EXTENDABLE AND ITERATIVE STRUCTURE LEARNING STRATEGY FOR BAYESIAN NETWORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

Learning the structure of Bayesian networks is a fundamental yet computationally intensive task, especially as the number of variables grows. Traditional algorithms require retraining from scratch when new variables are introduced, making them impractical for dynamic or large-scale applications. In this paper, we propose an extendable structure learning strategy that efficiently incorporates a new variable Y into an existing Bayesian network graph \mathcal{G} over variables \mathcal{X} , resulting in an updated P-map graph $\overline{\mathcal{G}}$ on $\overline{\mathcal{X}} = \mathcal{X} \cup \{Y\}$. By leveraging the information encoded in \mathcal{G} , our method significantly reduces computational overhead compared to learning $\overline{\mathcal{G}}$ from scratch. Empirical evaluations demonstrate runtime reductions of up to 1300x without compromising accuracy. Building on this approach, we introduce a novel iterative paradigm for structure learning over \mathcal{X} . Starting with a small subset $\mathcal{U} \subset \mathcal{X}$, we iteratively add the remaining variables using our extendable algorithms to construct a P-map graph over the full set. This method offers runtime advantages comparable to common algorithms while maintaining similar accuracy. Our contributions provide a scalable solution for Bayesian network structure learning, enabling efficient model updates in real-time and high-dimensional settings.

029

024

004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

Causal relationships between random variables can be represented by a directed acyclic graph (DAG),
 where a link from variable A to B signifies that A causes B. When the DAG is coupled with the
 conditional probability distribution (CPD) of each variable given its parents, it forms a causal Bayesian
 network, which enables both probabilistic and causal queries. The joint probability distribution of the
 variables then factorizes according to the DAG, meaning it becomes the product of the associated
 CPDs.

Estimating the DAG from observational data, known as structure learning, is typically approached
using either constraint-based or score-based algorithms (Kitson et al., 2021). Constraint-based
methods, such as PC (developed by Peter Spirtes, Clark Glymour) (Spirtes et al., 2000) and Fast
Causal Inference (FCI) (Spirtes et al., 2000), rely on detecting dependencies between variables using
conditional independence (CI) tests (Guo et al., 2020). In contrast, score-based methods search for
a DAG that maximizes a score function like the Bayesian Information Criterion (BIC) (Koller &
Friedman, 2009).

A notable gap exists in current approaches: no algorithm efficiently updates an existing DAG when new variables are introduced. This issue is particularly relevant in fields such as social science (Card, 1999), psychology (Primack et al., 2017), and financial studies (Bollen et al., 2011), where important variables may be omitted in the initial stages of research but later recognized as critical. For instance, in stock market prediction models, analysts might begin with historical stock prices, trading volumes, and economic indicators, only to later discover the significant impact of social media sentiment (Bollen et al., 2011). Incorporating such new variables would traditionally require re-learning the entire DAG, a process that becomes computationally prohibitive as the number of variables grows.

While existing online (Kocacoban & Cussens, 2019) and incremental (Alcobe, 2005) structure
 learning algorithms address scenarios where datasets are updated over time, they are not designed for
 the problem of efficiently incorporating a new variable into a learned DAG without discarding the
 original structure.

054 We propose an extendable structure learning algorithm that avoids the need to re-learn the entire graph when a new variable is added. Specifically, we investigate the effect of adding a node Y to 056 an already learned structure \mathcal{G} over a set of variables \mathcal{X} . We present two algorithms to obtain the 057 extended structure for $\mathcal{X} \cup \{Y\}$. Our key finding is that adding a new variable can result in only 058 deleting links between the original variables, not adding new ones. Consequently, the search for the highest-scoring DAG is confined to a reduced space, rather than the full space of all possible DAGs over the extended set of variables. 060

061 This reduced search space informs the development of an extendable score-based algorithm, as well 062 as a constraint-based algorithm that leverages the existing CI tests from the learned structure. By 063 significantly reducing the number of CI tests compared to re-learning the structure from scratch, we 064 achieve a more computationally efficient solution. The complexity of the extendable constraint-based algorithm is $\mathcal{O}(NK^m2^d)$ where N is the cardinality of \mathcal{X}, d represents the maximum degree of nodes 065 in \mathcal{G} , m is the degree of node Y in true DAG, and $m \leq K \leq N$. This is a substantial improvement 066 over the PC algorithm's complexity of $\mathcal{O}((N+1)^M)$ where $M = \max\{d, m\}$. Simulation results 067 demonstrate a runtime reduction of up to 200-fold, while also improving the accuracy of the learned 068 structure in terms of structural Hamming distance. 069

Furthermore, an iterative strategy has been developed to learn the structure of Bayesian networks by 071 the proposed extendable algorithms. At first, two random variables are learned and at each iteration one of the remaining variables is added to the set of variables to learn by the proposed extendable 072 algorithms. The accuracy and speed of this iterative algorithm is comparable and sometimes better 073 than that of PC. 074

075 076

2 BACKGROUND

077 078

079 A Bayesian network is a probabilistic graphical model that represents a joint probability distribution 080 over a set of random variables $\mathcal{X} = X_1, X_2, \ldots, X_N$. The joint distribution $P(\mathcal{X})$ can be factorized 081 using the chain rule as $\prod_{i=1}^{N} P(X_i \mid X_1, \dots, X_{i-1})$. This factorization can be simplified by exploiting 082 conditional independencies among the variables. For example, if X_i is conditionally independent of a 083 subset of preceding variables given some others, the corresponding conditional probability simplifies 084 accordingly.

085 Each such factorization corresponds to a Directed Acyclic Graph (DAG) \mathcal{G} , where the nodes represent 086 the random variables in \mathcal{X} , and edges represent direct dependencies. Specifically, for each conditional 087 term $P(X_i \mid \operatorname{Pa}_{X_i})$, where $\operatorname{Pa}_{X_i} \subseteq X_1, \ldots, X_{i-1}$ are the parents of X_i , there is an edge from 880 each parent to X_i in \mathcal{G} . The concept of d-separation in a DAG formalizes the notion of conditional 089 independence among variables. A trail (or path) between two nodes X and Y in \mathcal{G} is a sequence 090 of nodes $(X = X_0, X_1, \dots, X_n = Y)$ such that each pair (X_i, X_{i+1}) is connected by an edge (regardless of direction). A node Z on a trail is called a *collider* if the edges on the trail meet at Z as 091 $X_{i-1} \to Z \leftarrow X_{i+1}.$ 092

093

094 **Definition 1 (d-separation)** (Koller & Friedman, 2009) Consider the DAG \mathcal{G} with node set \mathcal{V} . A trail \mathcal{T} between two nodes X and Y in \mathcal{V} is active relative to a set of nodes \mathcal{Z} if, (i) every non-collider 096 on \mathcal{T} is not a member of \mathcal{Z} , and (ii) every collider on \mathcal{T} is an ancestor of some member of \mathcal{Z} . The node subsets X and Y are d-separated given the subset Z, if there is no active trail between any node 098 $X \in \mathcal{X}$ and any node $Y \in \mathcal{Y}$ given \mathcal{Z} .

