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ABSTRACT

Large language models (LLMs) can give out erroneous answers to factually rooted
questions either as a result of undesired training outcomes or simply because the
world has moved on after a certain knowledge cutoff date. Under such scenar-
ios, knowledge editing often comes to the rescue by delivering efficient patches
for such erroneous answers without significantly altering the rests, where many
editing methods have seen reasonable success when the editing targets are sim-
ple and direct (e.g., “what club does Lionel Messi currently play for?”). How-
ever, knowledge fragments like this are often deeply intertwined in the real world,
making effectively propagating the editing effect to non-directly related questions
a practical challenge (to entertain an extreme example: “What car did the wife of
the owner of the club that Messi currently plays for used to get to school in the
80s?”). Prior arts have coined this task as multi-hop knowledge editing with the
most popular dataset being MQUAKE, serving as the sole evaluation benchmark
for many later proposed editing methods due to the expensive nature of making
knowledge editing datasets at scale. In this work, we reveal that up to 33%
or 76% of MQUAKE’s questions and ground truth labels are, in fact, cor-
rupted in various fashions due to some unintentional clerical or procedural
oversights. Our work provides a detailed audit of MQUAKE’s error pattern and a
comprehensive fix without sacrificing its dataset capacity. Additionally, we bench-
marked almost all proposed MQUAKE-evaluated editing methods on our post-fix
dataset, MQUAKE-REMASTERED. We observe that many methods try to overfit
the original MQUAKE by exploiting some dataset idiosyncrasies of MQUAKE.
We provide a guideline on how to approach such datasets faithfully and show that
a simple, minimally invasive approach can bring excellent editing performance
without such exploitation.

1 INTRODUCTION

Given the widespread public-facing popularity of various Large Language Model-powered (LLM)
products (Zhao et al., 2023; Yang et al., 2024b), even an occasional user has likely experienced
LLMs giving out erroneous answers to factually rooted, knowledge-intensive questions. While why
LLMs would hallucinate such kind of misinformation is complex and still an open problem —
noisy training data, model bias, out-of-distribution questions, or even simply because the world
has moved on after a certain knowledge cutoff date, all likely contributed their fair share to this
rather undesired character of LLMs (Huang et al., 2023; Zhang et al., 2023)— under a practical
context, knowledge editing is often considered the go-to remedy by delivering efficient patches
for such erroneous answers without significantly altering the LLM’s output on unrelated queries,
nor undergoing another extensive pretraining or finetuning section (Sinitsin et al., 2020; Mitchell
et al., 2022).

With the growing need for more credible and trustworthy LLMs, a vast amount of LLM-specific
knowledge editing methods have been proposed, and many of them have seen reasonable success in
addressing simple and direct editing targets. For example, most modern knowledge editing methods
can reliably edit the answer of “What club does Lionel Messi currently play for?” from “Paris
Saint-Germain” to “Inter Miami CF” and therefore correctly reflecting the occupation status of
Messi (Zhong et al., 2023).
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1.1 MULTI-HOP KNOWLEDGE EDITING POSES PRACTICAL SIGNIFICANCE AND NON-TRIAL
CHALLENGES.

However, due to the intertwined nature of different knowledge fragments, a small change in one
knowledge fragment can produce ripple-like effects on a vast amount of related questions (Zhong
et al., 2023; Cohen et al., 2023). It is often a non-trivial challenge to efficiently propagate the editing
effect to non-directly related questions with proper precision and locality. E.g., — as an intentionally
extreme case — “What car did the wife of the owner of the club that Messi currently plays for used
to get to school in the 80s?” Many knowledge-edited LLMs can still struggle while being fully
aware of Messi’s abovementioned club transfer (Zhong et al., 2023).

Prior arts have realized the practical significance of being able to edit such complex/non-direct
questions upon a certain knowledge update, as different knowledge fragments are almost always
deeply entangled with each other in the real world (Zhong et al., 2023; Cohen et al., 2023; Wei
et al., 2024). Meanwhile, exhausting all potential combinations of questions related to one or a few
updated knowledge fragments is impractical. Even if it is feasible, this poses high operational costs
and a repeated effort would be required should Messi ever opt to transfer again.

Intuitively, a practical knowledge editing method needs to produce correct answers to relevant fac-
tual questions with only a few updated knowledge fragments available. This task has been coined
as multi-hop knowledge editing, with the founding, most popular, and only publicly available re-
flective dataset to date being MQUAKE by Zhong et al. (2023); serving as the sole evaluation
backbone for many proposed modern editing methods due to the expensive nature of making
counterfactual and temporal datasets at such a scale (>10,000 cases provided, see Table 7).

1.2 UNFORTUNATELY, MQUAKE IS FLAWED DUE TO UNINTENTIONAL CLERICAL AND
PROCEDURAL ERRORS — WE FIXED/REMADE IT AND RE-BENCHMARKED ALMOST ALL
PROPOSED MULTI-HOP KNOWLEDGE EDITING METHODS.

While MQUAKE is the founding dataset of multi-hop knowledge editing tasks and very much
brings life to this vital subject, through a comprehensive audit, we reveal that up to 33% or 76%
of MQUAKE questions and ground truth labels are, in fact, corrupted in various fashions due
to some unintentional clerical or procedural errors; which inevitably cast doubts on the effec-
tiveness of developed methods evaluated on MQUAKE. The issues with MQUAKE are significant
and growing, especially as MQUAKE becomes a widely adopted dataset in the editing community.
Given its importance for building more reliable LLMs — a critical aspect of NLP development —
we present our work to advance multi-hop knowledge editing with the following contributions:

• A comprehensive audit of MQUAKE: We are the first to present a comprehensive audit of
the existing errors within MQUAKE (Zhong et al., 2023), bringing awareness to the knowledge
editing community regarding this popular dataset with significant task importance attached.

• Fix/remake MQUAKE to MQUAKE-Remastered: We present the only available fix/remake
that not only patches all discovered errors, and done so without sacrificing the intended intensity
and capacity of the original MQUAKE whenever possible.

• Extensively re-benchmark of almost all existing multi-hop knowledge editing methods:
Given the currently existing reports based upon the original MQUAKE are flawed reflections
of such proposed methods’ capability, we additionally re-benchmark almost all existing multi-hop
knowledge editing methods that are available against our MQUAKE-REMASTERED datasets.

• Present a faithful yet beyond SOTA pilot method for future multi-hop knowledge editing de-
velopment. We observe that many proposed multi-hop knowledge editing methods intentionally
or unintentionally overfit the original MQUAKE dataset by applying data-specific operations that
are largely unique to the MQUAKE dataset family. We provide guidance on how to approach
these datasets faithfully and additionally show that a simple, minimally invasive method with no
such overfitting operations can also achieve excellent editing performance.

2 PRELIMINARY

2.1 BACKGROUND OF MQUAKE

MQUAKE (Multi-hop Question Answering for Knowledge Editing) is a knowledge editing dataset
focusing on the abovementioned multi-hop question answering tasks proposed in Zhong et al.
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(2023), where every case of MQUAKE is a multi-hop question made by a chain of single-hop
subquestions. Specifically, MQUAKE is constructed based on the Wikidata:RDF dataset (Vran-
dečić & Krötzsch, 2014), which, in its rawest format, is a knowledge graph consisting 15+ trillion of
Resource Description Framework (RDF) triples1. MQUAKE essentially builds a much more con-
cise subgraph with only 37 manually elected common relations and top 20% of the most common
entities, where a walk of {2, 3, 4}-hop on this subgraph can form a case (which is a chain of {2, 3, 4}
single-hop subquestions connected together) in the MQUAKE dataset.

MQUAKE is presented as two sub-datasets: MQUAKE-CF and MQUAKE-T. The former focuses
on counterfactual tasks, while the latter on temporal changes. We highlight that there is also a
MQUAKE-CF-3K dataset, a subset of MQUAKE-CF that only contains 3,000 cases out of the
original 9171 cases. Authors of MQUAKE evaluate their proposed method, MeLLo (Zhong et al.,
2023), upon this MQUAKE-CF-3K dataset; which then become an unspoken standard for the later
proposed multi-hop knowledge editing methods (Gu et al., 2024; Shi et al., 2024; Wang et al., 2024;
Anonymous, 2024; Cheng et al., 2024). Due to the popularity of this sub-sampled dataset, we
provide our error analysis mostly based on MQUAKE-CF-3K and MQUAKE-T in the following
§3. For interested readers, we additionally provide the same error analysis upon the full MQUAKE-
CF in the Appendix B.3. We also collect the dataset statistics in Table 7.

