
Epistemic vs. Counterfactual Fairness in Allocation of Resources

HADI HOSSEINI, Pennsylvania State University, United States

JOSHUA KAVNER, Rensselaer Polytechnic Institute, United States

SUJOY SIKDAR, Binghamton University, United States

ROHIT VAISH, Indian Institute of Technology Delhi, India

LIRONG XIA, Rutgers University, United States

Resource allocation is fundamental to a variety of societal decision-making settings, ranging from the distribution of charitable
donations to assigning limited public housing among interested families. A central challenge in this context is ensuring fair outcomes,
which often requires balancing conflicting preferences of various stakeholders. While extensive research has been conducted on
theoretical and algorithmic solutions within the fair division framework, much of this work neglects the subjective perception of
fairness by individuals. This study focuses on the fairness notion of envy-freeness (EF), which ensures that no agent prefers the
allocation of another agent according to their own preferences. While the existence of exact EF allocations may not always be feasible,
various approximate relaxations, such as counterfactual and epistemic EF, have been proposed. Through a series of experiments with
human participants, we compare perceptions of fairness between three widely studied counterfactual and epistemic relaxations of EF.
Our findings indicate that allocations based on epistemic EF are perceived as fairer than those based on counterfactual relaxations.
Additionally, we examine a variety of factors, including scale, balance of outcomes, and cognitive effort involved in evaluating fairness
and their role in the complexity of reasoning across treatments.
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1 INTRODUCTION

Resource allocation is a pivotal concern in societal decision-making, attracting significant interest from disciplines
as diverse as philosophy, economics, mathematics, and computer science. It captures a wide range of application
domains including distributing charitable donations to home shelters [3], assigning limited public housing to families
and refugees [2, 5], splitting rent among renters [25] and job scheduling across distributed computing clusters [31]. A
critical challenge in the allocation of resources among multiple stakeholders is ensuring fair outcomes, necessitating
the consideration of (often conflicting) preferences of participating entities (aka agents). While these problems have
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been extensively studied under the framework of fair division in recent years, much of the focus has been on theoretical
and algorithmic approaches (see e.g., Aziz et al. [6], Moulin [43], and Amanatidis et al. [4] for surveys concerning recent
progress in this field). However, such approaches frequently neglect individuals’ subjective perception of fairness, which
may diverge from their theoretical guarantees.1

Our focus is on the fairness notion of envy-freeness (EF), which requires that no agent prefers the bundle assigned to
another agent when evaluated according to their own preferences [22]. Among several plausible fairness notions—for
example, those ensuring that each agent receives a fair share—envy-freeness is particularly compelling due to its
reliance on pairwise intrapersonal utility comparisons, eliminating the need for interpersonal comparisons. In other
words, envy-freeness does not require identifying which agent derives the most benefit from a bundle of resources. In
addition, a substantial body of experimental studies in economics underscores its pivotal role as a fairness criterion in
resource allocation [28, 29].

When dealing with scarce indivisible resources, EF allocations do not always exist. For instance, if two passengers
both want the last available seat on a fully booked flight, any allocation will leave one of them envious, so no EF
solution is possible. Furthermore, determining whether a resource allocation problem admits an EF solution is known
to be computationally intractable [41]. These negative results have inspired a significant body of research aimed at
developing approximate relaxations of envy-freeness.

The design of approximate fairness notions has given rise to two prominent schools of thought: epistemic and
counterfactual envy-freeness. The epistemic approach focuses on the limited information that agents may possess
about the overall allocation. In particular, envy-freeness up to 𝑘 hidden goods (HEF𝑘) assumes agents have common
information about how (and to whom) the goods are distributed except for a small subset of 𝑘 goods [30]. Thus,
agents have no envy given the information that is available to them. In contrast, the counterfactual approach centers
on ‘hypothetical scenarios’ which evaluate fairness based on allocations determined under different circumstances.
Specifically, a well-studied relaxation of envy-freeness is envy-freeness up to one good (EF1). This notion is based on the
counterfactual thinking that any pairwise envy can be eliminated by the hypothetical removal of a single good from the
envied agent’s bundle [41].2 Despite their theoretical foundations, it remains unclear which approach is perceived as
more desirable by humans. This leads to the following research question:

How do individuals perceive epistemic approximation of fairness compared to counterfactual approximations

in allocation of resources?

1.1 Our Contributions

We study the perceived fairness of two variants of counterfactual envy-freeness (namely, EF1 and strong envy-freeness

up to one good (sEF1) [16]) compared to the epistemic notion of HEF through a series of experiments with human
subjects. We conduct a study with 120 participants recruited through Amazon’s Mechanical Turk platform. At a high
level, our work is aligned with a large body of work in distributive justice concerning fair outcomes (in contrast to
procedural justice, which concerns fair processes for determining outcomes).3

1The perception of fairness has been recently studied in the context of loan decisions and within machine learning [49, 50]. These problems are
fundamentally different from the current study as they are primarily concerned with bias in the data or prediction models.
2In the past decade, a myriad of counterfactual approximations have been proposed in the fair division literature. EF1 stands out because of its algorithmic
simplicity and its clear implementation [10, 41].
3We refer the reader to literature in social justice theory, e.g., Adams [1] and Rawls [47]. See Tyler and Lind [52], Rawls [47], and Lee et al. [40] on
procedural justice.
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Framework and Fairness Measure. We develop a novel empirical framework and a new approach for implicit

measurement of perceived fairness. Each participant is presented with a series of scenarios in which they take on the
perspective of an agent in a resource allocation instance with an initial allocation that satisfies one of three fairness
properties: sEF1, EF1, or HEF𝑘 (defined in Section 2). Participants may either keep their given bundle or swap it with
the bundle of an agent of their choice. Our approach measures perceptions of fairness by evaluating whether an agent
is envious of another’s bundle. If an agent is envious, then it is likely the agent would be willing to swap her bundle
should she get the opportunity to do so. This indicates the individual’s perceived envy (but not the degree of envy).
Participants’ responses are aggregated into a single swap rate, the percentage of scenarios where a swap was chosen,
measuring aggregate perceived fairness under each treatment.

Epistemic vs. Counterfactual Envy. Our results show that HEF𝑘 allocations are perceived to be fairer than in
the sEF1 and EF1 treatments. In particular, we show that there is a statistically significant difference between swap
rates of HEF𝑘 and both sEF1 and EF1 treatments (𝑝 < 0.001). Participants under the HEF𝑘 treatment displayed the
lowest swap rate, followed by sEF1 and then EF1 (Section 4.1). We subsequently control for the effect of variables such
as instance size, allocation balance (defined in Section 3.1), and scenarios for which it is optimal to swap, and find that
the qualitative results still hold.

Additionally, we study cognitive effort, as measured by response time and self-reports of scenario difficulty, to
understand how treatment affects participants’ reasoning. We find that there is a significant difference in the cognitive
effort exercised by participants, measured by response time and self-reports of difficulty, between the HEF𝑘 and both
sEF1 and EF1 treatments (𝑝 < 0.001) (Section 4.2). Hence, perceived fairness appears correlated with the cost of increased
task complexity.