099

097

100 If \mathcal{X} and \mathcal{Y} are *d*-separated given \mathcal{Z} , denoted d-sep_{*G*}($\mathcal{X}, \mathcal{Y} \mid \mathcal{Z}$), we say that the paths between \mathcal{X} 101 and \mathcal{Y} are *blocked* by \mathcal{Z} . Define $\mathcal{I}(\mathcal{G})$ as the set of all d-separations in DAG \mathcal{G} . Let $\mathcal{I}(P)$ denote the 102 set of all conditional independencies implied by the distribution P. The Markov condition imposes 103 that $\mathcal{I}(\mathcal{G}) \subseteq \mathcal{I}(P)$ and the distribution P is said to be *faithful* to the DAG \mathcal{G} if $\mathcal{I}(P) \subseteq \mathcal{I}(\mathcal{G})$. If 104 $\mathcal{I}(\mathcal{G}) = \mathcal{I}(P)$, as implied by the two assumptions, then \mathcal{G} is called a *P-map (perfect-map)* for *P*. It 105 has been proven that almost all distributions P admit some P-map \mathcal{G} (Koller & Friedman, 2009). By a *P-map learner* we mean an algorithm, such as PC, that outputs a P-map for a given distribution P 106 of random variables \mathcal{X} . Should the distribution P do not admit a P-map, then the output will be a 107 DAG \mathcal{G} , that either violates the faithfulness or Markovness assumption.

108 3 EXTENDABLE LEARNING

110 Let $\mathcal{X} = \{X_1, \dots, X_N\}$ be the set of primary variables with the joint probability distribution P', 111 and \mathcal{G} be an output of a P-map finder algorithm over \mathcal{X} . Now, suppose a new variable Y is added, 112 expanding the variable set to $\mathcal{X} = \mathcal{X} \cup \{Y\}$ whose joint distribution is denoted by P. We refer to $\overline{\mathcal{X}}$ 113 and P as the *extended* variable set and distribution. Following the common practice in the literature, 114 we assume that there is a P-map for the joint distribution P of the extended variables $\overline{\mathcal{X}}$, but that is 115 not necessarily the case with the joint distribution P' of the original variables \mathcal{X} as explained below. 116 The goal is to efficiently learn a P-map $\overline{\mathcal{G}}$ for $\overline{\mathcal{X}}$, leveraging the information already encoded in \mathcal{G} .

Problem 1 Consider random variables \mathcal{X} and let \mathcal{G} be the output of a P-map finder applied to \mathcal{X} . Consider random variable Y and the extended variable set $\overline{\mathcal{X}} = \mathcal{X} \cup \{Y\}$ with joint distribution P. Find a P-map $\overline{\mathcal{G}}$ for P.

121 A challenge is that the addition of Y may alter the dependencies among the variables in \mathcal{X} . Specifically, 122 $P'(\mathcal{X})$ is the marginal distribution of $P(\mathcal{X})$ over \mathcal{X} . However, since Y was unobserved when \mathcal{G} was 123 learned, \mathcal{G} may not accurately represent the dependencies in $P'(\mathcal{X})$. In particular, \mathcal{G} may not be a P-map for $P'(\mathcal{X})$ due to hidden confounding introduced by Y. For example, when Y is a confounding 124 variable (hidden common cause) between two collider nodes in \mathcal{G} over \mathcal{X} , DAG \mathcal{G} cannot represent all 125 independencies in P', violating faithfulness (Spirtes, 1995). Consider $\mathcal{X} = \{X_1, X_2, X_3, X_4\}$ and 126 $\overline{\mathcal{G}}$ as $X_1 \to X_2 \leftarrow Y \to X_3 \leftarrow X_4$. Marginalization over Y leads to having two adjacent collider 127 nodes X_2 and X_3 which means we have two immoralities $X_1 \rightarrow X_2 \leftarrow X_3$ and $X_2 \rightarrow X_3 \leftarrow X_4$ in 128 \mathcal{G} , which is impossible. 129

We investigate how the addition of Y affects the dependencies among the variables in \mathcal{X} . Consider two variables X_1 and X_2 in \mathcal{X} . There are three possible scenarios when Y is added:

- 1. Non-adjacent variables remain non-adjacent: If X_1 and X_2 are not adjacent in \mathcal{G} , they remain non-adjacent in $\overline{\mathcal{G}}$, because due to faithfulness, the absence of an edge implies a conditional independence given some subset $\mathcal{U} \subseteq \mathcal{X} \setminus X_1, X_2$ (Lemma 4), which remains in force upon the inclusion of Y.
 - 2. Spurious adjacencies may be removed: If X_1 and X_2 are adjacent in \mathcal{G} but become conditionally independent given Y and some subset $\mathcal{U} \subseteq \mathcal{X} \setminus \{X_1, X_2\}$, the edge between X_1 and X_2 may be removed in $\overline{\mathcal{G}}$.
 - 3. True adjacencies remain: If X_1 and X_2 are adjacent in \mathcal{G} and remain dependent given Y and any subset $\mathcal{U} \subseteq \mathcal{X} \setminus \{X_1, X_2\}$, the edge between them persists in $\overline{\mathcal{G}}$.

According to the first scenario, the proposition 1 is proved as a result of Lemma 4.

Proposition 1 Consider $\overline{\mathcal{G}}$ is a P-map over $\overline{\mathcal{X}}$ and \mathcal{G} is a graph over \mathcal{X} . If X_j is an adjacent of X_i in $\overline{\mathcal{G}}$, then X_j is an adjacent of X_i in \mathcal{G} .

146
147Proof. If X_j and X_i are not adjacent in \mathcal{G} , according to Lemma 4, there is a subset $\mathcal{U} \subseteq \mathcal{X} \setminus \{X_i, X_j\}$ 148
148
149such that $X_i \perp X_j \mid \mathcal{U}$. Because $\overline{\mathcal{G}}$ is a P-map and due to faithfulness assumption X_i and X_j are
d-separated by \mathcal{U} in $\overline{\mathcal{G}}$. Then there is no edge between X_i and X_j in $\overline{\mathcal{G}}$.

An important result from Proposition 1 is that adding Y does not introduce new edges between variables in \mathcal{X} that were not already connected in \mathcal{G} . Therefore, we only need to examine existing edges in \mathcal{G} and consider potential new edges between Y and the variables in \mathcal{X} . We now present our main theoretical results, which characterize how the addition of Y affects the structure of the structure \mathcal{G} .

Lemma 1 Consider variables \bar{X} whose joint distribution admits P-map $\bar{\mathcal{G}}$. Let $Y \in \bar{X}$ and DAG \mathcal{G} be the output of a P-map learner applied to $\bar{X} \setminus \{Y\}$. Then every pair of non-adjacent nodes X_1 and X_2 in $\bar{\mathcal{G}}$ are adjacent in \mathcal{G} only if

159

132

133

134

135

138

139

140

- 1. *Y* is a common cause or mediator of X_1 and X_2 in $\overline{\mathcal{G}}$; or
- 161 2. X_1 is linked to some node W which in turn is linked to X_2 , and Y is linked to both W and X_2 (or the same statement but when X_1 and X_2 are exchanged).

