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Abstract—Alzheimer’s disease (AD) is underscored by its 
polygenic nature, attributable to variants across multiple 
genetic loci. This has led to the development of the polygenic risk 
score (PRS) model, which estimates individual risk by 
aggregating risk alleles weighted from their effect sizes. While 
early models were limited to utilizing only independent effects 
of single nucleotide polymorphisms (SNPs), recent models have 
been advanced to consider epistatic interactions between SNPs. 
However, SNPs interact through various channels, and typically, 
they are associated with each other through SNP-gene relations 
and gene-gene interactions. Moreover, SNPs interact 
synergetically, exhibiting diverse joint effects of genetic 
variations. Given these properties of SNP interactions, the PRS 
models need improvement to account for the interactive effects 

between SNPs in a polygenic manner, especially for genetically 
complex diseases such as AD. In this study, we propose a two-
stage approach for AD risk assessment, called network-based 
PRS (NetPRS). First, the phenotypic and genomic interactions 
are quantified and integrated into networks. Second, the 
independent effects of SNPs are propagated on the integrated 
SNP networks using graph-based machine learning model. 
Through this procedure, NetPRS extracts the globally 
interactive effects between SNPs and integrates these effects to 
predict the risk of AD. The proposed method was applied to two 
cohort datasets: the Alzheimer's Disease Neuroimaging 
Initiative dataset with 1,175 participants, and a South Korean 
dataset with 724 participants. Experimental results showed that 
the integrated effects of NetPRS more clearly distinguished 
between AD and control groups, outperforming the six existing 
methods by 16.4% on average. 

Keywords—Polygenic risk score, Alzheimer’s disease, SNP 
interaction network, semi-supervised learning (SSL) 

I. INTRODUCTION

Alzheimer’s disease (AD) is one of the most common 
neurodegenerative disorders, particularly affecting elderly 
people over 65 years of age with about 10% prevalence [1]. 
With the rapid aging of the global population, AD is becoming 
more prevalent, and the number of patients is expected to 
increase from 50 million in 2015 to 130 million in 2050 [2]. 
As AD has recently emerged as a serious problem, numerous 
studies have been conducted to overcome AD, focusing on 
achieving accurate diagnosis and early prediction. A 
representative field is the study based on genetic data. Genetic 
factors play a key role in AD pathogenesis, highlighting the 
importance of using genetic data to predict AD risk [3]. Recent 
genome-wide association studies (GWAS) have revealed that 
multiple genetic loci contribute to AD pathogenesis [4, 5], 
expanding genetic risk assessment for AD to polygenic 
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methods that consider other genetic factors in addition to 
APOE, which is known to be the most important AD-related 
gene [6]. Therefore, polygenic score models that integrate the 
effects of multiple genetic variants identified through GWAS 
have emerged as a key method for effectively predicting AD 
risk [7]. 

The polygenic risk score (PRS) model is the most 
commonly used method, which is constructed by calculating 
the sum of risk allele dosages weighted by their GWAS-
derived effect sizes [8]. This approach was applied to 
individual assessment of AD risk [9] and investigated with 
respect to the optimal strategy related to genetic data 
processing that can achieve the highest accuracy [10]. 
Although the PRS-based assessment is an appropriate method 
to reflect the polygenic nature of AD, the challenge remains 
that the PRS model is limited to the independent effects of 
SNPs without considering the interactive effects between 
SNPs [11]. The interactions between SNPs have a critical 
impact on disease onset and progression through various 
pathways of genetic variation. In AD pathogenesis, SNP 
interactions can promote or inhibit pathological processes 
such as amyloid beta protein accumulation in the brain or 
abnormal phosphorylation of tau protein [12, 13]. The fact that 
the SNP interactions play a key role in understanding the 

complex genetic basis of Alzheimer's disease and developing 
personalized prediction models suggests that the PRS model 
needs to be further sophisticated by reflecting the interactive 
effects between SNPs. 

The epistatic effect is the most representative SNP 
interaction, which indicates the impact on the traits of 
individuals caused by the interactive effects occurring at 
different genetic loci. As the interactions between SNPs by 
epistasis significantly contribute to determining phenotype 
[14], the analysis of epistatic effects is important for 
understanding the mechanisms of disease pathogenesis [15]. 
The advantage of epistatic effect can be more beneficial for 
complex diseases such as AD. Several AD-specific key genes 
were identified by utilizing the epistasis-based SNP 
interactions  [16], and the accuracy of the PRS model for AD 
was improved by combining the independent effect with the 
interactive effect between SNPs by the epistasis [17]. As a 
result, the PRS model achieves a more in-depth understanding 
of AD pathogenesis and a more accurate AD risk assessment 
by considering SNP interaction effects by epistasis. 

