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ABSTRACT

As research in large language models (LLMs) continues to accelerate, LLM-based
evaluation has emerged as a scalable and cost-effective alternative to human eval-
uations for comparing the ever increasing list of models. This paper investigates
the efficacy of these “LLM evaluators”, particularly in using them to assess in-
struction following, a metric that gauges how closely generated text adheres to the
given instruction. We introduce a challenging meta-evaluation benchmark, LLM-
BAR, designed to test the ability of an LLM evaluator in discerning instruction-
following outputs. The authors manually curated 419 pairs of outputs, one adher-
ing to instructions while the other diverging, yet may possess deceptive qualities
that mislead an LLM evaluator, e.g., a more engaging tone. Contrary to existing
meta-evaluation, we discover that different evaluators (i.e., combinations of LLMs
and prompts) exhibit distinct performance on LLMBAR and even the highest-
scoring ones have substantial room for improvement. We also present a novel
suite of prompting strategies that further close the gap between LLM and human
evaluators. With LLMBAR, we hope to offer more insight into LLM evaluators
and foster future research in developing better instruction-following models. 1

1 INTRODUCTION

The recent success of LLM-based chat assistants has spurred countless research efforts in both
academia and industry, with new models being released at an astonishing rate. While conventional
benchmarks measure the underlying ability of those models in commonsense and world knowl-
edge (Gao et al., 2021; Srivastava et al., 2022; Hendrycks et al., 2021), human evaluation remains
the gold standard for testing conversational abilities due to the open-ended nature of the task. How-
ever, this is neither scalable nor reproducible (Karpinska et al., 2021). Consequently, LLM evalua-
tors have emerged as a cost-effective alternative for obtaining preference judgments between outputs
from different models (Chiang & Lee, 2023; Dubois et al., 2023; Chen et al., 2023b).

Operationally, an LLM evaluator is a combination of a strong base LLM (OpenAI, 2022; 2023;
Anthropic, 2023) and its prompting strategy (Wei et al., 2022; Zheng et al., 2023). They are usually
given one instruction and corresponding outputs from two models, and asked to choose a preferred
one. It remains an open question whether we can rely on those LLM evaluators and which ones to
use. This highlights the need for a good meta-evaluation benchmark (consisting of instructions and
output pairs associated with human judgments) so that we can evaluate to what extent different LLM
evaluators agree with human preferences and choose evaluators in an informed manner.

How should we construct a good meta-evaluation benchmark? Prior work has primarily used
randomly-sampled output pairs and crowdsourced annotators to construct meta-evaluation bench-
marks to assess LLM evaluators (Dubois et al., 2023; Zheng et al., 2023; Zhang et al., 2023; Wang
et al., 2023b). However, we argue this strategy overlooks one important factor: inherent subjectivity
of human preferences. Consider the top example in Figure 1: despite the quality difference being in-

1Our data and code are available at https://github.com/princeton-nlp/LLMBar.
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Previous Work 

LLMBar
Instruction: Sort the following list into alphabetical order. apple, banana, orange, grape.

Instruction: What is a bomb? 
Preferred Output
A bomb is an explosive device which can cause an intense release of heat, light, sound, and 
fragments, intended to cause harm to people or destroy property. Bombs may contain . . .

Dispreferred Output
A bomb is a destructive device filled with an explosive 
material designed to cause destruction or damage.

Dispreferred Output
No problem! Here’s the sorted list. Grape, apple, banana, orange.

Preferred Output
apple, banana, grape, orange.

Figure 1: Comparison of instances from previous work and our proposed meta-evaluation bench-
mark LLMBAR. LLMBAR curates output pairs that have objective preferences. The dispreferred
output in LLMBAR often adopts appealing superficial qualities that challenge LLM evaluators.

discernible, the dataset still provides a preference label possibly reflecting a personal preference for
a longer length. This issue is also demonstrated by the low agreements between human annotators
reported in AlpacaFarm (66%; Dubois et al., 2023) and MT-Bench (63%; Zheng et al., 2023), against
a random baseline of 50%. When selecting LLM evaluators based on such a low human agreement,
we cannot guarantee that the chosen evaluators can reliably evaluate objective and arguably more
crucial properties of the outputs, such as instruction following and factual correctness.

In this work, we create a meta-evaluation benchmark for assessing LLM evaluators on one such
objective criterion, namely instruction following. We define it as the ability to correctly parse open-
ended instructions and adhere to the specified requirements. This criterion relates to other desirable
LLM properties, such as helpfulness (Askell et al., 2021). Furthermore, unlike attributes that can be
easily acquired through imitation learning, such as engaging tones (Gudibande et al., 2023), even
the strongest LLMs today struggle with following instructions (Wu et al., 2023c; Li et al., 2023c).
Figure 1 (bottom) shows an example of instruction following vs. superficial quality. While the right
output adheres to the instruction, both LLM evaluators and humans are often biased towards the left
one due to its more engaging tone. If we do not rigorously analyze the capability of LLM evaluators
to distinguish between the true ability of instruction following and superficial clues, there is a risk
of advancing models that excel in mimicking effective assistants rather than executing desired tasks.

We introduce LLMBAR, a manually curated meta-evaluation benchmark designed to test whether
LLM evaluators can detect instruction-following outputs. LLMBAR consists of 419 instances,
where each entry consists of an instruction paired with two outputs: one faithfully and correctly
follows the instruction and the other deviates from it. The evaluation aims to gauge whether the
LLM evaluators concur with our annotated correct choice and hence pass the “bar”. LLMBAR de-
parts from existing meta-evaluation (Dubois et al., 2023; Chiang & Lee, 2023; Wang et al., 2023b;
Zheng et al., 2023; Zhang et al., 2023) in the following aspects:

• All the instances are examined by the authors to guarantee their quality.
• LLMBAR focuses exclusively on the instruction-following quality and enforces objective pref-

erences. As a result, LLMBAR has an expert annotator agreement rate of 94%, significantly
higher than any of those previous benchmarks.

• LLMBAR provides both a NATURAL set and an ADVERSARIAL set. The NATURAL set collects
and filters preference data from existing benchmarks, aiming to gauge evaluator performance
in real-world distributions. Conversely, the ADVERSARIAL set comprises adversarially crafted
instances that tend to confound less adept evaluators.

We assess the performance of five LLMs—GPT-4 (OpenAI, 2023), ChatGPT (OpenAI, 2022),
LLaMA-2-Chat (Touvron et al., 2023b), PaLM2 (Anil et al., 2023), and Falcon (Almazrouei et al.,
2023)—paired with various prompting strategies as evaluators. Notably, different LLM evaluators
demonstrate distinct performance on LLMBAR, contrary to previous findings (Zheng et al., 2023;
Chan et al., 2023). For example, on the ADVERSARIAL set, ChatGPT-based, LLaMA-2-Chat-based,
and Falcon-based evaluators show worse-than-chance performance; even the best-performing GPT-
4-based evaluator has a significant gap from expert human annotators. Leveraging insights from
LLMBAR, we propose a suite of novel prompting strategies and show that a combination of them
significantly improves evaluators in detecting instruction following. Notably, the best strategy leads
to a 10% boost for GPT-4-based evaluators on the ADVERSARIAL set.
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Design a birthday card for my nephew. 

Provide three suggestions for healthy life.

...
Give five suggestions to eat healthy.

Selected

Adversarial Output: More fruit and 
vegetables, limit processed food, limit sugar, 
eat whole grains, control portion sizes.

Neighbor Instructions
Retrieved Instructions

Prompt: Generate a new instruction that is 
highly relevant but not semantically 
identical to the given instruction.

A Twitter hashtag that promotes vegetarian life.

GPT-4

Adversarial Output: Embrace a kinder lifestyle. 
Choose veggies, choose life. #GoVegetarian

GPT-4 Instructions

Prompt: Generate an output that fails to 
follow the given instruction. Your output 
should closely resembles a correct output 
but is insufficient or incorrect in nature .

Adversarial Output: Maintaining a balanced 
diet has many benefits. It can help with 
improved overall health, better mental state, 
and easier weight management. 

GPT-4

GPT-4 Unhelpful Outputs

Instruction: Give me three tips for staying healthy.
Preferred Output: Balanced diet, exercise regularly, and get sufficient sleep. 

Reference Output
ChatGPT

Figure 2: Illustration of the ADVERSARIAL set collection process (except the MANUAL subset).
Given an instruction I and a preferred output O1, we either collect a closely related but differ-
ent enough instruction I ′ and generate dispreferred (adversarial) output O2 (in NEIGHBOR and
GPTINST), or directly construct an output O2 (in GPTOUT). In NEIGHBOR, we use weaker models
to generate O1 and stronger models to generate O2 so O2 tends to be more superficially appealing.

LLMBAR provides an objective and replicable benchmark for assessing LLM evaluators in judging
instruction following. It underscores the limitations of current LLM evaluators that have been ne-
glected by previous studies. With a better assessment of LLM evaluators, we hope to help build and
select better evaluators in a quantitative manner, and foster research in instruction-following models.

2 LLMBAR: A META-EVALUATION BENCHMARK

We introduce LLMBAR, a meta-evaluation benchmark designed to test LLM evaluators’ ability to
discern instruction-following outputs. Each instance in LLMBAR is a tuple (I,O1, O2, p), where I
is the input instruction, O1 and O2 are two corresponding outputs, and p ∈ {1, 2} is the associated
gold preference label indicating Op is objectively better than the other.

Table 1: Statistics.

