
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXTENDABLE AND ITERATIVE STRUCTURE LEARNING
STRATEGY FOR BAYESIAN NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning the structure of Bayesian networks is a fundamental yet computationally
intensive task, especially as the number of variables grows. Traditional algorithms
require retraining from scratch when new variables are introduced, making them
impractical for dynamic or large-scale applications. In this paper, we propose an
extendable structure learning strategy that efficiently incorporates a new variable Y
into an existing Bayesian network graph G over variablesX , resulting in an updated
P-map graph Ḡ on X̄ = X ∪ {Y }. By leveraging the information encoded in G,
our method significantly reduces computational overhead compared to learning
Ḡ from scratch. Empirical evaluations demonstrate runtime reductions of up to
1300x without compromising accuracy. Building on this approach, we introduce a
novel iterative paradigm for structure learning over X . Starting with a small subset
U ⊂ X , we iteratively add the remaining variables using our extendable algorithms
to construct a P-map graph over the full set. This method offers runtime advan-
tages comparable to common algorithms while maintaining similar accuracy. Our
contributions provide a scalable solution for Bayesian network structure learning,
enabling efficient model updates in real-time and high-dimensional settings.

1 INTRODUCTION

Causal relationships between random variables can be represented by a directed acyclic graph (DAG),
where a link from variable A to B signifies that A causes B. When the DAG is coupled with the
conditional probability distribution (CPD) of each variable given its parents, it forms a causal Bayesian
network, which enables both probabilistic and causal queries. The joint probability distribution of the
variables then factorizes according to the DAG, meaning it becomes the product of the associated
CPDs.

Estimating the DAG from observational data, known as structure learning, is typically approached
using either constraint-based or score-based algorithms (Kitson et al., 2021). Constraint-based
methods, such as PC (developed by Peter Spirtes, Clark Glymour) (Spirtes et al., 2000) and Fast
Causal Inference (FCI) (Spirtes et al., 2000), rely on detecting dependencies between variables using
conditional independence (CI) tests (Guo et al., 2020). In contrast, score-based methods search for
a DAG that maximizes a score function like the Bayesian Information Criterion (BIC) (Koller &
Friedman, 2009).

A notable gap exists in current approaches: no algorithm efficiently updates an existing DAG when
new variables are introduced. This issue is particularly relevant in fields such as social science (Card,
1999), psychology (Primack et al., 2017), and financial studies (Bollen et al., 2011), where important
variables may be omitted in the initial stages of research but later recognized as critical. For instance,
in stock market prediction models, analysts might begin with historical stock prices, trading volumes,
and economic indicators, only to later discover the significant impact of social media sentiment
(Bollen et al., 2011). Incorporating such new variables would traditionally require re-learning the
entire DAG, a process that becomes computationally prohibitive as the number of variables grows.

While existing online (Kocacoban & Cussens, 2019) and incremental (Alcobe, 2005) structure
learning algorithms address scenarios where datasets are updated over time, they are not designed for
the problem of efficiently incorporating a new variable into a learned DAG without discarding the
original structure.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We propose an extendable structure learning algorithm that avoids the need to re-learn the entire
graph when a new variable is added. Specifically, we investigate the effect of adding a node Y to
an already learned structure G over a set of variables X . We present two algorithms to obtain the
extended structure for X ∪ {Y }. Our key finding is that adding a new variable can result in only
deleting links between the original variables, not adding new ones. Consequently, the search for the
highest-scoring DAG is confined to a reduced space, rather than the full space of all possible DAGs
over the extended set of variables.

This reduced search space informs the development of an extendable score-based algorithm, as well
as a constraint-based algorithm that leverages the existing CI tests from the learned structure. By
significantly reducing the number of CI tests compared to re-learning the structure from scratch, we
achieve a more computationally efficient solution. The complexity of the extendable constraint-based
algorithm isO(NKm2d) where N is the cardinality of X , d represents the maximum degree of nodes
in G, m is the degree of node Y in true DAG, and m ≤ K ≤ N . This is a substantial improvement
over the PC algorithm’s complexity of O((N + 1)M) where M = max{d,m}. Simulation results
demonstrate a runtime reduction of up to 200-fold, while also improving the accuracy of the learned
structure in terms of structural Hamming distance.

Furthermore, an iterative strategy has been developed to learn the structure of Bayesian networks by
the proposed extendable algorithms. At first, two random variables are learned and at each iteration
one of the remaining variables is added to the set of variables to learn by the proposed extendable
algorithms. The accuracy and speed of this iterative algorithm is comparable and sometimes better
than that of PC.

2 BACKGROUND

A Bayesian network is a probabilistic graphical model that represents a joint probability distribution
over a set of random variables X = X1, X2, . . . , XN . The joint distribution P (X) can be factorized
using the chain rule as ΠN

i=1P (Xi | X1, . . . , Xi−1). This factorization can be simplified by exploiting
conditional independencies among the variables. For example, if Xi is conditionally independent of a
subset of preceding variables given some others, the corresponding conditional probability simplifies
accordingly.