Human Subject Dataset. To conduct our analysis we generated a novel data set of 166 scenarios, each consisting of
a fair division instance, allocation that satisfies one of the investigated fairness properties, and anonymized choices
made by participants. The number of scenarios satisfying each instance size, allocation balance, and allocation fairness
property may be found in Table 3 in the appendix. This data set is the first of its kind, to the best of our knowledge. 4

1.2 Related Work

Our work is in line with research empirically validating fairness notions and theories of distributional preferences. While
it is evident people trade off self-interest for fairness [32], it is still not clear to what extent and which theories of fairness
are the most valid. Prior experiments have employed several methods to evaluate perceived fairness of allocations, often
asking participants which they prefer. For instance, Herreiner and Puppe [29] empirically investigated EF in a free-form
bargaining experiment. In their setting, participants had subjective preferences over goods and collaborated with
another participant to choose the allocation (see also Herreiner and Puppe [28]). The authors subsequently analyzed
the fairness and efficiency of the chosen allocations. This work is most similar to ours, except that we measure the envy
experienced by participants and focus on the relative fairness of relaxations of EF.

Herreiner and Puppe [29]’s work follows a tradition of questionnaire methodology for evaluating distributive justice,
popularized by Yaari and Bar-Hillel [53] and Konow [36], who asked whether participants perceive given allocations as
just or not (see also Gäertner [23, Chapter 9]). Herreiner and Puppe [27] also asked participants to choose which of a
set of allocations was the most fair. While these studies provide some evidence in favor of certain fairness notions,

4https://github.com/kajoshua/Fair_Division_MTurk_HEF
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payoffs were identical, so intrapersonal theories like EF could not be tested. In this vein, Engelmann and Strobel [20]
ran an experiment were participants would, with some probability, received the allocation of money they chose. Their
aim was to compare the explanatory power of distributional preferences models by Fehr and Schmidt [21], Bolton and
Ockenfels [8], and Charness and Rabin [13].

A separate line of work by Lee and colleagues focused on perceived fairness of algorithmic decision-making.
Participants in Lee and Baykal [39]’s study perceived allocations prescribed by Spliddit5 to be less fair than those chosen
in group discussions one third of the time. The authors explain this distinction as the algorithms excluding the effects
of individual participation, interpersonal power, and altruism on fairness. Lee [38] suggested that perceived fairness
depends on task characteristic, which helps motivate our current study on cognitive effort. Lee’s participants recognized
that algorithms produce less fair decisions on tasks requiring human skills, such as those requiring subjective judgement,
but equally fair on mechanical tasks, such as processing data. Lee et al. [40] measured the effect of transparency and
outcome control (i.e., the ability to manually adjust prescribed outcomes) on perceived fairness of EF1 allocations
prescribed by Spliddit. They showed that perceived fairness increased after participants were given an opportunity to
modify the allocation, either individually or through group discussions. These studies substantially differ from ours in
that there is an impact of personal image and social pressure in bargaining and collective decision-making, which may
provide a justification for inequality aversion. Furthermore, there is a sense of agency within discussions or ability to
modify the outcome, which may result in higher satisfaction via the IKEA Effect.6

Other empirical research includes Kyropoulou et al. [37], who tested the effect of participants’ strategic behavior in
choosing allocations of divisible resources on total envy. Separately, König et al. [35] measured the suitability of two
well-adopted matching mechanisms, the Boston mechanism and assortative matching, under the veil of ignorance [47]
assumption. They concluded that which procedure participants prefer depends on how much autonomy they have
to report their preferences. The empirical validity of fairness axioms in the ultimatum game [26], cooperative games
[14, 19] and machine learning [12, 18, 24] has also been studied.

2 MODEL AND SOLUTION CONCEPTS

Model. For any 𝑘 ∈ N, we define [𝑘] := {1, . . . , 𝑘}. An instance of the fair division problem is a tuple I = ⟨𝑁,𝑀,𝑉 ⟩,
where 𝑁 := [𝑛] is a set of 𝑛 agents,𝑀 := [𝑚] is a set of𝑚 goods, and𝑉 := {𝑣1, . . . , 𝑣𝑛} is a valuation profile that specifies
for each agent 𝑖 ∈ 𝑁 her preferences over the set of all possible bundles 2𝑀 . This valuation function 𝑣𝑖 : 2𝑀 → N ∪ {0}
maps each bundle to a non-negative integer. We write 𝑣𝑖, 𝑗 instead of 𝑣𝑖 ({ 𝑗}) for a single good 𝑗 ∈ 𝑀 . We assume that
the valuation functions are additive so that for any 𝑖 ∈ 𝑁 and 𝑆 ⊆ 𝑀 , 𝑣𝑖 (𝑆) :=

∑
𝑗∈𝑆 𝑣𝑖, 𝑗 , where 𝑣𝑖 (∅) = 0.

Allocation. An allocation 𝐴 := (𝐴1, . . . , 𝐴𝑛) is a (complete) 𝑛-partition of the set of goods𝑀 , where 𝐴𝑖 ⊆ 𝑀 is the
bundle allocated to agent 𝑖 ∈ 𝑁 .

Definition 1 (Envy-freeness). An allocation𝐴 is: (i) envy-free (EF) if for every pair of agentsℎ, 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴ℎ) [22],
(ii) strongly envy-free up to one good (sEF1) if for each agent ℎ ∈ 𝑁 such that 𝐴ℎ ≠ ∅, there exists a good 𝑔ℎ ∈ 𝐴ℎ

such that for every 𝑖 ∈ 𝑁 , 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴ℎ\{𝑔ℎ}) [16], and (iii) envy-free up to one good (EF1) if for each pair of agents
ℎ, 𝑖 ∈ 𝑁 , there exists a good 𝑔ℎ ∈ 𝐴ℎ such that 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴ℎ\{𝑔ℎ}) [10, 41].

Definition 2 (Envy-freeness with hidden goods). An allocation 𝐴 is envy-free up to 𝑘 hidden goods (HEF𝑘) if ∃𝑆 ⊆ 𝑀 ,
|𝑆 | ≤ 𝑘 , such that for every pair of agents ℎ, 𝑖 ∈ 𝑁 , we have that 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴ℎ\𝑆) [30].
5http://www.spliddit.org/
6The IKEA effect is a cognitive bias in which people tend to value on products they helped to create highly [44].
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𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6
𝑣1 2 2 4 1 1 4
𝑣2 1 4 1 1 4 1
𝑣3 4 1 3 3 2 2

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6

𝑣1 2 2 4 1 1 4
𝑣2 1 4 1 1 4 1
𝑣3 4 1 3 3 2 2

𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6
𝑣1 2 2 4 1 1 4
𝑣2 1 4 1 1 4 1
𝑣3 4 1 3 3 2 2

(a) sEF1 (b) EF1 (c) HEF𝑘

Fig. 1. Allocations satisfying (a) sEF1, (b) EF1 and (c) HEF𝑘 for a fair division problem instance. Elements marked by a circle, rectangle,
and diamond must be hidden or counterfactually removed to eliminate the envy from agents 1, 2, and 3 respectively.