In addition to the epistatic effect, SNPs also interact with 
the genome, and such interactions can act as a stronger risk 
factor for disease by working synergistically [18]. The SNP 
interactions based on the genome, such as enhancer-promoter 

Fig. 1. Schematic description of the proposed method. The proposed method consists of two stages: SNP interaction network construction and network-based 
polygenic risk score (NetPRS). At first, the proposed method quantifies the phenotypic and genomic interactions between SNPs and represent them as networks. 
(a) Phenotypic SNP interactions are measured by the epistasis test. (b) Genomic SNP interactions are measured by applying SNP-gene relations to gene-gene
interaction network. Next, NetPRS assesses individual AD risk by utilizing the independent effect and the constructed SNP interaction networks. (c) Network
propagation extracts the phenotypic and genomic interactive effects between SNPs by diffusing the independent effect to each network. Smoothness is a 
trainable parameter that controls the intensity of diffusion. As its value decreases, interactions be-tween close SNPs are highlighted, and as its value increases,
even interactions between distant SNPs are reflected. (d) Effect integration linearly combines the independent effect and the extracted two interactive effects
into the integrated effect. Combining coefficients are set as trainable parameters indicating the ratio of each effect reflected in the integrated effect. (e) Risk
prediction calculates individual AD risk by applying the integrated effect to the parameter representing the effect size of SNPs.



interactions, are significantly related to disease risk by 
affecting the regulation of gene expression. [19]. Furthermore, 
the genomic SNP interactions occur not only within the same 
gene but also across different genes. Recent studies have 
shown that such interactions are considered important risk 
factors for various diseases [20, 21]. Especially, AD is a 
complex disease involving the interactions between various 
molecular pathways, regarding the effects of genomic 
interactions more important [22]. Consequently, the 
effectiveness of genomic interactions on disease onset and the 
complexity of AD pathogenesis highlights the need for the 
PRS model to consider the genomic interactions for the AD 
risk assessment. 

For the more comprehensive and sophisticated assessment 
of AD risk, the best strategy would be for the PRS model to 
consider both phenotypic and genomic SNP interactions. 
However, there are several challenges in implementing this 
strategy as follows. (i) Quantification of genomic SNP 
interactions: while there is abundant information on SNP-
gene relations, there is a lack of information on the interactive 
effects that SNPs exert through their related genes. (ii) 
Computation of exponentially increasing SNP interactions: 
when the PRS model considers SNP interactive effects as 
input data, the number of variables increases exponentially, 
resulting in enormous computational complexity. Moreover, 
SNP interactions extend to higher orders. Although utilizing 
the synergistic effects of more SNPs helps in the more precise 
AD risk assessment, calculating the effect size becomes more 
exponentially complex. (iii) Integration of multiple SNP 
effects: by including not only independent effects of SNPs but 
also phenotypic and genomic interactive effects in the PRS 
model, AD risk can be calculated from a comprehensive 
perspective. At this time, the impact of each effect on AD may 
not be the same. Therefore, when utilizing various effects in 
an integrated manner, it is necessary to assign different 
weights rather than simple merging, which suggests that the 
PRS model should derive optimized weights for each effect. 

To overcome the aforementioned challenges, we propose 
a novel method, SNP interaction aware network-based 
polygenic risk score, for AD risk assessment. As shown in Fig. 
1, the proposed method consists of two stages: SNP 
interaction network construction and network-based 
polygenic risk score (NetPRS). In the first stage, the proposed 
method quantifies not only the phenotypic interactions by the 
epistasis test as Fig. 1(a) but also the genomic interactions 
between SNPs as Fig. 1(b). By applying SNP-gene relations 
to gene-gene interactions (GGIs), we consider the indirect 
genomic interactions between SNPs that can occur through 
GGIs. This approach is not limited to simply counting the 
number of shared genes, but also quantifies the genomic SNP 
interactions that comprehensively reflect the properties of 
GGIs. The quantified SNP interactions are represented as 
individual networks. In the second step, NetPRS derives 
interactive effects between SNPs based on the constructed 
networks and integrates all effects to predict AD risk. To 
implement this process, NetPRS consists of network 
propagation, effect combination, and risk prediction, which 
execute sequentially. The first function, network propagation, 
extracts the phenotypic and genomic interactive effects based 
on the constructed two networks. Fig. 1(c) shows that each 
interactive effect is obtained by diffusing the independent 
effect throughout each network, so that NetPRS involves the 
global interactions between SNPs. Additionally, the intensity 
of diffusion is controlled by the smoothness parameter, which 

is trainable. As the smoothness decreases, interactions 
between close SNPs are highlighted, and as the smoothness 
increases, even interactions between distant SNPs are 
reflected. Therefore, NetPRS can scale SNP interactions to 
infinite-order that are differentially reflected by order. Next, 
the second function, effect integration, combines three effects 
into the integrated effect, as shown in Fig. 1(d). The integrated 
effect is represented by the linear combination of all effects. 
Combining coefficient for each effect indicates the ratio of 
each effect reflected in the integrated effect. The coefficients 
are optimized through model training, and three effects 
differently contribute to the best AD risk assessment. In Fig. 
1(e), the third function, risk prediction, receives the integrated 
effect as input data and calculates individual AD risk, as 
depicted. Finally, the proposed method is summarized as the 
individual AD risk assessment by utilizing the independent 
effect and the phenotypic and genomic interactive effects 
applying global interactions between SNPs. 