169

170

171

172

173 174 175

176

177 178

179

180 181

202

Figure 1: Structures where not observing Y can lead to a spurious edge between X_1 and X_2 . The dashed edge represents the possible direction of the spurious edge when the structure is learned by a P-map finder algorithm and Y is an unobserved node. In (a) either $X_1 \rightarrow X_2$ or $X_1 \leftarrow X_2$ can occur, and in the other structures, only one direction can occur.

Proof. X_1 and X_2 being adjacent in \mathcal{G} implies that they remain dependent conditioned on any subset of \mathcal{X} , i.e.,

$$\forall \mathcal{U}' \subseteq \mathcal{X} \qquad X_1 \not\perp X_2 \mid \mathcal{U}'. \tag{1}$$

On the other hand, X_1 and X_2 being non-adjacent in $\overline{\mathcal{G}}$ implies the existence of a subset of \mathcal{X} that together with Y drive X_1 and X_2 independent, i.e.,

$$\exists \mathcal{U} \subseteq \mathcal{X} \qquad X_1 \perp X_2 \mid \mathcal{U} \cup \{Y\}.$$
⁽²⁾

182 In view of equation 1, equation 2, and $\overline{\mathcal{G}}$ being a P-map for $\overline{\mathcal{X}}$, it follows that there exists a path 183 \mathcal{T} connecting X_1 and X_2 in $\overline{\mathcal{G}}$ that is active if Y is not observed, and every path connecting X_1 and X_2 becomes inactive if Y and U are observed. The distance of Y to X_1 does not exceed two. 185 Otherwise, for every path \mathcal{T}_i connecting Y to X_1 , let W_i be the neighbor of X_1 on \mathcal{T}_i and V_i be the neighbor of W_i on \mathcal{T}_i . If Y is not a parent for X_2 , considering 5, Y cannot impact the existence of an 186 edge between X_1 and X_2 . If Y is a parent of X_2 two cases must be checked. i) There is no collider 187 node V_i between X_1 and X_2 by observing W_i or V_i the path will be inactive and the other paths are 188 blocked by parents nodes of X_1 or X_2 .*ii*) There is a collider node V_i between X_1 and X_2 that W_i 189 and V_i are its children. In this case, either V_i is a collider on the path between Y and X_1 , or there is a 190 collider between V_i and Y that blocks the path; otherwise, a cycle would be formed in the graph. \Box 191

Considering Lemma 1, only three cases exist where observing Y in \mathcal{G} can remove the edge between X₁ and X₂: When Y is a confounding (Fig. 1 (a)) or mediator variable between them (Fig. 1 (b,c)) or Y is adjacent to X₁ and forms a collider with X₂ and W while W is a mediator node between X₁ and X₂ (Fig. 1 (d,e)). Only in these cases is there an active path between X₁ and X₂ when Y is not observed and where that path is blocked by observing Y in $\overline{\mathcal{G}}$.

197 **Lemma 2** Let $\overline{\mathcal{G}}$ be a *P*-map for *P*. If $X_1 \perp X_2 | \mathcal{U}$ for $\mathcal{U} \subset \mathcal{X} \setminus \{X_1, X_2\}$, then *Y* cannot be a 198 mediator or common cause variable between them in $\overline{\mathcal{G}}$.

Proof. Consider Y as a mediator or common cause variable between X_1 and X_2 . Then the path $X_1 \rightleftharpoons Y \rightleftharpoons X_2$ is active when Y is a hidden variable and $X_1 \not\perp X_2 | \mathcal{U}$ for all $\mathcal{U} \subset \mathcal{X} \setminus \{X_1, X_2\}$. \Box

Lemma 3 Let $\overline{\mathcal{G}}$ be a P-map of P over $\overline{\mathcal{X}} = \mathcal{X} \cup \{Y\}$ and \mathcal{G} is the output of a P-map finder algorithm. If $X \in \mathcal{X}$ is a collider node in \mathcal{G} , then it is a collider node in $\overline{\mathcal{G}}$.

205 *Proof.* Consider an immorality $X_1 \to X_2 \leftarrow X_3$ in \mathcal{G} . There is a $\mathcal{U} \subset \mathcal{X} \setminus \{X_1, X_3\}$ so that $X_2 \notin \mathcal{U}$ and $X_1 \perp X_3 | \mathcal{U}$. Also, for all $\mathcal{U} \subseteq \mathcal{X} \setminus \{X_1, X_3\}$ we have $X_1 \not\perp X_3 | X_2, \mathcal{U}$. Then $X_1 \not\perp X_3 | X_2, \mathcal{U}, Y$. If X_1, X_2 and X_2, X_3 are adjacent in $\overline{\mathcal{G}}$, then they form an immorality in $\overline{\mathcal{G}}$ 206 207 208 and $X_1 \to X_2 \leftarrow X_3$ appears in $\overline{\mathcal{G}}$. Now, consider the edge $X_2 \leftarrow X_3$ is removed by observing 209 Y. Therefore, X_2, X_3 , and Y may form one of the structures shown in Fig. 1. Of course, because 210 $X_1 \not\perp X_3 | X_2$, we cannot have a direct path as $X_2 \rightarrow Y \rightarrow X_3$. As a result, three types of structures 211 might occur. If Y is a confounding variable for X_2 and X_3 (Fig. 2 (a)) Lemma 2 means there is 212 no edge between Y and X_1 and we have $X_1 \not\perp X_3 | X_2$ which in turn means X_2 must be a collider 213 node between Y and X_1 and the edge between X_1, X_2 orients as $X_1 \to X_2$ in \mathcal{G} . In the second case, if we have $X_3 \to Y \to X_2$ (Fig. 2 (b)), similar to the previous case, we have $X_1 \to X_2$. Also, if 214 X_1 and Y are adjacent, the edge between them orients as $X_1 \to Y$ due to Lemma 2. In third case (Fig. 2 (c)), if $X_1 \leftarrow X_2$ then we have a direct path $X_3 \to W \to X_2 \to X_1$ that can be blocked 215

Figure 2: Three structures that show the effect of the unobserved node Y on an immorality

by observing X_2 or $X_3 \perp X_1 | X_2$ which is a contradiction and similar to two first cases we have $X_1 \rightarrow X_2$. Since we have $X_3 \not\perp X_1 | X_2, \mathcal{U}$ it is impossible to have a structure with X_3 adjacent to Y and W a mediator node between X_2 and X_3 as $X_2 \rightarrow W \rightarrow X_3$. If we have an immorality $X_1 \rightarrow X_2 \leftarrow X_3$ but the edges between X_1, X_2 and X_3, X_2 are removed by observing Y, so there are direct paths $X_3 \rightarrow Y \rightarrow X_2$ or $X_3 \rightarrow W \rightarrow X_2$, and $X_1 \rightarrow Y \rightarrow X_2$ or $X_1 \rightarrow V \rightarrow X_2$ in $\overline{\mathcal{G}}$ for some $W, V \in \mathcal{X}$. Therefore, the direction between X_1, X_2 or X_3, X_2 does not change when Y is added to variables. As a result, the orientations of immoralities in \mathcal{G} will be unchanged in $\overline{\mathcal{G}}$, and so all orientations in $\overline{\mathcal{G}}$ between nodes in \mathcal{X} are similar to the orientations in \mathcal{G} .