By the above definitions, EF implies sEF1, which implies EF1 and subsequently HEF𝑘 for some 𝑘 ≤ 𝑚. Moreover, an
allocation is EF if and only if it is HEF0, and for all 𝑘 ≥ 0, HEF𝑘 implies HEF(𝑘 + 1) [30]. To disambiguate these classes
and reduce confusion, we impose the following technical qualifications throughout this paper. First, we recognize two
variants of envy-freeness up to one good by discerning allocations that are EF1 but not sEF1. Through an abuse of
notation, we henceforth label this weak variant “EF1.” Both variants (weak and strong) correspond to the counterfactual
removal of goods when agents have full information about the entire allocation. Second, for any HEF𝑘 allocation with
hidden set 𝑆 , each agent 𝑖 knows their own bundle 𝐴𝑖 but only has partial information about the goods in the bundle of
any other agent ℎ. Then, 𝑖 has no envy among the observable (partial) allocation (i.e., 𝑣𝑖 (𝐴𝑖 ) ≥ 𝑣𝑖 (𝐴ℎ\𝑆)). Furthermore,
we assert that |𝑆 | = 𝑘 and that 𝐴 is not HEF𝑘′ with respect to any strict subset 𝑆 ′ ⊂ 𝑆 , where |𝑆 ′ | = 𝑘′ < 𝑘 .

Example 1. Figure 1 demonstrates three allocations for the same instance with three agents 1, 2, 3 and six goods
𝑔1, . . . , 𝑔6. These are demonstrated by the underlined elements in subfigures (a), (b), and (c), satisfying sEF1, EF1, and
HEF𝑘 respectively, where 𝑘 = 1. Elements outlined by a circle, rectangle, and diamond must be counterfactually removed
(for sEF1 and EF1) or hidden (for HEF𝑘) to eliminate the envy of agents 1, 2, and 3 respectively.

Consider the EF1 allocation 𝐴 where 𝐴1 = {𝑔1, 𝑔5}, 𝐴2 = {𝑔3, 𝑔4}, and 𝐴3 = {𝑔2, 𝑔6}. Although agent 1 is envious of
agents 2 and 3, we have 𝑣1 (𝐴1) ≥ 𝑣1 (𝐴2\{𝑔3}) and 𝑣1 (𝐴1) ≥ 𝑣1 (𝐴3\{𝑔6}). For the HEF𝑘 allocation, rather, agent 1 is
not envious of agent 3 because they only observe a partial allocation: 𝑣1 (𝐴1) ≥ 𝑣1 (𝐴3\𝑆) where 𝑆 = {𝑔3}. Agent 3 is
not envious of agent 1 because they observe the entire allocation and 𝑣3 (𝐴3) ≥ 𝑣3 (𝐴1).

Notice that at most a single good is outlined in each agent’s bundle in the sEF1 allocation, whereas multiple goods
may be outlined in each bundle in the EF1 allocation.

3 EXPERIMENTAL DESIGN

We conducted an empirical study to compare the perceived fairness of multiple relaxations of envy-freeness – sEF1,
EF1, and HEF𝑘 – using a gamified pirate scenario (see Figure 2). Participants were split into three treatments and given
twelve scenarios. In each scenario, the participant was assigned the role of one member of a crew of pirates (agents)
whose captain (a central authority) wished to divide goods, the spoils of a recent adventure, among the crew. Each
scenario consisted of a number of goods, presented in a marketplace, and the bundles of (revealed) goods for each pirate
in an allocation determined by the captain. Participants’ subjective values for each bundle were determined by the given
instance and the perspective of the participant. For instance, a participant could be offered the instance and allocation
demonstrated by Figure 1(a) from the perspective of agent 1 and would value their bundle at 𝑣1 (𝐴1) = 2 + 2 = 4.
Alternatively, their value for 𝐴1 from the perspective of agent 3 would be 𝑣3 (𝐴1) = 4 + 1 = 5.

Given this information, participants were asked whether they wanted to swap their bundle with that of another pirate
of their choice, in its entirety, or keep their initial bundle. Participants had a stake in the outcome of their choices: they
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(a) (b)

Fig. 2. Sample scenarios from the (a) EF1 and sEF1 treatments and (b) HEF𝑘 treatment. In the EF1 and sEF1 treatments, participants
have a ‘birds-eye view’ of all goods in all bundles. In the HEF𝑘 treatment, participants observe only the revealed goods from other
pirates’ ‘upright’ boxes. All HEF𝑘 treatment participants complete a training tutorial emphasizing this point.

received a bonus payment if the total value of goods they collected surpassed a threshold. Therefore, choosing to swap
bundles indicates the participant’s envy and perceived unfairness. We measured participants’ swap rate, the percentage
of scenarios where a swap was chosen, and compared treatments using the Chi-square (𝜒2) [42] and Fisher’s exact tests
[34]. We then compared treatments upon segmenting our data by (i) the number of agents and goods (instance size), (ii)
the distribution of goods across agents (allocation balance), and (iii) whether it is optimal for participants to swap or
not, including the value of hidden goods (optimal choice).

Treatment details. Each participant was subjected to exactly one of three treatments – sEF1, EF1, and HEF𝑘 –
corresponding with the fairness property satisfied by their allocations. Across treatments, participants were shown their
subjective values of the visible portions of the bundles of each agent. Participants in the sEF1 and EF1 treatments had
full information about the allocations (see Figure 2(a)). Participants assigned the HEF𝑘 treatment were shown their own
bundles but only the visible portions of other agents’ bundles (recall Definition 2; see Figure 2(b)). We explained through
a tutorial that the visible allocation was incomplete by detailing the possibilities of the missing information: some goods
may be allocated to and hidden by other pirates or discarded altogether. Participants could therefore enumerate the
possible values of the other agents’ bundles.

Our study employed 120 mutually exclusive participants for each of three Human Intelligence Tasks (HITs), corre-
sponding to the three treatments, in Amazon’s Mechanical Turk platform, totaling 360 participants. Our study was
single-blind; participants were not aware of their treatment.

Perceived fairness. Wemeasured perceptions of one aspect of fairness, envy, via swaps. Specifically, given an allocation
𝐴, we say that agent 𝑖 swaps her bundle 𝐴𝑖 with agent ℎ if the agents exchange all goods within their bundles (including
hidden goods). An agent choosing to swap bundles indicates that they are envious of another agent and thus does
not perceive their bundle 𝐴𝑖 as fair. We call the proportion of participants that swap under 𝐴 its empirical swap rate,
representing the aggregate perceived fairness of the scenario.

Incentives. In order to realize the assigned in-game valuations as real-world value, participants were incentivized
to accumulate high-value bundles throughout the survey. Specifically, each participant was eligible to receive two
Manuscript submitted to ACM



Epistemic vs. Counterfactual Fairness in Allocation of Resources 7

payments: (1) a base payment of $0.50 for completing the survey in its entirety, and (2) a bonus payment of $0.50 for
accumulating at least $2000 worth of goods through all scenarios as measured by participants’ assigned subjective
valuations. Hence, we are able to emulate a real-world setting through our experiment with fictional pirate-related
goods.

Note that within the HEF𝑘 treatment, participants accumulate the values of any hidden goods of their chosen bundle
as well. The bonus threshold was also chosen to encourage participants to pay greater attention to the study and not
choose randomly for each scenario. We determined the threshold by computing the minimum and maximum total value
any participant could obtain on any survey using our data set. We then chose $2000 which falls between 71% and 84%
for these ranges.

Response qualifications. In order to obtain high quality responses, participation in our study was restricted to
Mechanical Turk workers who (a) had at least an 80% approval rate on previous tasks, (b) had completed at least 100
tasks, (c) were located in either the United States or Canada7, (d) had a Master’s qualification8 on the Mechanical Turk
platform, and (e) had not attempted or taken the survey before. Through the experiment we adjusted the minimum HIT
approval rate (%) and minimum number of HITs approved that were necessary in order to attract Mechanical Turk
Workers to participate; see Table 4 in the appendix.