Each such factorization corresponds to a Directed Acyclic Graph (DAG) G, where the nodes represent
the random variables in X , and edges represent direct dependencies. Specifically, for each conditional
term P (Xi | PaXi

), where PaXi
⊆ X1, . . . , Xi−1 are the parents of Xi, there is an edge from

each parent to Xi in G. The concept of d-separation in a DAG formalizes the notion of conditional
independence among variables. A trail (or path) between two nodes X and Y in G is a sequence
of nodes (X = X0, X1, . . . , Xn = Y) such that each pair (Xi, Xi+1) is connected by an edge
(regardless of direction). A node Z on a trail is called a collider if the edges on the trail meet at Z as
Xi−1 → Z ← Xi+1.

Definition 1 (d-separation) (Koller & Friedman, 2009) Consider the DAG G with node set V . A
trail T between two nodes X and Y in V is active relative to a set of nodes Z if, (i) every non-collider
on T is not a member of Z , and (ii) every collider on T is an ancestor of some member of Z . The
node subsets X and Y are d-separated given the subset Z , if there is no active trail between any node
X ∈ X and any node Y ∈ Y given Z .

If X and Y are d-separated given Z , denoted d-sepG(X ,Y | Z), we say that the paths between X
and Y are blocked by Z . Define I(G) as the set of all d-separations in DAG G. Let I(P) denote the
set of all conditional independencies implied by the distribution P . The Markov condition imposes
that I(G) ⊆ I(P) and the distribution P is said to be faithful to the DAG G if I(P) ⊆ I(G). If
I(G) = I(P), as implied by the two assumptions, then G is called a P-map (perfect-map) for P . It
has been proven that almost all distributions P admit some P-map G (Koller & Friedman, 2009). By
a P-map learner we mean an algorithm, such as PC, that outputs a P-map for a given distribution P
of random variables X . Should the distribution P do not admit a P-map, then the output will be a
DAG G, that either violates the faithfulness or Markovness assumption.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 EXTENDABLE LEARNING

Let X = {X1, · · · , XN} be the set of primary variables with the joint probability distribution P ′,
and G be an output of a P-map finder algorithm over X . Now, suppose a new variable Y is added,
expanding the variable set to X̄ = X ∪ {Y } whose joint distribution is denoted by P . We refer to X̄
and P as the extended variable set and distribution. Following the common practice in the literature,
we assume that there is a P-map for the joint distribution P of the extended variables X̄ , but that is
not necessarily the case with the joint distribution P ′ of the original variables X as explained below.
The goal is to efficiently learn a P-map Ḡ for X̄ , leveraging the information already encoded in G.

Problem 1 Consider random variables X and let G be the output of a P-map finder applied to X .
Consider random variable Y and the extended variable set X̄ = X ∪ {Y } with joint distribution P .
Find a P-map Ḡ for P .

A challenge is that the addition of Y may alter the dependencies among the variables inX . Specifically,
P ′(X) is the marginal distribution of P (X̄) over X . However, since Y was unobserved when G was
learned, G may not accurately represent the dependencies in P ′(X). In particular, G may not be a
P-map for P ′(X) due to hidden confounding introduced by Y . For example, when Y is a confounding
variable (hidden common cause) between two collider nodes in G over X , DAG G cannot represent all
independencies in P ′, violating faithfulness (Spirtes, 1995). Consider X = {X1, X2, X3, X4} and
Ḡ as X1 → X2 ← Y → X3 ← X4. Marginalization over Y leads to having two adjacent collider
nodes X2 and X3 which means we have two immoralities X1 → X2 ← X3 and X2 → X3 ← X4 in
G, which is impossible.

We investigate how the addition of Y affects the dependencies among the variables in X . Consider
two variables X1 and X2 in X . There are three possible scenarios when Y is added:

1. Non-adjacent variables remain non-adjacent: If X1 and X2 are not adjacent in G, they
remain non-adjacent in Ḡ, because due to faithfulness, the absence of an edge implies a
conditional independence given some subset U ⊆ X \X1, X2 (Lemma 4), which remains
in force upon the inclusion of Y .

2. Spurious adjacencies may be removed: If X1 and X2 are adjacent in G but become
conditionally independent given Y and some subset U ⊆ X \ {X1, X2}, the edge between
X1 and X2 may be removed in Ḡ.

3. True adjacencies remain: If X1 and X2 are adjacent in G and remain dependent given Y
and any subset U ⊆ X \ {X1, X2}, the edge between them persists in Ḡ.

According to the first scenario, the proposition 1 is proved as a result of Lemma 4.

Proposition 1 Consider Ḡ is a P-map over X̄ and G is a graph over X . If Xj is an adjacent of Xi

in Ḡ, then Xj is an adjacent of Xi in G.

Proof. If Xj and Xi are not adjacent in G, according to Lemma 4, there is a subset U ⊆ X \{Xi, Xj}
such that Xi ⊥ Xj | U . Because Ḡ is a P-map and due to faithfulness assumption Xi and Xj are
d-separated by U in Ḡ. Then there is no edge between Xi and Xj in Ḡ. □

An important result from Proposition 1 is that adding Y does not introduce new edges between
variables in X that were not already connected in G. Therefore, we only need to examine existing
edges in G and consider potential new edges between Y and the variables in X . We now present
our main theoretical results, which characterize how the addition of Y affects the structure of the
structure G.