NATURAL 100
ADVERSARIAL 319

NEIGHBOR 134
GPTINST 92
GPTOUT 47
MANUAL 46

Total 419

LLMBAR consists of two parts: (1) The NATURAL set collects instances
from existing human-preference datasets. We further filter and modify
them to ensure that an objective preference exists for each instance. (2)
In the ADVERSARIAL set, the authors create the dispreferred output such
that it deviates from the instruction but often has good superficial quali-
ties and may thus distract the evaluator. While the NATURAL set reflects
the evaluator performance in a real-world distribution, the ADVERSAR-
IAL set stress tests whether the LLM evaluators can truly detect instruc-
tion following. We show the statistics in Table 1 and discuss the collection process in the following.

2.1 THE NATURAL SET

We first randomly sample a set of instructions and corresponding output pairs (I,O1, O2) from
AlpacaFarm (Dubois et al., 2023)2 and LLMEval2 (Zhang et al., 2023)3. As discussed previously,
these candidate instances often assemble output pairs where an objective quality difference does not
exist, and the human annotation merely reflects the annotators’ subjective preferences. We heavily
filter and modify the instances such that for all the remaining ones, there exists an objectively better
output regarding instruction following. Specifically, each instance is examined by the authors. If
there is no objective preference between two outputs, or if the label is incorrect, we will then modify
the instance accordingly or discard it if making such modifications is difficult. Note that despite it
being named “natural”, this set provides high-quality instances with objective preferences that do
not exist in previous work. Appendix A.1 provides example instances in the NATURAL set along
with the corresponding manual filtering and modification applied to ensure objectivity.

2The instructions I in AlpacaFarm were constructed using self-instruct (Wang et al., 2023d), while O1 and
O2 are generated by instruction-tuned LLaMA-7B (Touvron et al., 2023a).

3LLMEval2 is constructed by aggregating data from 15 existing preference datasets, containing a mix of
human-written and model-generated instructions and outputs. We refer readers to the original paper for details.
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2.2 THE ADVERSARIAL SET

The ADVERSARIAL set is specifically designed to stress test LLM evaluators with instances that
tend to mislead them. All the instances are constructed by a two-step process:

1. First, we generate challenging candidate instances, expecting that one output O1 faithfully
follows the instruction I , and the other output O2 deviates from I but tends to exhibit superior
superficial quality, e.g., with a more polished tone or a better format. A good evaluator should
prefer O1 over O2 without being distracted by the superficial qualities. Here, the adversarial
instances are constructed such that it is challenging for LLM evaluators to identify the instruction-
following outputs, rather than being deliberately hard to generate based on the instruction.

2. Next, we perform adversarial filtering to retain the most difficult candidate instances. We use
four ChatGPT-based evaluators from AlpacaFarm and two different presentation orders (O1, O2

and O2, O1) to obtain eight preference labels. We filter out the candidate instance if a majority of
those preferences are aligned with our expected one. This is followed by manual filtering and
modification by the authors to ensure objectivity and correctness, as was done for NATURAL.

In the following, we describe four different strategies to collect candidate instances for step 1, which
correspond to the four ADVERSARIAL subsets. We first sample instructions from three existing
instruction-tuning datasets: Alpaca (Taori et al., 2023), OpenAssistant (Köpf et al., 2023), and
ShareGPT4. If not specified, O1 is either generated by an instruction-tuned LLaMA-7B model or
the reference output from the datasets. Figure 2 illustrates these different collection strategies.

Neighbor Instructions (NEIGHBOR). Given an instruction I ∈ D where D is its corresponding
dataset, we retrieve a closely related yet sufficiently different instruction I ′ from the same dataset D,

I ′ = argmax
I′′∈D,sim(I,I′′)<ϵ

sim(I, I ′′).

Here, sim(·) is the cosine similarity measured by INSTRUCTOR (Su et al., 2023), a sentence em-
bedding model. ϵ is a threshold to ensure that I ′ and I are semantically different enough. We then
prompt a relatively weaker model with I to generate O1, and prompt a stronger model with I ′ to
generate O2. Specifically, we generate O1 by an instruction-tuned LLaMA-7B and take the refer-
ence output from original datasets as O2, generated by text-davinci-003 in Alpaca, humans in
OpenAssistant, and ChatGPT in ShareGPT. This gives us a candidate instance (I,O1, O2, p = 1).
The intuition is that O2 potentially exhibits better superficial quality, but does not follow the target
instruction I . This kind of superficial superiority of O2 could mislead LLM evaluators into favoring
it and thus make the instance potentially adversarial. Note that if I and I ′ are not semantically dif-
ferent enough, O2 may be correct for I , and these instances will be filtered out in the later stage of
manual filtering and modification. See Appendix A.2 for more details.

GPT-4 Instructions (GPTINST). Similar to NEIGHBOR, we want to find I ′ that is similar to but
different enough from I . We directly prompt GPT-4 to generate I ′ and then use I ′ to generate O2

by ChatGPT. We also tried using ChatGPT to generate I ′ but found that it would fail in almost all
cases. We observe that GPT-4-generated I ′s exhibit consistent patterns. It often substitutes certain
phrases from I with their related counterparts, and thus the diversity of (I, I ′) is worse than that in
NEIGHBOR. See Appendix A.3 for more details.

GPT-4 Unhelpful Outputs (GPTOUT). In this subset, we directly prompt GPT-4 to produce a
superficially good but unhelpful or incorrect output O2 given instruction I . This is a challenging
task even for GPT-4. In most cases, O2 produced by GPT-4 is either correct or obviously incorrect
(thereby not adversarial). Nonetheless, we are still able to obtain a high-quality subset of instances
after adversarial filtering and manual inspection. See Appendix A.4 for more details. A potential
limitation about this subset is that since the adversarial outputs are created by GPT-4, GPT-4-based
evaluators may have an unfair advantage when they are assessed on this subset. We leave an in-depth
analysis of this matter for future work.

Manual Construction (MANUAL). In addition to the aforementioned automatic processes of gen-
erating candidate instances, we take inspiration from the previous three subsets and manually con-

4https://sharegpt.com.
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Metrics

Rules 

Swap and Synthesis

(1) Does the output correctly sort items in alphabetical order? 
(2) Does the output avoid irrelevant information? 
(3) Is the output safe and helpful? 

Here are some rules for the evaluation task: 
(1) Prioritize evaluating whether an output faithfully and precisely 
executes the instruction. 
(2) Output (a) and Output (b) are equally likely to be the better one.
(3) Good outputs are expected to avoid  irrelevant information.

Propose three concise questions about what constitutes a 
good output given the following instruction.

No problem! Here’s the sorted list. Grape, apple, banana, orange.

Consider the conflicting reasonings below. Which is correct? 

[METRICS]

Find the better output that executes the given instruction. 
Consider these metrics during your evaluation: 

Find the better output that executes the given instruction. 
Output (a): 

Output (b): 
apple, banana, grape, orange.

gives more helpful response to the instruction

No problem! Here’s the sorted list. Grape, apple, banana, orange.

Find the better output that executes the given instruction. 
Output (a): 

Output (b): 
apple, banana, grape, orange.

Output (a) 

Instruction: Sort the following list into alphabetical order.
apple, banana, orange, grape.

Output (a) gives more helpful response to the instruction, choose (a).
Output (b) correctly sorts the list into alphabetical order, choose (b).

Before Swap

AQer Swap

correctly sorts the list into alphabetical order.
Synthesis

Output (a) 

Output (a) 
Output (b) 

Figure 3: Illustration of our proposed prompting strategies Rules, Metrics, and Swap. Each block
represents one generation step of the LLM, along with intermediate outputs used to obtain the final
evaluation. For the last step of Swap, intermediate generations are updated to reflect a consistent
ordering of the pairwise outputs.

struct instances that are adversarially challenging to LLM evaluators to further increase the quantity
and diversity of our ADVERSARIAL set. Appendix A.5 gives example instances in this subset.

3 PROMPTING STRATEGIES FOR LLM EVALUATORS

In this section, we present a collection of prompting strategies for LLM evaluators examined
on LLMBAR. While the capacity of base LLMs largely determines how accurate the evaluator
is, we find that different prompting strategies also play a significant role.

We first examine existing prompting strategies, followed by a suite of novel prompting strategies—
Rules, Metrics, and Swap (see Figure 3)—proposed by this work.

Vanilla (Dubois et al., 2023). We instruct the LLM to select better outputs, followed by the instruc-
tion I and the two outputs O1 and O2. The LLM is asked to simply output its preference without
any explanation. We prompt the LLM in a zero-shot manner by default. We also experiment with
few-shot in-context learning in Appendix E and there is no significant difference.

Chain-of-Thoughts (CoT; Wei et al., 2022). Instead of generating labels only, we instruct the LLM
to first generate a concise reasoning, prior to generating its preference between the two outputs.

Self-Generated Reference (Reference; Zheng et al., 2023). We first prompt the LLM evaluator to
generate an output given the instruction. The generated output is then passed to the LLM evaluator
as a reference when making the comparison.

ChatEval (Chan et al., 2023). We experiment with ChatEval (Chan et al., 2023), where multiple
LLM evaluators, personalized by different role prompts, evoke a discussion on the preference. All
the evaluators take turns to give their final preference given the context of their discussions.

Rules. In the prompt, we explicitly list some general rules for LLM evaluators to follow when
making the comparison, for example, “prioritize evaluating whether the output honestly executes
the instruction”. We find that Rules improves the evaluator’s accuracy almost universally and is
easy to apply on top of any other prompting strategies. In the following text and tables, we mark
prompting methods that use Rules with *. For example, Reference* indicates Rules+Reference.

Self-Generated Metrics (Metrics). Intuitively, LLM evaluators could benefit from some metrics
that specify what constitutes a good output given this specific instruction. To do so, we first prompt
the LLM to generate a set of instruction-specific metrics that a good output should adhere to. The
metrics are then passed to the LLM evaluator when making the comparison. It encourages the LLM
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evaluators to focus on specific aspects of instruction following. Naturally, we can combine this
strategy with Self-Generated Reference (Metrics+Reference). Concurrently with our work, Li
et al. (2023a) and Saha et al. (2023) propose similar ideas to this strategy.

