Multi-Scenario Reasoning: Unlocking Cognitive Autonomy in
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Abstract— To improve the cognitive autonomy of humanoid
robots, this research proposes a multi-scenario reasoning
architecture to solve the technical shortcomings of multi-modal
understanding in this field. It draws on simulation based
experimental design that adopts multi-modal synthesis (visual,
auditory, tactile) and builds a simulator ""Mahd" to perform the
experiment. The findings demonstrate the feasibility of this
architecture in multimodal data.

LINTRODUCTION

In tandem with the support of cutting-edge GPUs, artificial
intelligence technologies such as model predictive control,
multi-sensor fusion, visual SLAM, and sim-to-real continue to
stimulate the development potential of humanoid robots
(Makoviychuk etal. ,2021; Chen et al., 2024; Dao et al., 2024).
Humanoid robots are autonomous machine systems built on
the basis of designs that imitate human appearance, perception,
and movement capabilities, combined with multimodal
perception, bio-inspired structures, and embedded Al
algorithms (Tong et al., 2024; Vernon & Sandini, 2024). Its
development focuses on the integration of dynamic balance
control, efficient motion planning and reinforcement learning
technologies, and demonstrates human-like performance in
real-time environmental adaptation and complex task
execution (Jafari et al. , 2019; Tong et al., 2024).

Based on specific computing power and architectural
support, the dynamic adaptability of high-performance
computing in changing scenarios provides support for
large-scale training through paradigms such as end-to-end
artificial intelligence (Ko et al., 2020; Li et al. , 2023).
NVIDIA's Isaac Sim accelerates the autonomous creation of
humanoid robots by efficiently training and learning in virtual
physical environments (NVIDIA, 2022). Tesla uses the
interactive strategy of deep neural network in autopilot to
simulate human cognitive processes to make instant decisions
in dynamic environments (Muzio et al., 2022; Constantinides
et al.,, 2024). However, the perception and task execution
capabilities of humanoid robots cannot make up for the
significant challenges in human-level autonomy that are
reflected in cognitive abilities such as thinking, planning, and
decision-making (Ogunsina et al., 2024).

In view of the previous literature on the development of
cognitive architecture as a solution to human-level autonomy,
cognitive autonomy is still a major problem in the thinking,
planning and action selection modules of humanoid robots (He
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et al., 2021; Ogunsina et al. al., 2024). Cognitive autonomy
aims to train robots to not only imitate human perception of
the environment, but also possess memory, learning and
decision-making capabilities to complete complex tasks
autonomously (Bai et al., 2024; Sandini, 2024). For example,
the Optimus launched by Tesla has a screen that displays
cognitive automation (Fig. 1). The deep neural network
architecture accumulated in its autonomous driving
technology carries the key functions of perception, thinking,
and action decision-making (Malik et al., 2023).
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Fig.1. Tesla Humanoid Robot Technical Specifications
(Adapted from Malik et al., 2023)

However, technologies such as target perception and
tracking and repetitive motion planning rely more on
processing vision (Guo et al., 2020). Current technology
supports humanoid robots to imitate humans to perform
repetitive operations, but it does not mean that the simulation
reaches human-level cognitive autonomy (Katiyar & Katiyar,
2021; Ogunsina et al., 2024). Owing to the core architectures
lack powerful open-scenario reasoning capabilities, which is
reflected in the insufficient ability to make accurate judgments
on unknown situations. Not only is Optimus's reasoning
capabilities mostly based on pre-trained architectural models
based on static data, humanoid robots are difficult to cope with
multi-modal data (visual, auditory, tactile) and flexible and
coherent reasoning in under-specified highly dynamic
environments (Fisher et al. , 2021; Xiao et al., 2023).