3.1 Data Set

The scenarios were sampled from a novel data set of 166 scenarios, each consisting of a fair division instance, an
allocation partitioning the goods, and an assignment of the participant to one of the agent’s perspectives.

Instances. We generated twenty-eight instances involving nine or ten goods: twenty-one small instances with three
agents and seven large instances with five agents. Each valuation 𝑣𝑖, 𝑗 for 𝑖 ∈ 𝑁 and 𝑗 ∈ 𝑀 was sampled uniformly at
random from {5, 10, . . . , 120} for small instances and {0, 10, . . . , 150} for large instances.

Allocations. For each instance, we computed three allocations satisfying sEF1, EF1, and HEF𝑘 for a pre-specified
𝑘 ∈ 0, 1, 2 corresponding to the treatments. Allocations were generated by randomly shuffling goods among agents
until an allocation with the desired property was found. Following the established hierarchy of fairness notions (where
stronger notions imply weaker ones), allocations satisfying stronger notions were excluded when testing weaker ones.
This ensures that, for example, allocations labeled as EF1 satisfy EF1 but not sEF1 or EF. As demonstrated in Example 1,
EF1 allocations can sometimes require the counterfactual removal of more goods than sEF1 allocations. To highlight
this distinction in our experiments, we selected EF1 allocations that require at least 𝑛 + 2 goods to be counterfactually
removed to eliminate envy among agents.

There were two levels of balance for allocations. A balanced allocation gives every agent a bundle of equal size,
three (respectively, two) goods to each agent in a small (respectively, large) instance. In an unbalanced allocation,
agents may have bundles consisting of different number of goods, with bundle sizes (2, 4, 4) for small instances and
either (4, 2, 2, 1, 1) or (3, 2, 2, 2, 1) for large instances.

Perspective. Participants were randomly assigned to assume the role of either the first or last (i.e., third or fifth)
agent in the instance. Providing two perspectives expanded our data set and enabled participants to have different

7We restricted location to ensure language proficiency and prevent any potential issues due to linguistic barriers.
8Workers with Master’s qualification, determined by Mechanical Turk, are those who “have consistently demonstrated a high degree of success in
performing a wide range of HITs across a large number of Requesters.” See https://www.mturk.com/worker/help.
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Fig. 3. The workflow of a participant.

goods in their bundles for the same instances. This did not bias our results as valuations were randomly generated and
allocations did not depend on agents’ identities.

Scenario properties. Our 166 scenarios were made with the following combinations: 63 allocations were affiliated
with small instances, of which 45 were balanced and 18 were unbalanced, while 20 allocations were affiliated with
large instances, of which 14 were balanced and 6 were unbalanced. Table 3 in the appendix presents the number
of allocations in each treatment succinctly. Each of the these 83 allocations provided two scenarios to the data set,
corresponding to two perspectives we offered participants, yielding the 166 total scenarios.

3.2 Survey Outline

Participants undertook the following workflow (see Figure 3). First, participants gave their consent to partake in our
IRB-approved study after being informed of the study description, benefits, risks, rights, and project manager contact
information. After being assigned a treatment and a randomly determined perspective, they subsequently answered
twelve scenario questions, two questions soliciting scenario difficulty, and two attentiveness check questions. The
scenarios were organized into four sections, each consisting of scenarios of different instance size and allocation balance
that were selected uniformly at random from the appropriate data set, and then randomly permuted within the section.
A complete survey therefore consisted of:

• Section 1 (S1–3): 3 small-balanced scenarios. If the treatment is HEF𝑘 , then 𝑘 ∈ {0, 1, 2} respectively.
• Section 2 (S4–7): 3 small-unbalanced scenarios followed by S7 which is a repeat of S4. If the treatment is HEF𝑘 ,
then 𝑘 ∈ {0, 1, 2} respectively for (S4–S6).

• Difficulty: self-reported rating for small scenarios.
• Section 3 (S8–10): 3 large-balanced scenarios. If the treatment is HEF𝑘 , then 𝑘 ∈ {0, 1, 2} respectively.
• Section 4 (S11-12): 2 large-unbalanced scenarios. If the treatment is HEF𝑘 , then 𝑘 = 1.
• Difficulty: self-reported rating for large scenarios.
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Table 1. 𝑝-values of the test statistic for testing the independence of swap rates and treatments under different pairs of treatments
and adjusting for different variables. The 𝜒2 test is used except when the 𝑝-value is annotated with a “†”, in which it is the result of
the Fisher’s exact test. “p: ns” denotes non-significance.

Variable value Pairs of Treatments
HEF𝑘 , sEF1 HEF𝑘 , EF1 sEF1, EF1 HEF0, sEF1 HEF1, sEF1 HEF2, sEF1

All scenarios 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001
Optimal
Choice

stay-is-opt 𝑝 < 0.001 𝑝 : ns †𝑝 < 0.01 𝑝 < 0.001 𝑝 < 0.001 𝑝 : ns
swap-is-opt 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.05 N/A 𝑝 < 0.001 𝑝 < 0.001

Instance
Size

small 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001
large 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001

Balance balanced 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001
unbalanced 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001

Repeated scenario (S7) 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.001 𝑝 < 0.01 𝑝 < 0.001

Tutorials. All participants were required to correctly answer a few tutorial questions prior to the scenarios.
The first tutorial taught participants that the value of a bundle was equal to the sum of values of the goods inside that

bundle. Participants were presented with a bundle consisting of three goods, which were highlighted in the marketplace,
and were asked to compute the bundle’s value.

The second tutorial taught participants that whether they received a monetary bonus upon completing the survey is
dependent on the total value they collect throughout its course. The participants were presented with three bundles,
similar to Figure 2(a), and were asked if they wanted to keep their bundle (left) or swap it with either Pirate 1’s bundle
(middle) or Pirate 2’s bundle (right). The bundle with the highest value was enforced as the correct choice.

HEF𝑘 treatment participants were provided a third tutorial designed to teach them about goods in the marketplace
that were not visibly allocated. Participants were presented with three bundles, similar to Figure 2(b), and were told
that the missing goods may be either allocated to and hidden by the other pirates or discarded altogether. Participants
were asked about the maximum number of goods that could be found in any one pirate’s bundle, thus requiring them
to reason about the location of missing goods.

Self-reported difficulty. The groups of seven small and five large scenarios were each succeeded by a question
asking participants to rate the difficulty of the scenarios on a 5-point Likert scale from Very Easy (1) to Very Hard (5).

Attentiveness check questions. We incorporated many checks to ensure high quality responses from attentive human
participants and dissuade fraud, which is a known problem for Mechanical Turk [33]. Prior to the tutorial, participants
answered a simple arithmetic problem to ensure they were not bots. On the final page, they answered (1) their favorite
good and (2) final comments or questions. We presumed that we could identify inattentive participants giving poor
quality data, as they would not be able to answer these prompts appropriately. We did not find any participants’
responses to be of poor quality by these measures, so we did not discard any responses.

