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Abstract

Energy-efficient deep neural network (DNN) accelerators are prone to non-idealities that
degrade DNN performance at inference time. To mitigate such degradation, existing meth-
ods typically add perturbations to the DNN weights during training to simulate inference
on noisy hardware. However, this often requires knowledge about the target hardware and
leads to a trade-off between DNN performance and robustness, decreasing the former to
increase the latter. In this work, we first show that applying sharpness-aware training,
by optimizing for both the loss value and loss sharpness, significantly improves robustness
to noisy hardware at inference time without relying on any assumptions about the target
hardware. Then, we propose a new adaptive sharpness-aware method that conditions the
worst-case perturbation of a given weight not only on its magnitude but also on the range
of the weight distribution. This is achieved by performing sharpness-aware minimization
scaled by outlier minimization (SAMSON). Our extensive results on several models and
datasets in terms of robustness to noisy weights, out-of-distribution examples, and post-
training quantization show that SAMSON increases model robustness in a variety of noisy
settings without compromising generalization performance in noiseless regimes.

1 Introduction

The success of deep neural networks (DNNs) has been accompanied by an increase in training complexity and
computational demands, prompting efficient DNN designs (Zhao et al., 2023; Lebovitz et al., 2023). With
the slowing down of Moore’s law and the ending of Dennard scaling, power consumption is now the key
design constraint for DNN accelerators (Sze et al., 2020), which calls for new hardware and algorithms. In
particular, in-memory computing approaches (Le Gallo et al., 2018; Sebastian et al., 2020; Yin et al., 2020;
Sakr & Shanbhag, 2021) are promising directions to improve the energy consumption and throughput of
existing DNNs by circumventing the need for memory accesses, which represent an energy-intensive process in
conventional hardware implementations (Pedram et al., 2017). In-memory computing is especially important
for running DNNs on edge devices which usually possess low-power constraints (Gupta et al., 2023).

Despite being highly energy-efficient, in-memory computing solutions require performing computations in
the analog domain, which is inherently prone to variabilities (Xu et al., 2013). This leads to perturbations
in the DNN weights after deploying it in the target hardware, ultimately resulting in a degradation in
performance (Joshi et al., 2020; Kern et al., 2022; Spoon et al., 2021; Tambe et al., 2021). The main approach
for improving the robustness of DNNs has been to apply weight perturbations during training (Hacene et al.,
2019; Chang et al., 2019; Gokmen et al., 2019; Henwood et al., 2020; Joshi et al., 2020). However, such
approaches typically rely on noise simulations from the target hardware to which the DNN will be deployed.
Moreover, existing robustness methods provide a trade-off between DNN performance and DNN robustness,
decreasing the former to increase the latter.

The goal of this work is to increase model robustness without decreasing DNN performance and without rely-
ing on any noise simulations from the target hardware. By doing so, we do not compromise the applicability
of our approach, neither by reducing the original DNN performance nor by tailoring it to a specific hardware
design. To achieve this, we propose a novel sharpness-aware minimization method that is applied during
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training to promote accurate DNN at inference time and after deployment on noisy, yet energy-efficient,
hardware.

The benefit of converging to a smoother loss landscape has been primarily tied to improving generalization
performance (Hochreiter & Schmidhuber, 1994; Keskar et al., 2016; Dziugaite & Roy, 2017; Neyshabur et al.,
2017; Chaudhari et al., 2017; Izmailov et al., 2018). With this goal in mind, Foret et al. (2021) recently
proposed sharpness-aware minimization (SAM) by minimizing both the loss value and loss sharpness within
a maximization region around each parameter during training. By showing a high correlation between loss
sharpness and test performance, SAM has ignited several follow-up works since its proposal. Particularly,
adaptive SAM (ASAM) (Kwon et al., 2021) reformulated sharpness to be invariant to weight scaling by
conditioning the neighborhood region of each weight based on its magnitude.

In this work, we propose to perform sharpness-aware minimization scaled by outlier normalization (SAM-
SON) to increase robustness in DNNs without compromising performance. SAMSON reformulates adaptive
sharpness to consider not only the weight magnitude but also the range of the weight distribution. By pro-
moting sharpness adaptivity based on the outlier weights, we show that SAMSON’s sharpness measure has
a high correlation with model robustness. In other words, SAMSON’s objective may be used during training
in combination with existing robustness techniques to increase DNN robustness at inference time. This is
observed on a generic noise model on multiple DNN architectures and datasets as well as on accurate noise
simulations from real hardware. Moreover, we also extended our robustness study to out-of-distribution ex-
amples and to post-training quantization and show an improvement in robustness in these new scenarios as
well. Overall, our results showcase the extensive practicality of our approach by improving DNN robustness
in noisy settings without affecting generalization performance in noiseless regimes.

2 Related work

The deployment of pre-trained models on noisy hardware for highly efficient inference is known to introduce
non-idealities. This is caused by noise inherent to the device (Tsai et al., 2019) such as programming noise
after weight transfer to the target hardware and read noise every time the programmed weights are accessed.
Without robustness measures, such hardware noise significantly hinders the performance of neural networks.
To promote robustness after deployment in noisy hardware at inference time, existing methods typically
inject noise or faults to DNN weights during training (Ambrogio et al., 2018; Spoon et al., 2021; Li et al.,
2019; Ambrogio et al., 2019; Mackin et al., 2019). In particular, adding weight noise (Joshi et al., 2020)
and promoting redundancy by performing aggressive weight clipping (Stutz et al., 2021a; 2022) have been
shown to be effective methods for increasing DNN robustness (authors, 2023). However, existing robustness
methods often lead to a decrease of DNN performance for promoting robustness. Moreover, they typically
rely on noise measurements from the target hardware to improve the performance and robustness trade-off.
Here, we aim to increase DNN robustness in noisy settings without sacrificing DNN performance in the
noiseless regime without relying on any information about the target hardware.

Sharpness-aware training has recently gathered increased interest (Sun et al., 2021; Jiang et al., 2020; Foret
et al., 2021; Chen et al., 2022). Particularly, SAM has sparked a lot of new follow-up works due to the
significant increase in generalization performance presented in the original paper. Variants mainly focus
on increasing the efficiency (Du et al., 2022b;a; Zhou et al., 2022; Liu et al., 2022; Zhao et al., 2022),
performance (Zhuang et al., 2022; Kim et al., 2022; Kwon et al., 2021), or understanding (Andriushchenko
& Flammarion, 2022) of sharpness-aware training. Efforts have also been made to extend SAM to specific
use-cases such as quantization-aware training (Liu et al., 2021b) or data imbalance settings Liu et al. (2021a).
Several works (Kwon et al., 2021; Dinh et al., 2017) have also highlighted the importance of scale-invariant
sharpness measures, including in the context of model robustness against adversarial examples (Stutz et al.,
2021b).