Lemma 1 Consider variables X̄ whose joint distribution admits P-map Ḡ. Let Y ∈ X̄ and DAG G
be the output of a P-map learner applied to X̄ \ {Y }. Then every pair of non-adjacent nodes X1 and
X2 in Ḡ are adjacent in G only if

1. Y is a common cause or mediator of X1 and X2 in Ḡ; or

2. X1 is linked to some node W which in turn is linked to X2, and Y is linked to both W and
X2 (or the same statement but when X1 and X2 are exchanged).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: Structures where not observing Y can lead to a spurious edge between X1 and X2. The
dashed edge represents the possible direction of the spurious edge when the structure is learned by
a P-map finder algorithm and Y is an unobserved node. In (a) either X1 → X2 or X1 ← X2 can
occur, and in the other structures, only one direction can occur.

Proof. X1 and X2 being adjacent in G implies that they remain dependent conditioned on any subset
of X , i.e.,

∀U ′ ⊆ X X1 ̸⊥ X2 | U ′. (1)

On the other hand, X1 and X2 being non-adjacent in Ḡ implies the existence of a subset of X that
together with Y drive X1 and X2 independent, i.e.,

∃U ⊆ X X1 ⊥ X2 | U ∪ {Y }. (2)

In view of equation 1, equation 2, and Ḡ being a P-map for X̄ , it follows that there exists a path
T connecting X1 and X2 in Ḡ that is active if Y is not observed, and every path connecting X1

and X2 becomes inactive if Y and U are observed. The distance of Y to X1 does not exceed two.
Otherwise, for every path Ti connecting Y to X1, let Wi be the neighbor of X1 on Ti and Vi be the
neighbor of Wi on Ti. If Y is not a parent for X2, considering 5, Y cannot impact the existence of an
edge between X1 and X2. If Y is a parent of X2 two cases must be checked. i) There is no collider
node Vj between X1 and X2 by observing Wi or Vi the path will be inactive and the other paths are
blocked by parents nodes of X1 or X2.ii) There is a collider node Vj between X1 and X2 that Wi

and Vi are its children. In this case, either Vi is a collider on the path between Y and X1, or there is a
collider between Vi and Y that blocks the path; otherwise, a cycle would be formed in the graph. □

Considering Lemma 1, only three cases exist where observing Y in Ḡ can remove the edge between
X1 and X2: When Y is a confounding (Fig. 1 (a)) or mediator variable between them (Fig. 1 (b,c))
or Y is adjacent to X1 and forms a collider with X2 and W while W is a mediator node between X1

and X2 (Fig. 1 (d,e)). Only in these cases is there an active path between X1 and X2 when Y is not
observed and where that path is blocked by observing Y in Ḡ.

Lemma 2 Let Ḡ be a P-map for P . If X1 ⊥ X2|U for U ⊂ X \ {X1, X2}, then Y cannot be a
mediator or common cause variable between them in Ḡ.

Proof. Consider Y as a mediator or common cause variable between X1 and X2. Then the path
X1 ⇌ Y ⇌ X2 is active when Y is a hidden variable and X1 ̸⊥ X2|U for all U ⊂ X \{X1, X2}. □

Lemma 3 Let Ḡ be a P-map of P over X̄ = X ∪{Y } and G is the output of a P-map finder algorithm.
If X ∈ X is a collider node in G, then it is a collider node in Ḡ.

Proof. Consider an immorality X1 → X2 ← X3 in G. There is a U ⊂ X \ {X1, X3} so that
X2 ̸∈ U and X1 ⊥ X3|U . Also, for all U ⊆ X \ {X1, X3} we have X1 ̸⊥ X3|X2,U . Then
X1 ̸⊥ X3|X2,U , Y . If X1, X2 and X2, X3 are adjacent in Ḡ, then they form an immorality in Ḡ
and X1 → X2 ← X3 appears in Ḡ. Now, consider the edge X2 ← X3 is removed by observing
Y . Therefore, X2, X3, and Y may form one of the structures shown in Fig. 1. Of course, because
X1 ̸⊥ X3|X2, we cannot have a direct path as X2 → Y → X3. As a result, three types of structures
might occur. If Y is a confounding variable for X2 and X3 (Fig. 2 (a)) Lemma 2 means there is
no edge between Y and X1 and we have X1 ̸⊥ X3|X2 which in turn means X2 must be a collider
node between Y and X1 and the edge between X1, X2 orients as X1 → X2 in Ḡ. In the second case,
if we have X3 → Y → X2 (Fig. 2 (b)), similar to the previous case, we have X1 → X2. Also, if
X1 and Y are adjacent, the edge between them orients as X1 → Y due to Lemma 2. In third case
(Fig. 2 (c)), if X1 ← X2 then we have a direct path X3 → W → X2 → X1 that can be blocked

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Three structures that show the effect of the unobserved node Y on an immorality

by observing X2 or X3 ⊥ X1|X2 which is a contradiction and similar to two first cases we have
X1 → X2. Since we have X3 ̸⊥ X1|X2,U it is impossible to have a structure with X3 adjacent
to Y and W a mediator node between X2 and X3 as X2 → W → X3. If we have an immorality
X1 → X2 ← X3 but the edges between X1, X2 and X3, X2 are removed by observing Y , so there
are direct paths X3 → Y → X2 or X3 → W → X2, and X1 → Y → X2 or X1 → V → X2 in Ḡ
for some W,V ∈ X . Therefore, the direction between X1, X2 or X3, X2 does not change when Y is
added to variables. As a result, the orientations of immoralities in G will be unchanged in Ḡ, and so
all orientations in Ḡ between nodes in X are similar to the orientations in G. □

3.1 CONSTRAINT-BASED APPROACH

Checking CI tests to detect independencies is the main idea in constraint-based algorithms. Two steps
are required to add the new variable Y to the previous structure. The first step is checking the relation
between Y and other nodes in X , and the second step is investigating the effect of Y on the edges in
the previous structure.