2.2 EVALUATING USING MQUAKE

Datasets like MQUAKE-CF and MQUAKE-CF-3K are often tested under varying “editing intensi-
ties,” based on the number of cases considered “edited.” This simulates different levels of deviation
between the model’s learned knowledge and the newly edited information. This approach is effec-
tive because strong knowledge editing methods should handle both large-scale updates and smaller,
more localized edits, ensuring that the changes do not interfere with unrelated knowledge.

In its original paper, MQUAKE-CF-3K is evaluated when {1, 100, 1000, 3000} of its 3,000 cases
are edited, similarly, MQUAKE-T is evaluated when {1, 100, 500, 1868} of its 1,868 cases being
edited, forming an experiment report like Table 6. This kind of report granularity is also adopted
by the majority of later proposed multi-hop knowledge editing methods, either in full (Anonymous,
2024) or in spirit with different subsample settings (Gu et al., 2024; Wang et al., 2024; Shi et al.,
2024; Cheng et al., 2024; Mengqi et al., 2024). In this work, we report at an even finer level of
granularity for maximum cross-reference potentials.

Figure 1: Example of contamination between an edited case and an unedited case

1https://www.wikidata.org/wiki/Property:P10209
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3 AUDITING MQUAKE
In this section, we present a comprehensive audit of the error pattern that existed in MQUAKE-CF-
3K and MQUAKE-T (Zhong et al., 2023). We specifically note that our audit is there to provide
a better understanding to the knowledge editing community, especially when digesting methods
evaluated on these datasets. Our audit is not to discredit the contribution of MQUAKE, or any
of the proposed methods evaluated on MQUAKE. We recognize that no dataset can be perfect,
especially when it is intrinsically hard to collect large-scale counterfactual and temporal datasets.

3.1 INTRA CONTAMINATION BETWEEN EDITED CASES AND UNEDITED CASES

As discussed in §2.2, having a gradual evaluation coverage from a few to all cases being edited
like Table 6 makes sense as an evaluation granularity. However, one critical issue is that k ∈
{1, 100, 1000, 3000}-edited cases (supposed MQUAKE-CF-3K) are randomly sub-sampled from
the 3,000 total cases. Thus, there is no guarantee that the k-edited cases and (3000−k) unedited
cases would require two disjoint sets of knowledge and, therefore, risk contamination.

For a concrete example, consider the following two multi-hop questions from MQUAKE-CF-3K
illustrated in Figure 1. When case 482 is selected as an edited case, the edited fact in case 482 would
contaminate the unedited case 126 since both questions would ask for “The citizenship of Kamal
Haasan” and the corresponding edited fact would be retrieved. This leads to the model generating
an answer in conflict with MQUAKE-CF-3K’s label, causing inaccurate experiment readings. See
Appendix B.1 for a detailed walk-through.

We further note the above-illustrated contamination is not a cherry-picked fluke, but rather a wild-
spread error. Here, we sample {1, 100, 1000, 2000, 3000}-editing targets from MQUAKE-CF-3K
using random seed 100, and find the following error statistics in Table 1.

Table 1: Error statistics of MQUAKE-CF-3K and MQUAKE-T (Zhong et al., 2023) in terms edited
cases contaminating unedited cases. k-edited means k cases out of the total dataset are edited.

# of Contaminated MQUAKE-CF-3K MQUAKE-T
1-edit 100-edit 1000-edit 2000-edit 3000-edit 1-edit 100-edit 500-edit 1868-edit

Cases 0 2,013 1,772 910 0 29 1421 1327 0
Subquestions 0 2,706 3,075 1,664 0 29 1421 1327 0

It is observable from Table 1 that even a small number of edited cases will cause concerningly
large contamination to unedited cases and subquestions, where 67% and 76% of all cases
from MQUAKE-CF-3K and MQUAKE-T are contaminated with just 100 cases being edited,
introducing a significant distortion to the reported experiment results.2

We also note that this contamination decreases as the number of edited cases (k-edit) increases,
but it’s simply a result of fewer unedited cases being available for contamination as k grows. For
example, in the extreme case of 3000-edit, there is no contamination between edited and unedited
cases because all cases are edited. However, 3000-edit has the highest level of contamination within
edited cases, which we explore further in §3.2.

3.2 INNER CONTAMINATION BETWEEN DIFFERENT EDITED CASES

Contamination might also happen among multiple edited cases because a certain subquestion pre-
sented in different edited cases can be edited in some but unedited in others3 as illustrated in Figure 2.
Similar to §3.1, an edited fact from case 1968 would alter the answer to an unedited hop in the edited
case 1570. So, the model would generate an answer in conflict with the dataset ground truth label,
causing inaccurate experiment readings. See Appendix B.2 for a detailed walk-through.

This type of contamination is, once again, universally visible in MQUAKE, as shown in Table 2;
which is very much a flipped version of Table 1. With k-edit growing, there are more edited cases,

2We note that in Zhong et al. (2023), “k-edit” means only k of edited cases are evaluated, without any
unedited cases. We evaluated both to better reflect the locality of different knowledge editing methods.

3Note, an edited case does not require all of its subquestions being edited, but merely one of it (Table 7)
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thus more edited-to-edited contamination. Notably, under the 3000-edit tasks, almost one-third
(998/3000, ≈33%) of the evaluated cases are contaminated, which again introduces distortion to
the reported experiment results. We omit the report on MQUAKE-T here because there is only one
edit-to-edit contamination when all 1,868 cases from MQUAKE-T are edited (case_id:424).

Table 2: Error statistics of MQUAKE-CF-3K (Zhong et al., 2023) in terms edited cases contaminat-
ing each others. k-edited means k cases out of the total 3,000 cases are edited.

# of Contaminated 1-edit 100-edit 1000-edit 2000-edit 3000-edit
Cases 0 14 265 619 998
Subquestions 0 14 337 854 1,399

Figure 2: Example of contamination between two edited cases

3.3 CONFLICTING EDITS

The two types of contamination introduced in §3.1 and §3.2 are indeed subtle and hard to detect.
However, MQUAKE-CF-3K also includes some straightforward edit conflicts, such as for the sub-
question “Which company is Ford Mustang produced by?” we have the following edits:

⋄ case_id:2566 (edited): Ford Moter Company Nintendo.
⋄ case_id:231/2707 (edited): Ford Moter Company Fiat S.p.A.

This is going to cause a direct conflict when case_id:2566 and any of the
case_id:231/2707 are both selected as edited cases, as they shall confuse any knowl-
edge edited LLM for having two answers to the same questions. Fortunately, such types of errors
are rather minuscule in MQUAKE-CF-3K, with the abovementioned Ford Mustang question and
three cases being the only affected data samples.

3.4 MISSING INFORMATION IN MULTI-HOP QUESTION INSTRUCTIONS

As mentioned in §2, the MQUAKE dataset is built upon a severely filtered Wikidata: RDF knowl-
edge graph (Vrandečić & Krötzsch, 2014). Specifically, the triples of a certain {2, 3, 4}-hop walk
on this subgraph are then fed into a GPT-3.5-turbo model to generate three multi-hop question
instructions in a natural language format. During evaluation, an LLM is considered right should it
correctly answer against any three of the multi-hop question instructions (Zhong et al., 2023).

However, while repeating generation three times definitely reduces the chances of having incompre-
hensible question instructions, we noticed some of such instructions in MQUAKE are still incom-
plete. We take the following triple set and its generated 3-questions as an example:

5
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• case_id:546 (unedited): We have a 2-hop question with “Albert Mohler” as the subject and
(employer, religion or worldview) as the relation chain. MQUAKE-CF-3K pro-
vides the following generated multi-hop questions:
⋄ Generation #1: What religion is Albert Mohler associated with?
⋄ Generation #2: Which religion does Albert Mohler follow?
⋄ Generation #3: With which religious faith does Albert Mohler identify?

All three generated questions omit the part mentioning which company/institution Albert Mohler is
employed by and essentially reduce themselves to single-hop questions, where a correct generation
should read like “What religion is Albert Mohler’s employer associated with?” Without the com-
plete question, suppose there is an edit on Albert Mohler’s employer (which there indeed is one),
the final answer would likely change. However, with this omission of information, even the best
knowledge-edited LLM cannot answer the question correctly with a faithful approach.

As a general analysis, we find the natural language question instructions of 672 cases in
MQUAKE-CF-3K are missing information in comparison to their raw triplet chain. This
number is counted in the sense that one or more pieces of information present in the triple chain
are missing from all three variants of the generated natural language instruction. Similarly, there are
2,830 and 233 cases of erroneous instructions in MQUAKE-CF and MQUAKE-T, respectively.

3.5 DUPLICATED CASES

The last kind of error we discovered in MQUAKE is simply unintended duplication — i.e., two or
more cases sharing the same start subjects, edited facts, chain of triples, and final answer — i.e.,
they are the carbon copy of each other, yet simultaneously exist in the dataset. We discovered 47, 4,
and 4 cases of duplication, respectively, in MQUAKE-CF, MQUAKE-CF-3K, and MQUAKE-T.