In a similar vein to our work, Sun et al. (2021) recently related the sharpness of the loss landscape with
robustness to adversarial noise perturbations. This was further observed by Kim et al. (2022). We follow this
under-explored research direction and provide an in-depth study on the effect of loss sharpness in robustness
against noisy hardware. Stutz et al. (2021b) also recently studied the flatness of the (robust) loss landscape
on the basis of adversarial training with perturbed examples (Madry et al., 2018). In particular, they tackle
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the problem of robust overfitting (He et al., 2017), i.e. having high robustness to adversarial examples seen
during training but generalizing poorly to new adversarial examples at test time, through the lens of flat
minima. Even though we also study robustness to out-of-distribution examples and quantization, we mainly
focus on the problem of improving robustness against noisy weights at inference time in this work.

3 Sharpness-aware minimization (SAM)

The goal of sharpness-aware minimization or SAM is to promote a smoother loss landscape by optimizing
for both the loss value and loss sharpness during training. Generally speaking, given a parameter w, the
goal is to find a region in the loss landscape where not only does w have a low training loss L but also do its
neighbor points. Considering the L2 norm and discarding the regularization term in the original algorithm
for simplicity, SAM uses the following objective:

LSAM(w) = min
w

max
∥ϵ∥2≤ρ

L(w + ϵ), (1)

where the size of the neighborhood region is defined by a sphere with radius ρ and the optimal ϵ̂ may be
efficiently estimated via a first-order approximation, leading to:

ϵϵϵ∗
SAM(www) = ρ

∇L(www)
||∇L(www)||2

. (2)

By building on the strong correlation between sharpness and generalization performance, SAM is generally
used in practice to achieve better test performance. However, there are two main drawbacks. The first is
that, despite its efficiency in estimating the worst-case weight perturbations, SAM’s update requires two
backward passes. To mitigate this added complexity, the authors propose to leverage distributed training.
Another drawback of SAM is that the sharpness calculation is not independent from weight scaling. This
allows the manipulation of sharpness values by applying scaling operators to the weights such that weight
values change without altering the model’s final prediction (Dinh et al., 2017; Stutz et al., 2021b).

3.1 Adaptive SAM (ASAM)

To tackle the scale variance issue, adaptive sharpness-aware minimization or ASAM was proposed by Kwon
et al. (2021). By taking into account scaling operators that do not change the model’s loss, ASAM creates a
new notion of adaptive sharpness that is invariant to parameter scaling, contrarily to SAM. This is reflected
in ASAM’s objective:

LASAM(w) = min
w

max
∥ϵ/|w|∥2≤ρ

L(w + ϵ), (3)

where |w| represents the absolute value of a given weight w. With ASAM, different neighborhood sizes
are applied to different weights, depending on their magnitude; high-magnitude weights withstand higher
perturbations than low-magnitude weights. This adaptive sharpness formulation also leads to a change in
the neighborhood shape, which is now ellipsoidal instead of spherical. The worst-case perturbation ϵϵϵ∗

ASAM
is defined as

ϵϵϵ∗
ASAM(www) = ρ

w2∇L(w)
||w∇L(w)||2

. (elementwise ops.) (4)

In practice, the adaptive sharpness that ASAM introduced shows a higher correlation with generalization
performance and overall improved convergence by using larger maximization regions for larger weights.

4 Sharpness-aware minimization scaled by outlier normalization (SAMSON)

In this work, we propose a novel sharpness- and range-aware method called sharpness-aware minimization
scaled by outlier normalization or SAMSON. In essence, our approach considers not only the weight magni-
tude but also the range of the weight distribution to determine the perturbation ϵ of a weight w. Conditioning
sharpness by weight magnitude and the dynamic range of the weight distribution leads to the neighborhood
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sizes being normalized across all layers. This is particularly important when training with batch normal-
ization, since the scales of the weight distributions across different layers may greatly differ leading to a
discrepancy in the applied weight perturbations across the entire network.

We propose to take into account the outlier weight, i.e. the maximum absolute weight of a given layer, by
simply scaling the effective neighborhood size of a weight w by the p-norm of all the weights www:

LSAMSON(w) = min
w

max
∥ϵ∥www∥p/|w|∥2≤ρ

L(w + ϵ), (5)

which leads to the following per-weight worst-case perturbation:

ϵϵϵ∗
SAMSON(www) = ρ

(w∥www∥−1
p )2∇L(w)

||w∥www∥−1
p ∇L(w)||2

. (elementwise ops.) (6)

We note that the p-norm affects the impact of outlier weights in the applied worst-case perturbation. This
differs from the norm ablations in Foret et al. (2021), where different norms are used to define the fixed
(non-adaptive) neighborhood regions of all weights, with ℓ2-norm performing the best in practice. Without
changing this default ℓ2-norm, our method uses different norms to control the importance of the outlier
weights in the adaptive neighborhood region of each weight. In our study, we experiment with using p =
{2,∞}. For ease of presentation, we often refer to the variants with p = 2 and p = ∞ as SAMSON2 and
SAMSON∞, respectively, throughout the paper.
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Figure 1: Worst-case perturbations of SAMSON, ASAM, and SAM. Each vertical, dotted line represents a
different weight range [-c, c], with c ∈ {0.05, 0.1, 0.15, 0.2}.

We illustrate the applied worst-case perturbation considering a given weight value with SAMSON, ASAM,
and ASAM in Fig. 1, assuming ∇L(w) = 1 for simplicity. To showcase that our method is adaptive not only
to the weight magnitude but also to the weight range, we apply different symmetric ranges to the original
weight distribution. We see that ϵ∗

SAM is independent of the weight value and range, being represented as a
straight line that is defined solely by ρ. Since ϵ∗

ASAM depends on ρ and the weight magnitude, larger weights
are more perturbed. However, since ASAM is independent of the weight range, there is no change in ASAM’s
perturbations when changing the range of the weight distribution. On the other hand, SAMSON is both
range- and weight magnitude-dependent, taking into account the weight value, ρ, and outlier weights for its
perturbations. This results in the observed changes in ϵ∗

SAMSON over the different ranges, with SAMSON2
putting less emphasis on outlier weights and SAMSON∞ emphasizing them.