II. SNP INTERACTION NETWORK CONSTRUCTION 

A. Phenotypic Interaction Network 
To quantify the phenotypic SNP interactions, we perform 

the epistasis test using a GWAS tool, PLINK [23]. The 
epistasis test involves applying a logistic regression model to 
categorize case and control groups according to allele dosage 
from two SNPs, denoted as 𝑆𝑆𝑗𝑗  and 𝑆𝑆𝑘𝑘 , in the following 
manner: 

log 𝑃𝑃𝑃𝑃(𝑌𝑌=1|𝑆𝑆𝑗𝑗,𝑆𝑆𝑘𝑘)
𝑃𝑃𝑃𝑃(𝑌𝑌=0|𝑆𝑆𝑗𝑗,𝑆𝑆𝑘𝑘)

= 𝛽𝛽0 + 𝛽𝛽1𝑆𝑆𝑗𝑗 + 𝛽𝛽2𝑆𝑆𝑘𝑘 + 𝛽𝛽3𝑆𝑆𝑗𝑗𝑆𝑆𝑘𝑘 + 𝑒𝑒   (1) 

where 𝑌𝑌 represents the control group if it takes the value of 0 
and the case group if it takes 1. The interaction between 𝑆𝑆𝑗𝑗 
and 𝑆𝑆𝑘𝑘 is calculated by the odds ratio, denoted as ℎ𝑃𝑃

𝑗𝑗𝑘𝑘, which 
is derived from the coefficients of the model in (1), and 
specifically, it focuses on the coefficient 𝛽𝛽3 for the interaction. 
If the value of ℎ𝑃𝑃

𝑗𝑗𝑘𝑘 is 1, it indicates that there is no interaction 
between 𝑆𝑆𝑗𝑗 and 𝑆𝑆𝑘𝑘. The further the value deviates from 1, the 
stronger the interaction between 𝑆𝑆𝑗𝑗 and 𝑆𝑆𝑘𝑘. In alignment with 
this concept, ℎ𝑃𝑃

𝑗𝑗𝑘𝑘  is transformed by the function 𝑇𝑇𝑃𝑃 , which 
converts its value into a measure of similarity between SNPs, 
as below. 

𝑇𝑇𝑃𝑃(𝑥𝑥) = −𝑒𝑒−|ln𝑥𝑥| + 1 

Then, the phenotypic interaction between 𝑆𝑆𝑗𝑗  and 𝑆𝑆𝑘𝑘  is 
calculated as 𝑊𝑊𝑃𝑃

𝑗𝑗𝑘𝑘 = 𝑇𝑇𝑃𝑃�ℎ𝑃𝑃
𝑗𝑗𝑘𝑘�, and this procedure is applied to 

every pair of SNPs. At last, after thresholding the interactions 
according to their significance, the phenotypic interaction 
network 𝑾𝑾𝑃𝑃 ∈ ℝ𝑠𝑠×𝑠𝑠 is constructed, where 𝑠𝑠 is the number of 
SNPs. 

B. Genomic Interaction Network 
The genomic interaction network, denoted as 𝑾𝑾𝐺𝐺 ∈ ℝ𝑠𝑠×𝑠𝑠, 

is constructed by combining the SNP-gene relation (𝒈𝒈 ∈
ℝ𝑚𝑚×𝑠𝑠) with the GGI network (𝑾𝑾 ∈ ℝ𝑚𝑚×𝑚𝑚), where 𝑚𝑚 is the 
number of genes. Denoting ℎ𝐺𝐺

𝑗𝑗𝑘𝑘  as the genomic interaction 
from 𝑆𝑆𝑗𝑗  to 𝑆𝑆𝑘𝑘 , ℎ𝐺𝐺

𝑗𝑗𝑘𝑘  indicates the effect for 𝑆𝑆𝑗𝑗 -related genes 
(𝒈𝒈𝑗𝑗 ∈ ℝ𝑚𝑚×1) on 𝑆𝑆𝑘𝑘-related genes (𝒈𝒈𝑘𝑘 ∈ ℝ𝑚𝑚×1) through GGI. 
By representing 𝒇𝒇𝑗𝑗 ∈ ℝ𝑚𝑚×1 for the effect of 𝒈𝒈𝑗𝑗 on GGI, the 
objective function for 𝒇𝒇𝑗𝑗 is defined by applying graph-based 
semi-supervised learning (GSSL) [24] as follows: 

min
𝒇𝒇

(𝒇𝒇𝑗𝑗 − 𝒈𝒈𝑗𝑗)T(𝒇𝒇𝑗𝑗 − 𝒈𝒈𝑗𝑗) + 𝜇𝜇𝒇𝒇𝑗𝑗T𝑳𝑳𝒇𝒇𝑗𝑗              (2) 



where 𝑳𝑳 is the graph Laplacian matrix defined as 𝑳𝑳 = 𝑫𝑫−𝑾𝑾, 
𝑫𝑫 = diag(𝑫𝑫𝑎𝑎) and 𝑫𝑫𝑎𝑎 = ∑ 𝑾𝑾𝑎𝑎𝑎𝑎

𝑎𝑎 , and 𝜇𝜇 is a hyperparameter. 
The solution of (2) is obtained in the closed form as 

𝒇𝒇𝑗𝑗 = (𝑰𝑰 + 𝜇𝜇𝑳𝑳)−1𝒈𝒈𝑗𝑗.  (3) 

Therefrom, ℎ𝐺𝐺
𝑗𝑗𝑘𝑘  is derived by ℎ𝐺𝐺

𝑗𝑗𝑘𝑘 = 𝒇𝒇𝑗𝑗T𝒈𝒈𝑘𝑘 , and then, its 
value is transformed by the function 𝑇𝑇𝐺𝐺  with a scaling 
parameter 𝜎𝜎 as below. 

𝑇𝑇𝐺𝐺(𝑥𝑥) = 𝑒𝑒�ln𝑥𝑥/𝜎𝜎2� 

Consequently, the genomic interaction from 𝑆𝑆𝑗𝑗  to 𝑆𝑆𝑘𝑘  is 
calculated as 𝑊𝑊𝐺𝐺

𝑗𝑗𝑘𝑘 = 𝑇𝑇𝐺𝐺�ℎ𝐺𝐺
𝑗𝑗𝑘𝑘�, and this procedure is applied to 

every pair of SNPs. Finally, the genomic interaction network 
𝑾𝑾𝐺𝐺 ∈ ℝ𝑠𝑠×𝑠𝑠  is constructed by thresholding the interactions 
according to their values. 