4 REMASTERING MQUAKE

In this section, we illustrate how we modified and improved the MQUAKE dataset to MQUAKE-
REMASTERED with various fixes on the data samples themselves, as well as providing utility mod-
ules to facilitate how one interacts with such datasets. We further provide audit correctness analysis
in Appendix C. Furthermore, we demonstrate the impact of our improvements through ablation
studies that analyze the types of errors addressed, as discussed in Appendix D.

4.1 HARD CORRECTIONS

Three types of error existing in MQUAKE can be fixed once and for all with some careful hard
corrections, they are namely Conflicting Edits (§3.3), Missing Information in Multi-hop Question
Instructions (§3.4), and Duplicated Cases (§3.5). For Conflicting Edits and Duplicated Cases, since
there are only a few such errors (<50 per type per dataset), we employ some manual corrections to
address these errors: in the former case, we flip the minority edits to align with the majority edits
(and adjust their answers to their subsequence subquestions, should there be any); in the latter case,
we simply remove such duplicated cases (except for MQUAKE-CF-3K, which we manually select
4 more cases from MQUAKE-CF to keep the dataset having 3,000 cases in total and a 1,000 cases
for {2, 3, 4}-hops). For consistency, we rewrite the natural language question instructions for all
questions in the datasets using meta-llama/Llama-3.1-405B (Dubey et al., 2024).

4.2 DYNAMIC MASKING FOR MAXIMUM COVERAGE: MQUAKE-REMASTERED-CF,
MQUAKE-REMASTERED-CF-3K, AND MQUAKE-REMASTERED-T

Due to the contamination count of Intra Edited-to-Unedited Contamination (§3.1) and Inner Edited-
to-Edited Contamination (§3.2) tend to grow in the opposite direction as shown in Table 1 and 2,
it is impossible to find a fix within the current MQUAKE that can address both issues without
significantly decreasing the dataset size. As an alternative, we develop an API that will take a
case_id and an edited_flag as input, indicating the evaluating case-in-question and whether
this case is considered edited; our API shall then return a set of triples that are contamination free
by dynamically masking out the conflicting edits from other cases. After such, the user may build
up an editing knowledge bank upon such triplets and conduct evaluations for any memory-based

6
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knowledge editing methods without losing any cases caused by contaminations. Due to the nature
of the N -hop question, at most N edited facts would be removed for each case, marginal compared
to the number of edited facts in Table 12.

Specifically, once case_id-of-interest is given, our API would loop through all of its subquestions
and identify if any is considered edited under another case. If there is a hit, the triple for such edited
subquestions is removed from the bank of edited triples in constant time. This dynamic masking
mechanism would ensure all cases within the original MQUAKE be usable against memory-based
knowledge editing methods. However, the drawback of masking is it won’t support parameter-
based knowledge editing methods, where weight update is required. We additionally provide a
MQUAKE-REMASTERED-CF-6334 to address the need for such methods (Appendix E.1).

5 MAKING SAFE AND FAITHFUL APPROACH TO MQUAKE AND
MQUAKE-REMASTERED

In addition to our dataset audit, fix, and the benchmark results we’d show below, it is our observa-
tion that many multi-hop knowledge editing methods with decent accuracy reports on MQUAKE
or MQUAKE-REMASTERED are utilizing designs that leverage dataset idiosyncrasies unique to
MQUAKE. For example, methods like GLAME (Mengqi et al., 2024) utilize Wikidata (Vrandečić
& Krötzsch, 2014) as the external knowledge graph to better detect the edit-induced conflicts, which
happen to be the source of MQUAKE as discussed in §2.1. While these methods might have decent
performance on MQUAKE, the cost of maintaining a positive knowledge graph on the correct — but
not just edited — knowledge facts is undoubtedly a non-trivial operation cost. Yet, whether sourc-
ing the same Wikidata knowledge graph as MQUAKE might bring them data-specific advantages
remains unanswered. Similarly, PokeMQA (Gu et al., 2024) utilizes the 6,218 cases included in
MQUAKE-CF but not in MQUAKE-CF-3K as the train set to train its auxiliary components. Given
MQUAKE is a dataset with relatively low diversity (e.g., it only includes 37 types of relations),
whether having a heavily overlapped train and test set will result in data-specific advantages unique
to MQUAKE and its variants, again remains unanswered.

5.1 A MINIMALLY INVASIVE BUT PERFORMANT APPROACH: GWALK

Here, we provide a brief walkthrough of a simple method we designed, namely GraphWalk. GWalk
does not leverage any data-specific property unique to MQUAKE or MQUAKE-REMASTERED.
Yet, it still presents SOTA performance surpassing many, if not all, established baselines. We illus-
trate this pilot method as concrete guidance and potential inspiration to our future multi-hop
knowledge editing scholars.

The design of GWalk hinges on the fundamental pipeline of memory-based knowledge editing meth-
ods: where the pool of source only contains edited facts. This school of editing methods has proven
to be successful, mainly because it can leverage the power of retrieval-argument generation (RAG)
combined with the in-context learning (ICL) capability of LLMs. Further, it is common sense that
edited knowledge facts will be much less than unedited knowledge facts, making maintaining a
knowledge pool exclusively containing edited facts a viable option — like done so in MeLLo.

Different from MeLLo, where all edited facts are converted from triples to natural language (NL)
descriptions in its edited bank, GWalk preserves the edited facts in their original triples fashion
and leverages the graph topology. This makes maintaining this edited bank much easier — as
one can easily adjust the entity or relation on a knowledge graph without rewriting every natural
language description of every related edited fact. It also brings more precise retrieval mapping
when a question of a certain edited fact is asked. Methods like MeLLo rely on RAG from a
pool of edited facts in NL format. This can lead to unintended retrievals, where irrelevant facts with
similar embeddings are retrieved, potentially causing hallucinations. However, if we simply query
the entity and relations implied in a question against a knowledge graph, there is less chance of
retrieving unintended materials. We share the detailed pseudocode of GWalk in Algorithm 1 and
demonstrate some case studies in Appendix G.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1: General Procedure of GWalk on One Multi-hop Question
Input:

M , the Question Answering Language Model;
T , a Text-embedding model;
Q, a Multi-hop Question;
E, a bank of edited facts as a knowledge graph.

Output:
op, the answer to Q.

Initialize:
i = 1, the subquestion counter;
op = None, the answer from the previous subquestion.

1 s← Extracted subject from Q;
2 rels← Prompt M to breakdown Q into a sequence of relations.
/* If Q is ‘What is the official language of the country where Karl Alvarez

holds citizenship?’, then s would be ‘Karl Alvarez’ and a possible rels is
[‘citizenship’, ‘official language’] */

3 for r ∈ rels do
4 Query < s, r, ? > against E using T , namely we do T (s) first to determine if there is a retrievable s ∈ E, then

inspect if the s ∈ E has an relation edge retrievable by T (r).
/* We set a threshold on embedding similarity for T to determine whether an

item is retrievable or not. */
5 Prompt M to generate subquestion qi with s and r.
6 op ← the M -generated answer to qi.
7 if T (s, r) has a valid retrieval < s, r, o∗ > then
8 op ← o∗;

/* The answer to this subquestion will be the start subject of the next
subquestion. */

9 s← op ;
10 i← i+ 1;
11 Return op;

6 BENCHMARK AND DISCUSSION

Given almost all proposed multi-hop knowledge editing methods are evaluated on the original,
error-contained, MQUAKE datasets. Here, we provide a re-benchmark of those methods against
post-fix MQUAKE-REMASTERED datasets for a more reliable reporting of each method’s perfor-
mance. All experiments are conducted with one or more 80G NVIDIA A100 GPUs. Please refer to
https://anonymous.4open.science/r/MQuAKE-Remastered-118E for assets.

6.1 EXPERIMENT COVERAGE

Compared Methods In this work, we aim to cover most, if not all, open-sourced knowledge
editing methods specifically evaluated on the original MQUAKE. This includes MeLLo (Zhong
et al., 2023), PokeMQA (Gu et al., 2024), RAE (Shi et al., 2024), and DeepEdit (Wang et al., 2024)
as methods specifically proposed to target this multi-hop knowledge editing problem and evaluated
on MQUAKE. We additionally include ICE (Cohen et al., 2023) and IKE (Zheng et al., 2023a) as
these are also methods purposed for the (single-edit) multi-hop knowledge editing task, though not
specifically evaluated on MQUAKE in their original publications. General editing methods like
ROME (Meng et al., 2022) and MEND (Mitchell et al., 2022) are also featured. We note that we
are aware methods like GLAME (Mengqi et al., 2024), StableKE (Wei et al., 2024), Temple-MQA
(Cheng et al., 2024), and GMeLLo (Anonymous, 2024) are also evaluated on MQUAKE, but they
are purposely omitted from our re-benchmark coverage due to lack of open-sourced implementation,
likely because most of these works are still in submission.