Despite not depending on any form of weight clipping, SAMSON is inherently suited to be used in combina-
tion with methods that restrict the weight distribution range. For example, training with aggressive weight
clipping (Stutz et al., 2021a) to improve robustness at inference time. When applying weight clipping, c is
the clipping range. With aggressive weight clipping, the weights are forced to be inside a small range to
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promote robustness: i.e. c ∈ R : 0 < c < 1. A pseudo-code implementation of SAMSON combined with
aggressive weight clipping is presented in Algorithm 1.

Algorithm 1 SAMSON combined with weight clipping.
Require: initial weight w0w0w0, aggressive clipping range c, learning rate α, neighborhood size ρ, norm p

www ← w0w0w0
while not converged do

Sample minibatch s

ϵϵϵ = ρ
(w∥www∥−1

p )2∇Ls(w)
||w∥www∥−1

p ∇Ls(w)||2
▷ elementwise ops.

www ← www − α∇Ls(www + ϵϵϵ) ▷ weight update
www ← clip(www, c) ▷ weight clipping (optional)

end while

5 Generalization performance

Before studying DNN robustness, we first analyze if using SAMSON negatively impacts generalization per-
formance in the noiseless setting. Since this is the most common setting in practice, such a performance
decrease would significantly reduce the applicability of our method. To test this, we first analyze the gen-
eralization performance of SAMSON, ASAM, SAM, and SGD on ResNet-34 (He et al., 2016), ResNet-50,
MobileNetV2 (Sandler et al., 2018), VGG-13 (Simonyan & Zisserman, 2014), and DenseNet-40 (Huang et al.,
2017) models trained on CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009). All models were trained
for 200 epochs with a batch size of 128, starting with a learning rate of 0.1 and dividing it by 10 every 50
epochs.

We used the default neighborhood sizes for SAM and ASAM, as proposed in their original papers: we set
ρ = 0.05 and ρ = 0.5 for SAM and ASAM on CIFAR-10, respectively, and ρ = 0.1 and ρ = 1.0 for SAM and
ASAM on CIFAR-100, respectively. For a direct method comparison, we report the results using the same
default ρ as ASAM for our method variants. When applicable, we report the mean and standard deviation
over 3 runs. Additional details are presented in Appendix A.

The test accuracy comparisons between the different methods on CIFAR-10 and CIFAR-100 are shown in
Tables 1 and 2, respectively. Overall, we observe that SAMSON does not lead to a decrease in generalization
performance. and, in most cases, at least one of our variants (SAMSON2 or SAMSON∞) even shows slight
improvements over SGD, SAM, and ASAM in terms of test accuracy, with the best performing p being dataset
and architecture dependent. The only instance where a SAMSON variant is not the best-performing method
is when using DenseNet-40 trained on CIFAR-10. However, both of our variants are within the standard
deviation of ASAM, rendering the difference between the method performances statistically insignificant.

Table 1: Generalization performance (test accuracy %) of the different methods on several models trained
on CIFAR-10.

Method ResNet-34 ResNet-50 MobileNetV2 VGG-13 DenseNet-40

SGD 95.84±0.13 94.36±0.09 94.62±0.06 94.19±0.04 91.76±0.11
SAM 95.80±0.07 94.24±0.13 94.91±0.07 94.52±0.07 92.27±0.30
ASAM 95.85±0.22 94.42±0.57 95.37±0.04 94.68±0.07 92.57±0.0692.57±0.0692.57±0.06
SAMSON2 95.96±0.3495.96±0.3495.96±0.34 95.09±0.2195.09±0.2195.09±0.21 95.29±0.17 94.73±0.1294.73±0.1294.73±0.12 92.54±0.14
SAMSON∞ 95.76±0.29 94.94±0.0994.94±0.0994.94±0.09 95.41±0.0995.41±0.0995.41±0.09 94.66±0.02 92.49±0.13

To further expand our exploration of models, datasets, and training settings, we finetuned a ResNet-18
model on ImageNet (Russakovsky et al., 2015) provided by PyTorch for a total of 10 epochs using SGD
with momentum (0.9), a batch size of 400, a learning rate of 0.001, and a weight decay of 0.0001. Since
no default ρ is reported in the original ASAM’s paper for finetuning on ImageNet, we iterate over different
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Table 2: Generalization performance (test accuracy %) of the different methods on several models trained
on CIFAR-100.

Method ResNet-34 ResNet-50 MobileNetV2 VGG-13 DenseNet-40

SGD 74.32±1.32 74.35±1.23 75.44±0.07 72.78±0.22 68.52±0.25
SAM 75.62±0.33 75.36±0.01 76.81±0.18 73.86±0.40 69.14±0.36
ASAM 76.91±0.44 77.88±0.85 77.28±0.10 74.12±0.01 70.21±0.25
SAMSON2 77.68±0.5777.68±0.5777.68±0.57 78.22±0.6778.22±0.6778.22±0.67 77.24±0.13 74.77±0.2374.77±0.2374.77±0.23 69.94±0.36
SAMSON∞ 77.60±0.7877.60±0.7877.60±0.78 77.81±1.32 77.61±0.2377.61±0.2377.61±0.23 74.59±0.1574.59±0.1574.59±0.15 70.34±0.3770.34±0.3770.34±0.37

neighborhood ranges (details are provided in Appendix D) and report the best performing ρ for SAM,
ASAM, and SAMSON. In the end, the best performances were obtained using ρ = 0.05 for SAM, ρ = 0.2 for
SAMSON, and ρ = 0.5 for ASAM. Moreover, we also trained ResNet-18 and MobileNetV3 (Howard et al.,
2019) models from scratch for 90 epochs using the same setup but with a learning rate of 0.1 decayed by 10
every 30 epochs. Results are presented in Table 3.

Table 3: Generalization performance (test accuracy %) of the different methods with ResNet-18 and Mo-
bileNetV3 on ImageNet.