The technical shortcomings of multimodal understanding
are the key gaps that make it difficult for humanoid robots to
achieve cognitive autonomy. Multimodal understanding
requires extracting relevant features from different sensory
inputs and integrating them into a consistent semantic
representation through cross-modal alignment techniques
(Duan et al., 2022; Navarro-Guerrero et al., 2023). And
high-order cognitive autonomy relies precisely on the ability
to simultaneously process and semantically integrate data
from multiple sensory modalities of vision, hearing, and
touch (Tong et al., 2024). However, in practice, it is difficult
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to efficiently integrate and process multi-modal data such as
visual, auditory and tactile data, resulting in ambiguous
semantics and incoherent responses.

As mentioned before, architectures that rely on static
pre-training data to complete tasks lack the ability to integrate
cross-modal data (Ye et al., 2023). This directly causes
semantic ambiguity when humanoid robots process feedback
with hearing or touch or response incoherence (Pramanick &
Rossi, 2024). Although some research attempts multi-modal
fusion technology, progress is still limited and is not enough to
provide humanoid robots with the same adaptive capabilities
as humans (Yuan et al., 2024). To address this gap, this
research proposes a multi-scenario reasoning architecture as
an innovative solution. It is designed for cross-modal dynamic
scene modeling and semantic alignment, thereby enabling
flexible switching and simultaneous processing of visual,
auditory and tactile data.

This research aims to use multi-scenario reasoning to
address key challenges in cognitive autonomy of humanoid
robots based on current technical shortcomings in
multi-modal understanding. It proposes an architecture based
on multi-scene reasoning, as a solution, aiming to improve its

cross-modal understanding of visual, auditory and tactile data.

It is committed to effectively narrowing the gap in
multi-modal understanding of humanoid robots and
promoting its selected optimal action capabilities in thinking,
planning and decision-making modules. It provides a
technical foundation for cognitive multi-scenario reasoning
and promotes breakthrough progress in the cognitive
autonomy of humanoid robots.

IL.LMULTI-SCENARIO REASONING

A. Theoretical Foundation

The principle of multi-scenario reasoning proposed in this
research and applied to humanoid robots is inspired by
situated cognition theory. This theory emphasizes that the
environment is inextricably linked to the behavior of
knowledge generation and application, and that it embodies
meaning through individual interactions in real situations
(Jenlink & Austin, 2013). Because the essence of cognition is
not an abstract process detached from context, but is deeply
embedded in specific environments and interactions
(Walkerdine, 2021). Combining the perspectives of cognitive
science and autonomous robotics, the theory explains that the
principle of multi-scene reasoning capabilities is a dynamic
processing process that combines perception, memory and
situational information.

Specifically, reasoning ability is affected by the real-time
integration of multi-modal sensory information from the five
senses of vision, hearing, smell, taste, and touch and the
behavior of combining situation selection (Wang et al., 2003;
Thagard, 2010). The human brain's response to situations The
construction and integration process of semantics is carried
out in the prefrontal cortex, temporal lobe, and parietal lobe
(Jouen et al., 2015). The memory retrieval and contextual
association of the hippocampus play an important role in
processing environmental information for cross-modal
reasoning in multiple scenes (Morici et al., 2022). This process

involves the dynamic allocation of attention resources to
ensure the human brain's immediate understanding of complex
situations and selected optimal actions, which profoundly
affects the operation process of the multi-scenario reasoning
architecture designed in this research (Nicolini et al., 2024).

As mentioned before, the principle of multi-scenario
reasoning is inspired by situated cognition theory, thereby
extending its application to the cognitive autonomy design of
humanoid robots. Different from traditional technologies that
only focus on static scenes or single modal data, the
multi-scene reasoning architecture imitates the principle of the
human brain to instantly integrate multi-modal data in
complex situations to achieve dynamic processing of visual,
auditory and tactile information of humanoid robots across
scenarios. . It provides a new technical path to solve the
flexible and coherent multi-modal understanding of humanoid
robots.