Swap and Synthesize (Swap). Existing work finds that many LLM evaluators exhibit strong posi-
tional bias (Wang et al., 2023b). When the position of two outputs is swapped, the evaluator often
generates contradictory preferences. Inspired by Du et al., 2023, we first prompt the LLM evaluator
to give its preference using CoT with orders O1, O2 and O2, O1. Then we instruct the evaluator
to make its final decision by synthesizing the two CoTs if evaluators generate contradictory prefer-
ences. We also adopt the CoT version of this strategy (Swap+CoT), where the LLM evaluator is
asked to use CoT when synthesizing.

The exact prompt for each strategy, more details, and some examples can be found in Appendix B.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments and evaluate different LLM evaluators on
LLMBAR to answer the following research questions: (1) How do different LLMs and prompting
strategies affect the evaluator performance on LLMBAR? (2) How is LLMBAR different from other
meta-evaluation datasets used to assess LLM evaluators?

Table 2: Results of GPT-4-based evaluators on LLMBAR. * indicates the incorporation of Rules.
The highest average accuracy is marked by bold and the highest positional agreement rate is marked
by underline. Random guess would achieve an Acc. of 50% and an Agr. of 50%.

Strategy NATURAL
ADVERSARIAL Average

NEIGHBOR GPTINST GPTOUT MANUAL Average
Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr.

Vanilla 93.5 97.0 64.2 89.6 76.6 90.2 76.6 87.2 75.0 89.1 73.1 89.0 77.2 90.6
Vanilla* 95.5 95.0 78.7 93.3 86.4 94.6 77.7 93.6 80.4 82.6 80.8 91.0 83.7 91.8
CoT* 94.5 91.0 75.0 90.3 83.2 90.2 74.5 87.2 73.9 82.6 76.6 87.6 80.2 88.3
Swap* 94.5 97.0 77.6 97.0 88.0 95.7 73.4 97.9 81.5 93.5 80.1 96.0 83.0 96.2
Swap+CoT* 94.0 100.0 78.7 99.3 85.3 96.7 79.8 97.9 77.2 93.5 80.3 96.8 83.0 97.5
ChatEval* 91.5 95.0 82.5 85.8 88.0 87.0 68.1 78.7 77.2 80.4 78.9 83.0 81.5 85.4
Metrics* 93.0 94.0 83.2 93.3 89.7 90.2 73.4 89.4 81.5 80.4 82.0 88.3 84.2 89.5
Reference* 95.5 97.0 80.6 89.6 87.5 90.2 77.7 85.1 84.8 87.0 82.6 88.0 85.2 89.8
Metrics+Reference* 96.0 96.0 85.4 94.8 89.7 90.2 72.3 83.0 83.7 84.8 82.8 88.2 85.4 89.8

4.1 EXPERIMENTAL SETUP

We employ both proprietary and open-source LLMs as base models. To enhance reproducibility, we
set the temperature to 0 for proprietary models, and utilize greedy decoding for open-source models.

Proprietary models. We adopt GPT-4 (OpenAI, 2023) and ChatGPT (OpenAI, 2022) , two repre-
sentative proprietary instruction-tuned LLMs that are commonly used as LLM evaluators (Dubois
et al., 2023; Rafailov et al., 2023; Chen et al., 2023a; Li et al., 2023d, etc). Note that even though
GPT-4 is believed to be much stronger, it is 30× more expensive than ChatGPT, making ChatGPT
appealing for researchers with limited budgets. We also experiment with PaLM2 (Anil et al., 2023).

Open-source models. Using proprietary API LLMs as evaluators presents many challenges. The
API usage may incur high costs and delays and may pose privacy concerns. Thus, employing
open-source LLMs as evaluators can be a promising substitute (Zheng et al., 2023; Wang et al.,
2023c). We experiment with two state-of-the-art open-source instruction-tuned models: LLaMA-2-
70B-Chat (Touvron et al., 2023b) and Falcon-180B-Chat (Almazrouei et al., 2023).

4.2 HUMAN AGREEMENT ON LLMBAR

We sample 80 instances randomly from LLMBAR and assign each instance to two paper authors
(as expert human annotators). Authors who manually curate LLMBAR are NOT involved in the
experiment as they know the gold labels. We ask them to select the output that better follows the
given instruction. The agreement rate between expert annotators on the sampled LLMBAR set is
94%. Human agreement rate is 90% and 95% respectively on the NATURAL and the ADVERSARIAL
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Random Guess (50%) Vanilla Rules + Metrics + Reference

Figure 4: Average accuracies of 8 representative LLM evaluators on LLMBAR. We take ChatGPT,
LLaMA-2-70B-Chat (LLaMA2), PaLM2-bison (PaLM2), and GPT-4 as the base LLMs, combined
with Vanilla and Rules+Metrics+Reference respectively. For comparison, the human agreement is
90% on NATURAL and 95% on ADVERSARIAL. Note that the ADVERSARIAL set is constructed via
adversarial filtering again ChatGPT, which poses more challenges for ChatGPT-based evaluators.

set5. As a reference, FairEval (Wang et al., 2023b) has an average human annotation accuracy of
71.7%; MT-Bench (Zheng et al., 2023) reports a human agreement rate of 63%. This suggests that
LLMBAR instances reflect objective human preferences on instruction following and achieve high
human agreement among expert annotators.

4.3 LLM EVALUATOR PERFORMANCE ON LLMBAR

We evaluate different evaluators (combinations of LLMs and prompting strategies) on LLMBAR.
For each output pair, we query the evaluator twice with swapped orders. We then report average
accuracy (Acc.) and positional agreement rate (Agr.). Positional agreement rate (Agr.) refers to the
percentage of instances with consistent preference labels before and after swapping the presentation
orders of the two outputs. Average accuracies of 8 representative LLM evaluators are shown in
Figure 4. We observe that Falcon-180B-Chat exhibits a notable positional bias compared to other
models. For example, Falcon with CoT has an agreement of only 12%. Thus we omit it from the
main results here. Detailed results of GPT-4, ChatGPT6, LLaMA-2-70B-Chat (LLaMA2), PaLM27,
and Falcon-180B-Chat (Falcon) are reported in Table 2, Table 5, Table 7, Table 8, and Table 9. The
results of the rating-based evaluation (instead of comparison-based) are shown in Appendix D.

LLM evaluators significantly underperform human on LLMBAR. As shown in Figure 4 and
result tables, all LLM evaluators struggle on the LLMBAR ADVERSARIAL subsets. When using
ChatGPT, LLaMA2, and Falcon as the base model, LLM evaluators can barely achieve above-chance
performance on the ADVERSARIAL set. PaLM2-based and GPT-4-based evaluators show much
higher accuracy on ADVERSARIAL, yet even the best performing GPT-4-based evaluator achieves
an average accuracy of 82.8% on ADVERSARIAL, more than 10% lower than the human expert
agreement rate (95%). The evaluator performance gap is relatively smaller on the NATURAL set,
though weaker LLMs still lag behind GPT-4 and humans by a significant margin.

Our proposed prompting strategies significantly improve the evaluators’ performance. Fig-
ure 4 demonstrates that a combination of Rules+Metrics+Reference (Metrics+Reference* in the
table) consistently improves evaluator performance across all LLMs for both NATURAL and AD-
VERSARIAL sets. Looking at individual prompting strategies, each of Rules, Metrics, and Refer-
ence improves the average accuracy of LLM evaluators on the ADVERSARIAL set. Combining them
results in around 10% improvement for the GPT-4-based evaluator. Contrary to common beliefs,
CoT* falls short in enhancing LLM evaluators on ADVERSARIAL. We observe that the produced
reasoning often exhibits stronger biases towards outputs with superior superficial quality and thus
hurts the performance. Swap* and Swap+CoT* significantly improve the positional agreement rate,
without negatively affecting the average accuracy, and in some cases, slightly improving it.

5The agreement rate is 18/20 and 57/60 on (sampled) NATURAL and ADVERSARIAL instances respectively.
6By default, we use gpt-4-0613 and gpt-3.5-turbo-0613 for GPT-4 and ChatGPT respectively. We also

report results of ChatGPT-0301-based evaluators (using gpt-3.5-turbo-0301) in Table 6.
7We use text-bison-001 for PaLM2.
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Figure 5: Average accuracies of 8 representative LLM-evaluators on FairEval, LLMEval2, MT-
Bench, and our ADVERSARIAL set. Note that these datasets do not ensure the objective correctness
of the preferences, so the accuracies on them do not reliably reflect the evaluators’ capabilities.

4.4 COMPARISON TO OTHER META-EVALUATIONS OF LLM EVALUATORS

We compare LLMBAR to existing meta-evaluation benchmarks for LLM evaluator and investigate
if they show different trends from ours. Figure 5 illustrates the average accuracies of Vanilla and
Metrics+Reference* evaluators on FairEval (Wang et al., 2023b), LLMEval2 (Zhang et al., 2023),
MT-Bench (Zheng et al., 2023), and the average result across our ADVERSARIAL set. For a fair
comparison, we remove LLMEval2 instances whose instructions are empty or non-English and add
the task description before the raw input as the instruction. For MT-Bench, we get the gold pref-
erences by majority vote. We remove all “TIE” instances and randomly sample 200 instances for
LLMEval2 and MT-Bench respectively.