4 EXPERIMENTAL RESULTS

We test the empirical swap rate of each treatment as a measure for perceived fairness across all scenarios and while
controlling for several variables. We further partition the HEF𝑘 treatment into sub-treatments—HEF0, HEF1, and
HEF2—and compare their swap rates with sEF1, with a focus on whether increasing the number of hidden goods affects
perceived fairness. Separately, we compare the effect of treatment and size of instance on participants’ cognitive effort,
as measured by response time and self-reports of difficulty, for answering the scenarios.
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Table 2. 𝑝-values of the test statistic for testing the independence of swap rates and optimal choice under different treatments. The
𝜒2 test is used except when the 𝑝-value is annotated with a “†”, in which it is the result of the Fisher’s exact test.

Treatment sEF1 HEF𝑘 EF1 HEF0 HEF1 HEF2
swap-is-opt
/ stay-is-opt 𝑝 < 0.001 𝑝 < 0.001 †𝑝 < 0.001 N/A 𝑝 < 0.001 𝑝 < 0.001

We are particularly interested in whether swap rates differ between treatments when a participant’s optimal (i.e.,
value-maximizing) choice is to either stay or swap bundles. This is because participants may be biased to accept their
default bundle and maintain the status quo rather than make adjustments [48]. Moreover, HEF𝑘 differs from the other
treatments in that participants may not have enough information to distinguish which bundle is optimal, despite it
being apparently optimal. Our work is the first to study whether perceived fairness, as measured by swap rates, differ
depending on optimal choice.

4.1 Perceived Fairness

We formalize our research questions as follows:

Research Questions: For any two treatments 𝑋,𝑌 ∈ {sEF1, EF1, HEF𝑘} or {sEF1,HEF0,HEF1,HEF2}, do swap rates
differ between 𝑋 and 𝑌 overall and when adjusted independently for the variables: (i) instance size: small or large,
(ii) allocation balance: balanced or unbalanced, and (iii) optimal choice: whether the value-maximizing choice is to
keep the participant’s initial bundle (stay-is-opt) or to swap bundles (swap-is-opt)?

Null Hypothesis: Swap rate is independent of treatment.
Alternate Hypothesis: Swap rate depends on treatment.
Our experiments provide statistically significant evidence for rejecting the null hypothesis that swap rate is indepen-

dent of treatment. We draw this conclusion using the Chi-square (𝜒2) test with 𝑝 < 0.05 for all combinations of pairs of
treatments and values for the different confounding variables in our study,

Table 1 summarizes our findings. In the appendix we present Tables 5 and 10 which include more specific information
about the 𝑝-values of the 𝜒2 and Fisher’s exact test statistics and effect size, as measured by Cramer’s V [34], about
the tests. Our main finding is that (1) the perceived envy of HEF𝑘 is significantly lower than that of either sEF1 and
EF1, and (2) sEF1 allocations are less likely to be perceived as unfair than EF1 allocations, as we show in Figure 4. This
holds true upon adjusting for instance size (small or large) and the allocation balance (balanced or unbalanced), and
among scenarios where swap-is-opt. Thus, our main takeaway message is:

Allocations that are visibly envy-free through hiding goods are perceived to be fairer than allocations that are

counterfactually envy-free via removing goods.

Segmented Data. Upon realizing this conclusion, we segment our data to draw additional insights. In particular,
among HEF𝑘 allocations, swap rate increases as the number of hidden goods increases (Table 7 in the appendix): HEF0
allocations induce less envy among the participants than either HEF1 or HEF2. This is perhaps because as more goods
are hidden, participants are more cautious, more uncertain about the allocation’s fairness, and spend more time on
average to choose bundles (see Figure 8 in the appendix). Further studies may be necessary to explain these results.
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Fig. 4. Swap rates per treatment, all scenarios. Here, 𝑛 is the number of scenarios per treatment.

Optimal Choice. We find that participants’ perceived fairness is indeed affected by their optimal choice. Specifically, for
each treatment (except HEF0), participants’ swap rates are statistically different between swap-is-opt and stay-is-opt
scenarios (Table 2).

Among stay-is-opt scenarios (Figure 5), we observe that sEF1 allocations are perceived with significantly lower
envy than HEF𝑘 allocations, and in turn EF1 allocations. Participants of the sEF1 treatment could verify with certainty
that their bundles have the highest value since all goods were visible. It may not be possible to make such determinations
under the HEF1 and HEF2 treatments, where goods may be hidden. Indeed, the hidden goods may all be allocated to
another pirate, hypothetically raising the value of that pirate’s bundle to be the highest, justifying a swap. Surprisingly,
HEF0 and EF1 induce higher envy than sEF1 allocations, despite it being equally possible to verify that the participant’s
bundle has the highest value. This may be due to framing effect biases by which participants may not have incorrectly
assumed that goods were missing [51]. However, further tests are needed to confirm this conjecture. Swap rates between
either HEF𝑘 and EF1, and HEF2 and sEF1, are not statistically significant in this case.

When swap-is-opt (Figure 7 in the appendix), participants swap their bundles significantly less under the HEF𝑘
treatment than the sEF1 and EF1 treatments. This supports our overall conclusion that participants desire allocations that
are not visibly unfair. Since all goods are visible under the sEF1 and EF1 treatments, the participant has clear evidence
that her allocated bundle has a lower value than that of another pirate. Under the HEF𝑘 treatment, rather, where the
allocation of some goods is hidden, participants perceive significantly lower envy even when they are allocated a
lower-valued bundle. Recall that HEF0 is equivalent to EF, so there are no such scenarios when swap-is-opt.

Controlling for the choice of goods. Our scenarios presented goods related to a pirate’s adventure, such as a map,
rum, and a diamond. This gamified scenario stands in for a wider variety of fair division problems, such as inheritance
division [9], allocating medical resources [46], and course allocation [11]. To control for any preferential bias toward
these goods, we repeated a scenario and replaced the goods with identically-shaped gems of different colors. The
repeated scenario (S7) was identical to the original (S4), which is small-unbalanced but with varying numbers of
hidden goods 𝑘 for the HEF𝑘 treatment. Additionally, the pictures representing the goods were randomly permuted for
every scenario.
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Fig. 5. Swap rates per treatment, stay-is-opt. Here, 𝑛 is the number of questions per treatment.

We find that every null hypothesis that was rejected by comparing responses on all scenarios is also rejected when
the test is performed only on the repeated scenario (see row labeled “Repeated scenario (S7)” in Table 1). Furthermore,
the ratio of swap rates for each pair of treatments remains similar as well. Therefore, our results do not appear to be
impacted by the choice of goods.

4.2 Cognitive Effort

In addition to our tests of perceived fairness, we investigate the extent to which cognitive effort varies by treatment.
Specifically, we measure:
• response time, the time elapsed between each scenario page being made available to the participant and the participant
submitting her choice, and

• scenario difficulty, using the self-reports of scenario difficulty solicited immediately after the small and then the
large scenarios.

We check whether the mean response time or reported difficulty on a five-point Likert scale is different between pairs
of treatments, while adjusting for different variables such as optimal choice and instance size.

Null Hypothesis: Cognitive effort (by response time or reported difficulty) is independent of treatment.
Alternate Hypothesis: Cognitive effort differs between treatments.
Our experiments provide sufficient evidence to reject the null hypothesis that cognitive effort for HEF𝑘 is the same as

either sEF1 or sEF1, using a two-sided Welch t-test (𝑝 < 0.001). Tables 8 and 9 in the appendix summarize our findings
for response times per scenario and reported feedback. Figure 6 (left) illustrates that the average sEF1 response time is
lowest and HEF𝑘 is highest, while EF1 splits the two. Similarly, in Figure 6 (right), participants report that sEF1 scenarios
are easiest while HEF𝑘 is the most difficult and EF1 lies in between. These observations hold for either instance size
and demonstrate that HEF𝑘 instances cause higher cognitive burden on participants.