B. Conceputal Principles

As a concept proposed by this research to improve the
cognitive autonomy of robots, multi-scenario reasoning has
been applied to the thinking, planning and decision-making
fields of humanoid robots for the first time. It focuses on
semantic integration and synchronization of visual, auditory
and tactile data from external sensors to make optimal action
choices in different dynamic scenarios. It builds a
multi-scenario reasoning architecture to simulate real-time
processing of multi-modal data and improves the dynamic
adaptability of adaptive systems in cross-scenario learning.

Based on the principle of situated cognition theory,
multi-scenario reasoning simulates the semantic integration
and decision-making capabilities of the human brain's
reasoning process in an uncertain environment. In the field of
humanoid robots, the application of multi-scenario reasoning
focuses on global situation modeling based on multi-modal
data, and uses this to perform continuous reasoning and
dynamic adjustment. Multi-scenario reasoning promotes
cognitive autonomy in complex environments through
semantic alignment, synchronized processing and scenarios of
multi-modal  data  during thinking, planning and
decision-making.

The core principle of multi-scene reasoning lies in
dynamic scene modeling and semantic integration of
multi-modal data, thereby solving the key shortcomings of
existing multi-modal understanding technology. Based on the
principle of situated cognition theory, this concept simulates
the semantic integration and decision-making of the human
brain in an uncertain environment. From a technical practice
perspective, it is based on semantic alignment and uses
situational analysis to uniformly represent visual, auditory and
tactile data, which optimizes the robot's cross-modal
understanding capabilities. Sparse attention effectively
optimizes and dynamically adjusts the weight of each
modality to highlight key information, thereby improving the
accuracy and efficiency of multi-modal data processing (Song
et al., 2024). The memory-augmented module provides the
ability to trace back data in long-term and dynamic scenarios,
ensuring that robots can perform efficient reasoning based on
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Fig.2 Overviewof Multi-Scenario Reasoning Architecture

historical context in real-time scenarios (Muthirayan et al.,
2020). The scene reasoning results are entity mapped through
the sim2real module to promote the seamless connection of
the actual operation of the robot (Zhao et al., 2023).

III. PROPOSED ARCHITECTURE & ALGORITHMS

This section is closely connected with the previous theories
and concepts to explain in detail the core modules and
algorithm display of the multi-scenario reasoning architecture.
It aims to theoretically propose and prove the feasibility that
solves the technical shortcomings of multi-modal
understanding of humanoid robots to enhance cognitive
autonomy. Fig. 2 explains modules including data input,
scenario  processing,  attention-based  prioritization,
memory-augmented reasoning, action-decision modeling,
sim2real and selected optimal action. They jointly form a
dynamically adaptive robot system based on advanced
machine learning technology to achieve accurate reasoning of
multi-modal data in thinking, planning and decision-making.
The relevant code has been uploaded to Github to provide
technical implementation of the working principles of each
module.

A. Abbreviations and Acronyms

This module is responsible for preprocessing and
structuring data from multi-modal perceptrons, and providing
high-quality data sources to subsequent modules. The Data
input contains three subcomponents. Among them,
pre-processed sensor data is used to integrate visual, auditory
and tactile data; pnternal state data focuses on processing the
internal status information of humanoid robots; high-level
instructions are used to parse high-level instructions and
generate preliminary semantic data. The data of this module
is passed to the scenario processing block for multimodal data
integration through normalization processing.

The following algorithm is divided into four parts: data
reprocessing, multimodal normalization, feature extraction,
integrated multimodal output. D is the raw data set; T(d) is a
trustworthiness function; 7 is the threshold. Normalizes data
D(m) for each modality using mean u(m) and standard

deviation o(m). F, is extracted features. m € {visual, auditory,
tactile}. Combines extracted features from all modalities into
a unified output O.

