps
on the neighborhood N = Ni’ - The GCWL test, which generalizes k&-CCWL, can distinguish
between G; and G,. Consequently:

e GCWL can distinguish between /C; and /Cs.
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Step 4: Conclusion We have constructed two combinatorial complexes K and /o that:

1. Are indistinguishable by CCWL (or equivalently, WL on their strictly augmented Hasse
graphs).

2. Are distinguishable by GCWL (or equivalently, k-WL for £ > 1 on their strictly augmented
Hasse graphs).

Since GCWL is capable of distinguishing /C; and Ko while CCWL is not, GCWL is strictly more
powerful than CCWL for distinguishing non-isomorphic combinatorial complexes. O
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C TiME COMPLEXITY

To analyze the time complexity (in terms of FLOPs) of the Generalized Combinatorial Complex
Neural Network (GCCN), we derive the complexity of its submodule wxs and then compute the
complexity of a GCCN layer. We then compare it with GNN and CCNN complexity.

C.1 KEY DEFINITIONS

* Message Complexity (1/): The complexity of a single message computation along a route
(e.g., node — node). For example, in a Graph Convolutional Network (GCN), a single
message is defined as:

Mgy = Gzyhy O,

where h,, is a 1xF' vector, © is an F'xF' weight matrix, and a, is a scalar. This involves a
matrix-vector multiplication, contributing a complexity of O(F?) per message.

e Update Complexity (UU): The complexity of the update function in the reference GNN. For
simplicity, we assume the update is an element-wise function, giving U = O(|N|), where
| N'| is the number of nodes.

C.2 COMPLEXITY OF wps

Assuming each wys submodule is a single-layer GNN, the complexity of wxr can be decomposed into
three components: message computation, aggregation, and update.

Cw/\f = Umessage + Caggregation + C’update

This breaks down as:
Cup =2|E|M + ) deg(n)A + |N|U,
neN
where:

* |E|: Number of edges in the graph,

e M: Complexity per message (O(F?)),

¢ deg(n): Degree of node n,

» A: Complexity of aggregation (e.g., assuming sum/average, O(F)),

» U: Complexity of the update function (O(1) per node).

Substituting assumptions for convolutional message passing, summation aggregation, and constant
node degree d:

Cun =2|E|F? + Y deg(n)F + O(IN]),
neN
Cuy = 2|E|F? +|N|dF + O(|N]),
Cun = O(|E|F? + |N|dF + |NJ|).

C.3 COMPLEXITY USING COMBINATORIAL COMPLEX NOTATIONS

Up until now, we have expressed C.,, . in terms of the nodes and edges making up the strictly expanded
Hassse graph it receives as input. To be able to write the complexity of a whole GCCN layer, we
must express C.,,, in terms of the original cells represented as nodes in the graph. Specifically, we
will denote the source cells (cells sending messages) as cells of rank r and the destination cells (cells
receiving messages) as cells of rank 7/. The relationships governing adjacency between the nodes
representing these cells will come from the neighborhood A to which the submodule w s is assigned.

Rewriting in terms of combinatorial complex notations, where:
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* |INV]lo: Total number of relationships in A/ (i.e. number of nonzero entries in matrix
corresponding to ),

e n,.: Number of 7’-cells.

e d,: Assumed constant degree of 7’-cells,

The complexity becomes:
Cur = O(|IN|[oF? + nrows(N)d, F + n,),
Cup = O(|IN]|oF? + nrows(N)d,. F + nrows(\)).

C.4 COMPLEXITY OF A GCCN LAYER

A GCCN layer is composed of a set of war’s, one for each N € N¢. The complexity of a GCCN layer
is the sum of all the complexities of its submodules, plus the complexity of the module responsible for
aggregating the outputs of each neighborhood, i.e. the inter-neighborhood aggregation. We assume
this inter-aggregation to be a sum. The layer complexity is:

Cocon = 3 Cup + Cinteraage
NeNe

where:
Cinter»agé, = E N NN, F,
+el0,R/]

and n -, is the number of neighborhoods sending messages to 7’-cells.