3.1 CONSTRAINT-BASED APPROACH

224

229

230

231

232

233

235

240 241

Checking CI tests to detect independencies is the main idea in constraint-based algorithms. Two steps are required to add the new variable Y to the previous structure. The first step is checking the relation between Y and other nodes in \mathcal{X} , and the second step is investigating the effect of Y on the edges in the previous structure.

The PC algorithm is one of the most popular constraint-based algorithms to learn structure. An 246 extendable version of the PC algorithm has been shown in Algorithm 1. According to the PC 247 algorithm, the quantity of CI tests required to verify the existence of an edge between two nodes is 248 directly proportional to the number of adjacent nodes. Hence, to identify the existence of an edge 249 between Y and $X \in \mathcal{X}$, it is necessary to perform CI tests between Y and X while conditioning 250 on all subsets of both $\operatorname{Adj}(\mathcal{G}, X)$ and $\operatorname{Adj}(\mathcal{G}, Y)$. Moreover, based on the PC algorithm, by adding 251 the node of Y into the graph $\hat{\mathcal{G}}$, all nodes in \mathcal{X} must be connected to Y, forming an initial graph $\overline{\mathcal{G}}$. 252 Subsequently, the process involves refining the graph by eliminating any surplus or spurious edges. 253 The count of adjacent nodes to Y is $|\operatorname{Adj}(G, Y)| = N$, whereas $|\operatorname{Adj}(G, X)| \leq N$ for any $X \in \mathcal{X}$. 254 Consequently, to determine the existence of edges between Y and each $X \in \mathcal{X}$, it is appropriate 255 to initially conduct CI tests on $\mathcal{U} \subset \operatorname{Adj}(\bar{G}, X)$ and subsequently on $\mathcal{U} \subset \operatorname{Adj}(\bar{G}, Y)$. Once the 256 true edges between Y and all $X \in \mathcal{X}$ are detected, we can then identify the spurious edges between 257 $X, Z \in \mathcal{X}.$ 258

If d represents the maximum degree of nodes in $\hat{\mathcal{G}}$, and m is the degree of node Y in true DAG, 259 employing the PC algorithm for all nodes in $\bar{\mathcal{X}} = \mathcal{X} \cup \{Y\}$ imposes a bound on the number of CI 260 tests, which is $(N+1)^{M+1}$ where $M = \max\{d, m\}$. This bound is established because the PC 261 algorithm does not leverage information from the prior graph. However, applying the Extendable PC 262 algorithm when adding a new variable to the variable set can mitigate the number of required CI tests. Table 1 illustrates the count of CI tests at each step in the Extendable PC algorithm. $N2^d$ and $md2^d$ 264 respectively constrain the number of CI tests in steps 2 and 4, and step 3 may require up to K^m CI 265 tests, where $m \le K \le N$ denotes the number of adjacents of Y after step 2. Nevertheless, in step 2, 266 certain edges between Y and other nodes may be eliminated. If the number of nodes adjacent to Y decreases, the number of conditional independence tests will accordingly decrease in step 3. As a 267 result, we have proved that the number of CI tests for the Extendable PC algorithm is always fewer 268 than the PC one that is illustrated in Proposition 2. In addition, the Theorem 1 proves the output of 269 Algorithm 1 is a P-map.

```
270
                         Table 1: The number of CI tests for each step of the Extendable PC Algorithm
271
272
                                                                           2
                                                                                          3
                                                                                                          4
                                         Step
273
                                                                                     \mathcal{O}(K^m)
                                         Number of CI tests
                                                                      \mathcal{O}(N2^d)
                                                                                                    \mathcal{O}(md2^d)
274
275
276
277
           Algorithm 1: The Extendable PC Algorithm
278
           Input: A new variable Y and graph \hat{\mathcal{G}} obtained from the PC algorithm over \mathcal{X};
279
           Output: New graph \overline{\mathcal{G}} over the set of variables \mathcal{X} = \mathcal{X} \cup \{Y\};
280
        1 Connect Y to all nodes in \hat{\mathcal{G}} and construct the graph \bar{\mathcal{G}}:
281
282
        <sup>2</sup> Adj(\bar{\mathcal{G}}, Y) = \mathcal{X};
283
                                          // Step 1: Initializing ar{\mathcal{G}} and the adjacent sets
284
        3 \operatorname{Adj}(\overline{\mathcal{G}}, X) = \operatorname{Adj}(\widehat{\mathcal{G}}, X) \cup \{Y\}, for all X \in \mathcal{X};
285
        4 Sepset(X, Y) = \emptyset; for X \in \mathcal{X};
286
        m = 0
287
        6 while maximum degree of nodes \mathcal{X} in \overline{\mathcal{G}} is greater than m do
288
        7
                for X \in \mathcal{X} // Step 2: Checking edges between the new variable
289
                  and other nodes by conditioning on the neighbors of nodes in
                  χ.
290
                     for U \subseteq \operatorname{Adj}(\mathcal{G}, X) and |U| = m
291
         8
                          if X \perp Y \mid U
292
         9
                                Remove the edge X - Y from \mathcal{G};
293
        10
                               \text{Sepset}(X, Y) \leftarrow U;
        11
                m = m + 1;
        12
295
       13 m = 0;
296
       14 while degree of Y in \overline{\mathcal{G}} is greater than m do
297
                for X \in \operatorname{Adj}(\mathcal{G}, Y)
                                                          // Step 3: Checking the remaining edges
       15
298
                  between the new node and its neighbors by conditioning on
299
                  the neighbors of the new node.
300
                     for U \subseteq \operatorname{Adj}(\mathcal{G}, Y) \setminus \{X\} and |U| = m
        16
301
                          if Y \perp X \mid U
        17
302
                                Remove the edge X - Y from \mathcal{G};
        18
303
                                \text{Sepset}(X, Y) \leftarrow U;
        19
304
                m = m + 1;
        20
       21 m = 0;
306
       22 while maximum node degree in G is greater than m do
307
                for X \in \operatorname{Adj}(\mathcal{G}, Y)
                                              // Step 4: Checking edges between nodes in {\mathcal X}
       23
308
                  with observing new variable \boldsymbol{Y}
309
                     for Z \in \operatorname{Adj}(\overline{\mathcal{G}}, X) \setminus \{Y\}
        24
310
                          if Z \in \operatorname{Adj}(\overline{\mathcal{G}}, Y) or \operatorname{Adj}(\overline{\mathcal{G}}, X) \cap \operatorname{Adj}(\overline{\mathcal{G}}, Z) \cap \operatorname{Adj}(\overline{\mathcal{G}}, Y) \neq \emptyset
        25
311
                                for U \subseteq \operatorname{Adj}(\overline{\mathcal{G}}, X) \setminus \{Z\} and |U| = m
        26
312
                                     if X \perp Z \mid \{Y\} \cup U
        27
                                          Remove the edge X - Z from \overline{\mathcal{G}};
313
        28
                                          \text{Sepset}(X, Z) \leftarrow U;
314
        29
                m = m + 1;
315
       30
       31 if X, Z \in \operatorname{Adj}(\overline{\mathcal{G}}, Y), and X \notin \operatorname{Adj}(\overline{\mathcal{G}}, Z)
                                                                        // Step 5 : Immorality detection
316
                if X \not\perp Z \mid Y and Y \notin \text{Sepset}(X, Z)
       32
317
                     Orient X \rightleftharpoons Y \rightleftharpoons Z as X \to Y \leftarrow Z.
318
       33
       <sup>34</sup> Orient the other edges by orientation rules in (Spirtes et al., 2000).
                                                                                                                      // Step 6
319
320
321
           Proposition 2 The number of CI tests of Algorithm 1 is fewer than the PC algorithm.
322
```