The PC algorithm is one of the most popular constraint-based algorithms to learn structure. An
extendable version of the PC algorithm has been shown in Algorithm 1. According to the PC
algorithm, the quantity of CI tests required to verify the existence of an edge between two nodes is
directly proportional to the number of adjacent nodes. Hence, to identify the existence of an edge
between Y and X ∈ X , it is necessary to perform CI tests between Y and X while conditioning
on all subsets of both Adj(Ĝ, X) and Adj(Ḡ, Y). Moreover, based on the PC algorithm, by adding
the node of Y into the graph Ĝ, all nodes in X must be connected to Y , forming an initial graph Ḡ.
Subsequently, the process involves refining the graph by eliminating any surplus or spurious edges.
The count of adjacent nodes to Y is | Adj(Ḡ, Y) |= N , whereas | Adj(Ḡ,X) |≤ N for any X ∈ X .
Consequently, to determine the existence of edges between Y and each X ∈ X , it is appropriate
to initially conduct CI tests on U ⊂ Adj(Ḡ,X) and subsequently on U ⊂ Adj(Ḡ, Y). Once the
true edges between Y and all X ∈ X are detected, we can then identify the spurious edges between
X,Z ∈ X .

If d represents the maximum degree of nodes in Ĝ, and m is the degree of node Y in true DAG,
employing the PC algorithm for all nodes in X̄ = X ∪ {Y } imposes a bound on the number of CI
tests, which is (N + 1)M+1 where M = max{d,m}. This bound is established because the PC
algorithm does not leverage information from the prior graph. However, applying the Extendable PC
algorithm when adding a new variable to the variable set can mitigate the number of required CI tests.
Table 1 illustrates the count of CI tests at each step in the Extendable PC algorithm. N2d and md2d

respectively constrain the number of CI tests in steps 2 and 4, and step 3 may require up to Km CI
tests, where m ≤ K ≤ N denotes the number of adjacents of Y after step 2. Nevertheless, in step 2,
certain edges between Y and other nodes may be eliminated. If the number of nodes adjacent to Y
decreases, the number of conditional independence tests will accordingly decrease in step 3. As a
result, we have proved that the number of CI tests for the Extendable PC algorithm is always fewer
than the PC one that is illustrated in Proposition 2. In addition, the Theorem 1 proves the output of
Algorithm 1 is a P-map.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: The number of CI tests for each step of the Extendable PC Algorithm
Step 2 3 4

Number of CI tests O(N2d) O(Km) O(md2d)

Algorithm 1: The Extendable PC Algorithm

Input: A new variable Y and graph Ĝ obtained from the PC algorithm over X ;
Output: New graph Ḡ over the set of variables X̄ = X ∪ {Y };

1 Connect Y to all nodes in Ĝ and construct the graph Ḡ;
2 Adj(Ḡ, Y) = X ;

// Step 1: Initializing Ḡ and the adjacent sets

3 Adj(Ḡ, X) = Adj(Ĝ, X) ∪ {Y }, for all X ∈ X ;
4 Sepset(X,Y) = ∅; for X ∈ X ;
5 m = 0

6 while maximum degree of nodes X in Ḡ is greater than m do
7 for X ∈ X // Step 2: Checking edges between the new variable

and other nodes by conditioning on the neighbors of nodes in
X.

8 for U ⊆ Adj(Ĝ, X) and | U |= m
9 if X ⊥ Y | U

10 Remove the edge X − Y from Ḡ;
11 Sepset(X,Y)← U ;
12 m = m+ 1;
13 m = 0;
14 while degree of Y in Ḡ is greater than m do
15 for X ∈ Adj(Ḡ, Y) // Step 3: Checking the remaining edges

between the new node and its neighbors by conditioning on
the neighbors of the new node.

16 for U ⊆ Adj(Ḡ, Y) \ {X} and | U |= m
17 if Y ⊥ X | U
18 Remove the edge X − Y from Ḡ;
19 Sepset(X,Y)← U ;
20 m = m+ 1;
21 m = 0;
22 while maximum node degree in Ḡ is greater than m do
23 for X ∈ Adj(Ḡ, Y) // Step 4: Checking edges between nodes in X

with observing new variable Y
24 for Z ∈ Adj(Ḡ, X) \ {Y }
25 if Z ∈ Adj(Ḡ, Y) or Adj(Ḡ, X) ∩Adj(Ḡ, Z) ∩Adj(Ḡ, Y) ̸= ∅
26 for U ⊆ Adj(Ḡ, X) \ {Z} and | U |= m
27 if X ⊥ Z | {Y } ∪ U
28 Remove the edge X − Z from Ḡ;
29 Sepset(X,Z)← U ;

30 m = m+ 1;
31 if X,Z ∈ Adj(Ḡ, Y), and X ̸∈ Adj(Ḡ, Z) // Step 5 : Immorality detection
32 if X ̸⊥ Z | Y and Y ̸∈ Sepset(X,Z)
33 Orient X ⇌ Y ⇌ Z as X → Y ← Z.
34 Orient the other edges by orientation rules in (Spirtes et al., 2000). // Step 6

Proposition 2 The number of CI tests of Algorithm 1 is fewer than the PC algorithm.