Covered Models We opt to use lmsys/vicuna-7b-v1.5 (Zheng et al., 2023b), mistralai/Mistral-
7B-Instruct-v0.2 (Jiang et al., 2023), and meta-llama/Meta-Llama-3-8B-Instruct (AI@Meta, 2024)
as the choice of question-answering models, both for alignment with existing works (Zhong et al.,
2023; Shi et al., 2024; Gu et al., 2024) as well as providing coverage the most recent language
models. For methods that require a text-embedding model as a retriever, we use facebook/contriever-
msmarco (Izacard et al., 2022) for alignment with MeLLo (Zhong et al., 2023).

Covered Datasets We will provide coverage on our post-fix dataset, namely MQUAKE-
REMASTERED-CF, MQUAKE-REMASTERED-CF-3K, and MQUAKE-REMASTERED-T in the
masking fashion illustrated in §4.2; as well as MQUAKE-REMASTERED-CF-6334 in its vanilla
form. These datasets are respectively corresponding to the original MQUAKE-CF, MQUAKE-CF-
3K, and MQUAKE-T from Zhong et al. (2023) (with 6334 as an extra for parameter-based methods),
but with the types of error mentioned in §3 fixed in the via means illustrated in §4.
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6.2 RESULTS AND DISCUSSION

Table 3: Performance Comparison of Original MQUAKE and our MQUAKE-REMASTERED datasets using
llama3-8b (AI@Meta, 2024) with every case as edited case. The original MQUAKE cannot faithfully reflect the
true capacities of the methods due to errors specified in §3, especially if the method-in-question is performant.

Method MQuAKE-CF-3k MQuAKE-T
Original Remastered Original Remastered

MeLLo (Zhong et al., 2023) 6.7 6.77 30.84 44.37
GWalk (Ours) 36.23 66.33 46.41 54.88

Given that our MQUAKE-REMASTERED is mostly provided as a fix to MQUAKE, we would
like to highlight the drastic results difference when the same method is evaluated on these two
datasets. Table 3 shows our fixing can indeed result in drastically different experiment reports.
Where such difference is especially significant for stronger methods, suggesting all previous report-
ing on MQUAKE has room for reliability improvements, which we filled here with MQUAKE-
REMASTERED.

Table 4: Experiments on MQUAKE-REMASTERED-CF-6334 with numbers of edited cases and

methods. Results are reported in the format:
Total Accuracy

(Test Edited Accuracy, Train Edited Accuracy, Unedited Accuracy)

Method MQUAKE-REMASTERED-CF-6334
100-edit 1000-edit 3000-edit 6344-edit

lmsys/vicuna-7b-v1.5 (Zheng et al., 2023b)

MeLLo (Zhong et al., 2023) 19.16
(0, 10.99, 19.37)

19.27
(5.1, 9.58, 24.53)

11.17
(4.31, 8.55, 23.3)

6.83
(4.58, 7.72, 19.05)

ICE (Cohen et al., 2023) OOM OOM OOM OOM
IKE (Zheng et al., 2023a) OOM OOM OOM OOM

PokeMQA (Gu et al., 2024) - - - 21.77
(3.25, 30.82, 1.59)

DeepEdit Wang et al. (2024) <1 <1 <1 <1

GWalk (Ours) 57.55
(22.22, 64.84, 57.48)

61.79
(29.08, 66.17, 63.23)

59.1
(39.3, 63.74, 64.33)

56.62
(44.64, 62.11, 68.25)

mistralai/Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)

MeLLo (Zhong et al., 2023) 27.5
(<1, 23.08, 27.65)

27.54
(12.76, 24, 30.4)

24.37
(11.88, 25.51, 32.06)

21.26
(13.29, 24.9, 30.16)

ICE (Cohen et al., 2023) OOM OOM OOM OOM

IKE (Zheng et al., 2023a) 8.82
(11.11,6.59,8.86) OOM OOM OOM

PokeMQA (Gu et al., 2024) - - - 20.38
(3.99, 27.41, 69.84)

DeepEdit Wang et al. (2024) <1 <1 <1 <1

GWalk (Ours) 56.25
(33.33, 57.14, 56.28)

58.9
(34.69, 60.57, 60.6)

56.03
(42.69, 59.04, 59.85)

54.43
(47.49, 57.74, 52.38)

meta-llama/Meta-Llama-3-8B-Instruct (AI@Meta, 2024)

MeLLo (Zhong et al., 2023) <1 <1 1.12
(1.17, 1.48, 0.22)

1.27
(<1, 1.4, 1.59)

ICE (Cohen et al., 2023) OOM OOM OOM OOM
IKE (Zheng et al., 2023a) <1 OOM OOM OOM

PokeMQA (Gu et al., 2024) - - - 20.38
(1.08, 28.41, 76.19)

DeepEdit (Wang et al., 2024) 24.13
(11.1, 19.78, 24.29)

24.35
(8.16, 20.52, 26.27)

21.01
(7.57, 19.65, 25.38)

18.90
(7.48, 18.81,28.57)

RAE (Shi et al., 2024) 29.33
(22.22, 12.09, 29.74)

25.65
(33.67, 11.67, 32.49)

15.59
(23.11, 10.12, 33.48)

11.58
(18.75, 11.39, 28.57)

GWalk (Ours) 67.01
(33.33, 74.73, 66.92)

71.89
(47.45, 80.94, 70.65)

73.76
(54.05, 81.6, 71.12)

74.22
(61.02, 80.47, 73.02)

In Table 4, we present benchmark results on MQUAKE-REMASTERED-CF-6334. GWalk consis-
tently outperforms other methods in terms of models and edit numbers. The “OOM” in ICE and IKE
are due to memory overload from concatenating all edited facts in the in-context learning prompt.
Whereas, the "<1" results likely stem from the LLM’s failure to recognize the few-shot examples,
often generating irrelevant tokens or failing to follow the few-shot format. This issue was ob-
served with MeLLo using Meta-Llama-3-8B-Instruct, and with DeepEdit using vicuna-7b-v1.5 and
Mistral-7B-Instruct-v0.2. Due to page limitation, we refer our readers to Appendix H for bench-
marks of MQUAKE-REMASTERED-CF, MQUAKE-REMASTERED-CF-3K, and MQUAKE-
REMASTERED-T. We present MQUAKE-REMASTERED-CF-6334 in main text solely because it
can feature the most methods.
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7 RELATED WORKS

Audit and Fix of MQUAKE To the best of our knowledge, no work has conducted a compre-
hensive audit to MQUAKE as we do, but two prior arts have touched on the errors existing in
MQUAKE: GMeLLo (Anonymous, 2024) and DeepEdit (Wang et al., 2024).

Table 5: Comparison of error analysis/quantification/fix of MQUAKE provided in different works.

Ref. Error Types Found Error Quantified Error Scopes
Fixed

Cost of Fixing

GMeLLo
(Anonymous,
2024)

Missing Instruction No No N/A

DeepEdit
(Wang et al.,
2024)

Inner Contamination CF-3K in 3000-edit CF-3K in 3000-
edit

998 out of 3000
cases removed
from CF-3K

Ours

Intra Contamination,
Inner Contamination,
Conflicting Edits,
Missing Instructions,
Duplicated Cases

CF-3K in
{1, 100, 1000, 3000}-edit,
T in
{1, 100, 500, all}-edit,
CF-9K in
{1, 100, 1000, 3000,
6000, all}-edit

CF-3K, T, CF-9K in
any-edit

Remastered-
CF-6334 in any-edit

No case re-
moved from
CF-3K, CF-9K,
or T.

Specifically, GMeLLo briefly discusses the inconsistency between the triple chain and the corre-
sponding generated instructions in its §4.5.1, which is the same type of error we discussed in §3.4.
However, GMeLLo merely presents two examples of such an error without providing any quantita-
tive error analysis or fix; we did both in §3.4 and §4.1.

DeepEdit (Wang et al., 2024) discovered the same inner contamination error (edited-to-edited) as we
discussed in §3.2, but limited to one dataset (MQUAKE-CF-3K) under one setting (when all 3000
cases are considered edited). Further, DeepEdit removed all 998 inner contaminated cases from the
MQUAKE-CF-3K dataset — which is (supposedly) the same 998 cases we detect in Table 2 under
the 3000-edit column - and named it MQUAKE-2002. While this fix is, of course, helpful, we
argue our Remastered fixes are much more comprehensive and effective since they patched
many more errors revealed in §3 (the other four types of errors still exist in MQUAKE-2002),
and most importantly, done so without scarifying almost 1/3 of the capacity of the original
dataset thanks to masking utility we proposed in §4.2. We further demonstrate the quantifiable
difference between our work, GMeLLo, and DeepEdit in Table 5.