III. NETWORK-BASED POLYGENIC RISK SCORE

NetPRS consists of three functions: network propagation, 
effect integration, and risk prediction. First, the network 
propagation extracts the SNP interactive effects by applying 
the independent effect to the phenotypic and genomic 
interaction networks. Second, the effect integration linearly 
combines the independent effect and the extracted phenotypic 
and genomic interactive effects into the integrated effect. 
Finally, the risk prediction calculates individual AD risk by 
applying parameters for SNP effect size to the integrated 
effect. As shown in Fig. 2, NetPRS is an end-to-end model 
designed with a neural network structure. 

A. Network Propagation
Let the data matrix of the SNP independent effect be

denoted as 𝑿𝑿 ∈ ℝ𝑠𝑠×𝑛𝑛 , indicating the genotype of subjects, 
where 𝑛𝑛 is the number of subjects. To extract the interactive 
effects based on the phenotypic and genomic interaction 
networks, which are denoted as 𝑭𝑭𝑃𝑃  and 𝑭𝑭𝐺𝐺 , respectively, 
GSSL is applied to propagate 𝑿𝑿  through each network. 

Similar to (2), the objective function for 𝑭𝑭∗  is defined as, 
follows: 

min
𝑭𝑭∗

(𝑭𝑭∗ − 𝑿𝑿)T(𝑭𝑭∗ − 𝑿𝑿) + 𝜇𝜇∗𝑭𝑭∗T𝑳𝑳∗𝑭𝑭∗ 

where 𝑳𝑳∗ is the graph Laplacian matrix from 𝑾𝑾∗, and 𝜇𝜇∗ is the 
trainable smoothness parameter that trades off the loss (the 
first term) and the smoothness (the second term). In the same 
manner in (3), the phenotypic and genomic interactive effects 
between SNPs are obtained as below. 

𝑭𝑭∗ = (𝑰𝑰 + 𝜇𝜇∗𝑳𝑳∗)−1𝑿𝑿 ∈ ℝ𝑠𝑠×𝑛𝑛  (4) 

B. Effect Integration
The SNP independent effect and the two extracted

interactive effects are represented as the integrated effect 
through a linear combination. The combining coefficients for 
𝑿𝑿, 𝑭𝑭𝑃𝑃 , and 𝑭𝑭𝐺𝐺  are denoted as 𝛼𝛼𝐼𝐼 , 𝛼𝛼𝑃𝑃 , and 𝛼𝛼𝐺𝐺 , respectively. 
These coefficients are transformed into the combining ratio, 
represented as 𝜃𝜃𝐼𝐼, 𝜃𝜃𝑃𝑃, and 𝜃𝜃𝐺𝐺, using the softmax function. 

𝜃𝜃∗ = 𝑒𝑒𝛼𝛼∗ � 𝑒𝑒𝛼𝛼𝑘𝑘
𝑘𝑘

�  

This transformation aims to prevent the problem of combining 
coefficients turning from negative during the model training. 
Then, 𝒁𝒁 is derived by linearly combining each effect with its 
ratio by representing 𝑭𝑭𝐼𝐼 as same as 𝑿𝑿. 

𝒁𝒁 = 𝜃𝜃𝐼𝐼𝑭𝑭𝐼𝐼 + 𝜃𝜃𝑃𝑃𝑭𝑭𝑃𝑃 + 𝜃𝜃𝐺𝐺𝑭𝑭𝐺𝐺 ∈ ℝ𝑠𝑠×𝑛𝑛  (5) 

C. Risk Prediction
Finally, individual AD risk is calculated by applying the

integrated effect to the coefficient vector, which is denoted as 
𝜷𝜷 ∈ ℝ𝑠𝑠×1, indicating the SNP effect size. Since PRS provides 
disease risk in the form of probability, NetPRS employs a 
logistic classifier to assess individual AD risk. 

𝑷𝑷 = 1 �1 + 𝑒𝑒−𝜷𝜷T𝒁𝒁�⁄ ∈ ℝ1×𝑛𝑛 

D. Model Optimization
As shown in Fig. 2, NetPRS contains a total of six

parameters: {𝜇𝜇𝑃𝑃,𝜇𝜇𝐺𝐺}  for network propagation, {𝛼𝛼𝐼𝐼 ,𝛼𝛼𝑃𝑃 ,𝛼𝛼𝐺𝐺} 
for effect combination, and 𝜷𝜷 for risk prediction. By denoting 
the actual diagnosis as 𝒀𝒀 ∈ ℝ1×𝑛𝑛  indicating whether AD or 
not as 1 or 0, respectively, the parameters are trained to 
minimize the cross-entropy loss ℒ between 𝑷𝑷 and 𝒀𝒀 as below. 

ℒ = −
1
𝑛𝑛

(𝒀𝒀T log𝑷𝑷 + (𝟏𝟏 − 𝒀𝒀)T log(𝟏𝟏 − 𝑷𝑷)) 

Then, the objective function of NetPRS is defined as follows: 

argmin
𝜇𝜇∗,𝛼𝛼∗,𝜷𝜷

ℒ + 𝛿𝛿ℛ                                (6) 

where ℛ  is the L2 regularizer with the coefficient 𝛿𝛿 . The 
objective function is optimized by the gradient descent 
method. 