Dyitterea = {d € D | T(d) > 1}
Diorm(m)= [D(m)-u(m)] / o(m),
F, = Extract(D,om (m))

o=UG&

m

B. Scenario Processing

This module performs semantic modeling and scene
representation for multi-modal data to ensure data
consistency and adaptability in dynamic environments. In
components, multimodal data integration for semantic
integration of cross-modal data; scenario representation
converts data into structured representations for robot
processing; scenario generation builds scenarios based on
feature maps and semantic labels, and generates semantic
consistency through semantic representations data output.
The processing results are passed to the attention-based
prioritization module to optimize the priority of key data.

The algorithm of this module supports functions such as
multimodal data integration, feature mapping, scenario
generation and evaluation, and sparse attention-based
scenario selection. Notably, R, is a semantic feature, Uj is data
point.
©® Input:

S, I, H, weights a,, ai, t.

Unified data vector U= [U,, U., ..., U]

Feature map M

Scenarios S = {S,, S-,...,5.}, utilities U(S), selection size k.

® Multimodal Data Integration
Ur = o5k + otk + ophi, VEE{1,2,...,n}
® Feature Mapping
R =f(Uy), f{U)=round (U, 2)
Mi=g(Uy), g(Uy) =e.



® Scenario Generation

Sie =M+ A(M.), AM,) ~ U(-0.1,0.1)
Compute scenario utility:

U(S) = Zier" Sin
® Sparse Attention-Based Scenario Selection
Operation: Select top-k scenarios:

Sc=Top - k(U(SY)), V; € {1,2,..,m}
® Output: Selected scenarios S;.

C. Scenario Processing

The attention-based prioritization module is designed to
dynamically filter and weight multi-modal data to optimize
inference accuracy and efficiency. Among them, sparse
attention filter technology is used to filter out key data;
Scenario refinement ensures semantic clarity during the
optimization of scene output; Utility assessment evaluates
data priority based on scene semantics; output scenario is
responsible for generating these outputs. The data is then
passed to the memory-augmented reasoning module.

In algorithms, #(S;) is the relevance score for S;. Top-k(-)
identifies the k scenarios with the highest scores; S'; is the
refined scenario. f{:) is a function incorporating
memory-based adjustments. a'j is adjusted attribute of the
scenario; g(-): Adjustment function based on memory m;.
(m) represents mean, o(m) represents standard deviation.

® [nput

Raw data D, consisting of multimodal input {d,, d.,..., d.}.
Trustworthiness function 7(d) for evaluating data quality.
Threshold z for data filtering.

Modalities m & {visual, auditory, tactile}.

® Sparse Attention Filtering
r(S) = exp (U(S))) / Z"r exp(U(Si))
Sk =Top - k(r(S))
® Scenario Refinement
=g (3, m)
® Output
Refined top & scenarios S% = {S";, S", ..., S}

D. Memory-Augmented Reasoning

This module introduces memory-augmented network to
improve the accuracy and coherence of reasoning. Drawing
on short-term memory to record the data of the current scene
to support instant reasoning, long-term memory saves
historical data for cross-scenario correlation analysis. Sparse
attention for memory querying retrieves key data through
attention screening technology. It simulates dynamic
interaction with attention-based prioritization and outputs
the reasoning results to the action-decision modeling module
for strategy generation. This module is partly inspired by the
self-attention mechanism algorithm proposed by Vaswani
(2017), and based on this, sparse attention for memory
querying is proposed to retrieve key data.

These algorithm explains that STM(f) is spdated
short-term memory at time t; AScenario is new contextual
information from current input; LTMielevane iS retrieved

memory entry most similar to the query; Sim(-) is similarity
function; LTM,; is historical memory entries. A; is attention
weight for memory entry i; Query is input query vector;
Memory;: includes STM or LTM; Output is weighted sum of
relevant memory entries.

® Input

Query vector: Query.

Memory entries: Memory = {STM, LTM}.
Historical memory entries LTM..