C.5 TAKEAWAYS

* GNN Comparison: GCCNs increase complexity compared to traditional GNNs due to :

— the introduction of multiple neighborhoods. A GCCN considers many N € A, going
beyond the simple node-level adjacency N = Ag of a GNN. This is what allows TDL
models (GCCNs and CCNNGs) to operate on a richer topological space than GNNGs.

— inter-neighborhood aggregation.

e CCNN Comparison: Unlike traditional CCNNs, GCCNs allow per-rank neighborhoods,
enabling many smaller possible sets of neighborhoods Ne. This more selective inclusion of
neighborhoods reduces redundancy. Concretely, this means the sum - N Cuy canbe
smaller.

* Tradeoff: GCCNs’ time complexity are a compromise between GNNs and CCNNs. While
they do introduce Ciper-age (like CCNN5s) and additional elements to the sum ) NeENs Cops
they can introduce less elements to this sum than CCNNs.
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D SOFTWARE

Algorithm [T shows how the TopoTune module instantiates a GCCN by taking a choice of model
wyr and neighborhoods A¢ as input. Given an input complex z, TopoTune first expands it into an
ensemble of strictly augmented Hasse graphs that are then passed to their respective wy models
within each GCCN layer.

Remark. We decided to design the software module of TopoTune, i.e., how to implement GCCNs, as
we did for mainly two reasons: (i) the full compatibility with TopoBenchmark (implying consistency
of the combinatorial complex instantiations and the benchmarking pipeline), and (ii) the possibility of
using GNNSs as neighborhood message functions that are not necessarily implemented with a specific
library. However, if the practitioner is interested in entirely wrapping the GCCN implementation into
Pytorch Geometric or DGL, they can do it by noticing that a GCCN is equivalent to a heterogeneous
GNN where the heterogeneous graph the whole augmented Hasse graph, with node types given by
the rank of the cell (e.g. O-cells, 1-cells, and 2-cells) while the edge type is given by the per-rank
neighborhood function (e.g. "0-cells to 1-cells" or "2-cells to 1-cells" for N IO’T and \V. 12 | fespectively).

Algorithm 1 TopoTune

Class TopoTune(torch.nn.Module):

1: procedure INIT(neighborhoods, wy,, w,_params, layers)
2 sel f.omega_n_submodels + ||

3 for [ < 1 to layers do

4 layer_models < ||

5: for each nb in neighborhoods do

6

7

8

model < wy, (wn_params)
layer_models.append(model)
end for
sel f.omega_n_submodels.append(layer_models)
10: end for
11: end procedure
12: procedure FORWARD(x)

13: for each layer in sel f.omega_n_submodels do

14: outputs + ||

15: for each w,,_model in layer do

16: hasse_graph < sel f.expand_to_strictly_aug_hasse_graph(x)
17: outputs.append(w,,_model(hasse_graph))

18: end for

19: x + sel f.aggregate_rank_wise(outputs)

20: end for

21: return x

22: end procedure

Example Instantiation:
23: neighborhoods < [[[0, 0], up_adjacencyl, [[2, 1], incidence]]
24: w, + torch_geometric.nn.models.GAT
25: wp_params < {num_layers : 2, heads : 4}
26: layers < 4
27: model + TopoTune(neighborhoods, wy,,w,_params,layers)
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E ADDITIONAL DETAILS ON EXPERIMENTS
In this section, we delve into the details of the datasets, hyperparameter search methodology, and
computational resources utilized for conducting the experiments.

E.1 NEIGHBORHOOD STRUCTURES

In order to build a broad class of GCCNs, we consider X different neighborhood structures on
which we perform graph expansion. Importantly, three of these structures are lightweight, per-rank
neighborhood structures, as proposed in Sectiond] The neighborhood structures are:

NE 4N {NS,T,NIQ,i} Nar Neat {ANag, Na, Ny b {Nag}
NapNipp WNapnNagd INap Nyt ANagn N Nipd {Nagp Nag, Ny, Nrg b

E.2 DATASETS

Table 3] provides the statistics for each dataset lifted to three topological domains: simplicial complex,
cellular complex, and hypergraph. The table shows the number of 0-cells (nodes), 1-cells (edges),
and 2-cells (faces) of each dataset after the topology lifting procedure. We recall that:

* the simplicial clique complex lifting is applied to lift the graph to a simplicial domain, with
a maximum complex dimension equal to 2;

* the cellular cycle-based lifting is employed to lift the graph into the cellular domain, with
maximum complex dimension set to 2 as well.