Minimization over 𝜷𝜷: the gradient with respect to 𝜷𝜷 is 
obtained by differentiating the objective function in (6) by 𝜷𝜷. 

∇𝜷𝜷 =
1
𝑛𝑛
𝒁𝒁(𝑷𝑷 − 𝒀𝒀)T + 2𝛿𝛿𝜷𝜷 

Minimization over 𝛼𝛼∗ : to find the gradient of 𝛼𝛼∗ , the 
derivative of 𝜃𝜃∗  with respect to 𝛼𝛼∗  is firstly obtained 
according to the derivative of the softmax function as below: 

Fig. 2. Schematic structure of NetPRS. Network propagation extracts the 
interactive effect between SNPs by diffusing the independent effect to the 
SNP interaction network. The intensity of diffusion is controlled by the 
smoothness parameter, which is denoted as 𝜇𝜇𝑃𝑃 and 𝜇𝜇𝐺𝐺 for the phenotypic and 
genetic interaction network, respectively. Effect integration linearly 
combines the independent effect and the two interactive effects into the 
integrated effect. Combining coefficients, denoted as 𝛼𝛼𝐼𝐼, 𝛼𝛼𝑃𝑃, and 𝛼𝛼𝐺𝐺 for each 
effect, are parameters of effect integration and are converted to probability 
form to determine the ratio of each effect in the integrated effect. Risk 
prediction calculates individual AD risk by applying the integrated effect to 
the SNP effect size parameter 𝜷𝜷. The structure of NetPRS is an end-to-end 
neural network. 



𝜕𝜕𝜃𝜃𝑖𝑖
𝜕𝜕𝛼𝛼𝑖𝑖

= 𝜃𝜃𝑖𝑖(1 − 𝜃𝜃𝑖𝑖),
𝜕𝜕𝜃𝜃𝑗𝑗,𝑘𝑘

𝜕𝜕𝛼𝛼𝑖𝑖
= −𝜃𝜃𝑖𝑖𝜃𝜃𝑗𝑗,𝑘𝑘                 (7) 

where {𝑖𝑖, 𝑗𝑗, 𝑘𝑘}  is equivalent to the permutation of {𝐼𝐼,𝑃𝑃,𝐺𝐺} . 
Then, by (7), the derivative of 𝒁𝒁  with respect to 𝛼𝛼𝑖𝑖  is 
represented as follows. 

𝜕𝜕𝒁𝒁
𝜕𝜕𝛼𝛼𝑖𝑖

= 𝜃𝜃𝑖𝑖 �(1 − 𝜃𝜃𝑖𝑖)𝑭𝑭𝑖𝑖 − 𝜃𝜃𝑗𝑗𝑭𝑭𝑗𝑗 − 𝜃𝜃𝑘𝑘𝑭𝑭𝑘𝑘� = 𝜃𝜃𝑖𝑖(𝑭𝑭𝑖𝑖 − 𝒁𝒁)  (8) 

Therefrom, the gradient of 𝛼𝛼∗ is derived by combining 𝜕𝜕ℒ 𝜕𝜕𝒁𝒁⁄  
with (8). 

∇𝛼𝛼∗ =
𝜃𝜃∗
𝑛𝑛

Tr�(𝑭𝑭∗ − 𝒁𝒁)T𝜷𝜷(𝑷𝑷 − 𝒀𝒀)� + 2𝛿𝛿𝛼𝛼∗ 

Minimization over 𝜇𝜇∗: to find the gradient with respect to 
𝜇𝜇∗, the derivative of 𝑭𝑭∗ with respect to 𝜇𝜇∗ is firstly obtained as 
below: 

𝜕𝜕𝑭𝑭∗
𝜕𝜕𝜇𝜇∗

= 𝜕𝜕(𝑰𝑰+𝜇𝜇∗𝑳𝑳∗)−1𝑿𝑿
𝜕𝜕𝜇𝜇∗

.                            (9) 

By replacing (𝑰𝑰 + 𝜇𝜇∗𝑳𝑳∗) with 𝑸𝑸∗ for the brief description, (9) 
is derived according to the derivative of an inverse matrix [25] 
as follows: 

𝜕𝜕𝑸𝑸∗−1

𝜕𝜕𝜇𝜇∗
𝑿𝑿 = −𝑸𝑸∗

−1𝑳𝑳∗𝑸𝑸∗
−1𝑿𝑿.                    (10) 

Therefrom, the gradient of 𝜇𝜇∗  is obtained by combining 
𝜕𝜕ℒ 𝜕𝜕𝑭𝑭∗⁄  with (10). 