Theorem 1 The output of Algorithms 1 and 5 is a P-map.

Proof. The proof is a straightforward conclusion using Lemma 1, Lemma 3, and Lemma 4 (in Appendix). Lemma 4 shows that adding a new variable cannot add an edge between two nodes. Hence, according to Lemma 1, the output skeleton of the proposed extendable algorithm finds the skeleton of the true DAG. Then, Lemma 3 shows that all collider nodes were found correctly by the proposed algorithm. So the output PDAG for constraint-based algorithms such as Algorithm 1 is a P-map structure.

In addition, we use a straightforward modification of the PC algorithm using Proposition 1. According to our discussion adding a new variable cannot add any edge to the previous structure. Therefore, we can use the previous skeleton \mathcal{G} as the input graph of the PC algorithm and check the other CI tests to obtain $\overline{\mathcal{G}}$. This algorithm is called the *Initialized PC* algorithm (IPC).

334 335

336

345

347

348

349

350

351

352

353

354 355

356

357

358

359

360

368

369

3.2 SCORE-BASED APPROACH

In the score-based approach, a score function is used to find an optimal structure over all possible DAGs or a sub-optimal solution over a subset of possible DAGs. Therefore, the number of DAGs in the search space has a key role in the complexity of the structure learning algorithm. If a DAG $\hat{\mathcal{G}}$ was obtained by a score-based algorithm over \mathcal{X} , the search space for learning a new structure that includes Y could be estimated by Lemmas 1-3 and this point that the adding a new variable cannot add an edge between nodes in \mathcal{X} . This means the number of DAGs in this search space will be lower than all possible DAGs on $\bar{\mathcal{X}}$.

- Let $S_{\bar{X}}$ be a search space on \bar{X} . The DAGs \bar{G} in $S_{\bar{X}}$ must satisfy following conditions:
 - 1. If $X_i, X_i \in \mathcal{X}$ are not adjacent in \mathcal{G} , then they are not in $\overline{\mathcal{G}}$.
 - 2. If $X_i \in \mathcal{X}$ is a collider node in \mathcal{G} , it is a collider node in $\overline{\mathcal{G}}$.
 - 3. If X_i, X_j are adjacent to each other in \mathcal{G} , if X_i, X_j and Y form a structure similar to one of the structures in Fig. 1, then the edge between them can be deleted in $\overline{\mathcal{G}}$.
 - 4. If $X_i, X_j \in \mathcal{X}$ are not adjacent to each other in \mathcal{G} , and both of them are adjacent to Y in $\overline{\mathcal{G}}$, then Y must be a collider (i.e., $X_i \to Y \leftarrow X_j$ in $\overline{\mathcal{G}}$).
 - 5. If $X_i, X_j \in \mathcal{X}$ are adjacent to each other in \mathcal{G} , and both of them are collider nodes in \mathcal{G} , then Y must be a confounding variable as $X_i \leftarrow Y \to X_j$ in $\overline{\mathcal{G}}$.

Algorithms 2 and 3 are developed for extendable score-based structure learning approach. Algorithm 2 represents a general extendable score-based algorithm that includes:(1) a search space trimming function (T-function in Algorithm 3) that restricts the graph search space, based on the analysis from Lemmas 1 - 3; and (2) a score-based P-map finder (for example global minimization of the BIC score), that finds the best graph within the restricted search space.

361	Algorithm 2: The Extendable Score-based Algorithm			
362 363 364	Input: A new variable Y and a structure $\hat{\mathcal{G}}$ over \mathcal{X} Output: A P-map $\bar{\mathcal{G}}$ over $\bar{\mathcal{X}} = \mathcal{X} \cup \{Y\}$			
65	$1 \ \mathcal{S}_{\bar{\mathcal{X}}} \leftarrow \mathrm{T}(\hat{\mathcal{G}}, Y, \mathcal{S}_{\bar{\mathcal{X}}})$	<pre>// By T-function in algorithm 3</pre>		
66 67	$2 \ \underline{\bar{\mathcal{G}}} \leftarrow \mathrm{PF}(\mathcal{S}_{\bar{\mathcal{X}}})$	// PF is a score-based P-map finder		

3.3 ITERATIVE STRUCTURE LEARNING APPROACH

370 We developed a new structure learning paradigm using the extendable approach, allowing standard 371 algorithms to be modified to reduce the run-time. This is achieved through an iterative process where 372 the extendable structure learning algorithm is applied at each step. As shown in Algorithm 4, starting 373 with two randomly selected variables from \mathcal{X} , denoted as X_1 and X_2 , a structure \mathcal{G}_1 is learned. Then, 374 a third variable X_3 is selected from $\mathcal{X} \setminus \{X_1, X_2\}$, and a new structure \mathcal{G}_2 is formed by incorporating 375 X_3 using the extendable algorithm. This process is repeated iteratively, with each new variable, such as $X_4 \in \mathcal{X} \setminus \{X_1, X_2, X_3\}$, being added to the current set to form the next structure. The procedure 376 continues until all N variables are included, resulting in a P-map graph over \mathcal{X} . Using an iterative 377 approach, at each step, we leverage information about the relationships between nodes from the

378 previous graph to determine the current graph. Since the number of nodes impacts the number of 379 CI tests, fewer nodes result in fewer CI tests when applying Lemma 1, which restricts the space of 380 possible graphs. Also, the performance of the iterative algorithms depends on the order of selecting 381 variables. According to Lemma 1 and Figure 1, if the ordering is close to topological causal ordering 382 the performance of the iterative will be better. For example, consider a naive Bayes structure with nchildren $\{X_1, \dots, X_n\}$ and a parent node Y. With ordering like $\langle X_1, \dots, X_n, Y \rangle$, before dealing with Y, the iterative algorithm will first produce the complete graph over $\{X_1, \dots, X_n\}$. However, 384 with this ordering $\langle Y, X_1, \cdots, X_n \rangle$ the number of CI tests for Algorithm 4 will be fewer than the 385 previous ordering. 386

Theorem 2 There is an ordering over \mathcal{X} , such that the number of CI tests for Algorithm 4 with Algorithm 1 as the extendable P-map learner is fewer than the PC algorithm.