Multi-hop Knowledge Editing Datasets RippleEdit (Cohen et al., 2023) is the only other publicly
available multi-hop knowledge editing dataset. However, it is actually a single-edit dataset, meaning
only one edited fact is addressed at a time. We consider this an oversimplification of real-world
scenarios, where systems must handle multiple edits simultaneously. This design also inherently
avoids contamination. For additional exercise, we convert RippleEdit to a multi-edit setup to 1)
make it more challenging, 2) show that our audit can also “fix” issues within a different dataset, and
3) demonstrate our proposed GWalk is indeed faithful and doesn’t depend on MQuAKE-specific
data. More in Appendix F.

Benchmark and Guidance Our work re-benchmarks nearly all open-sourced knowledge editing
methods on MQUAKE and guides on safely and faithfully approaching such datasets. To the best
of our knowledge, no other work offers this level of benchmarking or touches on the same issues.
Notably, we are likely the only work to evaluate on MQUAKE-CF/MQUAKE-CF-9K, the largest
dataset that even the original MQUAKE paper did not assess due to resource constraints. Table 13
illustrates the significant difference in evaluation coverage between our work and previous efforts.

8 CONCLUSION

In this work, we conduct a comprehensive audit of MQUAKE and present MQUAKE-
REMASTERED, which fixes many critical errors within MQUAKE. We further re-benchmarked
almost all open-sourced knowledge editing methods evaluated on MQUAKE with our MQUAKE-
REMASTERED datasets and provided guidance and examples on how to faithfully approach these
datasets with our GWalk — an efficient yet capable baseline for future works.
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A EXTENDED PRELIMINARY

A.1 DEMO REPORT OF MQUAKE

Table 6: Standard reporting format of MQUAKE-CF-3K, and MQUAKE-T demoed with MeLLo
on Vicuna-7B (Zheng et al., 2023b); k-edited means k cases out of the total cases are edited. Ab-
breviated table courtesy of Zhong et al. (2023) (Table 3).

Model Method MQUAKE-CF-3K MQUAKE-T
1-edit 100-edit 1000-edit 3000-edit 1-edit 100-edit 500-edit 1868-edit

Vicuna-7B MeLLo
(Zhong et al., 2023) 20.3 11.9 11.0 10.2 84.4 56.3 52.6 51.3

A.2 DATASET STATISTICS

Table 7: Dataset Statistics of MQUAKE. Numbers are in terms of cases (a case in MQUAKE is a
chain consisting of multiple subquestions).

Dataset # of Edits 2-hop 3-hop 4-hop Total

MQUAKE-CF-3K

1 513 356 224 1,093
2 487 334 246 1,067
3 - 310 262 572
4 - - 268 268

All 1,000 1,000 1,000 3,000

MQUAKE-CF

1 2,454 855 446 3,755
2 2,425 853 467 3,745
3 - 827 455 1,282
4 - - 436 436

All 4,879 2,535 1,804 9,218

MQUAKE-T 1 (All) 1,421 445 2 1,868

Table 8: Dataset Statistics of MQUAKE-REMASTERED. Numbers are in terms of cases (a case in
MQUAKE is a chain consisting of multiple subquestions).

Dataset # of Edits 2-hop 3-hop 4-hop Total

MQUAKE-REMASTERED-CF-3K

1 513 356 224 1,093
2 487 334 246 1,067
3 - 310 262 572
4 - - 268 268

All 1,000 1,000 1,000 3,000

MQUAKE-REMASTERED-CF

1 2,446 850 441 3,737
2 2,415 852 463 3,730
3 - 823 451 1,274
4 - - 430 430

All 4,861 2,525 1,785 9,171

MQUAKE-REMASTERED-T 1 (All) 1,421 441 2 1,868

MQUAKE-REMASTERED-CF-6334

1 1,971 77 0 2,048
2 2,415 476 14 2,905
3 - 823 128 951
4 - - 430 430

All 4,386 1,376 572 6,334
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B EXTENDED AUDITING

B.1 EXAMPLE OF INTRA CONTAMINATION BETWEEN AN EDITED CASE TO AN UNEDITED
CASE (§3.1)

For a concrete example, consider the following two multi-hop questions from MQUAKE-CF-3K
(we also additionally provide the subquestion breakdown and intermediate answers of the two ques-
tions for better presentation, we note that such auxiliary information is not part of the instruction
visible to the question-answering LLM):

• case_id:126 (unedited): What is the continent of the country where Kamal Haasan holds
citizenship?
⋄ What is the country of citizenship of Kamal Haasan? India.
⋄ What is the continent of India? Asia.

• case_id:482 (unedited): What is the capital of the country where Kamal Haasan holds citi-
zenship?
⋄ What is the country of citizenship of Kamal Haasan? India.
⋄ What is capital of India? New Delhi.

The correct pre-edited answer should be “Asia” and “New Delhi” respectively. As Kamal Haasan
is an Indian citizen, India is located in Asia and is the capital of New Delhi. However, suppose
case_id:482 is sampled as an edited case while case_id:126 remains unedited, we will be
provided with the additional triple containing the knowledge of “The official language of United
States of America is Arabic.”

Since the unedited case_id:126 and the edited case_id:482 share the same subquestion of
“What is the country of citizenship of Kamal Haasan?” The answer of case_id:482 will be
rightfully updated to “USA” per the new knowledge. However, the unedited case_id:126 still
considers the original answer “India” to be correct, and is therefore contaminated by the edited
case case_id:482 in an unintended fashion. This is problematic because a successful knowledge
editing method should be able to retrieve the edited knowledge — “Kamal Haasan is a citizen of
USA?” — upon the relevant questions (in this case the shared one), and thus answering “North
America” to case_id:126. This is technically correct, but in conflict with MQUAKE-CF-3K’s
label, causing inaccurate experiment readings.

B.2 EXAMPLE OF INNER CONTAMINATION BETWEEN DIFFERENT EDITED CASES (§3.2)

Again, we walk through two cases from MQUAKE-CF-3K as a concrete example. First, we show
them in their unedited format (again, subquestion breakdowns and intermediate answers are here for
demonstration purposes and are not visible to the question-answering LLM during evaluation):

• case_id:1570 (unedited): Who was the creator of the official language used in the work loca-
tion of Matti Vanhanen?
⋄ Which city did Matti Vanhanen work in? Helsinki.
⋄ What is the official language of Helsinki? Finnish.
⋄ Who was Finnish created by? Mikael Agricola.

• case_id:1968 (unedited): Who created the official language of Housemarque’s headquarters
location?
⋄ Which city is the headquarter of Housemarque located in? Helsinki.
⋄ What is the official language of Helsinki? Finnish.
⋄ Who was Finnish created by? Mikael Agricola.

Suppose case_id:1570 and case_id:1968 are both selected as editing cases, two triples
containing the following knowledge will be available: “The official language of Helsinki is Black
Speech” (intended for case_id:1570), and “Finnish was created by William Shakespeare” (in-
tended for case_id:case_id:1968), leading to the following edited breakdown.

• case_id:1570 (edited): Who was the creator of the official language used in the work location
of Matti Vanhanen?
⋄ Which city did Matti Vanhanen work in? Helsinki.
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⋄ What is the official language of Helsinki? Finnish Black Speech.
⋄ Who was Finnish Black Speech created by? J. R. R. Tolkien.

• case_id:1968 (edited): Who created the official language of Housemarque’s headquarters
location?
⋄ Which city is the headquarter of Housemarque located in? Helsinki.
⋄ What is the official language of Helsinki? Finnish.
⋄ Who was Finnish created by? Mikael Agricola William Shakespeare.

Much like the previous conflict between unedited and edited cases, these two edited cases share a
common subquestion: “What is the official language of Helsinki?” However, such subquestion is
edited in case_id:1570 while unedited in case_id:1968, causing unintended contamination.

B.3 ERROR ANALYSIS OF MQUAKE-CF

Table 9: Error statistics of MQUAKE-CF (Zhong et al., 2023) in terms of edited cases contaminating
unedited cases §3.1. k-edited means k cases are edited out of the total 9218 cases.

# of Contaminated MQUAKE-CF-3K
1-edit 100-edit 1000-edit 2000-edit 3000-edit 5000-edit 9218-edit

Cases 62 3307 5275 5110 4578 3346 0
Subquestions 62 4525 8751 8989 8326 6364 0

Table 10: Error statistics of MQUAKE-CF (Zhong et al., 2023) in terms edited cases contaminating
each others §3.2. k-edited means k cases are edited out of the total 9218 cases.