∇𝜇𝜇∗ = −
𝜃𝜃∗
𝑛𝑛

Tr ��𝑸𝑸∗
−1𝑳𝑳∗𝑸𝑸∗

−1𝑿𝑿�T�𝜷𝜷(𝑷𝑷− 𝒀𝒀)�� + 2𝛿𝛿𝜇𝜇∗ 

IV. EXPERIMENTS 

A. Data Description 
As delineated in Table I, three types of data were utilized 

in this study. We firstly collected two genotype datasets from 
the Alzheimer's Disease Neuroimaging Initiative (ADNI) and 
the Biobank Innovations for chronic Cerebrovascular disease 
With Alzheimer’s disease Study (BICWALZS) at Ajou 
University Hospital (Suwon, Republic of Korea) [26]. A total 
of 1,175 participants were included in the ADNI dataset, with 
669,629 SNPs genotyped using the Illumina Omni 2.5M 
BeadChip, while the BICWALZS dataset comprised 724 
participants, with 827,783 SNPs genotyped using the 
KoreanChip, which was designed for genomic research within 
the Korean population [27]. We also collected the data of 
approximately 334 million SNP-gene relations and 
approximately 6 million GGIs from the dbSNP [28] and 
STRING [29], respectively. In addition, we divided the 
participants of the two datasets into the discovery and 
validation cohorts for the independent validation of the 
proposed method. In the ADNI dataset, the discovery and 
validation cohorts consisted of 765 participants from ADNI 2 
and 410 participants from ADNI 1/GO, respectively. In the 
BICWALZS dataset, 547 participants recruited between 2016 
and 2019 were included in the discovery cohort comprised, 
and the validation cohort contained 177 participants recruited 
between 2020 and 2021.  Table II provides the demographic 
characteristics of study participants by cohorts. 

B. Results for SNP Interaction Network Construction 
We performed quality control (QC) according to the 

following criteria [30]: genotyping rate >0.99, Hardy-
Weinberg Equilibrium P >1E−6, and minor allele frequency 
>5%. In addition, Linkage Disequilibrium pruning was 
performed with thresholds (window size: 50, step size: 5, and 

R2 threshold: 0.3). There were 583,526 and 399,129 SNPs that 
passed QC for the ADNI and BICWALZS datasets, 
respectively. Subsequently, we evaluated the statistical 
significance of QC-passed SNPs through GWAS and divided 
SNPs into three levels according to their P−values. In the 
ADNI dataset, 974 SNPs were screened at level 1, 130 SNPs 
at level 2, and 15 SNPs at level 3; in the BICWALZS dataset, 
420, 63, and 13 SNPs were screened at levels 1, 2, and 3, 
respectively. 

Then, we constructed the phenotypic and genomic 
interaction networks for each level of SNPs, where the 
phenotypic interactions between SNPs were measured by the 
epistasis test and selected by P-value of 0.05, while the 
genomic interactions between SNPs were measured by (3) 
with the smoothness of 1 and selected by the elbow point of 
5.35×10-5. Table III presents the summarized results for the 
constructed SNP interaction networks. The average density 
across all networks was 4.2%, with the phenotypic interaction 
network having an average density of 4.4%, which is 10.5% 
higher than that of the genomic interaction network of 3.9%. 
Comparing two types of networks, there were common edges 
in level 1 and level 2, and their correlation coefficients for 
edge weights indicated an average of 0.0962 for level 1 and 
0.6755 for level 2, but the distributions of common edges were 
revealed to be statistically different by the Kolmogorov-
Smirnov test, suggesting that the two types of networks 
represent distinct patterns of SNP interactions. 

C. Performance Evaluation 
The proposed method was applied to all levels of SNP 

datasets. 𝜇𝜇∗ and 𝛼𝛼∗ were initially set to 1 and 0, respectively. 
NetPRS was trained with a learning rate of 0.01 using ADAM 
optimizer [31]. By measuring the area under the receiving 
operating characteristic curve (AUC), the performance of 
NetPRS was compared with the six existing methods: wPRS 

TABLE I. DATA DESCRIPTION FOR THIS STUDY 
 

Data Source Description 

Participant genotype 
ADNI (1/GO/2) 669,629 SNPs 

of 1,175 participants 

BICWALZS 827,783 SNPs 
of 724 participants 

SNP-Gene relation dbSNP 
333,845,887 relations 

between 817,918 genes 
and 312,846,021 SNPs 

Gene-Gene interaction STRING 5,969,249 interactions 
between 19,566 genes 

 
 

TABLE II. DEMOGRAPHIC CHARACTERISTICS OF STUDY PARTICIPANTS 
 

Dataset Characteristics Total 
participants 

Discovery 
cohort 

Validation 
cohort 

ADNI 

Participants, No. 1,175 765 410 

AD-positive, No. (%) 406 (34.6) 263 (34.4) 143 (34.9) 

Age, median (IQR) 77 (72-83) 76 (71-82) 78 (73-84) 

Female, No. (%) 537 (45.7) 365 (47.7) 172 (42.0) 

BICWALZS 

Participants, No. 724 547 177 

AD-positive, No. (%) 167 (23.1) 129 (23.6) 38 (21.5) 

Age, median (IQR) 73 (67-78) 73 (68-78) 72 (66-79) 

Female, No. (%) 481 (66.4) 364 (66.5) 117 (66.1) 
 
 



[8], PRSice2 [32], EBPRS [33], ERS [17], PRSi [34], and 
hiPRS [35], where the initial three methods employed the 
independent effects of SNPs, whereas the subsequent three 
methods utilized the epistatic SNP interaction, and the results 
are presented in Fig. 3 and the Appendix. 

Fig. 3(a) compares the average of AUCs for AD prediction 
by applying each method on the ADNI and BICWALZS 
cohorts. The average of AUCs in all levels for NetPRS was 
0.7272, which was an average of 16.4% higher than the 
comparison methods. NetPRS demonstrated the best 
performance at level 2, with levels 1 and 3 exhibiting 
comparatively lower performance. This pattern was also 
observed in methods based on the epistatic SNP interactions 
(ERS, PRSi, and hiPRS), while methods based on SNP 
independent effects (wPRS, PRSice2, and EBPRS) typically 
yielded the best performance at level 3, followed by levels 1 
and 2. As a result, the independent effect-based PRS models 
demonstrated superior performance as more significant SNPs 
for AD were screened, while the interactive effect-based PRS 
models necessitated a data-specific threshold of significance 
level for the best outcomes; experimentally, the optimal 
performance was achieved using 0.02% of the number of QC-
passed SNPs as the thresholding criteria. 