Theorem 1 The output of Algorithms 1 and 5 is a P-map.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Proof. The proof is a straightforward conclusion using Lemma 1, Lemma 3, and Lemma 4 (in
Appendix). Lemma 4 shows that adding a new variable cannot add an edge between two nodes.
Hence, according to Lemma 1, the output skeleton of the proposed extendable algorithm finds the
skeleton of the true DAG. Then, Lemma 3 shows that all collider nodes were found correctly by the
proposed algorithm. So the output PDAG for constraint-based algorithms such as Algorithm 1 is a
P-map structure. □

In addition, we use a straightforward modification of the PC algorithm using Proposition 1. According
to our discussion adding a new variable cannot add any edge to the previous structure. Therefore, we
can use the previous skeleton G as the input graph of the PC algorithm and check the other CI tests to
obtain Ḡ. This algorithm is called the Initialized PC algorithm (IPC).

3.2 SCORE-BASED APPROACH

In the score-based approach, a score function is used to find an optimal structure over all possible
DAGs or a sub-optimal solution over a subset of possible DAGs. Therefore, the number of DAGs in
the search space has a key role in the complexity of the structure learning algorithm. If a DAG Ĝ
was obtained by a score-based algorithm over X , the search space for learning a new structure that
includes Y could be estimated by Lemmas 1-3 and this point that the adding a new variable cannot
add an edge between nodes in X . This means the number of DAGs in this search space will be lower
than all possible DAGs on X̄ .

Let SX̄ be a search space on X̄ . The DAGs Ḡ in SX̄ must satisfy following conditions:

1. If Xi, Xj ∈ X are not adjacent in G, then they are not in Ḡ.

2. If Xi ∈ X is a collider node in G, it is a collider node in Ḡ.

3. If Xi, Xj are adjacent to each other in G, if Xi, Xj and Y form a structure similar to one of
the structures in Fig. 1, then the edge between them can be deleted in Ḡ.

4. If Xi, Xj ∈ X are not adjacent to each other in G, and both of them are adjacent to Y in Ḡ,
then Y must be a collider (i.e., Xi → Y ← Xj in Ḡ).

5. If Xi, Xj ∈ X are adjacent to each other in G, and both of them are collider nodes in G,
then Y must be a confounding variable as Xi ← Y → Xj in Ḡ.

Algorithms 2 and 3 are developed for extendable score-based structure learning approach. Algorithm
2 represents a general extendable score-based algorithm that includes:(1) a search space trimming
function (T-function in Algorithm 3) that restricts the graph search space, based on the analysis from
Lemmas 1 - 3; and (2) a score-based P-map finder (for example global minimization of the BIC
score), that finds the best graph within the restricted search space.

Algorithm 2: The Extendable Score-based Algorithm

Input: A new variable Y and a structure Ĝ over X
Output: A P-map Ḡ over X̄ = X ∪ {Y }

1 SX̄ ← T(Ĝ, Y,SX̄) // By T-function in algorithm 3
2 Ḡ ← PF(SX̄) // PF is a score-based P-map finder

3.3 ITERATIVE STRUCTURE LEARNING APPROACH

We developed a new structure learning paradigm using the extendable approach, allowing standard
algorithms to be modified to reduce the run-time. This is achieved through an iterative process where
the extendable structure learning algorithm is applied at each step. As shown in Algorithm 4, starting
with two randomly selected variables from X , denoted as X1 and X2, a structure G1 is learned. Then,
a third variable X3 is selected from X \{X1, X2}, and a new structure G2 is formed by incorporating
X3 using the extendable algorithm. This process is repeated iteratively, with each new variable, such
as X4 ∈ X \ {X1, X2, X3}, being added to the current set to form the next structure. The procedure
continues until all N variables are included, resulting in a P-map graph over X . Using an iterative
approach, at each step, we leverage information about the relationships between nodes from the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

previous graph to determine the current graph. Since the number of nodes impacts the number of
CI tests, fewer nodes result in fewer CI tests when applying Lemma 1, which restricts the space of
possible graphs. Also, the performance of the iterative algorithms depends on the order of selecting
variables. According to Lemma 1 and Figure 1, if the ordering is close to topological causal ordering
the performance of the iterative will be better. For example, consider a naive Bayes structure with n
children {X1, · · · , Xn} and a parent node Y . With ordering like ⟨X1, · · · , Xn, Y ⟩, before dealing
with Y , the iterative algorithm will first produce the complete graph over {X1, · · · , Xn}. However,
with this ordering ⟨Y,X1, · · · , Xn⟩ the number of CI tests for Algorithm 4 will be fewer than the
previous ordering.