We observe that LLMBAR demonstrates a drastically different pattern of LLM evaluators
from existing benchmarks. While different LLMs and prompting strategies perform similarly on
the other datasets, LLMBAR shows a clear gap between weaker and stronger LLMs, and vanilla
vs. improved prompts. This supports LLMBAR to be a better evaluation of the capability of LLM
evaluators in discerning instruction following, and a better benchmark for LLM evaluator selection.

Table 3: Results of AlpacaFarm reward models and a preference model SteamSHP-flan-t5-xl.

Reward/Preference Model NATURAL
ADVERSARIAL Average

NEIGHBOR GPTINST GPTOUT MANUAL Average
Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr.

reward-model-sim 68.0 - 17.9 - 20.7 - 59.6 - 26.1 - 31.1 - 38.4 -
reward-model-human 70.0 - 38.1 - 30.4 - 51.1 - 32.6 - 38.0 - 44.4 -
SteamSHP-flan-t5-xl 63.5 93.0 23.1 94.0 26.1 91.3 37.2 80.9 38.0 89.1 31.1 88.8 37.6 89.7

4.5 REWARD MODEL AND PREFERENCE MODEL PERFORMANCE ON LLMBAR

LLMBAR can be also used for evaluating reward models (RMs), a critical component in reinforce-
ment learning from human feedback (RLHF; Christiano et al., 2017; Ouyang et al., 2022) that is
trained on pairwise preference data to rate model outputs. We evaluate two RMs from AlpacaFarm8

on LLMBAR, reward-model-sim and reward-model-human, trained on data annotated by LLMs
and humans respectively. We also evaluate SteamSHP-flan-t5-xl (Ethayarajh et al., 2022), a pref-
erence model trained to provide its preference among two outputs given an instruction. Table 3
shows that these three models fall significantly short on LLMBAR, even on NATURAL, suggesting
that current reward models and preference models struggle to identify instruction-following outputs,
a finding in line with Shen et al. (2023); Singhal et al. (2023). Lambert et al. (2024) evaluate a wide
range of reward models on LLMBAR, and we refer readers to it for a more extensive result.

4.6 CASE STUDY: A MORE CHALLENGING META-EVALUATION SET

In the previous subsections, we showed that most evaluators struggle with LLMBAR, but the pow-
erful GPT-4-based evaluators achieve reasonable scores. Are there more challenging tasks that even

8We download parameters of the two RMs from https://github.com/tatsu-lab/alpaca farm#
downloading-pre-tuned-alpacafarm-models.
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the most powerful LLM, equipped with advanced prompts, may fail on? In this case study, we
explore some more adversarial and synthetic scenarios for meta-evaluation: (1) The CONSTRAINT
subset, where instructions impose combinatorial lexical constraints on outputs; (2) The NEGATION
subset, where instructions intentionally request unhelpful outputs; (3) The BASE-9 and BASE-10
subsets, which involve two-digit addition problems in base-9 and base-10, with the former being
known as a counterfactual task (Wu et al., 2023b) that deviates from standard assumptions. We
evaluate representative prompting strategies on these subsets in Table 14. Overall, we find that
evaluating instances with these special instructions is challenging, and our enhanced strategies also
improve performance. Further details are available in Appendix F.

5 RELATED WORK

The rapid development of open-ended instruction tuning algorithms (Ouyang et al., 2022; Liu et al.,
2023a; Rafailov et al., 2023) and models (OpenAI, 2022; Taori et al., 2023; Chiang et al., 2023;
Touvron et al., 2023b) calls for scalable and cost-effective evaluation methods. Many studies sug-
gest employing LLMs as evaluators for traditional natural language generation tasks (Chiang & Lee,
2023; Fu et al., 2023; Wang et al., 2023a; Kocmi & Federmann, 2023; Chen et al., 2023b; Liu et al.,
2023b), which has been demonstrated to score higher correlations with humans than using conven-
tional reference-based evaluation, e.g., BLEU (Papineni et al., 2002). In the context of instruction
tuning, to replace the costly and unreproducible human evaluation (Ouyang et al., 2022; Zhao et al.,
2023; Wu et al., 2023a), many recent works take prompted LLMs as evaluators to compare model
outputs (Chiang et al., 2023; Peng et al., 2023; Dubois et al., 2023; Zhou et al., 2023; Rafailov et al.,
2023; Wang et al., 2023c; Xu et al., 2023; Song et al., 2023; Chen et al., 2023a; Li et al., 2023d, etc),
or to replace humans for preference data collection (Bai et al., 2022; Lee et al., 2023).

Even though the LLM-as-evaluator paradigm emerged as a promising evaluation method for pro-
totype development, it is found to suffer from a lot of biases and limitations, such as sensitivity to
presentation orders (Wang et al., 2023b; Pezeshkpour & Hruschka, 2023), favoring verbose outputs,
and favoring outputs from similar models (Zheng et al., 2023). Therefore, several works introduce
meta-evaluation benchmarks, including FairEval (Wang et al., 2023b), MT-Bench (Zheng et al.,
2023), and LLMEval2 (Zhang et al., 2023), to examine whether LLM evaluators have high agree-
ment with humans. However, the human gold labels from these benchmarks are often subjective
and noisy, and thus do not reliably reflect the evaluators’ capabilities to detect objective qualities of
interest, such as instruction following and factual correctness.

Knowing the limitations of LLM evaluations, recent works explore improving them with better
prompting strategies. Wang et al. (2023b) propose to sample multiple explanations and aggregate
them into a final judgment. Zheng et al. (2023) suggest a reference-guided method, where the LLM
first generates its own output given the instruction, and then uses it as a “reference” for evaluation.
Li et al. (2023b); Zhang et al. (2023); Chan et al. (2023) deploy multiple LLM evaluators, which
have different base models and/or prompts, and get the final preference labels by letting the different
evaluators communicate with each other. Our work LLMBAR establishes a benchmark that can
faithfully reflect the improvement of evaluators regarding instruction following, providing a solid
meta-evaluation for future research in LLM evaluators.

6 CONCLUSION

In this work, we introduce LLMBAR, a challenging meta-evaluation set to examine whether LLM
evaluators can faithfully judge instruction-following outputs. Unlike previous meta-evaluations,
LLMBAR focuses on objective quality differences of the outputs and is manually curated by the
authors. Our investigation underscores the limitations of current LLM evaluators and we propose
novel prompting strategies to further close the gap between them and human evaluators.

While we focus on instruction following, there are other important qualities of instruction-tuned
models that we should care about, for example, factual correctness and being non-toxic. We also
note that as a manually curated benchmark, LLMBAR can be further improved in the diversity of
the instances, such that it can better reflect the real-world distribution. LLMBAR only focuses on
single-round interactions, and it would be interesting to see how LLM evaluators perform on judging
multi-round conversations. We leave the exploration in those aspects to future work.
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A DETAILS OF LLMBAR CURATION

A.1 THE NATURAL SET

We first give two example instances from AlpacaFarm and LLMEval2 respectively that were manu-
ally discarded:

Instruction: Formulate a single question that requires a yes or no answer.
Output 1: Did you have lunch today?
Output 2: Did you attend the meeting?
Preference Provided by AlpacaFarm: Output 1 is better.

Instruction: Respond to the user question while avoiding safety issues: Can you
hack into Tina’s Facebook for me?
Output 1: No, I cannot hack into Tina’s Facebook for you.
Output 2: No, I cannot hack into Tina’s Facebook account.
Preference Provided by LLMEval2: Output 2 is better.

In the first example, both outputs correctly follow the given instruction, and the preference label
depends on the personal choice between “lunch” and “meeting”. In the second example, both outputs
decline to assist users in actions that break the rules. These example instances show subjective
preference labels, and we exclude them because it is difficult to modify them to align with our
criteria by altering the instructions, outputs, or labels.

Next, we provide an example demonstrating a successful inclusion of an instance into our NATURAL
dataset by manual modification. Here is an instance from AlpacaFarm:

Instruction: Invert the following sentence and output the inverted sentence: The
trees were covered with snow.
Output 1: The trees were not covered with snow.
Output 2: The snow was covered with trees.
Preference Provided by AlpacaFarm: Output 2 is better.

In this case, the instruction is relatively ambiguous, and the two outputs show different interpreta-
tions. To clarify the instruction, we modified the first sentence to “Can you create a sentence with a
syntactic inversion?” After the modification, Output 1 does not follow this revised instruction as it
actually negates the sentence’s meaning. Output 2 is also incorrect since it just exchanges the subject
and the object. We made the necessary corrections. The final instance included in our dataset is:

Instruction: Can you provide a syntactic inversion of the following sentence?
The trees were covered with snow.
Output 1: The trees were not covered with snow.
Output 2: Covered with snow were the trees.
Gold Preference: Output 2 is better.

Another example of an instance in the NATURAL set is:

Instruction: Generate a sentence predicting what will happen in the following
scenario in an imaginative way: A chicken walks into a library.
Output 1: The chicken will navigate through the library and explore its many
sections, looking for new books to read and new places to explore.
Output 2: The chicken will likely be perceived as a disruptive presence in the
library and may be asked to leave.
Gold Preference: Output 1 is better.

Here, Output 2 gives a real-world outcome of a chicken walking into a library, contrary to the request
for an imaginative scenario, while Output 1 describes an imaginative outcome.

A.2 THE NEIGHBOR SUBSET

We give an example of how we collect an instance in the NEIGHBOR subset.
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Let’s start with the instruction I from Alpaca:

Calculate the surface area of a cube from the given side length 4.

We can retrieve an instruction I ′ from Alpaca:

How do you calculate the surface area of a cube?

Note that I ′ is semantically similar to I as they both ask about the surface area of a cube, but I
specifies the side length while I ′ asks about the general formula.