In addition, we conducted an ablation study to further 
investigate the contribution of the three effects included in the 
integrated effect on the performance of NetPRS. We designed 
six different models that train the combinatorically configured 
datasets for three effects: three models for the single effect (Φ𝐼𝐼, 
Φ𝑃𝑃, and Φ𝐺𝐺) and other three models for the dual effects (Φ𝐼𝐼+𝑃𝑃, 
Φ𝐼𝐼+𝐺𝐺, and Φ𝑃𝑃+𝐺𝐺). The experimental settings for those models 
were same as NetPRS (Φ𝐼𝐼+𝑃𝑃+𝐺𝐺 ), and Fig. 3(b) shows the 
results. The average of AUCs in all levels for NetPRS was the 

highest, followed by Φ𝑃𝑃+𝐺𝐺  and Φ𝐼𝐼+𝑃𝑃  with almost similar 
performance. The performance of Φ𝐼𝐼  was the lowest, but 
when combined with interactive effects (Φ𝐼𝐼+𝑃𝑃 and Φ𝐼𝐼+𝐺𝐺), it 
improved by 3.4% on average. Among the interactive effects, 
Φ𝑃𝑃 outperformed Φ𝐺𝐺, and when they were combined, Φ𝑃𝑃+𝐺𝐺 
derived 1.3% better prediction results than each. Overall, the 
performance was improved as the three effects were combined 
together. These results confirm that the interactions between 
SNPs are effective in predicting AD risk, and that it is more 
advantageous to consider not only the commonly used 
phenotypic interactive effects but also the newly proposed 
genomic interactive effect. 

D. Model Interpretation
To interpret the proposed method, we conducted the

statistical and explanatory analyses on NetPRS in level 2, 
which was the most accurate. First, we compared the statistical 
significance of the independent effect (𝑿𝑿) and the combined 
effect (𝒁𝒁) for the AD-positive and AD-negative groups. Fig. 
4(a) represents the comparison results on P-values of 𝑿𝑿 and 𝒁𝒁, 
denoted as PX and PZ, respectively. A point in the scatter plot 
above the diagonal line means that the SNP effect values on 
the vertical axis is more significant. As the plot illustrates, the 
majority of the dots are situated above the diagonal line, 
indicating that 𝒁𝒁 is more effective than 𝑿𝑿 in the assessment of 
AD risk, where 𝒁𝒁 was identified as a more significant than 𝑿𝑿 
for 107 out of 130 SNPs in the ADNI dataset and 46 out of 63 
SNPs in the BICWALZS dataset, representing 79.3% of the 
total. The results of the statistical analysis also presented that 
the combined effect of NetPRS demonstrated a 33.8% greater 
capacity to discriminate AD patients than the independent 
effect on average. 

TABLE III. RESULTS FOR SNP INTERACTION NETWORK CONSTRUCTION 

Dataset Level of SNPs
(P-value threshold) No.Nodes

Phenotypic Interaction Network Genomic Interaction Network Common SNP-SNP Interactions 

No.Edges Avg.Edges Density No.Edges Avg.Edges Density No.Edges Corr.Coef. P-value 

ADNI 

Level 1 (–log10P > 3) 974 23,177 0.6698 4.8912% 17,978 0.3180 3.7940% 1,642 0.0841 2.4E–122 

Level 2 (–log10P > 4) 130 429 0.7026 5.1163% 448 0.7362 5.3429% 38 0.5774 2.5E–6 

Level 3 (–log10P > 5) 15 7 0.6921 6.6667% 6 0.9787 5.7143% - - - 

BICWALZS 

Level 1 (–log10P > 4) 420 3,253 0.6505 3.6970% 2,770 0.2653 3.1481% 79 0.1083  4.2E–71 

Level 2 (–log10P > 5) 63 62 0.7181 3.1746% 60 0.9182 3.0722% 3 0.7735 7.7E–3 

Level 3 (–log10P > 6) 13 2 0.7057 2.5641% 2 0.9948 2.5641% - - - 

Fig. 3. Results for performance evaluation on NetPRS. (a) shows the performance comparison results for the proposed and exsiting methods, illustrating the 
average of AUCs for AD risk prediction by applying each method on the ADNI and BICWALZS cohorts. (b) indicates the results for ablation study on NetPRS, 
representing the contribution of each effect to performance by training the combinatorically configured effects. 



Next, in the explanatory analysis, we identified the impact 
of SNPs in the combined effect by applying SHapley Additive 
exPlanations (SHAP) [36]. Fig. 4(b) shows the group-wise 
comparison of SHAP values for the top-10 most significant 
SNPs, denoted as key SNPs, in the ADNI and BICWALZS 
datasets. The SNP with the highest impact on AD risk was 
rs429358, which is related to APOE, followed by rs78953543, 
which is associated with CDH2 that has been identified to 
accelerate β-amyloid-triggered synapse damage [37]. 
Moreover, there were two common key SNPs, rs4420638 and 
rs2075650, that are associated with APOE-neighboring genes, 
APOC1 and TOMM40, respectively, which are significantly 
related to AD risk [38]. The key SNPs associated with ANKH, 
EPHB1, and NECTIN2 which are implicated in AD 
pathogenesis [39-41], also showed high impacts on predicting 
AD risk by NetPRS. 