® Operations
STM(#) = STM (¢ - 1) + AScenario
LTMretevant = arg max (Sim(Query, LTM;))

a; = exp (Score(Query,Memory;)) /
%, exp (Score(Query, Memoryj))
Score (Query, Memory;) = (Query - Memory;) /
(l|Query]| [Memoryi))

® Output = %; o, - Memory;

E. Action-Decision Modeling

The action-decision modeling module develops optimal
action strategies based on the results of memory reasoning.
Among them, utility optimization is responsible for
calculating action utility; Contextual decision adjusts
dynamics based on contextual information; action strategy is
decomposed into specific executable steps by hierarchical
task planning, and output integration is performed through
task ID, priority level, and context summary. The finally
generated action plan is passed to the sim2real module for
physical deployment.

In the following algorithm, hi is a subtask derived from
task #; U is utility based on constraints C; w; is weights for
context factors C;; A adjusts the impact of previous outcomes.
D is decisions
® [nput

High-level task 7.
Environmental context E.
Context factors Ci(D).
Historical feedback data.

® Operations
H(t) = {hs, ho, ..., ha}
P(h) = U (h|C)
D.,, = arg max Utility(D|E)
Utility(D|E) = 27, w; - C(D)

U(D) = Predicted Outcome(D) + A -
Feedback(D)

Historical

F. Sim2Real

Sim2real is responsible for mapping the planning plans
generated by action-decision modeling in the simulation
environment to real scenarios to achieve from reasoning to
selected optimal action. The simulation environment in this
module is used to simulate dynamic scenarios; policy
training aims to strengthen the adaptability of behavioral
strategies; adaptation mechanism is dedicated to mapping



simulated behaviors to real environments; domain
randomization enhances  generalization capabilities;
Real-world deployment implements it in practice .

These components draw on algorithms by Clavera et al
(2018), Luo et al. (2018), Pateria et al. (2021), Moerland et al.
(2023) and Zhang et al (2024). Specifically, ¢ is the
randomized environment; E is base environment; x4 and o
define distribution of wvariations, P is the probability
distribution governing randomization;, 7 is the policy,
represents trajectories in the simulation; R(s, a.) is reward for
state s; and action a,, y is the discount factor; ¢ is the feature
encoder; D is the discriminator distinguishing between
simulation and real-world data; L., is the adversarial loss, L
isthe task-specific loss; R.. represents real-world; R
represents simulated rewards; J is the reward discrepancy; o
is adjustment factor.

® Input

Base environment E, including environmental parameters.
Simulation trajectories 7 with states s; and actions a.
Real-world feedback: R..u(s, a).

Simulated rewards: R (s, a).

Hyperparameters: u, o, P, y, a, A.

® Operations

& = Randomize (E; i, 0, P)

n* = arg max E. [Ty’ R(s,, a))]

min, maxp Laa (¢, D) + A Luas (9)

0 =R (s, a) - Rin (s, a)

" = arg max: [X%- ' (Ryea (1, @) + 00)]
G. Selected Optimal Action

Serving as the output module of this architecture, selected
optimal action integrates the results generated by sim2real to
execute optimal action instructions. Through dynamic
analysis and decision-making optimization, this module
ensures the accuracy of action selection performed by the
humanoid robot and optimizes scene processing with
feedback data.

IV. EXPERIMENTATION

This research draws on the principle of simulation based
experimental design in the category of quantitative
experimental research methods to test the effectiveness of the
multi-scenario reasoning architecture in solving the
shortcomings of multi-modal understanding technology
(Ekren et al., 2010; Saglam & Papelis, 2024). Given that
many development institutions such as Tesla, Boston
Dynamics and NVIDIA currently do not open source
technical details in the field of thinking, planning and
decision-making of humanoid robots, the objectivity of real
experiments is challenged. To this end, the researcher
adopted a single-group design to focus on the detection and
evaluation of architecture performance.

A.  Experimentation Setup

The researcher used code (uploaded to Github) and
prompt engineering to train an experimental tool called Maha
based on a custom GPTs model that is used to simulate
humanoid robots to perform multi-scenario reasoning.