Theorem 2 There is an ordering over X , such that the number of CI tests for Algorithm 4 with
Algorithm 1 as the extendable P-map learner is fewer than the PC algorithm.

Algorithm 3: T-function (search space trimming)

Input: Y , graph structure Ĝ over X , and set of initial DAGs over X̄ denoted as SX̄
Output: SX̄ for X̄ = X ∪ {Y }

1 for Ḡ ∈ SX̄
2 for Xi, Xj ∈ X
3 if Xi ̸∈ Adj(Ĝ, Xj) and Xi ∈ Adj(Ḡ, Xj)
4 Delete Ḡ from SX̄
5 if (Xi → Xj ← Xk) ∈ Ĝ and ((Xi ← Xj ← Xk) ∈ Ḡ or (Xi ← Xj → Xk) ∈ Ḡ)
6 Delete Ḡ from SX̄
7 if Xi ∈ Adj(Ĝ, Xj) and Xi ̸∈ Adj(Ḡ, Xj)
8 if Edges between Xi, Xj and Y do not form a structure similar to any of the

structures in Fig. 1
9 Delete Ḡ from SX̄

10 if Xi ̸∈ Adj(Ĝ, Xj) and Xi, Xj ∈ Adj(Ḡ, Y) and (Xi → Y ← Xj) ̸∈ Ḡ
11 Delete Ḡ from SX̄
12 if Xi ∈ Adj(Ĝ, Xj) and Xi, Xj are collider nodes in Ḡ and (Xi ← Y → Xj) ̸∈ Ḡ
13 Delete Ḡ from SX̄
14 Return SX̄

Algorithm 4: The Iterative P-map learner Algorithm
Input: A set of variables X and their joint probability distribution P
Output: A partially directed acyclic graph

1 X̂ = {X1, X2}
2 G ← P −map learner(X̂)
3 while X \ X̂ ̸= ∅ do
4 X ∈ X \ X̂
5 Ḡ ← Extendable P −map learner(G, X)

6 X̂ ← X̂ ∪ {X}
7 G ← Ḡ

4 NUMERICAL RESULTS

We now compare the results of our Extendable PC algorithm with the PC, and Initialized PC
algorithms on the data sets ASIA (Lauritzen & Spiegelhalter, 1988), CANCER (Korb & Nicholson,
2010), SURVEY (Scutari & Denis, 2021), EARTHQUAKE (Korb & Nicholson, 2010), ALARM
(Beinlich et al., 1989), INSURANCE (Binder et al., 1997), CHILD (Spiegelhalter & Cowell, 1992),
WATER (Jensen et al., 1989), SACHS (Jensen & Jensen, 2013), MILDEW (Jensen & Jensen, 2013),
WIN95PTS (Jensen & Jensen, 2013), HEPAR2 (Onisko, 2003). 10000 instances were drawn from
distributions for use in structure learning algorithms. For each data set a variable is chosen randomly
and a structure is learned over the other variables by the PC algorithm. Then the chosen variable

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Number of CI tests

DATASET EXTENDABLE PC INITIALIZED PC PC

EARTHQUAKE 15 48 57
CANCER 12 39 45
SURVEY 11 49 55
ASIA 26 87 124
CHILD 184 1242 2124
SACHS 618 682 971
ALARM 103 745 3283
MILDEW 200 670 3629
WIN95PTS 86 1975 12501
INSURANCE 147 1571 5078
WATER 71 278 1346
HEPAR2 536 5108 23202
ANDES 277 11426 68375

Table 3: Run-Time (sec)

DATASET EXTENDABLE PC INITIALIZED PC PC

EARTHQUAKE 0.033 0.116 0.283
CANCER 0.029 0.115 0.294
SURVEY 0.022 0.186 0.425
ASIA 0.071 0.244 0.744
CHILD 6.11 33.76 65.71
SACHS 15.39 15.86 34.16
ALARM 1.45 17.95 22.10
MILDEW 28.13 31.01 316
WIN95PTS 0.688 77.81 111
INSURANCE 2.36 36.9 58.28
WATER 0.289 1.38 5.77
HEPAR2 47.57 474 1832
ANDES 1.97 532 2652

is added to the data set and the learned structure is considered as the input of the Extendable PC
algorithm and Initialized PC to learn the new structure. For iterative PC, the first two variables are
chosen randomly, and the iterative PC is used to estimate the structure over the whole of variables.
The number of CI tests for the PC, Initialized PC, and Extendable PC algorithms are shown in Table 2
and the runtime in Table 3. In addition, by considering the structural hamming distance, we recorded
the number of incorrect edges either missing or extra compared to the true graph and divided it by the
total number of edges in the true DAG (Table 4). These results suggest that the extendable approach
can significantly reduce both the number of required CI tests and the runtime, particularly in large
networks. Additionally, Table 5 shows the number of CI tests for iterative PC and PC algorithms,
and Tables 6 and 7 illustrate the runtime and error of them. The iterative approach applied to the
PC algorithm demonstrates a reduced runtime across most datasets compared to the standard PC
algorithm and the error did not change.