Finetuned Trained from scratch
Method ResNet-18 ResNet-18 MobileNetV3

top-1 top-5 top-1 top-5 top-1 top-5

SGD 69.758 89.078 69.91±.04 89.21±.05 69.30±.01 89.01±.01
SAM 70.356 89.480 70.01±.06 89.28±.06 69.32±.02 88.89±.02
ASAM 70.348 89.428 70.15±.06 89.24±.07 69.57±.08 88.90±.06
SAMSON2 70.35870.35870.358 89.48689.48689.486 70.16±.0870.16±.0870.16±.08 89.38±.1089.38±.1089.38±.10 69.62±.0169.62±.0169.62±.01 89.14±.0189.14±.0189.14±.01
SAMSON∞ 70.36670.36670.366 89.50489.50489.504 70.23±.0670.23±.0670.23±.06 89.35±.0589.35±.0589.35±.05 69.57±.03 88.99±.03

Once again, we observe that our variants do not degrade generalization performance, showing slight improve-
ments over the compared methods when both fine-tuning or training from scratch. These results highlight
the efficacy of our approach in achieving more robust DNNs (as will be discussed in the next sections) without
degrading generalization performance in several training settings.

6 Model robustness to noisy weights

We will now focus on analyzing how sharpness-aware training promotes DNN robustness compared to stan-
dard SGD training. In particular, we will focus on improving robustness in the context of noisy hardware
accelerators that exploit the energy-reliability trade-off to improve energy efficiency at the cost of noisy
weights. As our use-case, we consider memristor-based DNN implementations, which present a promising
direction in energy-efficient DNN inference accelerators (Joshi et al., 2020; Kern et al., 2022). In such a
setting, the weights of all fully-connected or convolutional layers of a pre-trained DNN are linearly mapped
to the range of possible conductance values from 0 to Gmax. More concretely, the ideal conductance values
Gl

T,ij for the weights W l
ij of layer l are

Gl
T,ij =

W l
ij ×Gmax

W l
max

, (7)

where W l
max is layer l’s maximum absolute weight. However, as pointed out previously, Gl

T,ij is not achievable
in practice since conductance errors δij are originated from programming and read noise (Tsai et al., 2019)
as well as conductance drift over time (Ambrogio et al., 2019). Hence, in the general case, the non-ideal
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conductance values Gl
ij may be defined as

Gl
ij = Gl

T,ij × δij , (8)

with δij ∼ N (1, σ2
c ). Following Joshi et al. (2020), σc represents the conductance variation of Gl

ij relative
to Gl

T,ij . This generic noise model may be used to accurately estimate inference accuracy in noise models
derived from measurements of existing noisy hardware implementations.

We tested robustness in a variety of networks – VGG-13 trained on CIFAR-10, MobileNetV2 trained on
CIFAR-100, and ResNet-18 finetuned on ImageNet – following the same training procedure describe above.
We tried a range of neighborhood sizes for the various methods since different a ρ provides a distinct trade-off
between performance and robustness. Additional details are provided in Appendix D. Overall, we found that
ρ = 0.5 or ρ = 1.0 tend to provide the best trade-offs for both SAMSON and ASAM and ρ = 0.05 or ρ = 0.1
for SAM. To promote a cleaner visualization, we only report the best ρ for each method. Lastly, we note
that σc = 0.0 in our experiments refers to the special case where no noise is applied to the DNN weights.

6.1 Baseline robustness methods

On top of a simple baseline trained with vanilla SGD, we experimented with two methods: the additive
noise approach proposed by Joshi et al. (2020) and aggressive weight clipping (Stutz et al., 2021a). More
specifically, the first method applies additive Gaussian noise to DNN weights, whereas the second method
clips the DNN weights into a small range of possible values. The models are trained from scratch and use
the training settings previously described.

The additive random noise proposed by Joshi et al. (2020) is sampled from a Gaussian distribution N (0, σ2
n),

where
σn = W l

max × σG

Gmax
, (9)

with σG representing the standard deviation of hardware non-idealities observed in practice. Both σG and
Gmax are device characteristics that are set to 0.94 and 25, respectively, following the empirical measurements
on 1 million of phase-change memory devices (Joshi et al., 2020). Since the amount of added noise is
proportional to the maximum absolute weight value of a given layer, we perform weight clipping after each
weight update; we used the range

[
−α×σW l , α×σW l

]
, where σW l is the standard deviation of the weights of

layer l and α is a predefined hyper-parameter defaulted to 2.0. We tried a different range of α ∈ {1.5, 2.0, 2.5},
but the best performance for all CIFAR-10/100 models was achieved with the default α value of 2.0. For
finetuning on ImageNet, we used α = 2.5, as originally suggested (Joshi et al., 2020).

For aggressive weight clipping, we tried the values for the clipping range c, as performed by the original
authors (Stutz et al., 2021a): {±0.05,±0.10,±0.15,±0.20}. A lower weight range induced by a smaller c
leads to highly robust networks. However, they may lack generalization performance in the noiseless to low-
noise regimes due to outlier distortion. Hence, manipulating c provides a trade-off between performance and
robustness. In our experiments, we observed that 0.2 (and in some cases 0.15) achieved the best trade-off
and was used on most of the reported networks. Please see Appendix D for additional details.

To reduce the impact of hardware non-idealities in the DNN performance, Joshi et al. (2020) also proposed
adaptive batch normalization statistics (AdaBS), which updates the batch normalization statistics using a
calibration set. More specifically, the running mean and running variance of all batch normalization layers
are updated using the statistics computed during inference on a calibration set using noisy weights. We used
the originally suggested hyper-parameters and applied AdaBS to all networks.

6.2 Robustness to different conductance variation

The robustness of the models trained with SAMSON, ASAM, SAM, and SGD in combination with aggressive
weight clipping at different conductance variation levels is shown in Fig. 2. We also include training with
SGD and additive Gaussian noise as an additional baseline. For visualization clarity, we include training
with additive noise on top of the sharpness-aware training variants in Appendix B.
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Figure 2: Performance of the different methods under a range of random conductance variations. We plot
the mean and standard deviation over 10 and 3 inference runs for CIFAR-10/100 and ImageNet, respectively.

We observe that SAMSON variants primarily compose the Pareto frontier across all models and datasets.
Ultimately, this means that training a DNN with SAMSON with and without aggressive weight clipping
provides the best performance and robustness trade-off across all noisy regimes. This is also observed in the
noiseless regime (σc = 0.0), where we see that there is always at least one SAMSON variant that achieves
the best test accuracy, as discussed in section 5. The difference in model robustness between the various
methods is more subtle on ImageNet, likely due to all methods starting with the same pre-trained model and
being only finetuned for 10 epochs. Nevertheless, we see that SAMSON is the only method able to provide
significant improvements in terms of robustness in highly noisy regimes, e.g. σc = 0.4.