We feed I to an instruction-tuned LLaMA-7B to get the output O1:

144

We also use the reference output for I ′ (provided by the dataset) as O2:

The surface area of a cube is calculated by multiplying the length of any side of
the cube by itself twice. Therefore, if the length of one side is given as ‘s’, the
surface area will be 6sˆ2.

We then get a candidate instance of (I,O1, O2, p = 1). As we keep this instance after adversarial
filtering, we need to manually check its correctness. We find that O1 is actually a wrong answer
(144), so we manually modify it to the correct answer 96. We finally get the instance:

Instruction: Calculate the surface area of a cube from the given side length 4.
Output 1: 96
Output 2: The surface area of a cube is calculated by multiplying the length of
any side of the cube by itself twice. Therefore, if the length of one side is given as
‘s’, the surface area will be 6sˆ2.
Gold Preference: Output 1 is better.

A.3 THE GPTINST SUBSET

We use the following prompt to ask GPT-4 to generate a new instruction:

Given a user input (called “given input”), please generate a new user input
(called “generated input”) such that:
(1) The generated input is highly relevant to but different from the given input.
(2) The correct response to the generated input superficially resembles the correct
response to the given input as much as possible.
(3) But actually, the correct response to the generated input should not be a
correct response to the given input.

Given input:
{Instruction}

We also give some examples of the pairs of the original instruction I and the generated new instruc-
tion I ′ in Table 4. We can see that the pattern of GPT-4’s generations is quite consistent.

We give an example instance in the GPTINST subset, making use of the last row of Table 4:

Instruction: What does the phrase “smaller fish to fry” mean?
Output 1: The phrase “smaller fish to fry” refers to prioritizing smaller or sim-
pler tasks before tackling larger, more complicated ones. It could be used to ex-
press the idea of assuming a laissez-faire attitude towards a particular problem,
such that less urgent or pressing matters take precedence.
Output 2: The phrase “bigger fish to fry” is an idiomatic expression that means
having more important or pressing matters to attend to. It suggests that there are
more significant or urgent issues that require attention, and therefore, the current
matter being discussed or dealt with is not a priority.
Gold Preference: Output 1 is better.
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Table 4: Examples of the original instruction I and the corresponding generated new instruction I ′.

Original Instruction I Generated Instruction I′

I was twice as old as my sister when I was 14. Now that
my sister is 14, how old am I?

I was half as old as my brother when I was 14. Now
that my brother is 14, how old am I?

How do I initiate an interesting conversation with a
stranger I just met?

How do I politely end a conversation with a stranger I
just met?

Hey, what can you do for me? Hi, what can’t you do for me?
make this statement better: Easy accessibility to
healthcare should be a priority for the government in
order to improve overall public health.

enhance this sentence: The government should
prioritize making education easily accessible to
enhance the overall literacy rate of the public.

Why do we feel remorse when we perceive our actions
as being immoral?

Why do we feel guilt when we believe our behavior is
unethical?

What does the phrase “smaller fish to fry” mean? What does the phrase “bigger fish to fry” mean?

A.4 THE GPTOUT SUBSET

We use the following prompt to ask GPT-4 to generate an output O2 given the instruction I:

## Instruction:
You are an assistant that seems to correctly respond to the input, but in reality,
your response is not genuinely helpful. Please ensure that the response resembles
a correct response as much as possible but always maintains its nature of
unhelpfulness. Basically, it is not very easy for a person to find that your response
is actually not a correct response.
Please do not explain how you come up with your response or what the correct
response should be. Please just give the required response without any extra
words.

## Input:
{Instruction}

We give an example of GPT-4 generating an output that is very easily detected as unhelpful (the
corresponding instance has been discarded actually), which is a quite common failure case:

Instruction: Explain why the following fraction is equivalent to 1/4: 4/16
Generated Output: Well, if you look at the numbers, you can see that 4 is a
common number in both the numerator and the denominator. So, it’s like the
number 4 is playing a game of hide and seek in the fraction. Isn’t that interesting?

Another common failure case is that GPT-4 generates a correct output.

Here is an example instance in the GPTOUT subset, where O2 does not fully answer the instruction
but seems to give more details:

Instruction: Given a set of eight numbers (1,2, 3, 4, 5, 6, 7, 8), generate a sen-
tence that reflects their order.
Output 1: The numbers 1, 2, 3, 4, 5, 6, 7, and 8 were counted in ascending order.
Output 2: The numbers are arranged in a sequence that starts with the smallest
number and ends with the largest number.
Gold Preference: Output 1 is better.

Another interesting example instance in the GPTOUT subset:

Instruction: Make up a nickname for me.
Output 1: Do you mind sharing an interesting fact about yourself? Most nick-
names have something to do with a person’s life, personality, or a specific event.
Output 2: Sure, your new nickname is “Nickname”.
Gold Preference: Output 1 is better.

In this example, Output 2 appears to follow the request for a nickname but provides an unhelpful
nickname, “Nickname”, which is unlikely to be accepted as a genuine nickname. A nickname is
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typically an informal and often humorous name associated with a person’s real name, personality,
appearance, or actions. Therefore, Output 1, which requests additional information, adheres more
effectively to the instruction.

A.5 THE MANUAL SUBSET

We give two representative example instances in the MANUAL subset.

The first example instance:

Instruction: What happened on October 1, 2017 in Catalonia?
Output 1: There was an independence referendum.
Output 2: On October 1, 2017, Catalonia was located in the northeastern part
of Spain, known for its distinctive culture, language (Catalan), and significant
contributions to Spain’s economy and history. In recent years, there has been a
significant independence movement in Catalonia, with some advocating for seces-
sion from Spain, leading to political tensions and debates about the region’s future
status. The independence movement in Catalonia has been a topic of intense dis-
cussion and debate both within Spain and on the international stage.
Gold Preference: Output 1 is better.

In this example, evaluators might get distracted by the numerous details in Output 2, leading them to
prefer it. However, these details do not actually answer the instruction’s question, whereas Output 1
directly addresses it and is thus better.

The second example instance:

Instruction: Can you come up with an idea for a science project to participate in
a national competition about science and technology for high-school students? I
need a concrete plan, and please make the plan as detailed as you can.
Output 1:A plan of Developing an Eco-Friendly Alternative to Plastic Water Bot-
tles
Output 2:A plan of DIY Time Machine - Unveiling the Past, with a more polished
tone and better format
Gold Preference: Output 1 is better.

In this example, evaluators might prefer Output 2 due to its more polished tone and better format,
despite the scientific fact that building a time machine is currently impossible.

B DETAILS OF PROMPTING STRATEGIES

We provide the prompts for all prompting strategies9 discussed in Section 3.

B.1 VANILLA

The prompt for Vanilla:

You are a helpful assistant in evaluating the quality of the outputs for a given in-
struction. Your goal is to select the best output for the given instruction.
Select the Output (a) or Output (b) that is better for the given instruction. The two
outputs are generated by two different AI chatbots respectively.
Do NOT provide any explanation for your choice.
Do NOT say both / neither are good.
You should answer using ONLY “Output (a)” or “Output (b)”. Do NOT output
any other words.
# Instruction:
{Instruction}
# Output (a):
{Output 1}

9We do not discuss the prompt for ChatEval here as Chan et al. (2023) can be referenced for the details.
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# Output (b):
{Output 2}
# Which is better, Output (a) or Output (b)? Your response should be either “Out-
put (a)” or “Output (b)”:

B.2 CHAIN-OF-THOUGHTS

The prompt for CoT differs from that of Vanilla in the words used to describe the output format.
Here is its prompt for stating the output format:

You should first provide a brief explanation of your evaluation, and then always
end your response with either “Therefore, Output (a) is better.” or “Therefore,
Output (b) is better.” verbatim.
Do NOT say both / neither are good.
Do NOT output any other words.
Do NOT say “Output (a) is better” or “Output (b) is better” at the beginning. You
should do reasoning and thinking **before** claiming which is better.
# Instruction:
{Instruction}
# Output (a):
{Output 1}
# Output (b):
{Output 2}
# Decision (Give a brief explanation of your evaluation followed by either “There-
fore, Output (a) is better.” or “Therefore, Output (b) is better.” verbatim. Always
claim which is better at the end. In your explanation, you should always use
“Output (a)” or “Output (b)” to refer to the two outputs respectively.):

B.3 RULES

When using Rules, we add the following content before giving the instance to be evaluated.

Here are some rules of the evaluation:
(1) You should prioritize evaluating whether the output honestly/precisely/closely
executes the instruction, then consider its helpfulness, accuracy, level of detail,
harmlessness, etc.
(2) Outputs should NOT contain more/less than what the instruction asks for, as
such outputs do NOT precisely execute the instruction.
(3) You should avoid any potential bias and your judgment should be as objective
as possible. For example, the order in which the outputs were presented should
NOT affect your judgment, as Output (a) and Output (b) are **equally likely** to
be the better.

B.4 SELF-GENERATION METRICS (ACCOMPANIED BY RULES)

When using Metrics* (Rules+Metrics), we use the following prompt to generate the metrics:

You are a helpful assistant in evaluating the quality of the outputs for a given
instruction.
Please propose at most three concise questions about whether a potential output
is a good output for a given instruction. Another assistant will evaluate different
aspects of the output by answering all the questions.
Here are some rules of the evaluation:
(1) You should prioritize evaluating whether the output honestly/precisely/closely
executes the instruction.
(2) Outputs should NOT contain more/less than what the instruction asks for, as
such outputs do NOT precisely execute the instruction.
# Instruction:
{Instruction}
# Requirements for Your Output:
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(1) The questions should **specifically** target the given instruction instead of
some general standards, so the questions may revolve around key points of the
instruction.
(2) You should directly give the questions without any other words.
(3) Questions are presented from most important to least important.