390 Algorithm 3: T-function (search space trimming) 391 **Input:** Y, graph structure $\hat{\mathcal{G}}$ over \mathcal{X} , and set of initial DAGs over $\bar{\mathcal{X}}$ denoted as $\mathcal{S}_{\bar{\mathcal{X}}}$ 392 **Output:** $S_{\bar{X}}$ for $\bar{X} = X \cup \{Y\}$ 393 1 for $\overline{\mathcal{G}} \in \mathcal{S}_{\overline{\mathcal{X}}}$ 394 for $X_i, X_j \in \mathcal{X}$ 2 if $X_i \notin \operatorname{Adj}(\hat{\mathcal{G}}, X_j)$ and $X_i \in \operatorname{Adj}(\bar{\mathcal{G}}, X_j)$ 396 3 Delete $\overline{\mathcal{G}}$ from $\mathcal{S}_{\overline{\mathcal{X}}}$ 397 4 $\text{if } (X_i \to X_j \leftarrow X_k) \in \hat{\mathcal{G}} \text{ and } ((X_i \leftarrow X_j \leftarrow X_k) \in \bar{\mathcal{G}} \text{ or } (X_i \leftarrow X_j \to X_k) \in \bar{\mathcal{G}})$ 5 Delete $\overline{\mathcal{G}}$ from $\mathcal{S}_{\overline{\mathcal{X}}}$ 399 6 400 if $X_i \in \operatorname{Adj}(\hat{\mathcal{G}}, X_j)$ and $X_i \notin \operatorname{Adj}(\bar{\mathcal{G}}, X_j)$ 7 401 if Edges between X_i, X_j and Y do not form a structure similar to any of the 8 structures in Fig. 1 402 Delete \mathcal{G} from $\mathcal{S}_{\bar{\mathcal{X}}}$ 403 if $X_i \notin \operatorname{Adj}(\hat{\mathcal{G}}, X_j)$ and $X_i, X_j \in \operatorname{Adj}(\bar{\mathcal{G}}, Y)$ and $(X_i \to Y \leftarrow X_j) \notin \bar{\mathcal{G}}$ 404 10 405 Delete $\overline{\mathcal{G}}$ from $\mathcal{S}_{\overline{\mathcal{X}}}$ 11 406 if $X_i \in \operatorname{Adj}(\hat{\mathcal{G}}, X_i)$ and X_i, X_j are collider nodes in $\overline{\mathcal{G}}$ and $(X_i \leftarrow Y \to X_j) \notin \overline{\mathcal{G}}$ 12 407 Delete \mathcal{G} from $\mathcal{S}_{\bar{\mathcal{X}}}$ 13 408 14 Return $S_{\bar{X}}$ 409 410 Algorithm 4: The Iterative P-map learner Algorithm 411 **Input:** A set of variables \mathcal{X} and their joint probability distribution P412 **Output:** A partially directed acyclic graph 413

414 1 $\hat{\mathcal{X}} = \{X_1, X_2\}$

 $\mathcal{G} \leftarrow \overline{\mathcal{G}}$

415 2 $\mathcal{G} \leftarrow P - map \ learner(\hat{\mathcal{X}})$ 416 3 while $\mathcal{X} \setminus \hat{\mathcal{X}} \neq \emptyset$ do 417 4 $X \in \mathcal{X} \setminus \hat{\mathcal{X}}$ 418 5 $\overline{\mathcal{G}} \leftarrow Extendable \ P - map \ learner(\mathcal{G}, X)$ 419 6 $\hat{\mathcal{X}} \leftarrow \hat{\mathcal{X}} \cup \{X\}$

421

7

387

388

389

422 423

424

4 NUMERICAL RESULTS

We now compare the results of our Extendable PC algorithm with the PC, and Initialized PC algorithms on the data sets ASIA (Lauritzen & Spiegelhalter, 1988), CANCER (Korb & Nicholson, 2010), SURVEY (Scutari & Denis, 2021), EARTHQUAKE (Korb & Nicholson, 2010), ALARM (Beinlich et al., 1989), INSURANCE (Binder et al., 1997), CHILD (Spiegelhalter & Cowell, 1992), WATER (Jensen et al., 1989), SACHS (Jensen & Jensen, 2013), MILDEW (Jensen & Jensen, 2013), WIN95PTS (Jensen & Jensen, 2013), HEPAR2 (Onisko, 2003). 10000 instances were drawn from distributions for use in structure learning algorithms. For each data set a variable is chosen randomly and a structure is learned over the other variables by the PC algorithm. Then the chosen variable

433		Table 2: Number of CI tests				
434	DATASET	EXTENDABLE PC	INITIALIZED PC	PC		
435 436	EARTHQUAKE	15	48	57		
437	SURVEY	12	49	4 <i>5</i> 55		
438	ASIA	26	87	124		
439	CHILD	184	1242	2124		
440	SACHS	618	682	971		
441	Alarm Mildew	103 200	745 670	3283 3629		
442	WIN95PTS	86	1975	12501		
443	INSURANCE	147	1571	5078		
444	WATER	71	278	1346		
445	HEPAR2 Andes	536 277	5108 11426	23202 68375		
440						

Table 2: Number of CI toote

Table 3: Run-Time (sec)

775				
450	DATASET	EXTENDABLE PC	INITIALIZED PC	PC
451	EARTHQUAKE	0.033	0.116	0.283
452	CANCER	0.029	0.115	0.294
453	SURVEY	0.022	0.186	0.425
454	ASIA	0.071	0.244	0.744
434	CHILD	6.11	33.76	65.71
455	SACHS	15.39	15.86	34.16
456	ALARM	1.45	17.95	22.10
457	MILDEW	28.13	31.01	316
458	WIN95PTS	0.688	77.81	111
459	INSURANCE	2.36	36.9	58.28
459	WATER	0.289	1.38	5.77
460	HEPAR2	47.57	474	1832
461	ANDES	1.97	532	2652

is added to the data set and the learned structure is considered as the input of the Extendable PC algorithm and Initialized PC to learn the new structure. For iterative PC, the first two variables are chosen randomly, and the iterative PC is used to estimate the structure over the whole of variables. The number of CI tests for the PC, Initialized PC, and Extendable PC algorithms are shown in Table 2 and the runtime in Table 3. In addition, by considering the structural hamming distance, we recorded the number of incorrect edges either missing or extra compared to the true graph and divided it by the total number of edges in the true DAG (Table 4). These results suggest that the extendable approach can significantly reduce both the number of required CI tests and the runtime, particularly in large networks. Additionally, Table 5 shows the number of CI tests for iterative PC and PC algorithms, and Tables 6 and 7 illustrate the runtime and error of them. The iterative approach applied to the PC algorithm demonstrates a reduced runtime across most datasets compared to the standard PC algorithm and the error did not change.