Overall, we observe that sharpness-aware training variants (SAMSON, ASAM, and SAM) clearly outperform
SGD, with SAMSON promoting the highest robustness, generally followed by ASAM and then SAM. This
is seen in terms of not only robustness at different noise levels but also in the best performances achieved
in the noiseless regime. Moreover, the improvement in robustness is especially amplified when combining
sharpness-aware methods with aggressive weight clipping, representing a simple yet effective alternative to
training with noise. We note that, as expected, the performance on the clean network drops when applying
both weight clipping or additive noise, as observed in the zoomed-in patches. This mitigates the robustness
benefits while using these methods in lower noisy settings but proves to be remarkably beneficial in highly
noisy regimes.

6.3 Sharpness and robustness correlation

For measuring sharpness, we use the m-sharpness metric proposed by Foret et al. (2021), which stems from
the original SAM formulation (Eq. (1)), and further extend it to SAMSON’s objective (Eq. (5)). Considering
a training set (Strain) composed of n minibatches S of size m, we compute the difference of the loss ls of a
given sample s with and without a worst-case perturbation ϵ on w. SAMSON’s m-sharpness is calculated as

1
n

∑
S∈Strain

max
∥ϵ∥www∥−1

p /|w|∥2≤ρ

1
m

∑
s∈S

ls(w + ϵ)− ls(w). (10)

In our experiments, we used m = 400 and m = 128 for measuring the sharpness of models finetuned on
ImageNet and trained on CIFAR-10/100, respectively.

We treat robustness as the performance gap measured by the difference in test accuracy between the noise-
less models, i.e. with no conductance variation applied to the weights (σc = 0.0), and the noisy model
configurations with the highest tested conductance variation (σc = 0.4). We present the relation between
sharpness and robustness of all the tested models using SAMSON’s m-sharpness with p = 2 in Fig. 3. We
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Figure 3: Correlation between SAMSON2’s m-sharpness (Eq. (10), ρ = 0.5, p = 2) and robustness, i.e. the
performance gap between the noise realizations at σc = 0.0 and at σc = 0.4. We plot the mean and standard
deviation over 10 and 3 inference runs for CIFAR-10/100 and ImageNet, respectively.

observe a strong correlation within each training configuration, i.e. training each method with and without
additive noise or aggressive weight clipping, across all architectures and datasets.

We provide visualizations of m-sharpness as calculated using SAMSON∞, SAM and ASAM’s objectives and
the metric proposed by Keskar et al. (2016) in Appendix E. We observe that SAMSON∞’s m-sharpness
also shows a high correlation compared to the compared methods. Such findings showcase the ability of
SAMSON’s m-sharpness in acting as a generic robustness metric. Importantly, this suggests that training
with SAMSON’s objective, especially when combined with existing robustness methods such as aggressive
weight clipping, is an effective way of promoting more robust DNNs at inference time.

6.4 Robustness to noise from real hardware

To convey how the performance on the generic noise model translates to existing hardware implementations,
we performed experiments using an inference simulator on real hardware provided by IBM’s analog hardware
acceleration kit (Rasch et al., 2021). This simulator uses the empirical measurements from 1 million phase-
change memory devices (Nandakumar et al., 2019) to accurately simulate how hardware noise affects the
DNN weights (Joshi et al., 2020). Specifically, by taking into account the programming and read noise, we
report the performance of the different methods combined with aggressive weight clipping measured 1 year
after deployment on the target hardware in Fig. 4. We observe that even though all sharpness-aware training
methods outperform SGD in terms of robustness, the SAMSON variants retain the most performance. This
is particularly important in scenarios where often reprogramming the DNN weights on the memristor device
is not feasible.
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Figure 4: Performance of the different methods with aggressive weight clipping on ResNet-18 finetuned on
ImageNet 1 year after weight transfer to the target hardware. We plot the mean and standard deviation
over 10 inference runs.
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7 Additional robustness settings

To further expand the applicability of SAMSON, we also its efficacy in promoting model robustness to
out-of-distribution (OOD) examples and post-training quantization.

7.1 Out-of-distribution examples

To test robustness in OOD settings, we used 8 input perturbations as presented in Faramarzi et al. (2022),
covering multiple scale, shear, and rotation transformations. We applied such perturbations to all pre-trained
CIFAR-10 and CIFAR-100 models reported in Section 5, resulting in 40 scenarios per dataset. We report
the number of times each method achieved the best test accuracy over 3 seeds and without any fine-tuning
in Section 7.1. We observe that our variants consistently outperform the existing methods on both datasets.
Details about the robustness of the different methods for each scenario are provided in Appendix C.
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Figure 5: OOD robustness across 40 scenarios per dataset.

7.2 Post-training quantization

To test robustness against post-training quantization (no fine-tuning), we used a linear quantization scheme
without quantizing the first layer in all models. Results over 3 seeds using pre-trained MobileNetV2 and
ResNet-18 models are presented in Fig. 6. While the robustness of our variants is similar to ASAM at medium
to high bit-width, SAMSON∞ retains the most performance at the lowest bit-width for both models.
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Figure 6: Robustness to quantization at different bit-widths.

8 Conclusion

In this work, we propose a new adaptive sharpness-aware training method that conditions the individual
worst-case perturbation of a given weight based on not only its absolute value but also on the weight range
distribution of a particular layer. Our results on different architectures, datasets, training regimes, and
noisy scenarios showcase the benefits of using SAMSON to increase DNN robustness without compromising
DNN performance in noiseless settings. One limitation of SAMSON which stems directly from SAM is the
increase in training complexity. Notwithstanding, our approach may be combined with existing efficient
SAM implementations (Du et al., 2022a; Liu et al., 2022) to further mitigate this issue.
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A Training details

We trained the CIFAR-10/100 models using one RTX8000 NVIDIA GPU and 1 CPU core, and the ImageNet
models using one A100 GPU and 6 CPU cores. For CIFAR-10/100, we used the architecture implementations
in https://github.com/kuangliu/pytorch-cifar. For ImageNet, we used the ResNet-18 implementation
provided by PyTorch 1.

B Additional robustness experiments

We also present the robustness results when combining the sharpness-aware training variants (SAM, ASAM,
and SAMSON) with additive Gaussian noise in Fig. 7. Even though we observe an increase in robustness
in certain configurations, training with aggressive weight clipping tends to provide the overall best trade-off
between performance and robustness compared to training with additive noise.

1https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
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Figure 7: Performance of the different methods under a range of random conductance variations and com-
bined with either weight clipping or additive noise. We plot the mean and standard deviation over 10 and 3
inference runs for CIFAR-10/100 and ImageNet, respectively.

Table 4: DenseNet-40 OOD experiments on CIFAR-10.