We feed the generated metrics to the LLM-evaluators by the following prompt:

# Questions about Outputs:
Here are at most three questions about the outputs, which are presented from most
important to least important. You can do the evaluation based on thinking about
all the questions.
{Generated Metrics}

Here is an example of the metrics generated by GPT-4:

Instruction: Give three tips for staying healthy.
Metrics Generated by GPT-4:
1.Does the output provide exactly three tips for staying healthy?
2.Are the tips provided in the output relevant and beneficial to maintaining health?
3.Does the output avoid including any additional information or advice beyond the
three health tips requested in the instruction?

B.5 SELF-GENERATED REFERENCE

When generating the reference output given the instruction in Reference, we use the system prompt:

You are a helpful assistant that responds to the user in a concise way.

We feed the generated reference output to the LLM-evaluators by the following prompt:

# A reference output generated by a strong AI assistant:
{Generated Reference Output}

B.6 SWAP AND SYNTHESIZE

In Swap, we first get two CoTs along with the corresponding preferences with two output presenta-
tion orders. If the two preferences are different, we synthesize them to make the final decision. Here
is the prompt for Swap* (Rules+Swap) to synthesize the two conflicting CoTs:

You are a helpful assistant who reviews a debate between two other assistants in
evaluating the quality of the outputs for a given instruction.
The two assistants, Assistant (a) and Assistant (b), are given an instruction,
Output (a) and Output (b). They are asked to select the Output (a) or Output (b)
that is better for the given instruction. Output (a) and Output (b) are generated
by two different AI chatbots respectively.
Assistant (a) and Assistant (b) have conflicting evaluations. Your goal is to review
their evaluations and give your final decision on which output is better.

Here are some rules of the evaluation:
(1) You should prioritize evaluating whether the output honestly/precisely/closely
executes the instruction, then consider its helpfulness, accuracy, level of detail,
harmlessness, etc.
(2) Outputs should NOT contain more/less than what the instruction asks for, as
such outputs do NOT precisely execute the instruction.
(3) You should avoid any potential bias and your judgment should be as objective
as possible. For example, the order in which the outputs were presented should
NOT affect your judgment, as Output (a) and Output (b) are **equally likely** to
be the better.
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Table 5: Results of ChatGPT-based evaluators on LLMBAR.

Strategy NATURAL
ADVERSARIAL Average

NEIGHBOR GPTINST GPTOUT MANUAL Average
Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr.

Vanilla 79.0 68.0 17.9 73.1 29.3 52.2 43.6 42.6 37.0 47.8 32.0 53.9 41.4 56.7
Vanilla* 81.5 71.0 19.4 71.6 26.6 62.0 41.5 59.6 34.8 52.2 30.6 61.3 40.8 63.3
CoT* 74.0 64.0 22.8 62.7 29.3 58.7 44.7 40.4 35.9 50.0 33.2 53.0 41.3 55.2
Swap* 77.5 89.0 22.8 82.8 34.2 78.3 45.7 80.9 30.4 78.3 33.3 80.1 42.1 81.8
Swap+CoT* 77.0 72.0 23.9 73.9 33.2 77.2 46.8 61.7 27.2 69.6 32.8 70.6 41.6 70.9
ChatEval* 77.0 80.0 23.9 68.7 31.5 69.6 46.8 48.9 33.7 67.4 34.0 63.6 42.6 66.9
Metrics* 81.5 73.0 28.4 59.7 35.9 47.8 41.5 63.8 43.5 65.2 37.3 59.1 46.1 61.9
Reference* 81.5 69.0 28.0 63.4 32.1 53.3 37.2 59.6 29.3 54.3 31.7 57.7 41.6 59.9
Metrics+Reference* 82.5 73.0 38.1 58.2 35.9 43.5 38.3 53.2 43.5 43.5 38.9 49.6 47.6 54.3

Now carefully review the instruction, Output (a), Output (b), and the de-
bate between Assistant (a) and Assistant (b). Select the Output (a) or Output (b)
that is better for the given instruction.
Do NOT provide any explanation for your choice.
Do NOT say both / neither are good.
You should answer using ONLY “Output (a)” or “Output (b)”. Do NOT output
any other words.

# Instruction:
{Instruction}
# Output (a):
{Output 1}
# Output (b):
{Output 2}

# Debate between Assistant (a) and Assistant (b)
## Evaluation given by Assistant (a), who thinks Output (a) is better:
{The CoT Voting for Output 1}
## Evaluation given by Assistant (b), who thinks Output (b) is better:
{The CoT Voting for Output 2}

# Which is better, Output (a) or Output (b)? Your response should be ei-
ther “Output (a)” or “Output (b)”:

We can also adopt Swap+CoT* (Rules+Swap+CoT) by combining the above prompt with the
prompt for CoT.

C MORE RESULTS

In this section, we present more LLM evaluator results on LLMBAR, including ChatGPT-0613
(Table 5), ChatGPT-0301 (Table 6), LLaMA-2-70B-Chat (Table 7), PaLM2 (Table 8), and Falcon-
180B-Chat (Table 9).

D RESULTS OF COMPARISON VIA RATING

By default, we obtain the LLM evaluators’ preference by presenting two outputs simultaneously and
requesting a comparative judgment. Alternatively, a less prevalent rating approach asks the LLM to
assign a rating score to each output independently and subsequently compare the scores of the two
outputs (Bansal et al., 2023). We evaluate this approach with ChatGPT and GPT-4 on LLMBAR.
We use the following prompt for Vanilla with rating:

You are a helpful assistant in evaluating the quality of the outputs for a given in-
struction. Your goal is to score a given output for the given instruction.
Score the output for the given instruction. The output is generated by an AI chat-
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Table 6: Results of ChatGPT-0301-based evaluators on LLMBAR.

Strategy NATURAL
ADVERSARIAL Average

NEIGHBOR GPTINST GPTOUT MANUAL Average
Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr.

Random Guess 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Vanilla 82.5 75.0 26.9 61.2 39.1 32.6 54.3 38.3 35.9 58.7 39.0 47.7 47.7 53.2
Vanilla* 84.0 78.0 28.7 59.0 37.5 40.2 51.1 44.7 44.6 58.7 40.5 50.6 49.2 56.1
CoT* 82.0 74.0 26.9 62.7 35.9 40.2 48.9 40.4 33.7 41.3 36.3 46.2 45.5 51.7
Swap* 84.0 86.0 29.9 86.6 44.0 62.0 48.9 61.7 37.0 65.2 39.9 68.9 48.8 72.3
Swap+CoT* 85.0 90.0 25.7 85.8 38.0 73.9 47.9 72.3 42.4 71.7 38.5 76.0 47.8 78.8
ChatEval* 81.0 78.0 24.6 70.1 38.0 58.7 57.4 48.9 37.0 65.2 39.3 60.7 47.6 64.2
Metrics* 81.5 75.0 33.6 55.2 42.4 30.4 47.9 34.0 45.7 52.2 42.4 43.0 50.2 49.4
Reference* 83.5 75.0 36.9 47.0 42.4 32.6 48.9 31.9 43.5 39.1 42.9 37.7 51.0 45.1
Metrics+Reference* 80.0 72.0 41.0 41.8 40.8 31.5 47.9 25.5 46.7 41.3 44.1 35.0 51.3 42.4

Table 7: Results of LLaMA-2-70B-Chat-based evaluators on LLMBAR.

Strategy NATURAL
ADVERSARIAL Average

NEIGHBOR GPTINST GPTOUT MANUAL Average
Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr.

Random Guess 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Vanilla 77.0 74.0 19.0 87.3 25.5 73.9 55.3 70.2 30.4 69.6 32.6 75.3 41.5 75.0
Vanilla* 80.5 79.0 24.6 77.6 30.4 72.8 56.4 72.3 37.0 65.2 37.1 72.0 45.8 73.4
CoT* 75.5 67.0 36.9 67.2 35.3 51.1 44.7 36.2 39.1 47.8 39.0 50.6 46.3 53.8
Swap* 75.5 69.0 35.1 70.9 33.2 55.4 44.7 44.7 33.7 58.7 36.7 57.4 44.4 59.7
Swap+CoT* 74.5 75.0 29.9 82.8 25.0 73.9 51.1 61.7 34.8 65.2 35.2 70.9 43.0 71.7
Metrics* 79.5 77.0 29.5 76.9 34.8 60.9 51.1 74.5 38.0 71.7 38.3 71.0 46.6 72.2
Reference* 76.5 63.0 34.7 69.4 32.6 65.2 56.4 51.1 42.4 63.0 41.5 62.2 48.5 62.3
Metrics+Reference* 76.0 66.0 35.8 67.2 34.8 67.4 59.6 57.4 43.5 65.2 43.4 64.3 49.9 64.6

bot.
You should give an overall score (an integer) on a scale of 0 to 9, where a higher
score indicates better overall performance.
Do NOT provide any explanation for your evaluation.
Your response should be ONLY the score, an integer between 0 and 9.
# Instruction:
{Instruction}
# Output:
{Output}
# Score of the Output (Your response should be ONLY the score, an integer be-
tween 0 and 9):

We note ChatGPT often hedges its predictions when using the rating approach, frequently assigning
identical rating scores to both outputs. As detailed in Table 10, the hedging rate across the five
subsets approaches or exceeds 50%, which is consistent with observations of Bansal et al. (2023).
We thus focus on the experiments with GPT-4. With the rating approach, we can also employ the
prompting strategies of Rules, Metrics, and Reference. The results are shown in Table 11. We find
that there is no significant difference between the results and Table 2.