# of Contaminated 1-edit 100-edit 1000-edit 2000-edit 3000-edit 5000-edit 9218-edit
Cases 0 8 192 441 732 1397 2873
Subquestions 0 12 270 606 1027 1986 4250
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C ERROR DETECTION PROCEDURE AND POST-AUDIT CHECKING

In this section, we discuss how exactly we carry out our audit and fixes and how we conduct our
post-audit checking to ensure our audited datasets are error-free to the best of our ability.

C.1 INTRA AND INNER CONTAMINATION

As discussed in §3.1 and §3.2, we observed that some edited facts were retrieved for subquestions
that were not intended to involve an edit. We categorized this issue as contamination, where edited
facts inadvertently influence the correct reasoning path. To carry out the audit, we made the fol-
lowing observation: regardless of whether a case is edited or unedited, a valid reasoning path must
always exist from the initial subquestion to the last subquestion. Thus, suppose any unedited sub-
question on this reasoning path shares the same subject and relation with a triple reflecting an edited
fact; then this unedited subquestion is contaminated and therefore flagged.

We programmed the abovementioned filtering mechanism and identified the contaminated edit facts
against different subquestions/cases. We then employed the API described in §4.2 to dynamically
mask out contaminated cases. Last, we confirmed that there is no contamination remaining by re-
executing our filtering program upon the dynamically masked dataset.

C.2 CONFLICTING EDITS

As illustrated in §3.3, we noticed some edits within the editing knowledge bank are self-
contradicting, where edits with the same subject and relation led to different tail entities. Again,
we follow the intended reasoning path as introduced above and check if there are multiple edit-
reflecting triples that share the source and relation with an edited subquestion. If so, this suggests
there are conflicting edits. We flagged all those edited triples, put ones with shared sources and
relations into the same group, then flipped the minority edit to the majority edit and updated their
subquestions accordingly. We then reran the program to ensure no more flagged triples.

C.3 MULTI-HOP QUESTION INSTRUCTION REWRITE

As highlighted in §3.4, we identified some questions lacked a complete set of relations in their in-
structions, thus essentially omitting necessary information for a model to provide the correct answer.
We collect a list of synonyms of all relations of an editing path, then evaluate if a certain instruction
is not using any of the corresponding synonyms when its reasoning path indicates it should reflect a
certain relation.

Subsequently, we prompted the original meta-llama/Llama-3.1-405B to regenerate all instructions
with the few-shot demonstration prompt demoed in Appendix E.2 and reran the detection procedure.
This process resulted in only a small number of instructions that still didn’t meet our predefined rules
due to the fact that our lists of synonyms per each relation cannot be exhaustive by design. We then
manually inspect and, in a few occupations, manually fix those flagged cases.

C.4 DUPLICATE CASES

Upon investigating conflicting edits, we accidentally discovered that there exist cases with identical
reasoning paths to each other, as illustrated in §3.5. We simply opt to retain only one of such cases
and remove the duplicated rests. We then keep track of a set of reasoning paths from all cases and
see if the cardinality of the set is equivalent to the number of cases.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D ERROR TYPE ABLATION STUDY

In this section, we provide ablation studies demonstrating the benefits of addressing errors in the
MQuAKE dataset, aligning with the observed error patterns in Tables 2 and 1. Using our proposed
GWalk and the Llama-3.1-8B-Instruct model, we evaluate datasets corrected for major error types,
including Inner Contamination, Intra Contamination, and Missing Information in Multi-hop Ques-
tion Instructions. These error types significantly affect the performance of both edited and unedited
accuracies. We opt to exclude minor errors, such as duplicate questions and conflict edits, which are
automatically addressed across all settings due to their limited prevalence in the original datasets.

The observed impact is consistent with our analysis: The Inner Contamination fix has the most
impact when editing intensity is high (e.g., 3000-edit). Yet, the Intra Contamination fix has the
most impact with lower editing intensity (e.g., 100-edit). The Missing Instruction fix consistently
improves performance across all editing intensities.

Table 11: Performance comparison across dataset variants of MQUAKE-CF-3K on meta-

llama/Llama-3.1-8B-Instruct. Results are reported as
Total Accuracy

(Test Edited Accuracy, Unedited Accuracy) .

Type of Errors Fixed MQUAKE-CF-3K
100-edit 1000-edit 3000-edit

Meta-Llama/Llama-3.1-8B-Instruct (Dubey et al., 2024)

None 45.47
(38, 45.72)

42.73
(41.3, 43.45)

39.57
(39.57, -)

Inner Contamination 46.83
(70, 46.03)

53.3
(73.9, 43)

71.36
(71.36, -)

Intra Contamination 71.17
(37, 72.35)

61.73
(40.9, 72.15)

39.87
(39.87, -)

Missing Instruction 49.33
(41, 49.62)

47.2
(45.6, 48)

45.1
(45.1, -)

All (Our proposed) 76.83
(69, 77.1)

75.03
(74.6, 75.25)

71.53
(71.53, -)

E EXTENDED REMASTERING

E.1 CONTAMINATION FREE SUBSET: MQUAKE-REMASTERED-CF-6334

While MQUAKE-REMASTERED-MASKED with masking operation can well support memory-
based knowledge editing methods, it will not be compatible with parameter-based methods. This is
because, for parameter-based methods, the set of edited facts used for training and evaluation needs
to be constant yet consistent with each other at all times; whereas dynamic masking cannot suffice
as it is essentially adjusting the dataset on the fly during inference time.

To effectively evaluate parameter-based knowledge editing methods, we present MQUAKE-
REMASTERED-CF-6334. MQUAKE-REMASTERED-CF-6334 is a dataset extracted from
MQUAKE-CF, where all 6,334 cases are edited cases; and they are completely contamination-free
from each other. This dataset is suitable for LLM editing with parameter-based approaches, as one
can make careful splits among the 6,334 cases of MQUAKE-REMASTERED-CF-6334 to serve as
train, validation, and evaluation sets.

Table 12: The number of unique edited facts for a varied number of edited cases in MQUAKE-
REMASTERED-CF

Number of Edited Cases 100 1000 3000 6000 All (9171)
Number of Unique Edited Facts 150 1171 2991 5137 7252
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Table 13: Experiment coverage comparison among our and other works. For brevity and better rele-
vance, “Method Coverage” only includes open-sourced methods specifically designed for multi-hop editing,
as adopted single-hop editors are often too weak to deliver usable results. “Separate Metrics?” means that
both the accuracy of edited cases and unedited cases are reported. We consider the inclusion of both metrics
paramount, as editing is often a double-edged sword, causing potential hallucinations under unedited scenarios.
Prior work often only tests on the former but ignores the latter. We did both in our work.

Ref. Dataset Coverage Method Coverage Separate
Metrics?

Error
Fix?

MQuAKE
(Zhong et al.,
2023)

CF-3K {1, 100, 1000, all}-edit; T
{1, 100, 500, all}-edit

MeLLo No No

Temple-MQA
(Cheng et al.,
2024)

CF-3K {1, 100, all}-edit; T {1, all}-
edit

MeLLo, PokeMQA No No

Ju et al. (2024) CF-3K {all}-edit N/A No No
PoleMQA (Gu
et al., 2024)

CF-3K {1, 100, all}-edit; T {1, 100,
all}-edit

MeLLo, PokeMQA No No

Ours CF-3K {1, 100, 1000, all}-edit; T
{1, 100, 500, all}-edit; CF-9K {1,
1000, 3000, 6000, all}-edit; CF-
6334 {100, 1000, 3000, all}-edit

MeLLo, ICE, IKE,
PokeMQA, GWalk,
RAE, DeepEdit

Yes Yes

E.2 PROMPT FOR REWRITING INSTRUCTIONS

Few-shot Prompt

Instruction: Given a chain of relations, generate 3 multi-hop questions that comprehen-
sively include the semantics of the relations.

Example 1:
Relation Chain:
XXX -> ’The author of is’ -> ’ is a citizen of’ -> ?
Generated Questions:

1. What is the country of citizenship of the author of XXX?
2. What country is the author of XXX a citizen of?
3. What is the nationality of the author of XXX?

Example 2:
Relation Chain:
XXX -> ’ was developed by’ -> ’The chairperson of is’ -> ’
is a citizen of’ -> ’ is located in the continent of’ -> ?
Generated Questions:

1. What continent is the country located in, where the chairperson of the developer of
XXX is a citizen?

2. On which continent is the country located, whose citizen is the chairperson of the
company that developed XXX?

3. Which continent houses the country of the chairperson of the developer of XXX?
Example 3:
Relation Chain:
<The relational chain we want the generated questions to be
based on>
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F RIPPLEEDIT

We consider MQuAKE’s task design and setup to be more reflective of real-world editing tasks,
as naturally, there will always be more than one edited fact stored for any system with reasonable
complexity. That being said, we are happy to report our proposed pilot method, GWalk, performs
decently on RippleEdit. Here are some snapshot results on Llama-2-7b-chat:

Table 14: Single-edit result of RippleEdit-Popular/Recent/Random. C1/2 means the edit is happen-
ing at the 1st or the 2nd hop (RippleEdit cases only have 2 hops).