Transform SGD SAM ASAM SAMSON2 SAMSON∞

rotate20 78.81±0.62 78.38±0.53 79.49±0.93 79.25±0.38 80.33±0.8280.33±0.8280.33±0.82
rotate40 56.86±0.77 56.51±0.69 57.51±1.53 57.33±1.73 58.73±0.9458.73±0.9458.73±0.94
shear28.6 79.47±0.49 80.22±0.69 81.41±0.56 80.31±0.85 81.65±0.6481.65±0.6481.65±0.64
shear57.3 54.49±0.24 54.05±0.69 56.08±1.33 54.89±1.82 56.69±0.3456.69±0.3456.69±0.34
zoom120 69.95±1.88 70.08±1.79 70.08±1.65 71.49±1.9771.49±1.9771.49±1.97 70.64±1.40
zoom140 39.18±2.63 39.23±3.93 38.65±1.61 39.47±0.3439.47±0.3439.47±0.34 39.17±1.13
zoom60 69.91±0.53 71.26±0.37 71.84±1.43 72.72±0.4772.72±0.4772.72±0.47 72.60±0.74
zoom80 85.53±0.39 86.01±0.27 86.48±0.24 86.75±0.39 87.08±0.4787.08±0.4787.08±0.47

C Detailed OOD results

Individual results for each OOD scenario in terms of test accuracies for CIFAR-10 and CIFAR-100 are shown
in Tables 4 to 8 and Tables 9 to 13, respectively.

Table 5: MobileNetV2 OOD experiments on CIFAR-10.

Transform SGD SAM ASAM SAMSON2 SAMSON∞

rotate20 86.89±0.45 87.02±0.04 88.21±0.0688.21±0.0688.21±0.06 87.47±0.42 87.43±0.48
rotate40 64.25±0.04 66.16±1.41 68.05±0.1468.05±0.1468.05±0.14 66.24±0.04 67.17±0.37
shear28.6 85.49±0.04 86.82±0.18 87.70±0.1687.70±0.1687.70±0.16 87.40±0.57 87.30±0.30
shear57.3 59.93±0.18 63.09±1.6463.09±1.6463.09±1.64 62.56±1.51 62.10±0.64 62.56±0.70
zoom120 77.56±1.13 81.46±1.8781.46±1.8781.46±1.87 79.80±1.02 80.97±1.41 80.97±1.35
zoom140 47.20±2.41 50.24±3.0950.24±3.0950.24±3.09 49.28±0.18 48.62±2.03 48.62±1.92
zoom60 76.46±1.68 75.59±0.12 77.81±1.33 78.61±1.1678.61±1.1678.61±1.16 78.61±0.3078.61±0.3078.61±0.30
zoom80 90.11±0.45 90.69±0.22 91.53±0.2191.53±0.2191.53±0.21 91.16±0.10 91.16±0.04
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Table 6: ResNet-34 OOD experiments on CIFAR-10.

Transform SGD SAM ASAM SAMSON2 SAMSON∞

rotate20 88.15±0.37 89.11±0.60 88.18±0.94 90.07±0.6690.07±0.6690.07±0.66 89.29±0.58
rotate40 66.29±1.92 66.19±1.21 65.95±1.70 68.02±1.7568.02±1.7568.02±1.75 66.81±0.40
shear28.6 86.76±0.57 88.46±0.58 86.88±0.94 89.05±1.1989.05±1.1989.05±1.19 87.92±0.16
shear57.3 60.01±1.61 62.00±0.69 59.10±2.89 63.63±1.6863.63±1.6863.63±1.68 62.12±0.60
zoom120 77.92±1.39 84.09±2.0384.09±2.0384.09±2.03 78.98±2.07 77.14±1.23 80.40±0.61
zoom140 45.08±2.50 51.81±3.2151.81±3.2151.81±3.21 46.74±2.57 44.22±1.59 48.41±3.74
zoom60 76.24±0.23 78.16±0.68 75.94±1.42 78.64±1.17 78.65±0.2178.65±0.2178.65±0.21
zoom80 90.78±0.11 91.65±0.74 91.05±0.39 92.44±0.7492.44±0.7492.44±0.74 92.09±0.43

Table 7: ResNet-50 OOD experiments on CIFAR-10.

Transform SGD SAM ASAM SAMSON2 SAMSON∞

rotate20 85.46±0.06 84.79±0.52 84.40±1.60 86.30±0.9486.30±0.9486.30±0.94 85.78±0.83
rotate40 65.45±1.4765.45±1.4765.45±1.47 61.05±1.20 61.83±2.18 64.15±1.18 64.83±1.30
shear28.6 86.54±0.5486.54±0.5486.54±0.54 84.95±0.47 84.67±1.06 86.40±0.80 86.44±0.58
shear57.3 61.63±1.20 58.37±1.94 59.97±0.90 62.33±0.5462.33±0.5462.33±0.54 62.24±0.68
zoom120 77.05±4.03 70.94±1.78 74.80±1.47 77.17±2.81 80.09±4.5480.09±4.5480.09±4.54
zoom140 51.10±7.8851.10±7.8851.10±7.88 38.27±0.99 42.32±2.46 43.47±4.56 48.46±6.04
zoom60 73.57±0.81 74.70±0.57 70.48±2.99 74.92±1.37 76.30±0.2376.30±0.2376.30±0.23
zoom80 88.94±0.28 89.29±0.28 88.84±0.74 89.62±0.80 90.56±0.1490.56±0.1490.56±0.14

Table 8: VGG-13 OOD experiments on CIFAR-10.

Transform SGD SAM ASAM SAMSON2 SAMSON∞

rotate20 85.00±0.69 86.56±0.28 86.81±0.08 86.81±0.21 87.19±0.3687.19±0.3687.19±0.36
rotate40 64.46±1.71 67.05±0.52 67.06±0.9067.06±0.9067.06±0.90 66.83±0.93 66.41±0.73
shear28.6 84.52±0.40 86.49±0.46 87.14±0.8587.14±0.8587.14±0.85 86.66±0.32 86.61±0.34
shear57.3 58.56±0.43 59.18±0.36 61.14±1.2561.14±1.2561.14±1.25 58.76±0.30 59.33±0.84
zoom120 84.12±0.09 85.73±1.46 84.58±0.69 86.46±1.4886.46±1.4886.46±1.48 86.46±1.5386.46±1.5386.46±1.53
zoom140 58.97±0.49 61.31±2.20 59.15±1.62 61.58±1.8361.58±1.8361.58±1.83 61.58±2.3561.58±2.3561.58±2.35
zoom60 72.11±0.61 74.34±2.1874.34±2.1874.34±2.18 72.65±0.80 72.92±0.56 72.92±0.91
zoom80 88.37±0.37 89.66±0.03 89.66±0.35 90.06±0.2390.06±0.2390.06±0.23 90.06±0.1590.06±0.1590.06±0.15

Table 9: DenseNet-40 OOD experiments on CIFAR-100.