Table 3: Descriptive summaries of the datasets used in the experiments.

Dataset Domain #0-cell #1-cell # 2-cell

Cora Cellular 2,708 5,278 2,648

Simplicial 2,708 5,278 1,630

. Cellular 3,327 4,552 1,663
Citeseer

Simplicial 3,327 4,552 1,167
Cellular 19,717 44,324 23,605

PubMed Simplicial 19717 44324 12,520
Cellular 3,371 3,721 538
MUTAG Simplicial 3371 3721 0
el Cellular 122,747 132,753 14,885
Simplicial 122,747 132753 186
Cellular 122,494 132,604 15,042
NCI109 Simplicial 122,494 132604 183
Cellular 43471 81,044 38773
PROTEINS  qimplicial 43471 81,044 30,501
ZINC (subsery  Cellular 277864 298985 33,121

Simplicial 277,864 298,985 769

E.3 HYPERPARAMETER SEARCH

Five splits are generated for each dataset to ensure a fair evaluation of the models across domains.
Each split comprises 50% training data, 25% validation data, and 25% test data. An exception is
made for the ZINC dataset, where predefined splits are used (Irwin et al.,2012).

To avoid the combinatorial explosion of possible hyperparameter sets, we fix the values of all
hyperparameters beyond GCCNs: hence, to name a few relevant parameters, we set the learning
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rate to 0.01, the batch size to the default value of TopoBenchmark for each dataset, and the cell
hidden state dimension to 32. Regarding the internal GCCN hyperparameters, a grid-search strategy
is employed to find the optimal set for each model and dataset. Specifically, we consider 10 different
neighborhood structures (see Section , and the number of GCCN layers is varied over {2, 4, 8}.
For GNN-based neighborhood message functions, we vary over { GCN,GAT,GIN,GraphSage} models
from PyTorch Geometric, and for each of them consider either 1 or 2 number of layers. For the
Transformer-based neighborhood message function (Transformer Encoder model from PyTorch), we
vary the number of heads over {2, 4}, and the feed-forward neural network dimension over {64, 128}.

For node-level task datasets, validation is conducted after each training epoch, continuing until
either the maximum number of epochs is reached or the optimization metric fails to improve for 50
consecutive validation epochs. The minimum number of epochs is set to 50. Conversely, for graph-
level tasks, validation is performed every 5 training epochs, with training halting if the performance
metric does not improve on the validation set for the last 10 validation epochs. To optimize the
models, torch.optim.Adam is combined with torch.optim.lr_scheduler.StepLR
wherein the step size was set to 50 and the gamma value to 0.5. The optimal hyperparameter set is
generally selected based on the best average performance over five validation splits. For the ZINC
dataset, five different initialization seeds are used to obtain the average performance.

E.4 HARDWARE

The hyperparameter search is executed on a Linux machine with 256 cores, 1TB of system memory,
and 8 NVIDIA A100 GPUs, each with 80GB of GPU memory.
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F MODEL SIZE

We provide details on model size for reported results in Section [6]

Table 4: Model size corresponding to results reported in Table[T]