Method Popular C1 Acc. Popular C2 Acc. Recent C1 Acc. Recent C2 Acc. Random C1 Acc. Random C2 Acc.
ROME 37.4 16.2 47.8 50.0 35.5 49.5
ICE 85.1 67.6 74.8 85.0 73.8 80.3
MeLLo 45.1 77.1 50.2 80.0 40.2 68.3
GWalk (ours) 85.7 81.8 80.9 87.6 76.1 82.9

We additionally convert RippleEdit to a multi-edit setup — i.e., there are multiple edited facts within
the editing knowledge bank at the same time — to a) make it more challenging and, b) show that our
audit can also “fix” issues within a different dataset. Note we put the “fix” in quotes as RippleEdit
is not designed with multi-edit in mind, so the things we fixed are not necessarily errors but just
some adjustments required for making a proper multi-edit dataset. In any case, here are the snapshot
results on Llama-3-8b-Instruct:

Table 15: Multi-edit result of RippleEdit-Popular/Recent/Random. In this case, we fixed 21/2/0
conflict edits and 3/120/1 case-to-case contamination within RippleEdit-Ropular/Recent/Random
datasets, respectively.

Method Popular C1 Acc. Popular C2 Acc. Recent C1 Acc. Recent C2 Acc. Random C1 Acc. Random C2 Acc.
MeLLo 35.1 40.3 41.1 42.4 49.5 50.0
GWalk (ours) 79.0 66.9 79.2 63.9 72.9 60.0
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G CASE STUDY OF GWALK

We believe GWalk is performant and practical because of two ingredients:

• It only stores edited facts in its Editing Knowledge Bank (Figure 2), contrary to some
baselines (e.g., RAE (Shi et al., 2024)), where unedited facts are also stored. This is more
practical to maintain as there are always fewer edited facts to keep track of, yet the total
search space is much smaller, allowing more precise and efficient retrieval.

• Unlike most baselines, which store edited facts in natural language (NL) format (e.g.,
MeLLo (Zhong et al., 2023) and the majority of existing works) and conduct retrieval based
on NL sentence embeddings, we store such editing facts on a Knowledge Graph (KG). The
topology-based retrieval greatly reduces unintended retrieval, which almost always causes
hallucinations.

Here is a concrete example from MQuAKE-Remastered-CF (case #16), where MeLLo retrieves an
incorrect edited fact on an edited subquestion.

Edited Subquestion Example

Question: What is the country of citizenship of Twitter’s CEO?
1st Subquestion: Who is Twitter’s CEO?
Generated Answer (by LLM): Twitter’s CEO is Elon Musk.
MeLLo-retrieved edited fact: The chief executive officer of CBS Corporation is Steve
Jobs.
// Incorrect edited fact retrieved because this edited fact is close to the subquestion from an
embedding standpoint, even if it doesn’t provide relevant information.
GWalk-retrieved edited fact: The chief executive officer of Twitter is Parag Agrawal.
// This is a correct retrieval because we first identify (in a lossy fashion) entity twitter and
relation executive officer in the KG storing edited facts.

MeLLo 2nd Subquestion: What is the country of citizenship of Elon Musk?
GWalk 2nd Subquestion: What is the country of citizenship of Parag Agrawal?
// MeLLo eventually provides the wrong final answer because the rest of its subquestion is
about Elon Musk, though it should be about Parag Agrawal. We note that this is an editing
dataset, so the ground truth answers often don’t reflect the situation in the real world.

Similarly, here’s MeLLo retrieving an unrelated edited fact on an unedited subquestion (MQuAKE-
Remastered-CF, case #70).

Unedited Subquestion Example

Question: What is the capital of the country where Premam originated?
1st Subquestion: Where Premam was originated?
Generated Answer (by LLM): Premam was originated in India.
MeLLo-retrieved fact: Carnatic music was created in the country of Poland.
// Unrelated edited fact retrieved even if this subquestion is not edited.
GWalk-retrieved fact: None.
// No edited fact is retrieved because no triple (via lossy mapping) on the KG has a source
of Premam with a relation of originated in.

MeLLo 2nd Subquestion: What is the name of the capital city of Poland?
GWalk 2nd Subquestion: What is the capital city of India?
// MeLLo again eventually provides the wrong final answer because the rest of its subques-
tion is about Poland, though it should be about India.
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H ADDITIONAL EXPERIMENT RESULTS

One observation we made in §6.2 is in-context learning-based methods — like ICE (Cohen et al.,
2023) and IKE (Zheng et al., 2023a) tend to “OOM” when facing a larger amount of edited facts.
This is because these two methods — originally designed for single-edit tasks — essentially dump
all edited facts as a long concatenated prompt and expect the model to figure out the corresponding
editings naturally. They face OOM issues because when the number of editing facts grows, the
prompt becomes extremely long and, therefore, introduces a large amount of KV cache and poses
significant memory footprint issues.

While efficiently and effectively handling long input is out-of-scope of our work, as general guid-
ance, we refer interested readers to efficient long context-handing survey/benchmark works like
Yuan et al. (2024), which cover the schools and performance of several popular long context-
handling methods. Other than the system challenges, another necessary aspect is to improve LLM
long context performance, as most LLMs are pre-trained on limited context length and thus cannot
effectively handle long input even if the system challenge is addressed. In this regard, we again
recommend survey/benchmark works like Lu et al. (2024) for insights. Further, one can certainly
convert this long context scenario to leverage the power of the RAG pipeline, much like the majority
of multi-hop knowledge editing methods featured in this work.

Table 16: This is the benchmark results of MQUAKE-REMASTERED-T. The reported format is:
Total Accuracy

(Edited Accuracy, Unedited Accuracy)

Method MQUAKE-REMASTERED-T
1-edit 100-edit 500-edit 1864-edit

lmsys/vicuna-7b-v1.5 (Zheng et al., 2023b)

MeLLo (Zhong et al., 2023) 19.31
(100, 19.27)

18.88
(45.0, 17.4)

22.16
(40.4, 15.47)

44.37
(44.37, N/A)

ICE (Cohen et al., 2023) <1 <1 <1 OOM
IKE (Zheng et al., 2023a) <1 <1 <1 OOM
DeepEdit Wang et al. (2024) <1 <1 <1 <1

GWalk (Ours) 35.52
(100, 35.48)

46.51
(49.0, 46.37)

48.93
(56.0, 46.33)

54.88
(54.88, N/A)

mistralai/Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)

MeLLo (Zhong et al., 2023) 10.3
(0, 10.31)

10.25
(59.0, 7.48)

18.78
(48.4, 7.92)

47.75
(47.75, N/A)

ICE (Cohen et al., 2023) <1 <1 <1 OOM
IKE (Zheng et al., 2023a) <1 <1 <1 OOM
DeepEdit Wang et al. (2024) <1 <1 <1 <1

GWalk (Ours) 34.07
(0, 34.08)

45.76
(47, 45.69)

46.78
(51.2, 45.16)

50.7
(50.7, N/A)

meta-llama/Meta-Llama-3-8B-Instruct (AI@Meta, 2024)

MeLLo (Zhong et al., 2023) <1 1.13
(17, <1)

4.72
(17.4, <1)

16.58
(16.58, N/A)

ICE (Cohen et al., 2023) <1 <1 <1 OOM
IKE (Zheng et al., 2023a) <1 <1 <1 OOM

DeepEdit Wang et al. (2024) 6.49
(0, 6.49)

8.48
(36.0, 6.92)

14.74
(36.20, 6.89)

34.71
(34.71, N/A)

GWalk (Ours) 70.12
(100, 70.1)

73.28
(84.0, 72.68)

76.61
(87, 72.8)

84.01
(84.01, N/A)

meta-Llama/Llama-3.1-8B-Instruct (Dubey et al., 2024)

GWalk (Ours) 74.68
(100, 74.66)

76.34
(85, 75.85)

77.74
(85.4, 74.91)

83.32
(83.32, N/A)

Qwen/Qwen2.5-7B-Instruct (Yang et al., 2024a)

GWalk (Ours) 44.23
(100, 44.21)

46.03
(87, 43.71)

55.1
(85.4, 43.99)

86.32
(86.32, N/A)
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Table 17: This is the benchmark result for MQUAKE-REMASTERED-CF-3K reported in the

format of:
Total Accuracy

(Edited Accuracy, Unedited Accuracy)