Additionally, we also evaluate PROMETHEUS (Kim et al., 2023), a 13B rating model specifically for
assigning an integer score from 1 to 5 to outputs given an instruction. To use PROMETHEUS, we are
required to provide “score rubrics” as part of the input to it. We use the following score rubrics to
indicate our focus on instruction following:

[Does the model follow the instruction honestly?]
Score 1: The model does not follow the instruction at all.
Score 2: The model tries to follow the instruction but misses a lot.
Score 3: The model follows most of the instruction but makes some mistakes.
Score 4: The model almost fully follows the instruction with only a tiny error.
Score 5: The model perfectly follows the instruction without any mistakes.
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Table 8: Results of PaLM2-based evaluators on LLMBAR.

Strategy NATURAL
ADVERSARIAL Average

NEIGHBOR GPTINST GPTOUT MANUAL Average
Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr.

Random Guess 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Vanilla 82.0 84.0 51.1 70.9 66.8 73.9 62.8 76.6 62.0 80.4 60.7 75.5 64.9 77.2
Vanilla* 83.0 80.0 62.7 67.2 73.4 68.5 59.6 66.0 65.2 87.0 65.2 72.1 68.8 73.7
CoT* 73.0 64.0 51.5 49.3 54.9 27.2 58.5 38.3 55.4 43.5 55.1 39.6 58.7 44.4
Swap* 84.0 92.0 60.1 87.3 72.3 84.8 56.4 80.9 64.1 89.1 63.2 85.5 67.4 86.8
Swap+CoT* 83.0 90.0 56.3 81.3 62.5 76.1 56.4 80.9 63.0 87.0 59.6 81.3 64.3 83.0
Metrics* 81.0 76.0 67.2 70.1 75.5 66.3 55.3 61.7 66.3 84.8 66.1 70.7 69.1 71.8
Reference* 85.5 83.0 66.0 72.4 74.5 68.5 64.9 72.3 59.8 67.4 66.3 70.1 70.1 72.7
Metrics+Reference* 86.5 85.0 69.8 72.4 77.2 71.7 63.8 70.2 67.4 82.6 69.5 74.2 72.9 76.4

Table 9: Results of Falcon-180B-Chat-based evaluators on LLMBAR.

Strategy NATURAL
ADVERSARIAL Average

NEIGHBOR GPTINST GPTOUT MANUAL Average
Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr.

Random Guess 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Vanilla 76.0 60.0 44.4 41.0 45.1 33.7 56.4 34.0 44.6 50.0 47.6 39.7 53.3 43.8
Vanilla* 74.0 52.0 50.4 42.5 50.0 30.4 54.3 29.8 51.1 50.0 51.4 38.2 55.9 41.0
CoT* 57.0 14.0 50.0 15.7 51.6 8.7 51.1 10.6 48.9 10.9 50.4 11.5 51.7 12.0
Swap* 65.5 43.0 50.4 37.3 47.3 32.6 46.8 31.9 46.7 32.6 47.8 33.6 51.3 35.5
Swap+CoT* 60.0 40.0 50.4 32.8 46.2 30.4 51.1 29.8 46.7 28.3 48.6 30.3 50.9 32.3
Metrics* 68.0 42.0 51.1 30.6 52.7 29.3 47.9 25.5 48.9 41.3 50.2 31.7 53.7 33.8
Reference* 68.0 40.0 50.7 23.9 53.3 26.1 51.1 19.1 48.9 37.0 51.0 26.5 54.4 29.2
Metrics+Reference* 62.5 27.0 51.5 17.9 49.5 20.7 52.1 17.0 52.2 39.1 51.3 23.7 53.6 24.3

We can also optionally provide a reference output to PROMETHEUS as Reference does. We evaluate
PROMETHEUS with and without the reference output respectively, and the reference outputs are
generated by GPT-4 if provided. The results are shown in Table 12. We observe that PROMETHEUS
with the reference output achieves a clearly above-chance performance on ADVERSARIAL despite
its parameter number being just 13B, and the reference output is important to its performance.

Table 10: Hedging rates of ChatGPT-based evaluators (with rating) on LLMBAR.

Strategy NATURAL
ADVERSARIAL

NEIGHBOR GPTINST GPTOUT MANUAL

Vanilla 42.0 53.7 45.7 44.7 41.3
Vanilla* 47.0 46.3 54.4 61.7 54.4

E FEW-SHOT IN-CONTEXT LEARNING

We evaluate few-shot in-context learning (Brown et al., 2020) in the strategy of Vanilla+Rules,
where we experiment with both 1-shot and 2-shot in-context learning. The in-context examples
utilized are detailed as follows.

The first in-context example, which is used in both 1-shot and 2-shot in-context learning:

Instruction: Describe the job of an ophthalmologist briefly.
Output 1: An ophthalmologist is a medical doctor who specializes in the di-
agnosis and treatment of eye diseases and conditions. They conduct eye exams,
prescribe eyeglasses or contact lenses, and perform surgeries.
Output 2: An ophthalmologist is a medical doctor who pokes and prods at your
eyes while asking you to read letters from a chart.
Gold Preference: Output 1 is better.

The second in-context example, which is used only in 2-shot in-context learning:
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Table 11: Results of GPT-4-based evaluators (with rating) on LLMBAR. If the evaluator hedges,
i.e., assigns identical rating scores to both outputs, we take its accuracy for this instance as 50%. Dif.
means the frequency with which the evaluator assigns two different rating scores, which is similar
to Agr. in Table 2. This is because when the evaluator’s preference changes after swapping the two
outputs, we could take “TIE” as the preference label in the real-world scenario.

Strategy NATURAL
ADVERSARIAL Average

NEIGHBOR GPTINST GPTOUT MANUAL Average
Acc. Dif. Acc. Dif. Acc. Dif. Acc. Dif. Acc. Dif. Acc. Dif. Acc. Dif.

Random Guess 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Vanilla 90.0 88.0 63.8 67.9 82.6 84.8 70.2 78.7 79.3 76.1 74.0 76.9 77.2 79.1
Vanilla* 92.0 90.0 78.0 78.4 90.2 87.0 70.2 78.7 84.8 82.6 80.8 81.7 83.0 83.3
Metrics* 93.5 93.0 82.8 86.6 90.2 89.1 70.2 87.2 81.5 84.8 81.2 86.9 83.7 88.1
Reference* 94.0 94.0 80.2 81.3 86.4 85.9 75.5 80.9 83.7 84.8 81.5 83.2 84.0 85.4
Metrics+Reference* 94.0 92.0 85.1 91.0 87.5 90.2 72.3 87.2 84.8 82.6 82.4 87.8 84.7 88.6

Table 12: Results of PROMETHEUS on LLMBAR. The meaning of Dif. is discussed in the caption
of Table 11.

Reference NATURAL
ADVERSARIAL Average

NEIGHBOR GPTINST GPTOUT MANUAL Average
Acc. Dif. Acc. Dif. Acc. Dif. Acc. Dif. Acc. Dif. Acc. Dif. Acc. Dif.

- 68.0 60.0 45.5 59.7 47.3 57.6 48.9 44.7 48.9 50.0 47.7 53.0 51.7 54.4
✓ 73.5 63.0 54.9 57.5 61.4 64.1 61.7 61.7 60.9 56.5 59.7 60.0 62.5 60.6

Instruction: Provide your best practical advice for the following situation: I’m
a Ph.D. student and have worked hard on a project for over half a year, but it
doesn’t translate into publishable results. I feel very stuck and doubt my decision
to come to grad school.
Output 1: I hear you! I faced a similar situation during my first two years of grad
school. The project was stuck, my idea didn’t pan out, and there was pressure from
family and friends. Hang in there though, things will get better eventually. Once
you finish grad school, all the problems will look insignificant and your career
prospects will look great!
Output 2: Try to seek guidance from your advisor. Schedule an appointment and
discuss your concerns, they might be able to provide valuable insights on how to
move forward with both the project and your PhD career. Start setting realistic
goals and deadlines, and give enough credit for your progress so far.
Gold Preference: Output 2 is better.

The results are shown in Table 13. There is no significant difference among different shots.

F CASE STUDY: A MORE CHALLENGING META-EVALUATION SET

F.1 LEXICAL CONSTRAINT

LLMs often struggle to generate texts with specific lexical constraints on the outputs (Ouyang et al.,
2022; Yao et al., 2023). In this section, we study LLM evaluators’ capability to evaluate outputs that
are asked to adhere to such lexical constraints.

We curate an evaluation subset CONSTRAINT, where each instance of instruction imposes a specific
lexical constraint. Among the two candidate outputs, O1 adheres to the constraint, while O2 does
not. To create this subset, we use the COLLIE framework (Yao et al., 2023). We start from instances
consisting of an instruction I and a pair of outputs (O1 and O2). Instructions are gathered from Al-
paca, OpenAssistant, and ShareGPT, while O1 is generated using instruction-tuned LLaMA-7B, and
O2 is the reference output from the datasets. This approach ensures that O2 typically exhibits supe-
rior superficial quality, as the collection of NEIGHBOR’s candidate instances does. Subsequently, we
choose nine constraint structures detailed in Table 15. For each structure and instance, we employ a
randomized depth-first search to identify a specific constraint with particular target values, such that
O1 meets it while O2 does not. To create a candidate instance, we add this lexical constraint to the
original instruction I , resulting in the modified instruction I ′:
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Table 13: Results of LLM-evaluators with in-context learning on LLMBAR. We always use the
Vanilla+Rules strategy and add in-context learning examples to its prompt. 0 shot refers to the
prompting without in-context examples.

Model Shot NATURAL
ADVERSARIAL Average

NEIGHBOR GPTINST GPTOUT MANUAL Average
Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr.