As a result, in AD risk assessment, the combined effect of 
SNPs by NetPRS was more effective than the independent 
effect of SNPs in distinguishing AD patients with greater 
clarity, with the impact of the identified key SNPs aligning 
with the previous clinical studies. Our findings suggest that 
the combined effect represents the collective influences of 
SNPs through their interactions, encompassing the 
comprehensive information on the phenotypic and genomic 
interactions. 

V. CONCLUSION

In this study, we propose a novel method, NetPRS, for AD 
risk assessment by utilizing the interactive effects between 
SNPs. The pronouncing features of NetPRS are summarized 
in three points. First, NetPRS quantifies the interactions that 
SNPs can exert through their related genes and GGIs. These 
genomic interactions provide comprehensive information on 
the SNP interactions along with the existing epistatic effects. 
Second, NetPRS derives the global interactive effect from the 
SNP networks. By propagating the independent effect through 
the networks, NetPRS extracts the effects arising from 

infinite-order interactions. This approach significantly 
improves computational complexity compared to methods 
that use combinations of SNPs as variables. Third, NetPRS 
integrates various SNP effects to assess AD risk. In this 
process, the optimal integrating ratio of each effect is derived 
for the most accurate prediction. The proposed method 
provides an intuitive interpretation for output results by 
linearly combining each effect without non-linear 
transformation. Experimental results showed that learning 
both phenotypic and genomic interactive effects together with 
the independent effect yielded the most accurate AD risk 
assessment. Several analyses for the model interpretation 
confirmed that the advantage of NetPRS results from that the 
combined effect differentiates AD groups more clearly and 
reflects the genetic combinations significantly affecting AD 
pathogenesis. 

Here are some remarks on the proposed method. First, it is 
possible that a more optimized construction of SNP 
interaction network may improve the utility of NetPRS. The 
computational burden associated with fitting logistic models 
to every pair of SNPs becomes significantly more demanding 
as the number of SNPs increases. Although this issue was 
mitigated by a pre-filtering process that employed statistical 
significance testing of SNPs through GWAS, future work will 
concentrate on the optimization of NetPRS through the use of 
graphical models, as well as the identification of the optimal 
P-value threshold for SNPs during the training process,
beyond the current empirical search. Second, the integration
of biological domain knowledge has the potential to enhance
the validity of NetPRS. Further validation across multiple
databases, along with expansion to other channels such as
DNA and RNA in addition to genes, will facilitate a more
sophisticated representation of genomic interactions between
SNPs. Therefrom, a follow-up model for NetPRS is currently
under development, which applies the biologically-informed
clustering, with the expectation of providing further
clarification regarding the impact of SNPs and those
interactions on the AD risk.

Fig. 4. Results for model interpretation on NetPRS. (a) compares the statistical significance of the independent and combined SNP effects for the AD-positive 
and AD-negative groups. (b) depicts the comparison of SHAP values for the top-10 most significant SNPs in the ADNI and BICWALZS. 



APPENDIX 
 

TABLE A1. 
RESULTS FOR PERFORMANCE COMPARISON ON ADNI DATASET 

 

Method 
AUC performance by SNP level 

Level 1 Level 2 Level 3 

wPRS 0.5439 0.5766 0.6391 

PRSice2 0.5993 0.6381 0.6833 

EBPRS 0.6036 0.6352 0.6946 

ERS 0.6441 0.7260 0.6152 

PRSi 0.6526 0.7364 0.6282 

hiPRS 0.6594 0.7372 0.6323 

NetPRS 0.7319 0.7561 0.7281 
 
 

TABLE A2. 
RESULTS FOR PERFORMANCE COMPARISON ON BICWALZS DATASET 

 

Method 
AUC performance by SNP level 

Level 1 Level 2 Level 3 

wPRS 0.5018 0.5235 0.6040 

PRSice2 0.5271 0.5395 0.6282 

EBPRS 0.5451 0.5546 0.6354 

ERS 0.6262 0.6830 0.6137 

PRSi 0.6432 0.6904 0.6280 

hiPRS 0.6418 0.7079 0.6337 

NetPRS 0.7084 0.7342 0.7045 
 
 

TABLE A3. 
RESULTS FOR ABLATION STUDY ON ADNI DATASET 

 

Model 
AUC performance by SNP level 

Level 1 Level 2 Level 3 

I 0.6928 0.7162 0.7070 

P 0.7194 0.7373 0.7158 

G 0.7212 0.7325 0.7085 

I + P 0.7293 0.7438 0.7184 

I + G 0.7301 0.7394 0.7139 

P + G 0.7299 0.7460 0.7204 

NetPRS 0.7319 0.7561 0.7281 
 
 

TABLE A4. 
RESULTS FOR ABLATION STUDY ON BICWALZS DATASET 

 

Model 
AUC performance by SNP level 

Level 1 Level 2 Level 3 

I 0.6706 0.6955 0.6841 

P 0.6962 0.7160 0.6925 

G 0.6980 0.7113 0.6855 

I + P 0.7058 0.7223 0.6951 

I + G 0.7066 0.7180 0.6908 

P + G 0.7064 0.7244 0.6970 

NetPRS 0.7084 0.7342 0.7045 
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