Note that the blue line in the middle of the box of the figures indicate the median value. The upper and lower
boundaries of box show the 25th and 75th percentile respectively, and the upper and lower whiskers show the range of
recorded values. The mean is indicated by a blue diamond. Outliers beyond the whiskers are excluded. Effect size for
these statistical tests, as measured by Cohen’s D [15], is reported in Tables 13 and 14 in the appendix.
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Fig. 6. Box-plots of (left) time spent per scenario and (right) reported difficulty (higher scores indicate higher difficulty) by treatment.
Outliers excluded.

4.3 Descriptive Comments from Participants

We identify the participants anonymously as 𝑆 , 𝐸, or𝐻 corresponding to their treatment sEF1, EF1, or HEF𝑘 , respectively.
Participants in the EF1 treatment consistently noted that other pirates’ bundles “were usually more valuable” (𝐸22),

so they should “swap with the highest yielding chest” (𝐸17, 𝐸8, 𝐸15). In contrast, HEF𝑘 participants noted “it seemed a no

brainer to just never swap” (𝐻8, 𝐻28), either because it was the “safest bet” (𝐻49) or the “greatest statistical chance of
getting higher reward” (𝐻59). These comments are consistent with our data that swap rates were significantly lower for
HEF𝑘 , suggesting that uncertainty about hidden goods limited participants’ ability to perceive or act on envy. Moreover,
as demonstrated in Table 2, participants across treatments were generally able to distinguish when swapping was
advantageous or not, consistent with H59’s comment about weighing statistical chances in their decisions.

A few participants explicitly addressed concerns about fairness. Participant 𝑆57 suggested “it didn’t seem like a fair

split” while 𝑆63 declared they wouldn’t swap in real life “because it would be unfair to the other person.” Despite this
hesitation, participant 𝐸96 reasoned that because “there was no defining reason why anyone would get more than others”

due to differing effort, they should still select the most valuable treasure. These comments resemble Herreiner and
Puppe [29]’s findings that people care more about inequality aversion than EF to ensure fairness. Still, it is unclear to
what extent participants’ choices are affected by strategic interaction with other humans, as in Herreiner and Puppe
[29], as opposed to inanimate agents, as in our work. We leave this question for future work.

5 LIMITATIONS AND FUTUREWORK

Our experiment was limited in scope by several structural characteristics of the fair division instances we tested.
First, we evaluated scenarios using a cross-section of the number of goods (𝑚), agents (𝑛), and hidden goods (𝑘),
aiming to balance informativeness with cognitive load for participants. Since our focus was on differences in perceived
fairness across theoretical fairness notions, we provided participants with additive, monetarily equivalent valuation
functions over their bundles. While this assumption simplifies participant reasoning and is standard in fair division, it
limits generalizability to settings involving more complex preferences, such as superadditive or subadditive valuations.
Nonetheless, our findings offer empirical support for the perceived fairness of epistemic notions like HEF𝑘 . Future work
could investigate how sensitive these perceptions are to changes in valuation structure or instance complexity.

Second, we controlled for the effects of pirate-themed goods on participant decision-making by randomly permuting
item images and repeating one scenario with identical multi-colored gems. Still, we may not have accounted for all
confounding variables or framing effects. For example, although valuations were in fact subjective, participants may
have inferred that values were objective based on the structured appearance of the scenarios. Similarly, the HEF𝑘
treatment tutorial conveyed to participants that hidden goods might not be allocated, a framing consistent with its
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definition [30], even though all goods were ultimately allocated. It is possible that these design choices introduced
perceived uncertainty, leading participants to select lower swap rates in the HEF𝑘 treatment. Since this treatment also
required greater cognitive effort, participants may have been overwhelmed by the complexity of their value function
[7, 45]. As a result, perceived fairness may depend on both the information available and the uncertainty about others’
bundles. This is not the only way to implement an information scheme, as exemplified by Herreiner and Puppe [29],
who provided full information about all agents’ subjective values. Further work may be necessary to determine the
sensitivity of our results to framing effects and the specific informational assumptions embedded in the design.

Our experiments provide an initial empirical comparison between two intrapersonal envy-based fairness concepts:
EF1, which requires counterfactual reasoning about others’ bundles, and HEF𝑘 , which limits such comparisons by
epistemically hiding certain goods. Both definitions presume a bundle is fair if it does not provoke envy, so we
measured perceived envy through participants’ swap behavior according to this standard. Our results suggest that
people experience less envy under HEF𝑘 , where they epistemically do not perceive envy. Future work could extend our
approach by exploring alternative measures of perceived fairness, such as degrees of envy rather than binary envy
perceptions, and by comparing envy-based definitions to other fairness notions like proportionality, maximin share [10],
or inequality aversion. Additional directions include examining attitudes toward procedural versus distributive fairness,
and whether fairness judgments shift depending on whether participants are direct stakeholders or outside observers.

ETHICAL CONSIDERATIONS STATEMENT

We note three ethical considerations regarding our study. First, the study was IRB-approved and conducted in a single-
blind setting. Participants were informed of the study description, benefits, risks, rights, and project manager contact
information prior to participating, as described in Section 3.2. Second, participants received a base payment of $0.50,
with an additional $0.50 contingent on their in-game choices. While differential payments are standard in economic
experiments, the relationship between payment size, attentiveness, and data quality remains an open methodological
question.

Third, our findings suggest that participants perceived allocations satisfying HEF𝑘 as fairer than those satisfying
EF1. While one might interpret this as a recommendation to adopt HEF𝑘 in practice, our intention is more limited.
HEF𝑘 reduces perceived envy by restricting agents’ knowledge of others’ bundles, but it also reduces transparency—an
ethically significant trade-off in many real-world applications. In this work, 𝑘 is best understood as a measure of distance
from envy-freeness, rather than a design parameter to manipulate perceptions of fairness. Our conclusion is therefore
interpretive: participants reported less envy under incomplete information, but this does not imply that restricting
transparency generally promotes fairness.
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APPENDIX

Fig. 7. Swap rates per treatment, swap-is-opt. Here, 𝑛 is the number of questions per treatment.

Table 3. Number of scenarios per treatment and perspective, given instance size and allocation balance (number of goods per each
agent in parentheses).

Instance
Size

Allocation
Balance

Treatment
sEF1 EF1 HEF0 HEF1 HEF2

small
balanced
(3, 3, 3) 15 15 5 5 5

unbalanced
(2, 2, 4) 6 6 2 2 2

large

balanced
(2, 2, 2, 2, 2) 5 5 1 2 1
unbalanced
(4, 2, 2, 1, 1) 1 1 0 0 0
unbalanced
(3, 2, 2, 2, 1) 1 1 0 2 0

Table 4. Number of participants satisfying each qualification range, per treatment, as measured by minimum approval rate and
minimum approval range (not mutually exclusive).