Transform SGD SAM ASAM SAMSON2 SAMSON∞

rotate20 49.09±0.29 49.74±0.55 50.19±0.52 50.51±1.4050.51±1.4050.51±1.40 50.11±0.28
rotate40 31.89±0.18 33.08±0.27 32.74±0.15 33.23±1.4633.23±1.4633.23±1.46 32.63±0.84
shear28.6 52.59±0.27 53.94±0.35 54.19±0.30 55.36±0.9855.36±0.9855.36±0.98 54.22±0.53
shear57.3 34.60±1.22 35.91±0.26 36.00±0.33 36.00±1.03 36.50±0.4236.50±0.4236.50±0.42
zoom120 41.99±1.71 41.52±0.93 42.55±1.9042.55±1.9042.55±1.90 41.91±0.66 42.11±0.63
zoom140 16.93±0.3616.93±0.3616.93±0.36 15.24±0.17 15.82±0.70 15.82±0.69 15.96±1.04
zoom60 37.85±2.06 38.46±2.64 39.28±1.06 40.67±0.6840.67±0.6840.67±0.68 39.24±0.91
zoom80 58.49±0.55 59.35±0.22 60.01±0.14 60.66±0.3760.66±0.3760.66±0.37 60.40±0.40
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Table 10: MobileNetV2 OOD experiments on CIFAR-100.

Transform SGD SAM ASAM SAMSON2 SAMSON∞

rotate20 62.28±0.63 62.76±0.08 63.47±0.40 64.59±0.5264.59±0.5264.59±0.52 64.09±0.32
rotate40 42.97±0.36 42.95±0.18 44.09±0.46 44.31±0.1144.31±0.1144.31±0.11 44.28±0.37
shear28.6 61.50±0.43 64.42±0.59 64.88±0.29 65.01±0.3765.01±0.3765.01±0.37 64.72±0.09
shear57.3 42.13±0.88 42.80±1.70 42.62±0.48 43.89±0.7643.89±0.7643.89±0.76 42.98±0.09
zoom120 54.60±0.99 53.32±3.61 60.53±1.2160.53±1.2160.53±1.21 56.40±1.53 55.13±2.88
zoom140 26.69±1.36 24.88±2.40 34.06±2.0534.06±2.0534.06±2.05 27.29±2.28 27.46±2.83
zoom60 45.51±2.21 43.48±0.59 42.58±2.23 42.89±2.65 46.33±0.2346.33±0.2346.33±0.23
zoom80 66.62±0.36 67.85±0.18 69.30±0.39 68.93±0.55 69.65±0.2969.65±0.2969.65±0.29

Table 11: ResNet-34 OOD experiments on CIFAR-100.

Transform SGD SAM ASAM SAMSON2 SAMSON∞

rotate20 62.62±0.63 64.40±0.22 65.34±0.45 65.17±0.50 66.01±0.5766.01±0.5766.01±0.57
rotate40 43.59±0.14 44.03±1.09 45.49±0.24 45.32±0.30 45.77±0.6445.77±0.6445.77±0.64
shear28.6 62.63±0.70 65.03±0.53 65.44±1.03 66.06±0.29 66.20±0.3866.20±0.3866.20±0.38
shear57.3 40.27±1.15 40.81±0.74 43.63±0.57 44.79±0.5944.79±0.5944.79±0.59 43.56±0.39
zoom120 59.78±0.92 61.12±2.42 62.42±0.44 64.59±2.4164.59±2.4164.59±2.41 60.50±1.19
zoom140 37.58±2.85 37.17±3.68 38.50±0.80 42.03±4.6342.03±4.6342.03±4.63 35.37±2.76
zoom60 43.14±1.07 45.32±0.97 46.27±0.42 47.24±2.0047.24±2.0047.24±2.00 46.00±1.62
zoom80 66.09±0.71 68.34±0.67 70.22±0.5670.22±0.5670.22±0.56 70.10±0.84 69.57±0.35

Table 12: ResNet-50 OOD experiments on CIFAR-100.

Transform SGD SAM ASAM SAMSON2 SAMSON∞

rotate20 59.44±0.80 60.36±0.70 60.37±1.46 64.53±1.5864.53±1.5864.53±1.58 61.84±0.57
rotate40 40.10±1.53 40.47±1.21 40.45±1.61 44.73±1.4444.73±1.4444.73±1.44 42.80±0.50
shear28.6 59.70±1.87 62.47±0.68 62.71±1.01 65.63±0.2765.63±0.2765.63±0.27 63.30±1.05
shear57.3 38.96±1.05 40.56±0.79 42.45±0.27 45.57±1.8245.57±1.8245.57±1.82 41.57±1.72
zoom120 53.62±2.09 57.13±1.49 54.54±5.03 57.97±0.0057.97±0.0057.97±0.00 57.05±1.07
zoom140 27.24±3.47 29.51±0.7529.51±0.7529.51±0.75 26.04±6.95 29.35±0.95 29.21±0.86
zoom60 40.36±3.12 45.47±1.60 45.19±2.65 47.96±1.1647.96±1.1647.96±1.16 44.71±1.99
zoom80 63.45±2.57 66.28±0.32 67.63±1.65 69.77±0.3369.77±0.3369.77±0.33 67.78±1.91

Table 13: VGG-13 OOD experiments on CIFAR-100.

Transform SGD SAM ASAM SAMSON2 SAMSON∞

rotate20 56.80±0.45 58.52±0.86 59.77±0.36 59.87±0.3059.87±0.3059.87±0.30 59.85±0.43
rotate40 38.53±0.71 40.14±0.25 40.68±0.4040.68±0.4040.68±0.40 40.45±0.43 40.30±0.47
shear28.6 58.88±0.08 60.45±0.45 60.68±0.15 60.97±0.4860.97±0.4860.97±0.48 60.70±0.21
shear57.3 36.70±0.24 38.53±0.47 38.29±0.39 38.58±0.27 39.85±1.2339.85±1.2339.85±1.23
zoom120 56.94±0.76 60.30±1.63 61.03±0.1261.03±0.1261.03±0.12 59.71±0.49 59.06±1.36
zoom140 33.18±1.00 37.00±2.7037.00±2.7037.00±2.70 35.98±1.00 35.09±0.23 34.04±1.31
zoom60 35.52±0.42 38.30±0.15 39.10±1.14 40.72±0.71 41.33±1.2341.33±1.2341.33±1.23
zoom80 64.11±0.85 65.33±0.47 66.28±0.14 66.03±0.12 66.48±0.3066.48±0.3066.48±0.30
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Table 14: Hyper-parameter choices for the different methods.