Graph-Level Tasks

Node-Level Tasks

Model MUTAG PROTEINS NCII NCI109 ZINC Cora Citeseer PubMed
Cellular
CCNN (Best Model on TopoBenchmark) 334.72K 101.12K 63.87K 17.67K 88.06K 451.85K 1032.84K 163.72K
GCCN wyr = GAT 15.11K 46.27K 68.99K 49.63K 39.78K 341.54K 1677.32K 344.83K
GCCN wyr = GCN 45.44K 45.25K 65.92K 30.69K 29.54K 801.16K 1507.59K 44391K
GCCN wyr =GIN 63.62K 23.49K 49.03K 66.79K 64.35K 669.58K 1674.25K 211.97K
GCCN wyr = GraphSAGE 44.42K 76.99K 47.49K 115.17K 79.71K 1195.14K 741.5K 640.51K
GCCN wys = Transformer 112.26K 78.79K 82.05K 115.43K 317.02K 249.51K 468.29K 331.59K
GCCN wyr = Best GNN, 1 Hasse graph 14.98K 18.88K 18.05K 1591K 20.83K 150.12K 367.88K 66.50K
Simplicial
CCNN (Best Model on TopoBenchmark) 398.85K 10.24K 131.84K 135.75K 617.86K 144.62K 737.29K 134.40K
GCCN wyr = GAT 15.11K 46.27K 68.99K 49.63K 67.42K 341.45K 1677.32K 344.83K
GCCN wyr = GCN 45.44K 45.25K 65.92K 30.69K 64.35K 801.16K 1507.59K 44391K
GCCN wyr = GIN 63.62K 23.49K 49.03K 66.79K 118.11K 669.58K 1674.25K 211.97K
GCCN wyr = GraphSAGE 44.42K 76.99K 47.49K 115.17K 147.30K 1195.14K 741.51K 640.51K
GCCN wys = Transformer 113.15K 213.70K 82.05K 166.24K 148.83K 284.58K 468.29K 331.59K
GCCN wyr = Best GNN, 1 Hasse graph 19.07K 14.66K 31.11K 1591K 29.54K 150.12K 367.88K 66.50K
Hypergraph
CCNN (Best Model on TopoBenchmark) 84.10K 14.34K 88.19K 88.32K 22.53K 60.26K 258.50K 280.83K
Table 5: Model sizes corresponding to results in Table
Model MUTAG PROTEINS NCI1 NCI109 Cora Citeseer PubMed
SCCN
TopoBenchmark 398.85K 397.31K 131.84K  135.75K 155.88K 782.34K 457.99K
1 Hasse graph / N, wy = Best(GNN) 852.74K 851.97K 248.58K 291.39K  159.46K 791.56K 510.47K
1 Hasse graph for {\'}, wxs = Best(GNN) 104.32K 153.09K 71.17K 54.85K 143.66K 741.51K 376.58K
CWN
TopoBenchmark 334.72K 101.12K 124.10K 412.29K 343.11K 1754.50K 163.72K
1 Hasse graph / NV, wy = Best(GNN) 350.46K 353.54K 95.75K 465.28K 900.23K 177.10K 159.56K
1 Hasse graph for {\'}, wx = Best(GNN) 219.65K 283.91K 78.85K 264.45K 138.95K 163.94K 138.95K
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G MODEL TRAINING TIME

We provide training times for all experiments reported on in Section[6. We measure these training
times by running each experiment on a single A30 NVIDIA GPU. We note that these times include
the on-the-fly graph expansion method, which slows down the model forward proportionally to
dataset size. We plan on moving this process into data preprocessing in the future.

Table 6: Model training time (seconds) corresponding to results reported in Table[T]

Graph-Level Tasks Node-Level Tasks

Model MUTAG (1) PROTEINS (1) NCII (1) NCI109 (1) ZINC () |Cora(T) Citeseer (1) PubMed (1)
Cellular
CCNN (Best Model on TopoBenchmark) 100 23 132+ 19 238+89  254+39 228 + 44 7515 57+44 128 £ 50
GCCN wyr = GAT 80+ 11 64+ 10 778 £118 486+75 3173+954 | 46+3 63+1 202+£22
GCCN wy = GCN 43 +£7 67+ 16 544 +40 495+108 4013+620 46+4 65+3 149+ 12
GCCN wy =GIN 61+18 59+18 523£119 386+76 3301+440 | 64+8 77+2 207 £33
GCCN wy = GraphSAGE 43+ 12 43+3 691 +80 364+102 2863+262 492 60 +3 211+25
GCCN wys = Transformer 5019 786 £ 147 1005 £27 1484 + 181 15320£5386|121+20 94+20 5459 + 1374
GCCN wy =Best GNN, 1 Aug. Hasse graph | 337 70 +24 451 +123 441+£130 3162+340 | 47+5 72+6 194 +35
Simplicial
CCNN (Best Model on TopoBenchmark) 123 +57 104 +28 172 £ 50 183 £ 62 178 + 86 143+16 75%23 114+ 18
GCCN wyr = GAT 25+5 70+ 17 755158 794+ 151 2242+275 | 49+3 68 +2 192 +38
GCCN wy = GCN 40+7 138 +26 548 +185 603+ 181 2428+833 49+5 67+2 167 £22
GCCN wy =GIN 61 +7 66 +21 904 £180 538+39 3603 +475 ‘ 71+6 77+8 210 £42
GCCN wy = GraphSAGE 31+3 61 +27 572+124 511+74 1721+201 51+3 74+8 221+37
GCCN wys = Transformer 35+5 947£333 1386 +404 1360+410 7979 +1373 |146£58 77+2 5281 + 827
GCCN wy =Best GNN, 1 Aug. Hasse graph | 25+2 78 £27 598 +31 312+7 2681+910 | 52+4 72+8 156 + 16
Hypergraph
CCNN (Best Model on TopoBenchmark) 127 £48 96 + 20 220+74  128+49 387+105 121+38 481 177 +71