5 CONCLUSION

The proposed extendable structure learning approach results in adding new variables to the model
with a significantly lower computational burden compared with learning a new structure from scratch.
The proposed approach can be applied to all constraint-based and score-based algorithms. The main
challenge is to use P-map finder algorithms while there is a hidden variable. In this case, the output of
the algorithms is not a P-map and even in some situations the faithfulness assumption is violated. We
proposed Lemmas to detect situations in which unfaithfulness can occur while there is an unobserved
variable. Then, we proposed an extendable strategy for constructing a P-map when a new variable
is added to the set of variables. We applied the extendable approach to the PC algorithm. The
extendable PC algorithm could reduce the runtime up to 1300 times compared with the PC when a

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Structural Hamming Distance divided by the total number of true edges (%)

DATASET EXTENDABLE PC INITIALIZED PC PC

EARTHQUAKE 0 0 0
CANCER 0 0 0
SURVEY 0 0 0
ASIA 12.5 12.5 12.5
CHILD 4 4 4
SACHS 0 0 0
ALARM 8.7 8.7 8.7
MILDEW 13 17.4 17.4
WIN95PTS 38.4 38.4 38.4
INSURANCE 30.8 30.8 30.8
WATER 57.6 59.1 59.1
HEPAR2 51.2 51.2 51.2
ANDES 19.5 19.5 19.5

Table 5: Number of CI tests

DATASET ITERATIVE PC PC

EARTHQUAKE 31 57
CANCER 27 45
SURVEY 37 55
ASIA 66 124
CHILD 3344 2124
SACHS 1276 971
ALARM 4847 3283
MILDEW 2597 3629
WIN95PTS 10412 12501
INSURANCE 2589 5078
WATER 872 1346
HEPAR2 8371 23202
ANDES 35327 68375

Table 6: Run-Time (sec)

DATASET ITERATIVE PC PC

EARTHQUAKE 0.09 0.283
CANCER 0.06 0.294
SURVEY 0.09 0.425
ASIA 0.15 0.744
CHILD 124 65.71
SACHS 35.5 34.16
ALARM 81 22.1
MILDEW 715 316
WIN95PTS 144 111
INSURANCE 39.5 58.28
WATER 3.11 5.77
HEPAR2 597 1832
ANDES 307 2652

Table 7: Structural Hamming Distance divided by the total number of true edges (%)

DATASET ITERATIVE PC PC

EARTHQUAKE 0 0
CANCER 0 0
SURVEY 0 0
ASIA 12.5 12.5
CHILD 4 4
SACHS 0 0
ALARM 17.4 8.7
MILDEW 54.3 17.4
WIN95PTS 31.25 38.4
INSURANCE 26.9 30.8
WATER 47 59.1
HEPAR2 46.3 51.2
ANDES 23.4 19.5

new variable is added to the set of variables and up to 270 times compared with the Initialized PC
algorithm. In addition, the iterative paradigm for structure learning based on the extendable approach
was developed. The proposed approach can be used for all types of structure learning algorithms.
The structure learning starts with two variables, and then a third variable is added to the previous
structure using the extendable approach, This iterative would continue until all variables are added to
the graph and finally, a P-map is constructed. The iterative PC algorithm can reduce the number of
CI tests and the runtime for most datasets, while also increasing accuracy in some cases.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Juan R. Alcobe. Incremental methods for bayesian network structure learning. Artificial Intelligence
Communications, 18(1):61–62, 2005.

I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper. The alarm monitoring system: A case
study with two probabilistic inference techniques for belief networks. In Proceedings of the 2nd
European Conference on Artificial Intelligence in Medicine, pp. 247–256. Springer-Verlag, 1989.

Jeffrey Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. Adaptive probabilistic networks
with hidden variables. Machine Learning, 29(2–3):213–244, 1997.

Johan Bollen, Huina Mao, and Xiaojun Zeng. Twitter mood predicts the stock market. Journal of
Computational Science, 2(1):1–8, 2011.

David Card. The causal effect of education on earnings. In Handbook of Labor Economics, volume 3,
pp. 1801–1863. 1999.

Ruocheng Guo, Li Cheng, Jundong Li, Peter R. Hahn, and Huan Liu. A survey of learning causality
with data: Problems and methods. ACM Computing Surveys (CSUR), 53(4):1–37, 2020.

A.L. Jensen and F.V. Jensen. Midas-an influence diagram for management of mildew in winter wheat.
arXiv preprint arXiv:1302.3587, 2013.

Finn V. Jensen, Uffe Kjærulff, Karl G. Olesen, and Jens Pedersen. Et forprojekt til et ekspertsystem
for drift af spildevandsrensning (an expert system for control of waste water treatment - a pilot
project). Technical report, 1989. Technical Report, Judex Datasystemer A/S, Aalborg, In Danish.

N.K. Kitson, A.C. Constantinou, Z. Guo, Y. Liu, and K. Chobtham. A survey of bayesian network
structure learning. 2021.

Damla Kocacoban and James Cussens. Online causal structure learning in the presence of latent
variables. In 2019 18th IEEE International Conference On Machine Learning And Applications
(ICMLA), pp. 392–395. IEEE, December 2019.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009.

Kevin B. Korb and Ann E. Nicholson. Bayesian Artificial Intelligence. CRC Press, 2010.

Steffen L. Lauritzen and David J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical Society: Series
B (Methodological), 50(2):157–194, 1988.