Developed by Meta, Sapiens-2B is primarily intended for
high-resolution tasks centered around human vision,
reasoning that the applicability of synthetic data is not just
visual. In contrast, Maha is more suitable as a preferred
research tool to provide exclusive services for the goal of
achieving multi-scenario-based reasoning as it aims to focus
on simulating the cognitive processes of humanoid robots.

B. Dataset

Based on the objectivity of simulation experiments, the
design is selected to generate synthetic data to satisfy the
sparse attention filter and memory-augmented reasoning
based on scene decision-making and prioritization. The data
set it generates for multimodal reasoning is more consistent
with Maha’s framework. Given the above agency restrictions
on publicly available training data, employing synthetic data
increases legal and ethical freedoms. In addtion, synthetic
data is not unique to this research, it has been integrated into
research in related fields such as training and testing robots
(Martinez-Gonzalez et al., 2020; Kim et al., 2024). Another
advantage is Maha’s reduced costs based on OpenAl’s
powerful computing power. The adoption of LLMs does not
require consideration of hardware configuration, which is
more effectively promotes simpler data synthesis methods.

Motivated by the need for more advanced multimodal
LLMs to integrate text, images, and sensor outputs, the
researcher used Gemini 2.0 Experimental Advanced to
generate visual, auditory, and execution multimodal synthetic
data through prompt engineering.

C. Implementation

To ensure that it can be understood and executed by Maha,
the multi-modal synthetic data created through the sample
code generation loop are all based on precise computer
language. The researcher executed the code generated by
Gemini 2.0 Experimental Advanced in Python 3.13 IDLE.
This code obtained the JSON document as the data set for this
research after iterating 10,000 times. The researcher used
consistent prompts in the design of the running process in
each mode to facilitate objective recording of data results. To
ensure the objectivity of multi-scenario reasoning ability
assessment, the same piece of synthetic data can only be
executed once in Maha.

Since the current OpenAl knowledge base is updated to
October 2023, Maha may still be based on GPT 4-Turbo and
has limited computing power. The researcher separately
executes and calculates each step of the multi-modal data in
the architecture to enhance the objectivity and accuracy of the
experimental results. During the experiment, it was found that
Maha, which has limited computing power based on GPTs,
frequently made errors in calculations during data analysis.
Maha only performs data in the experiment and records TP
(true positives), TN (true negatives), FP (false positives), FN
(false negatives) according to the confusion matrix principle
And the researcher used prompts to continuously revise
Maha's code errors during the calculation process, which also
led to multiple experiments. The process and results uploaded
to Github shows the version of the optimal reasoning results
of each mode for each step selected from multiple
experiments.



V.RESULTS

Due to computer language conversion, each modality is
input in the same way in Maha, and the same evaluation
indicators can be used.It provides objective evidence for
evaluating the indicators of precision, recall, Fl-score,
specificity and accuracy. Taking into account ensuring
accuracy, the researcher used the formula function of
Microsoft Excel to calculate the data results of each indicator
and display them in Table 1-3.

Specifically, Table 1 shows the results of running the
Maha simulation architecture to perform scene reasoning on
visual synthetic data. The researcher recorded the seven
modules represented by "Step 1" to "Step 7" respectively, and
calculated the indicators based on the recorded TP, TN, FP,
and FN.

Table 1: Visual performance metrics

Maha  Precision  Recall sf(:;e Specificity ~ Accuracy
Step 1 0.932 0918 0.925 0.900 0.911
Step 2 0.925 0919 0.922 0.888 0.907
Step 3 0.931 0.921 0.926 0.898 0.912
Step 4 0.930 0.931 0.931 0.897 0.917
Step 5 0.921 0.922 0.922 0.882 0.906
Step 6 0.923 0.929 0.926 0.885 0911
Step 7 0.924 0.928 0.926 0.888 0.912

Table 2 presents the results of Maha’s computational
metrics after execution on auditory synthesis data converted
to computational language.