Table 7: Model training times (seconds) corresponding to results in Table [2]

Model MUTAG PROTEINS NCI1 NCI109 Cora Citeseer PubMed
SCCN|Yang et al.|(2022)

Benchmark results Telyatnikov et al. (2024) 112 60+ 18 247+65 311+83 102+39 101+41 14335

GCCN, on ensemble of strictly aug. Hasse graphs *2,dig = 141 75+£8 413+120 298+ 15 121+£2 172+ 6 28520

GCCN, on 1 aug. Hasse graph *2, dig 5+1 59+ 10 283+90 217+100 110£3 166+10 376+27
MBOdnar etal. {20213)

Benchmark results Telyatnikov et al. (2024) 11+2 43+5 24050 252+92  54+25 52+£5 11914

GCCN, on ensemble of strictly aug. Hasse graphs *2,dig 121 73£10 53638 426+90 9117 49+ 1 125 + 19
GCCN, on 1 aug. Hasse graph *2, dig 11+1 62+ 11 573+107 41064 96 +2 461 130+20
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Figure 8: Performance versus size, scaled to best-performing model. The vertical axis range shows

models achieving within 10% of the best performance on that dataset.

H PERFORMANCE VERSUS S1ZE COMPLEXITY

We show the plots similar to Fig. [5]for all datasets. Again here, the best model determines the amount

of GCCN layers and GNN sublayers we keep constant.
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I ADDITIONAL EXPERIMENTS ON LARGER NODE-LEVEL DATASETS

Table([8|additionally presents the experimental results on 4 heterophilic datasets introduced in[Platonov
et al. (Amazon Ratings, Roman Empire, Minesweeper, and Questions). These represent larger node-
level classification tasks than those shown in the main Table with up to 48,921 nodes and 153,540
edges in the case of the Questions graph. Except on this precise dataset, which was not considered
in previous TDL literature, we compare the results against CCNNs and hypergraph models from
Telyatnikov et al.[(2024). We observe that overall GCCNs achieve similar performance than regular
CCNNS, and they outperform them by a significant margin on Minesweeper.

Amazon Ratings Roman Empire Minesweeper  Questions

Best GCCN Cell 50.17 £0.71 84.48 £0.29 94.02+0.28 78.04+1.34
Best CCNN Cell 51.90 £ 0.15 82.14 +0.00 89.42 £ 0.00 -
Best GCCN Simplicial 50.53 £ 0.64 88.24 +0.51 94.06 £0.32 77.43+1.33
Best CCNN Simplicial OOM 89.15 + 0.32 90.32 +£0.11 -
Best Hypergraph Model 50.50 £ 0.27 81.01 £0.24 84.52 £ 0.05 -

Table 8: Results on larger node level datasets, each experiment run with 5 seeds. We report accuracy
for Amazon Ratings and Roman Empire, and AUC-ROC for Minesweeper and Questions. The values
for the best CCNNs and hypergraph models are extracted from TopoBenchmark (Telyatnikov et al.|
2024).
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