Treatment Minimum
Approval Rate

Minimum
Number Approved Count

sEF1 95% 1000 120

EF1 95% 1000 20
80% 100 120

HEF𝑘

95% 1000 20
90% 1000 62
80% 1000 76
90% 500 83
90% 100 92
80% 100 120
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Table 5. Ratio of the swap rates and 𝑝-values of the test statistic for testing the independence of swap rates and treatments under
different pairs of treatments, and adjusting for different variables. The 𝜒2 test is used except when the 𝑝-value is annotated with a
“†”, in which case, it is the result of the Fisher’s exact test. The 𝑝-value of the test statistic is represented as follows: a cell labeled ns
(not significant) implies that 𝑝 > 0.05,★ for 𝑝 ∈ (0.01, 0.05],★★ for 𝑝 ∈ (0.001, 0.01], and★★★ for 𝑝 < 0.001.

Variable value Pairs of Treatments
HEF𝑘 , sEF1 HEF𝑘 , EF1 sEF1, EF1 HEF0, sEF1 HEF1, sEF1 HEF2, sEF1

All scenarios 0.286
𝑝 : ★★★

0.173
𝑝 : ★★★

0.604
𝑝 : ★★★

0.150
𝑝 : ★★★

0.306
𝑝 : ★★★

0.371
𝑝 : ★★★

Optimal
Choice

stay-is-opt
4.533

𝑝 : ★★★

0.512
𝑝 : ns

0.113
†𝑝 : ★★

4.415
𝑝 : ★★★

5.384
𝑝 : ★★★

2.752
𝑝 : ns

swap-is-opt
0.346

𝑝 : ★★★

0.353
𝑝 : ★★★

1.021
𝑝 : ★ N/A

0.334
𝑝 : ★★★

0.357
𝑝 : ★★★

Instance
Size

small
0.294

𝑝 : ★★★

0.186
𝑝 : ★★★

0.634
𝑝 : ★★★

0.114
𝑝 : ★★★

0.380
𝑝 : ★★★

0.394
𝑝 : ★★★

large
0.268

𝑝 : ★★★

0.150
𝑝 : ★★★

0.561
𝑝 : ★★★

0.322
𝑝 : ★★★

0.253
𝑝 : ★★★

0.285
𝑝 : ★★★

Balance balanced
0.320

𝑝 : ★★★

0.167
𝑝 : ★★★

0.523
𝑝 : ★★★

0.246
𝑝 : ★★★

0.267
𝑝 : ★★★

0.426
𝑝 : ★★★

unbalanced
0.259

𝑝 : ★★★

0.178
𝑝 : ★★★

0.686
𝑝 : ★★★

0.073
𝑝 : ★★★

0.310
𝑝 : ★★★

0.329
𝑝 : ★★★

Repeated scenario (S7) 0.286
𝑝 : ★★★

0.211
𝑝 : ★★★

0.737
𝑝 : ★★★

0.091
𝑝 : ★★★

0.490
𝑝 : ★★

0.338
𝑝 : ★★★

Table 6. Ratio of the swap rates and 𝑝-values of the test statistic for testing the independence of swap rates and optimal choice under
different treatments. The 𝜒2 test is used except when the 𝑝-value is annotated with a “†”, in which case, it is the result of the Fisher’s
exact test. The 𝑝-value of the test statistic is represented as follows: a cell labeled ns (not significant) implies that 𝑝 > 0.05, ★ for
𝑝 ∈ (0.01, 0.05]),★★ for 𝑝 ∈ (0.001, 0.01], and★★★ for 𝑝 < 0.001.

Treatment sEF1 HEF𝑘 EF1 HEF0 HEF1 HEF2
swap-is-opt
/ stay-is-opt

50.241
𝑝 : ★★★

3.835
𝑝 : ★★★

5.559
†𝑝 : ★★★

N/A
3.121

𝑝 : ★★★

6.514
𝑝 : ★★★

Perceived envy comparing treatments. First, Tables 5 and 6 depicts the results of hypothesis tests comparing the
independence of swap rates and treatments, while adjusting for different variables. These provide more information
than Tables 1 and 2 in the main text.

Second, Table 7 presents tests for independence among the pairwise treatments of HEF0, HEF1, and HEF2. Notably,
there is a statistically significant difference between HEF0 and both HEF1 and HEF2 for all questions, although there is
no significant difference between the treatments conditioning on either stay-is-opt or swap-is-opt. By Figure 4,
this suggests HEF0 (i.e., envy-free) allocations are perceived as more fair than either HEF1 or HEF2 allocations.

Cognitive effort on HEF𝑘 allocations. Figure 8 presents the distribution of time spent per scenario over all HEF0, HEF1
and HEF2 scenarios. We find that overall, as the number of hidden goods increases, the cognitive effort, measured as the
amount of time spent in order to decide which bundle to keep, also increases. Specifically, both the mean and variance
of time spent increases as the value of 𝑘 increases for HEF𝑘 scenarios.

Notice that in an HEF0 scenario, the participant already has the highest valued bundle and this is readily verifiable
since all goods are visible. However, as 𝑘 increases, the participant must reason about and form beliefs about how the
hidden goods may be allocated to the other pirates. The task of computing and deciding whether it may be worth
swapping for another pirate’s bundle therefore becomes increasingly more complex as more goods are hidden.

Cognitive effort conditioned on stay-is-opt scenarios. As Figure 9 shows for stay-is-opt scenarios, hiding goods
under the HEF𝑘 treatment comes at the cost of an increased cognitive burden on the participants. Here, the participant’s
Manuscript submitted to ACM
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Fig. 8. Box-plot of time spent per scenario by treatment with averages shown. Outliers excluded.

Fig. 9. Box-plot of time spent per scenario by treatment with average shown, conditioned on stay-is-opt. Outliers excluded. There
were no such small EF1 scenarios.

bundle has the highest value. This is evident for the sEF1 and EF1 treatments, but may not be clear under the HEF𝑘
treatment, where goods may need to be hidden in order to eliminate envy between the other pirates.

Effect Size. We supplement our results of statistical significance with their effect sizes. Table 10, Table 11, Table 12,
Table 13, and Table 14 demonstrate the effect size for each statistically significant test for Table 5, Table 6, Table 7,
Table 8, and Table 9 respectively. Effect sizes are measured with Cramer’s V for 𝜒2 tests [17] and Cohen’s d for Welch
𝑡-tests [15].
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Table 7. Ratio of swap rates and 𝑝-values of the 𝜒2 statistic for testing the independence of swap rates and treatments under different
pairs of treatments, and adjusting for different variables.
Key: (ns : 𝑝 > 0.05) (★ : 𝑝 ∈ (0.01, 0.05]), (★★ : 𝑝 ∈ (0.001, 0.01]), (★★★ : 𝑝 < 0.001).

Variable value Pairs of Treatments
HEF0, HEF1 HEF0, HEF2 HEF1, HEF2

All scenarios 0.494
𝑝 : ★★

0.406
𝑝 : ★★★

0.826
𝑝 : ns

Optimal
Choice

stay-is-opt
0.820
𝑝 : ns

1.604
𝑝 : ns

1.956
𝑝 : ns

swap-is-opt N/A N/A 0.937
𝑝 : ns

Instance
Size

small
0.299

𝑝 : ★★★

0.289
𝑝 : ★★★

0.966
𝑝 : ns

large
1.271
𝑝 : ns

1.130
𝑝 : ns

0.889
𝑝 : ns

Balance balanced
0.992
𝑝 : ns

0.578
𝑝 : ns

0.627
𝑝 : ns

unbalanced
0.237

𝑝 : ★★★

0.223
𝑝 : ★★★

0.941
𝑝 : ns

Repeated scenario (Q7) 0.186
𝑝 : ★

0.270
𝑝 : ns

1.448
𝑝 : ns

Table 8. 𝑝-values of the 𝑡 statistic for testing equal means of participant response times per scenario using Welch’s t-test – for
different pairs of treatments, and adjusting for different variables.
Key: (ns : 𝑝 > 0.05) (★ : 𝑝 ∈ (0.01, 0.05]), (★★ : 𝑝 ∈ (0.001, 0.01]), (★★★ : 𝑝 < 0.001).