- CONCLUSION

The proposed extendable structure learning approach results in adding new variables to the model with a significantly lower computational burden compared with learning a new structure from scratch. The proposed approach can be applied to all constraint-based and score-based algorithms. The main challenge is to use P-map finder algorithms while there is a hidden variable. In this case, the output of the algorithms is not a P-map and even in some situations the faithfulness assumption is violated. We proposed Lemmas to detect situations in which unfaithfulness can occur while there is an unobserved variable. Then, we proposed an extendable strategy for constructing a P-map when a new variable is added to the set of variables. We applied the extendable approach to the PC algorithm. The extendable PC algorithm could reduce the runtime up to 1300 times compared with the PC when a

486

				0		
1 (CANCER	0		0	0	
	SURVEY	0		ů 0	Ő	
1	ASIA	12	.5	12.5	12.5	
(CHILD	4		4	4	
	ALARM	8	7	87	87	
Ĩ	MILDEW	1.	3	17.4	17.4	
v	WIN95PTS	38	.4	38.4	38.4	
]	INSURANCE	30	.8	30.8	30.8	
1		57	.6	59.1 51.2	59.1 51.2	
1	ANDES	19	.2 .5	19.5	19.5	
_						
Table 5: N	Number of CI test	ts	Tab	le 6: Run-T	ime (sec)	
DATASET	ITERATIVE PC	PC	DATASET	ITER	ATIVE PC	PC
EARTHQUAKE	31	57	EARTHQUA	KE	0.09	0.283
SURVEY	27	45 55	CANCER		0.06	0.294
ASIA	66	124	ASIA		0.09	0.423
CHILD	3344	2124	CHILD		124	65.71
SACHS	1276	971	SACHS		35.5	34.16
ALARM	4847	3283	ALARM		81	22.1
MILDEW	2597	3629	MILDEW		715	316
WIN95PTS	10412	12501	WIN95PTS	P	144	111
WATER	2589	1346	INSUKANC WATED	E	39.5 3 11	58.28
HEPAR2	8371	23202	HEPAR2		5.11 597	1832
	25227	<				2652
ANDES	35327	68375	ANDES		307	2032
ANDES Table 7: Str	UCTURAL HAMMINA DATAS EART CANC SURV ASIA CHILI SACH ALAR MILD WIN9 INSUE WATE	g Distance of ET HQUAKE ER EY O S M EW 5PTS RANCE R	ANDES divided by the ITERATIVE PO 0 0 12.5 4 0 17.4 54.3 31.25 26.9 47	total number C PC 0 0 12.5 4 0 8.7 17.4 38.4 30.8 59.1	307 er of true ed	dges (%
ANDES Table 7: Str	UCTURAL HAMMINA DATAS EART CANC SURV ASIA CHILI SACH ALAR MILD WIN9 INSUI WATE HEPA ANDE	g Distance of ET HQUAKE ER EY O S M EW 5PTS RANCE R R2 SS	ANDES divided by the ITERATIVE PO 0 0 12.5 4 0 17.4 54.3 31.25 26.9 47 46.3 23.4	total number C PC 0 0 12.5 4 0 8.7 17.4 38.4 30.8 59.1 51.2 19.5	307 er of true er	dges (%
ANDES Table 7: Str	UCTURAL HAMMIN DATAS EART CANC SURV ASIA CHILI SACH ALAR MILD WIN9 INSUI WATE HEPA ANDE	g Distance of ET HQUAKE ER EY O S M EW 5PTS RANCE R R2 S	ANDES divided by the ITERATIVE PO 0 0 12.5 4 0 17.4 54.3 31.25 26.9 47 46.3 23.4	total number C PC 0 0 12.5 4 0 8.7 17.4 38.4 30.8 59.1 51.2 19.5	307 er of true er	dges (%
ANDES Table 7: Str	UCTURAL HAMMIN DATAS EART CANC SURV ASIA CHILI SACH ALAR MILD WIN9 INSUE WATE HEPA ANDE	g Distance of ET HQUAKE ER EY O S M EW 5PTS RANCE R R2 S Variables ar	ANDES divided by the ITERATIVE PO 0 0 12.5 4 0 17.4 54.3 31.25 26.9 47 46.3 23.4	total number C PC 0 0 0 12.5 4 0 8.7 17.4 38.4 30.8 59.1 51.2 19.5 nes compar	red with th	dges (%

Table 4: Structural Hamming Distance divided by the total number of true edges (%)

approach orithms. orevious 538 structure using the extendable approach, This iterative would continue until all variables are added to the graph and finally, a P-map is constructed. The iterative PC algorithm can reduce the number of 539 CI tests and the runtime for most datasets, while also increasing accuracy in some cases.

540 REFERENCES

547

552

563

564

565

576

580

581

582

- Juan R. Alcobe. Incremental methods for bayesian network structure learning. *Artificial Intelligence Communications*, 18(1):61–62, 2005.
- I.A. Beinlich, H.J. Suermondt, R.M. Chavez, and G.F. Cooper. The alarm monitoring system: A case
 study with two probabilistic inference techniques for belief networks. In *Proceedings of the 2nd European Conference on Artificial Intelligence in Medicine*, pp. 247–256. Springer-Verlag, 1989.
- Jeffrey Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa. Adaptive probabilistic networks with hidden variables. *Machine Learning*, 29(2–3):213–244, 1997.
- Johan Bollen, Huina Mao, and Xiaojun Zeng. Twitter mood predicts the stock market. *Journal of Computational Science*, 2(1):1–8, 2011.
- 553 David Card. The causal effect of education on earnings. In *Handbook of Labor Economics*, volume 3, pp. 1801–1863. 1999.
- Ruocheng Guo, Li Cheng, Jundong Li, Peter R. Hahn, and Huan Liu. A survey of learning causality
 with data: Problems and methods. *ACM Computing Surveys (CSUR)*, 53(4):1–37, 2020.
- A.L. Jensen and F.V. Jensen. Midas-an influence diagram for management of mildew in winter wheat. *arXiv preprint arXiv:1302.3587*, 2013.
- Finn V. Jensen, Uffe Kjærulff, Karl G. Olesen, and Jens Pedersen. Et forprojekt til et ekspertsystem
 for drift af spildevandsrensning (an expert system for control of waste water treatment a pilot
 project). Technical report, 1989. Technical Report, Judex Datasystemer A/S, Aalborg, In Danish.
 - N.K. Kitson, A.C. Constantinou, Z. Guo, Y. Liu, and K. Chobtham. A survey of bayesian network structure learning. 2021.
- Damla Kocacoban and James Cussens. Online causal structure learning in the presence of latent variables. In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pp. 392–395. IEEE, December 2019.
- Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT Press, 2009.
- 572 Kevin B. Korb and Ann E. Nicholson. *Bayesian Artificial Intelligence*. CRC Press, 2010.
- Steffen L. Lauritzen and David J. Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. *Journal of the Royal Statistical Society: Series B (Methodological)*, 50(2):157–194, 1988.
- Agnieszka Onisko. Probabilistic Causal Models in Medicine: Application to Diagnosis of Liver
 Disorders. PhD thesis, Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland, 2003.
 - Brian A. Primack, Ariel Shensa, Jeanine E. Sidani, Emily O. Whaite, Lloyd Yi Lin, David Rosen, Jason B. Colditz, Ana Radovic, and Elizabeth Miller. Social media use and perceived social isolation among young adults in the us. *American Journal of Preventive Medicine*, 53(1):1–8, 2017.
- Marco Scutari and Jean-Baptiste Denis. *Bayesian Networks: With Examples in R.* Chapman and Hall/CRC, 2021.
- David J. Spiegelhalter and Robert G. Cowell. Learning in probabilistic expert systems. In J.M.
 Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith (eds.), *Bayesian Statistics 4*, pp. 447–466.
 Clarendon Press, Oxford, 1992.
- Peter Spirtes. Building causal graphs from statistical data in the presence of latent variables. In
 Studies in Logic and the Foundations of Mathematics, volume 134, pp. 813–829. Elsevier, 1995.
- 593 Peter Spirtes, Clark N. Glymour, Richard Scheines, and David Heckerman. *Causation, prediction, and search.* MIT Press, 2000.