Agnieszka Onisko. Probabilistic Causal Models in Medicine: Application to Diagnosis of Liver
Disorders. PhD thesis, Institute of Biocybernetics and Biomedical Engineering, Polish Academy
of Sciences, Warsaw, Poland, 2003.

Brian A. Primack, Ariel Shensa, Jeanine E. Sidani, Emily O. Whaite, Lloyd Yi Lin, David Rosen,
Jason B. Colditz, Ana Radovic, and Elizabeth Miller. Social media use and perceived social
isolation among young adults in the us. American Journal of Preventive Medicine, 53(1):1–8,
2017.

Marco Scutari and Jean-Baptiste Denis. Bayesian Networks: With Examples in R. Chapman and
Hall/CRC, 2021.

David J. Spiegelhalter and Robert G. Cowell. Learning in probabilistic expert systems. In J.M.
Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith (eds.), Bayesian Statistics 4, pp. 447–466.
Clarendon Press, Oxford, 1992.

Peter Spirtes. Building causal graphs from statistical data in the presence of latent variables. In
Studies in Logic and the Foundations of Mathematics, volume 134, pp. 813–829. Elsevier, 1995.

Peter Spirtes, Clark N. Glymour, Richard Scheines, and David Heckerman. Causation, prediction,
and search. MIT Press, 2000.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

Lemma 4 (Based on (Spirtes et al., 2000)) Consider random variables X with joint distribution P
that admits a P-map G. Vertices X and Y are not adjacent in G if and only if X ⊥ Y | U for some
U ⊆ X .

Lemma 5 [Lemma 3.2 in (Koller & Friedman, 2009)] Consider random variables X with joint
distribution P that admits a P-map G. Vertices X and Y are not adjacent in G if and only if
X ⊥ Y | PaX or X ⊥ Y | PaY .

Algorithm 5: The Extendable Constraint-based Algorithm

Input: A new variable Y and a structure Ĝ over X
Output: A PDAG Ḡ over X̄ = X ∪ {Y }

1 Form the Ḡ over nodes X̄ by connecting Y to all nodes Ĝ by undirected edge;
2 for X ∈ X // Step 1:
3 Check the edge between Y and X

4 for X ∈ Adj(Ḡ, Y) // Step 2
5 for Z ∈ Adj(Ḡ, X)
6 if Z ∈ Adj(Ḡ, Y) or Adj(Ḡ, X) ∩Adj(Ḡ, Z) ∩Adj(Ḡ, Y) ̸= ∅
7 Check the edge between X and Z
8 Orient the new edges using the orientation rules in (Spirtes et al., 2000). // Orientation

Algorithm 6: The Iterative PC Algorithm
Input: A set of variables X and their joint probability distribution P
Output: A partially directed acyclic graph

1 Sepset = ∅
2 X̂ = {X1, X2}
3 G,Sepset← PC(X̂)
4 while X \ X̂ ̸= ∅ do
5 X ∈ X \ X̂
6 Ḡ,Sepset← ExtendablePC(G, X,Sepset)

7 X̂ ← X̂ ∪ {X}
8 G ← Ḡ
9 Orient the edges using the orientation rules in (Spirtes et al., 2000). // Orientation

Algorithm 7: The PC Algorithm
Input: A set of variables X and their joint probability distribution P
Output: A partially directed acyclic graph

1 Form the complete undirected graph G over nodes X ;
2 Sepset(X,Y) = ∅ for all X,Y ∈ X ;
3 m = 0
4 while maximum node degree in G is greater than m do
5 for X ∈ X // CI tests
6 for Y ∈ Adj(G, X)
7 for U ⊆ Adj(G, X) \ {Y } and | U |= m
8 if X ⊥ Y | U
9 Remove the edge X − Y from G;

10 Sepset(X,Y)← U ;
11 m = m+ 1;
12 Orient the edges using the orientation rules in (Spirtes et al., 2000). // Orientation

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Algorithm 8: The Extendable Hill-climbing structure learning algorithm

Input: A new variable Y and a structure Ĝ over X
Output: A P-map Ḡ over X̄ = X ∪ {Y }

1 Form Ḡ as the union of Ĝ and one-point graph Y
2 i = 1
3 while i < I do
4 NḠ ← Neibourhood F inder(Ḡ)
5 NḠ ← T(Ĝ, Y,NḠ) // By T-function in algorithm 3
6 Ḡ ← argmaxG∈NḠ ScoreBIC(G)
7 i← i+ 1

Proof of Theorem 2. Consider a topological causal ordering over X . It means that in Algorithm 4,
in every iteration, when a variable is added all its parents had been added in the previous iterations.
Thus the structures shown in Figure 1 do not occur in each iteration. So step 4 in Algorithm 1 is
not used in any iteration. The other part of the Algorithm 1 is similar to the PC algorithm except
that it uses the information of the number of adjacent of each node in the previous graph. So, as we
discussed in section 3.1, the number of required CI tests is fewer than the PC algorithm to check
edges between each two nodes. As a result, the number of CI tests for all iterations will be fewer than
the PC algorithm. □

13

	Introduction
	Background
	Extendable learning
	Constraint-based approach
	Score-based approach
	Iterative structure learning approach

	Numerical Results
	Conclusion
	Appendix