Method MQUAKE-REMASTERED-CF-3K
1-edit 100-edit 1000-edit 3000-edit

lmsys/vicuna-7b-v1.5 (Zheng et al., 2023b)

MeLLo (Zhong et al., 2023) 16.54
(100, 16.51)

18
(9.0, 18.31)

14.63
(8.0, 17.95)

6.77
(6.77, N/A)

ICE (Cohen et al., 2023) <1 <1 OOM OOM
IKE (Zheng et al., 2023a) <1 OOM OOM OOM
DeepEdit Wang et al. (2024) <1 <1 <1 <1

GWalk (Ours) 54.89
(100, 54.87)

60.9
(54, 61.14)

57.37
(54.4, 58.85)

66.33
(66.33, N/A)

mistralai/Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)

MeLLo (Zhong et al., 2023) 19.73
(100, 19.71)

18.6
(21, 18.52)

16.33
(17.8, 15.6)

15.93
(15.93, N/A)

ICE (Cohen et al., 2023) <1 <1 OOM OOM

IKE (Zheng et al., 2023a) <1 4.43
(4,4.49)

OOM OOM

DeepEdit Wang et al. (2024) <1 <1 <1 <1

GWalk (Ours) 56.57
(100, 56.55)

61.93
(47, 62.45)

57.17
(51.5, 60.0)

51.0
(51.0, N/A)

meta-llama/Meta-Llama-3-8B-Instruct (AI@Meta, 2024)

MeLLo (Zhong et al., 2023) <1 <1
(2.0, <1)

1.03
(3.0, <1)

2.3
(2.3, N/A)

ICE (Cohen et al., 2023) <1 <1 OOM OOM
IKE (Zheng et al., 2023a) <1 <1 OOM OOM

DeepEdit Wang et al. (2024) 22.93
(0, 22.94)

17.27
(11, 17.48)

15.03
(15.1, 15.0)

12.63
(12.63, N/A)

GWalk(Ours) 69.0
(100, 68.99)

76.73
(67, 77.07)

75.47
(74.2, 76.1)

70.6
(70.6, N/A)

meta-Llama/Llama-3.1-8B-Instruct (Dubey et al., 2024)

MeLLo (Zhong et al., 2023) <1 <1 <1 2.5
(2.5, N/A)

GWalk (Ours) 73.3
(100, 73.3)

76.83
(69, 77.1)

75.03
(74.6, 75.25)

71.53
(71.53, N/A)

Qwen/Qwen2.5-7B-Instruct (Yang et al., 2024a)

MeLLo (Zhong et al., 2023) 40.63
(100, 40.61)

40
(34, 40.21)

35.23
(23.9, 40.9)

23.1
(23.1, N/A)

GWalk (Ours) 65.33
(100, 65.35)

65.27
(65, 65.28)

65.07
(68.4, 63.4)

66.74
(66.74, N/A)
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Table 18: Experiments on MQUAKE-REMASTERED-CF with numbers of edited cases and methods.

Results are reported in the format:
Total Accuracy

(Edited Accuracy, Unedited Accuracy)

Method MQUAKE-REMASTERED-CF
1-edit 1000-edit 3000-edit 6000-edit 9171-edit

lmsys/vicuna-7b-v1.5 (Zheng et al., 2023b)

MeLLo (Zhong et al., 2023) 22.55
(100, 22.54)

21.54
(8, 23.2)

17.79
(7.43, 22.83)

12.62
(7.28, 22.58)

6.95
(6.95, N/A)

ICE (Cohen et al., 2023) <1 OOM OOM OOM OOM
IKE (Zheng et al., 2023a) <1 OOM OOM OOM OOM
DeepEdit Wang et al. (2024) <1 <1 <1 <1 <1

GWalk (Ours)
61.89

(100, 61.89)
56.98

(56.2, 57.07)
56.37

(53.97, 57.54)
54.93

(53.27, 58.06)
54.15

(54.15, N/A)

mistralai/Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)

MeLLo (Zhong et al., 2023) 19.83
(<1, 19.84)

19.08
(20.6, 18.9)

18.9
(19.47, 18.62)

18.27
(19.02, 16.87)

18.09
(18.09, N/A)

ICE (Cohen et al., 2023) <1 OOM OOM OOM OOM
IKE (Zheng et al., 2023a) <1 OOM OOM OOM OOM
DeepEdit Wang et al. (2024) <1 <1 <1 <1 <1

GWalk (Ours)
61.42

(100, 61.42)
57.79

(51.8, 58.52)
56.35

(52.3, 58.32)
53.73

(50.93, 59.04)
51.53

(51.53, N/A)

meta-llama/Meta-Llama-3-8B-Instruct (AI@Meta, 2024)

MeLLo (Zhong et al., 2023) <1 <1 <1 <1 <1
ICE (Cohen et al., 2023) <1 OOM OOM OOM OOM
IKE (Zheng et al., 2023a) <1 OOM OOM OOM OOM

DeepEdit Wang et al. (2024) 22.16
(100, 22.15)

19.26
(21.29, 19.01)

21.09
(24.48, 19.44)

23.04
(23.77, 21.67)

24.25
(24.25, N/A)

GWalk (Ours) 74.09
(100, 74.09)

73.67
(71.1, 73.98)

72.4
(70.9, 73.13)

71.62
(70.33, 74.05)

70.08
(70.08, N/A)

meta-Llama/Llama-3.1-8B-Instruct (Dubey et al., 2024)

GWalk (Ours) 76.27
(1, 76.27)

73.48
(73.1, 73.53)

72.86
(71.98, 73.29)

72.03
(70.96, 74.08)

70.94
(70.94, N/A)

Qwen/Qwen2.5-7B-Instruct (Yang et al., 2024a)

GWalk (Ours) 64.4
(0, 64.41)

62.61
(66.6, 62.12)

63.35
(66.34, 61.9)

64.93
(66.28, 62.4)

66.79
(66.79, N/A)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 19: Additional experiments on meta-llama/Llama-3.1-8B-Instruct (Dubey et al., 2024) and
Qwen/Qwen2.5-7B-Instruct (Yang et al., 2024a) on MQUAKE-REMASTERED-CF-6334. Results

are reported in the format:
Total Accuracy

(Test Edited Accuracy, Train Edited Accuracy, Unedited Accuracy) .

Method MQUAKE-REMASTERED-CF-6334
100-edit 1000-edit 3000-edit 6344-edit

lmsys/vicuna-7b-v1.5 (Zheng et al., 2023b)

ROME (Meng et al., 2022) <1 <1 <1 <1

MEND (Mitchell et al., 2022) 12.75
(11.11, 11, 13.25)

10.36
(7.33, 9.6, 13.64)

9.56
(6.1, 7.2, 11.9)

7.24
(6.38, 6.49, 10.3)

GWalk (Ours) 57.55
(22.22, 64.84, 57.48)

61.79
(29.08, 66.17, 63.23)

59.1
(39.3, 63.74, 64.33)

56.62
(44.64, 62.11, 68.25)

mistralai/Mistral-7B-Instruct-v0.2 (Jiang et al., 2023)

ROME (Meng et al., 2022) <1 <1 <1 <1

MEND (Mitchell et al., 2022) 11.84
(11.11, 9, 12.36)

11.57
(6.95, 8.7, 12.12)

8.39
(3.41, 6.6, 10.1)

6.82
(2.33, 6.4, 8.4)

GWalk (Ours) 56.25
(33.33, 57.14, 56.28)

58.9
(34.69, 60.57, 60.6)

56.03
(42.69, 59.04, 59.85)

54.43
(47.49, 57.74, 52.38)

meta-llama/Meta-Llama-3-8B-Instruct (AI@Meta, 2024)

ROME (Meng et al., 2022) <1 <1 <1 <1

MEND (Mitchell et al., 2022) 13.04
(11.11, 10, 13.47)

13.3
(5.33, 8.4, 14.33)

9.81
(4.21, 8.63, 11.1)

7.42
(5.12, 7.45, 7.3)

GWalk (Ours) 67.01
(33.33, 74.73, 66.92)

71.89
(47.45, 80.94, 70.65)

73.76
(54.05, 81.6, 71.12)

74.22
(61.02, 80.47, 73.02)

meta-Llama/Llama-3.1-8B-Instruct (Dubey et al., 2024)

GWalk (Ours) 66.79
(33.33, 72, 66.66)

73.66
(49.47, 73.68, 73.02)

72.09
(51.23, 75.1, 70.6)

73.3
(55.39, 73.84, 71.55)

Qwen/Qwen2.5-7B-Instruct (Yang et al., 2024a)

GWalk (Ours) 60.59
(33.33, 62, 60.56)

65.42
(30.13, 68.6, 63.83)

68.75
(43.65, 69.9, 64.99)

70.49
(59.12, 70.51, 68.25)
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