Hyper-parameter Choices

SAM’s ρ {0.05, 0.1, 0.2, 0.5}
ASAM’s ρ {0.5, 1.0, 1.5, 2.0}
SAMSON’s p {2, ∞}
SAMSON’s ρ {0.1, 0.2, 0.5, 1.0}
c {±0.05, ±0.10, ±0.15, ±0.20}
α {1.5, 2.0, 2.5}

Table 15: Best hyper-parameter configurations for VGG-13 trained on CIFAR-10.

Method Best configuration

SGD + noise α = 2.0
SGD + clipping c = ±0.15
SAM ρ = 0.1
SAM + noise ρ = 0.1, α = 2.0
SAM + clipping ρ = 0.1, c = ±0.2
ASAM ρ = 0.5
ASAM + noise ρ = 0.5, α = 2.0
ASAM + clipping ρ = 0.5, c = ±0.2
SAMSON2 ρ = 0.2, p = 2
SAMSON2 + clipping ρ = 0.5, p = 2, c = ±0.2
SAMSON2 + noise ρ = 0.1, p = 2, α = 2.0
SAMSON∞ ρ = 1.0, p =∞
SAMSON∞ + clipping ρ = 0.5, p =∞, c = ±0.2
SAMSON∞ + noise ρ = 0.1, p =∞, α = 2.0

D Hyper-parameter tuning

The considered ranges for the different hyper-parameters are presented in Table 14. The configurations with
the best performance and robustness trade-off for the models trained CIFAR-10, CIFAR-100, and ImageNet
are presented in tables 15, 16, and 17, respectively. These configurations were the ones used to report the
results in the main paper.

E Additional sharpness experiments

We also provide correlation results with additional sharpness metrics. Particularly, we analyze the m-
sharpness as formulated per SAM and ASAM’s objectives. For SAM, m-sharpness is calculated as

1
n

∑
S∈Strain

max
∥ϵ∥2≤ρ

1
m

∑
s∈S

ls(w + ϵ)− ls(w), (11)

whereas for ASAM, m-sharpness is obtained by

1
n

∑
S∈Strain

max
∥ϵ/|w|∥2≤ρ

1
m

∑
s∈S

ls(w + ϵ)− ls(w). (12)

To avoid repetition, we refer to the main paper for notations. Visual correlations between loss sharpness
and model robustness using SAMSON∞, SAM, and ASAM’s m-sharpness are presented in figs. 8, 9, and
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Table 16: Best hyper-parameter configurations for MobileNetV2 trained on CIFAR-100.

Method Best configuration

SGD + noise α = 2.0
SGD + clipping c = ±0.2
SAM ρ = 0.2
SAM + noise ρ = 0.2, α = 2.0
SAM + clipping ρ = 0.2, c = ±0.2
ASAM ρ = 1.0
ASAM + noise ρ = 1.0, α = 2.0
ASAM + clipping ρ = 1.0, c = ±0.2
SAMSON2 ρ = 1.0, p = 2
SAMSON2 + clipping ρ = 0.5, p = 2, c = ±0.2
SAMSON2 + noise ρ = 0.2, p = 2, α = 2.0
SAMSON∞ ρ = 1.0, p =∞
SAMSON∞ + clipping ρ = 1.0, p =∞, c = ±0.2
SAMSON∞ + noise ρ = 0.2, p =∞, α = 2.0

Table 17: Best hyper-parameter configurations for ResNet-18 finetuned on ImageNet.

Method Best configuration

SGD + noise α = 2.5
SGD + clipping c = ±0.2
SAM ρ = 0.1
SAM + noise ρ = 0.05, α = 2.5
SAM + clipping ρ = 0.1, c = ±0.2
ASAM ρ = 1.0
ASAM + noise ρ = 0.5, α = 2.5
ASAM + clipping ρ = 1.0, c = ±0.2
SAMSON2 ρ = 0.2, p = 2
SAMSON2 + clipping ρ = 0.5, p = 2, c = ±0.2
SAMSON2 + noise ρ = 0.1, p = 2, α = 2.5
SAMSON∞ ρ = 0.5, p =∞
SAMSON∞ + clipping ρ = 1.0, p =∞, c = ±0.2
SAMSON∞ + noise ρ = 0.1, p =∞, α = 2.5
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Figure 8: Correlation between SAMSON∞’s m-sharpness (Eq. (10), ρ = 0.5, p = ∞) and robustness, i.e.
the performance gap between the noise realizations at σc = 0.0 and at σc = 0.4. We plot the mean and
standard deviation over 10 and 3 inference runs for CIFAR-10/100 and ImageNet, respectively.
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Figure 9: Correlation between SAM’s m-sharpness (Eq. (11), ρ = 0.05) and robustness, i.e. the performance
gap between the noise realizations at σc = 0.0 and at σc = 0.4. We plot the mean and standard deviation
over 10 inference runs.

10, respectively. Results using Keskar et al. (2016)’s sharpness are also shown in Fig. 11. Overall, we see
that SAMSON∞ shows the highest visual correlation, comparatively with the SAMSON2 shown in the main
paper. Moreover, we observe that both SAM’s and ASAM’s m-sharpness show better visual correlation than
Keskar et al. (2016)’s notion of sharpness. This suggests that optimizing for low sharpness during training
by using existing sharpness-aware training methods is an effective way to promote robustness at inference
time, as discussed in the main paper.
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Figure 10: Correlation between ASAM’s m-sharpness (Eq. (12), ρ = 0.5) and robustness, i.e. the perfor-
mance gap between the noise realizations at σc = 0.0 and at σc = 0.4. We plot the mean and standard
deviation over 10 inference runs.
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Figure 11: Correlation between Keskar et al. (2016)’s sharpness and robustness, i.e. the performance gap
between the noise realizations at σc = 0.0 and at σc = 0.4. We plot the mean and standard deviation over
10 inference runs.
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