Table 2: Auditory performance metrics

Maha  Precision  Recall sf(};e Specificity ~ Accuracy
Step 1 0914 0.892 0.903 0.874 0.885
Step 2 0911 0.894 0.902 0.870 0.884
Step 3 0.909 0.900 0.905 0.876 0.890
Step 4 0.902 0.901 0.901 0.869 0.887
Step 5 0.909 0.900 0.904 0.868 0.887
Step 6 0.907 0.906 0.906 0.859 0.887
Step 7 0.907 0.903 0.905 0.867 0.888

The following data analysis results in Table 3 reflect
Maha's implementation of tactile synthetic data converted
into computational language.

Table 3: Tactile performance metrics

Maha Precision  Recall sf(:lje Specificity  Accuracy
Step 1 0.892 0.879 0.885 0.858 0.870
Step 2 0.889 0.891 0.890 0.851 0.874
Step 3 0.893 0.888 0.890 0.863 0.877
Step 4 0.895 0.886 0.891 0.863 0.876
Step 5 0.890 0.876 0.883 0.856 0.868
Step 6 0.891 0.886 0.888 0.855 0.873
Step 7 0.892 0.879 0.886 0.856 0.869

This research designed prompts in the experiment to record
the entire experiment process and upload it to Github.

VI. DISCUSSION

As evidenced by findings, Maha fully demonstrated
rationality and feasibility in testing multi-scenario reasoning,
although it failed to compare with data from companies such
as Tesla, Nvidia, or Boston Dynamics. Table 1-3 shows that
in the three modes of vision, hearing and touch, the five
indicators of precision, recall, Fl-score, specificity and
accuracy of each module in the architecture are maintained at
qualified and stable levels. Among them, the Fl-score and
accuracy of the attention-based prioritization and
memory-augmented reasoning modules are particularly
outstanding, which reflects their core role in multi-scenario
reasoning. It proves the effectiveness of this architecture in
solving the shortcomings of multi-modal understanding
technology and thereby improving the autonomous cognitive
capabilities of humanoid robots.

VII. LIMITATIONS

This research focuses on the thinking, planning and action
selection aspects of humanoid robots, which are abstract and
logical in nature. This makes it difficult for the data
synthesized by Gemini 2.0 Experimental Advanced to
simulate physical dynamic interactions. The execution
simulator Maha may still be based on GPT4-Turbo in terms
of computing power. Difficulty-differentiated prompts may
affect the experimental results during execution. Synthetic
data is created through generative code loops, which may be
of variable quality when converted into computer language.
In addition, the synthetic data used for simulation
experiments does not take into account interfering factors in
the physical scene such as reflection, noise, vibration, etc.
The above situation means that the performance of the
multi-scene reasoning architecture in real physical scene
practice may be The results are slightly worse than those of
the simulation experiment. Maha has the potential to grow as
OpenAl updates its ability to customize GPTs.

VIII. CONCLUSION

Inspired by the principles of situated cognition theory,
this research proposes a multi-scenario reasoning architecture
in the field of humanoid robot thinking, planning and
decision-making as an innovative solution to improve
cognitive autonomy. By building and simulating experiments
based on an architecture based on sparse attention and
memory-augmented network, it proposes a new concept of
"multi-scene reasoning" for the field to achieve multi-modal
understanding of visual, auditory and tactile data.
Experimental results show that the precision, recall, F1-score,
specificity and accuracy of the above three modes displayed
by the experimental simulator Maha all remain at a stable
level above 0.85. In particular, the attention-based
prioritization and memory-augmented reasoning modules
perform outstandingly. Despite the limitations of synthetic
data and simulated environments, this finding confirms the
effectiveness of multi-scenario reasoning in promoting
cognitive autonomy in humanoid robots. It not only makes up
for the technical shortcomings of multi-modal understanding
in this field, but also provides feasible solutions and new
development directions for future humanoid robots in
thinking, planning and decision-making.
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