Variable Instance Size Pairs of Treatments
sEF1, EF1 sEF1, HEF𝑘 EF1, HEF𝑘

All scenarios small 𝑝 : ns 𝑝 : ★★★ 𝑝 : ★★★

large 𝑝 : ★ 𝑝 : ★★★ 𝑝 : ★★★

stay-is-opt
small N/A 𝑝 : ★ N/A
large 𝑝 : ns 𝑝 : ★★★ 𝑝 : ns

Variable Pairs of Treatments
HEF0, HEF1 HEF0, HEF2 HEF1, HEF2

All scenarios 𝑝 : ns 𝑝 : ★★ 𝑝 : ns

Table 9. 𝑝-values of the 𝑡 statistic for testing equal means of participant reported feedback using Welch’s t-test – for different pairs
of treatments.
Key: (ns : 𝑝 > 0.05) (★ : 𝑝 ∈ (0.01, 0.05]), (★★ : 𝑝 ∈ (0.001, 0.01]), (★★★ : 𝑝 < 0.001).

Variable Instance Size Pairs of Treatments
sEF1, EF1 sEF1, HEF𝑘 EF1, HEF𝑘

All senarios small 𝑝 : ★ 𝑝 : ★★★ 𝑝 : ★★★

large 𝑝 : ns 𝑝 : ★★★ 𝑝 : ★★★
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Table 10. Effect size demonstrating the strength in statistically significant relationships between swap rates and treatments – under
different pairs of treatments, adjusting for different variables, and corresponding to tests in Table 1. Not significant tests are labelled
ns. Cramer’s V is reported for 𝜒2 tests as follows:★ for𝑉 ≤ 0.2,★★ for𝑉 ∈ (0.2, 0.6], and★★★ for𝑉 > 0.6. Odds ratio and 95%
confidence intervals are reported for Fisher’s exact test, annotated by “†.”

Variable value Pairs of Treatments
HEF𝑘 , sEF1 HEF𝑘 , EF1 sEF1, EF1 HEF0, sEF1 HEF1, sEF1 HEF2, sEF1

All scenarios 𝑉 : ★★ 𝑉 : ★★★ 𝑉 : ★★ 𝑉 : ★★ 𝑉 : ★★ 𝑉 : ★★

Optimal
Choice

stay-is-opt 𝑉 : ★ ns
†𝑂𝑅 : 0.096
95%𝐶𝐼 :

(0.026, 0.447)
𝑉 : ★ 𝑉 : ★ ns

swap-is-opt 𝑉 : ★★★ 𝑉 : ★★★ 𝑉 : ★ N/A 𝑉 : ★★★ 𝑉 : ★★★

Instance
Size

small 𝑉 : ★★ 𝑉 : ★★★ 𝑉 : ★★ 𝑉 : ★★ 𝑉 : ★★ 𝑉 : ★★
large 𝑉 : ★★ 𝑉 : ★★★ 𝑉 : ★★ 𝑉 : ★★ 𝑉 : ★★ 𝑉 : ★★

Balance balanced 𝑉 : ★★ 𝑉 : ★★★ 𝑉 : ★★ 𝑉 : ★★ 𝑉 : ★★ 𝑉 : ★★
unbalanced 𝑉 : ★★ 𝑉 : ★★★ 𝑉 : ★★ 𝑉 : ★★ 𝑉 : ★★ 𝑉 : ★★

Repeated scenario (S7) 𝑉 : ★★ 𝑉 : ★★★ 𝑉 : ★★ 𝑉 : ★★ 𝑉 : ★★ 𝑉 : ★★

Table 11. Effect size demonstrating the strength in statistically significant relationships between swap rates and optimal choice, for
different treatments in Table 2. Not significant tests are labelled ns. Cramer’s V is reported for 𝜒2 tests as follows:★ for𝑉 ≤ 0.2,★★
for𝑉 ∈ (0.2, 0.6], and★★★ for𝑉 > 0.6. Odds ratio and 95% confidence intervals are reported for Fisher’s exact test, annotated by
“†.”

Treatment sEF1 HEF𝑘 EF1 HEF0 HEF1 HEF2
swap-is-opt
/ stay-is-opt 𝑉 : ★★★ 𝑉 : ★★ †𝑂𝑅 : 0.007

95%𝐶𝐼 : (0.002, 0.023) N/A 𝑉 : ★★ 𝑉 : ★★

Table 12. Effect size measured by Cramer’s V for 𝜒2 tests corresponding with Table 7, under different pairs of treatments and adjusting
for different variables. Not significant tests are labelled as ns.
Key: (ns : 𝑝 > 0.05) (★ :𝑉 ≤ 0.2), (★★ : 𝑝 ∈ (0.2, 0.6]), (★★★ : 𝑝 > 0.6).

Variable value Pairs of Treatments
HEF0, HEF1 HEF0, HEF2 HEF1, HEF2

All scenarios 𝑉 : ★ 𝑉 : ★ ns
Optimal
Choice

stay-is-opt ns ns ns
swap-is-opt N/A N/A ns

Instance
Size

small 𝑉 : ★★ 𝑉 : ★★ ns
large ns ns ns

Balance balanced ns ns ns
unbalanced 𝑉 : ★ 𝑉 : ★★ ns

Repeated scenario (S7) 𝑉 : ★★ ns ns

Table 13. Effect size measured by Cohen’s d for Welch t-tests corresponding with Table 8, under different pairs of treatments and
adjusting for different variables. Not significant tests are labelled as ns.
Key: (★ : 𝑑 ≤ 0.3), (★★ : 𝑑 ∈ (0.3, 0.7]), (★★★ : 𝑑 > 0.7).

Variable Instance Size Pairs of Treatments
sEF1, EF1 sEF1, HEF𝑘 EF1, HEF𝑘

All scenarios small ns 𝑑 : ★★ 𝑑 : ★
large 𝑑 : ★★ 𝑑 : ★★ 𝑑 : ★★

stay-is-opt
small N/A 𝑑 : ★ N/A
large ns 𝑑 : ★★ ns

Variable Pairs of Treatments
HEF0, HEF1 HEF0, HEF2 HEF1, HEF2

All scenarios ns 𝑑 : ★ ns
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Table 14. Effect size measured by Cohen’s d for Welch t-tests corresponding with Table 9, under different pairs of treatments and
adjusting for different variables. Not significant tests are labelled as ns.
Key: (★ : 𝑑 ≤ 0.3), (★★ : 𝑑 ∈ (0.3, 0.7]), (★★★ : 𝑑 > 0.7).

Variable Instance Size Pairs of Treatments
sEF1, EF1 sEF1, HEF𝑘 EF1, HEF𝑘

All scenarios small 𝑑 : ★ 𝑑 : ★★★ 𝑑 : ★★★

large ns 𝑑 : ★★★ 𝑑 : ★★★
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