A APPENDIX

Lemma 4 (Based on (Spirtes et al., 2000)) Consider random variables \mathcal{X} with joint distribution P that admits a P-map \mathcal{G} . Vertices X and Y are not adjacent in \mathcal{G} if and only if $X \perp Y \mid \mathcal{U}$ for some $\mathcal{U} \subseteq \mathcal{X}$.

Lemma 5 [Lemma 3.2 in (Koller & Friedman, 2009)] Consider random variables \mathcal{X} with joint distribution P that admits a P-map \mathcal{G} . Vertices X and Y are not adjacent in \mathcal{G} if and only if $X \perp Y \mid \operatorname{Pa}_X$ or $X \perp Y \mid \operatorname{Pa}_Y$.

606	Algorithm 5: The Extendable Constraint-based Algorithm	
608 609	Input: A new variable Y and a structure $\hat{\mathcal{G}}$ over \mathcal{X} Output: A PDAG $\overline{\mathcal{G}}$ over $\overline{\mathcal{X}} = \mathcal{X} \cup \{Y\}$	
610 611 612 613 614 615 616 617 619	1Form the $\bar{\mathcal{G}}$ over nodes $\bar{\mathcal{X}}$ by connecting Y to all nodes $\hat{\mathcal{G}}$ by undirected2for $X \in \mathcal{X}$ 3 Check the edge between Y and X4for $X \in \operatorname{Adj}(\bar{\mathcal{G}}, Y)$ 5 for $Z \in \operatorname{Adj}(\bar{\mathcal{G}}, X)$ 6 if $Z \in \operatorname{Adj}(\bar{\mathcal{G}}, Y)$ or $\operatorname{Adj}(\bar{\mathcal{G}}, X) \cap \operatorname{Adj}(\bar{\mathcal{G}}, Z) \cap \operatorname{Adj}(\bar{\mathcal{G}}, Y) \neq \emptyset$ 7 Check the edge between X and Z8Orient the new edges using the orientation rules in (Spirtes et al., 2000).	edge; // Step 1: // Step 2 . // Orientation
619	Algorithm 6: The Iterative PC Algorithm	
620 621	Input: A set of variables \mathcal{X} and their joint probability distribution P Output: A partially directed acyclic graph	
622 623 624 625 626 627 628 629 630 631 632	1 Sepset = \emptyset 2 $\hat{\mathcal{X}} = \{X_1, X_2\}$ 3 \mathcal{G} , Sepset $\leftarrow PC(\hat{\mathcal{X}})$ 4 while $\mathcal{X} \setminus \hat{\mathcal{X}} \neq \emptyset$ do 5 $ X \in \mathcal{X} \setminus \hat{\mathcal{X}}$ 6 $\bar{\mathcal{G}}$, Sepset \leftarrow Extendable $PC(\mathcal{G}, X, \text{Sepset})$ 7 $\hat{\mathcal{X}} \leftarrow \hat{\mathcal{X}} \cup \{X\}$ 8 $ \mathcal{G} \leftarrow \bar{\mathcal{G}}$ 9 Orient the edges using the orientation rules in (Spirtes et al., 2000).	// Orientation
633 634	Algorithm 7: The PC Algorithm	
635 636 637 638 639 640 641 642 643 644 645 646	Input: A set of variables \mathcal{X} and their joint probability distribution P Output: A partially directed acyclic graph1Form the complete undirected graph \mathcal{G} over nodes \mathcal{X} ;2Sepset $(X, Y) = \emptyset$ for all $X, Y \in \mathcal{X}$;3 $m = 0$ 4while maximum node degree in \mathcal{G} is greater than m do5for $X \in \mathcal{X}$ 6for $Y \in \operatorname{Adj}(\mathcal{G}, X)$ 7if $T \subseteq \operatorname{Adj}(\mathcal{G}, X) \setminus \{Y\}$ and $ \mathcal{U} = m$ 8if $X \perp Y \mid \mathcal{U}$ 9Remove the edge $X - Y$ from \mathcal{G} ;10 $m = m + 1$;	// CI tests
04/	¹² Orient the edges using the orientation rules in (Spirtes et al., 2000).	// Orientation

648 649	Algorithm 8: The Extendable Hill-climbing structure learning algorithm			
650 651	Input: A new variable Y and a structure $\hat{\mathcal{G}}$ Output: A P-map $\bar{\mathcal{G}}$ over $\bar{\mathcal{X}} = \mathcal{X} \cup \{Y\}$	over \mathcal{X}		
652	1 Form $\overline{\mathcal{G}}$ as the union of $\hat{\mathcal{G}}$ and one-point gra	wh Y		
653	2 i = 1			
654	3 while $i < I$ do			
655	$ \mathcal{N}_{\bar{\mathcal{G}}} \leftarrow Neibourhood \ Finder(\bar{\mathcal{G}}) $			
656	5 $\mathcal{N}_{\bar{c}} \leftarrow \mathrm{T}(\hat{\mathcal{G}}, Y, \mathcal{N}_{\bar{c}})$	<pre>// By T-function in algorithm 3</pre>		
657	$\mathbf{G} \qquad \qquad \mathbf{\bar{\mathcal{G}}} \leftarrow \arg \max_{\mathcal{G} \in \mathcal{N}_{\bar{\mathcal{A}}}} \operatorname{Score}_{\operatorname{BIC}}(\mathcal{G})$			
658 659	$7 i \leftarrow i+1 \qquad \qquad$			

Proof of Theorem 2. Consider a topological causal ordering over \mathcal{X} . It means that in Algorithm 4, in every iteration, when a variable is added all its parents had been added in the previous iterations. Thus the structures shown in Figure 1 do not occur in each iteration. So step 4 in Algorithm 1 is not used in any iteration. The other part of the Algorithm 1 is similar to the PC algorithm except that it uses the information of the number of adjacent of each node in the previous graph. So, as we discussed in section 3.1, the number of required CI tests is fewer than the PC algorithm to check edges between each two nodes. As a result, the number of CI tests for all iterations will be fewer than the PC algorithm.