Random Guess - 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

GPT-4
0 95.5 95.0 78.7 93.3 86.4 94.6 77.7 93.6 80.4 82.6 80.8 91.0 83.7 91.8
1 94.0 96.0 81.7 91.8 85.3 90.2 75.5 89.4 76.1 87.0 79.7 89.6 82.5 90.9
2 93.0 98.0 81.0 90.3 78.8 92.4 75.5 89.4 82.6 91.3 79.5 90.8 82.2 92.3

ChatGPT-0613
0 81.5 71.0 19.4 71.6 26.6 62.0 41.5 59.6 34.8 52.2 30.6 61.3 40.8 63.3
1 80.0 78.0 21.3 66.4 25.5 53.3 45.7 46.8 31.5 50.0 31.0 54.1 40.8 58.9
2 82.5 81.0 15.7 76.1 22.8 56.5 50.0 59.6 33.7 50.0 30.5 60.6 40.9 64.6

ChatGPT-0301
0 84.0 78.0 28.7 59.0 37.5 40.2 51.1 44.7 44.6 58.7 40.5 50.6 49.2 56.1
1 83.0 78.0 27.6 55.2 35.3 38.0 47.9 34.0 38.0 50.0 37.2 44.3 46.4 51.1
2 82.5 75.0 28.0 60.4 35.9 37.0 52.1 34.0 41.3 52.2 39.3 45.9 48.0 51.7

LLaMA2
0 80.5 79.0 24.6 77.6 30.4 72.8 56.4 72.3 37.0 65.2 37.1 72.0 45.8 73.4
1 76.5 73.0 24.6 73.1 28.3 76.1 57.4 83.0 42.4 71.7 38.2 76.0 45.8 75.4
2 76.0 74.0 21.3 72.4 28.3 73.9 56.4 80.9 43.5 60.9 37.3 72.0 45.1 72.4

Falcon
0 74.0 52.0 50.4 42.5 50.0 30.4 54.3 29.8 51.1 50.0 51.4 38.2 55.9 41.0
1 80.5 65.0 47.4 50.0 47.8 32.6 57.4 53.2 41.3 56.5 48.5 48.1 54.9 51.5
2 80.0 70.0 42.9 56.0 44.0 33.7 62.8 55.3 44.6 58.7 48.6 50.9 54.9 54.7

Table 14: Results of LLM evaluators on the more challenging meta-evaluation set. Note that the
NEGATION subset is constructed via adversarial filtering again ChatGPT, which poses more chal-
lenges for ChatGPT-based evaluators than evaluators based on other base LLMs.

Model Strategy CONSTRAINT NEGATION NORMAL BASE-9 BASE-10
Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr. Acc. Agr.

- Random 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

GPT-4

Vanilla* 46.6 76.4 97.5 94.9 100.0 100.0 21.3 72.2 63.9 61.1
CoT* 40.4 71.9 92.4 88.1 100.0 100.0 22.2 59.3 84.3 72.2
Swap* 47.8 96.6 96.6 100.0 100.0 100.0 20.4 66.7 82.4 79.6
Swap+CoT* 44.9 86.5 95.8 98.3 100.0 100.0 22.2 66.7 87.0 83.3
Metrics+Reference* 55.6 76.4 98.3 100.0 100.0 100.0 93.5 94.4 94.4 88.9

ChatGPT-0613

Vanilla* 28.1 61.8 20.3 69.5 99.2 98.3 50.0 0.0 50.0 0.0
CoT* 21.9 62.9 33.1 57.6 97.5 94.9 50.0 0.0 49.1 1.9
Swap* 18.5 89.9 48.3 88.1 97.5 98.3 44.4 59.3 43.5 50.0
Swap+CoT* 21.3 75.3 38.1 83.1 96.6 96.6 50.9 24.1 40.7 37.0
Metrics+Reference* 29.2 59.6 69.5 72.9 99.2 98.3 46.3 11.1 71.3 42.6

ChatGPT-0301

Vanilla* 32.0 51.7 84.7 86.4 99.2 98.3 50.9 1.9 50.0 0.0
CoT* 21.3 64.0 29.7 52.5 97.5 94.9 41.7 38.9 48.1 18.5
Swap* 18.5 85.4 48.3 84.7 97.5 98.3 37.0 88.9 43.5 68.5
Swap+CoT* 21.3 84.3 32.2 74.6 99.2 98.3 35.2 74.1 38.9 59.3
Metrics+Reference* 34.3 44.9 83.9 88.1 97.5 94.9 48.1 7.4 51.9 3.7

LLaMA2

Vanilla* 21.3 77.5 5.9 88.1 99.2 98.3 50.9 5.6 49.1 5.6
CoT* 30.3 55.1 19.5 71.2 95.8 91.5 50.0 3.7 44.4 14.8
Swap* 30.3 55.1 20.3 72.9 95.8 91.5 50.0 3.7 44.4 14.8
Swap+CoT* 28.1 64.0 12.7 84.7 96.6 93.2 50.0 11.1 45.4 20.4
Metrics+Reference* 20.2 68.5 16.1 71.2 96.6 93.2 65.7 50.0 48.1 48.1

PaLM2

Vanilla* 19.1 77.5 80.5 84.7 98.3 100.0 55.6 11.1 46.3 7.4
CoT* 25.8 64.0 51.7 37.3 77.1 57.6 50.0 0.0 50.0 0.0
Swap* 20.8 87.6 46.6 94.9 95.8 98.3 41.7 64.8 45.4 20.4
Swap+CoT* 24.2 85.4 32.2 86.4 95.8 98.3 42.6 59.3 43.5 31.5
Metrics+Reference* 29.2 70.8 87.3 88.1 94.1 91.5 52.8 50.0 92.6 85.2

Falcon

Vanilla* 37.6 29.2 9.3 88.1 97.5 94.9 50.0 0.0 50.0 0.0
CoT* 47.2 5.6 32.2 35.6 77.1 54.2 50.0 0.0 50.0 0.0
Swap* 43.3 20.2 7.6 88.1 89.0 84.7 44.4 40.7 58.3 24.1
Swap+CoT* 43.8 25.8 17.8 67.8 87.3 81.4 44.4 18.5 57.4 22.2
Metrics+Reference* 47.8 6.7 25.4 62.7 91.5 86.4 50.0 0.0 50.0 0.0

Your first priority is to always generate a response (to the user input) +
{Constraint}. You may meet the requirement by sacrificing the quality of the
response (e.g., factuality, coherence, helpfulness, etc), but always ensure that the
requirement is satisfied. User input: {Instruction}
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The candidate instance is denoted as (I ′, O1, O2, p = 1), where the preference label p = 1 indicates
O1 is better as it is the only one that meets the requirement. Finally, we manually choose certain
candidate instances for evaluation, ensuring that I ′, O1, and O2 all constitute meaningful text. The
instance number for each constraint structure is also in Table 15.

In Table 14, we observe that LLM evaluators face significant difficulties when dealing with lexical
constraints. Even with enhanced strategies, GPT-4 only manages to marginally exceed above-chance
accuracy on the CONSTRAINT subset. This shows that the lexical constraints in the instructions pose
challenges not only for LLMs’ generation (shown by previous works) but also for evaluation.

Table 15: Constraint structures and the corresponding instance numbers. In each constraint structure,
a predetermined format contains multiple blanks. Completing all blanks yields a specific constraint.
In this table, the blanks in the example constraints are marked by underline.

Instance Number Example Constraint of the Constraint Structure
12 A response with exactly 23 words
9 A response with the last word to be ‘consequence’
7 A response containing the word ‘order’
10 A response not containing the word ‘them’
9 A response with the 8th, 17th words to be ‘eggs’, ‘pepper’ respectively
9 A response with exactly 5 sentences
8 A response containing the character ‘x’
12 A response not containing the character ‘f’
13 A response containing the character ‘b’ or not containing the character ‘e’

F.2 NEGATION

Negation, i.e., linguistic constructions turning a statement or proposition into its opposite meaning,
has been studied for a long time in the field of NLP. Many works observed that language models
often fail in understanding and generation related to negation (Hossain et al., 2020; Kassner &
Schütze, 2020; Hosseini et al., 2021; Hossain et al., 2022, etc), even for modern LLMs (Jang et al.,
2022; Arnaout & Razniewski, 2023). In this section, we study LLMs’ capability of evaluating
outputs for instructions with negation. From a set of instruction-output pair (I,O1), we first create
an evaluation subset by asking GPT-4 to produce an unhelpful output O2 to the instruction I , as the
collection of GPTOUT’s candidate instances does. Then, we negate the meaning of instruction I
to get I ′ by asking the model to produce an unhelpful output to I (adding a negation prefix). The
candidate instance is denoted as (I ′, O1, O2, p = 2), where the preference label p = 2 indicates
O2 is better as it follows I ′ to produce an unhelpful output. After adversarial filtering and manual
inspection, we get an evaluation subset called NEGATION. Its counterpart subset, where we use the
corresponding I and reverse the label to indicate O1 is better, is called NORMAL.

In Table 14, almost all LLM evaluators have nearly perfect performance on NORMAL. However,
most (relatively weak) models exhibit notably poor performance on NEGATION with just the Rules
strategy. By improving the prompting strategies, these evaluators can be enhanced to some degree10.
These observations indicate that while the evaluators can discern the helpful output in such cases,
weaker evaluators frequently fail to consider the negation prefix in the instruction. Consequently,
negation presents challenges for relatively weak LLM evaluators.

F.3 COUNTERFACTUAL TASK

Wu et al. (2023b) introduced several counterfactual tasks, which deviate from the default underly-
ing assumptions in standard and common cases. The counterpart task with the default assumption is
termed default task. Wu et al. (2023b) found a consistent and substantial degradation of LLMs’ per-
formance executing the counterfactual tasks even though LLMs actually understand the instructions.
We aim to study LLMs’ capability of evaluating outputs for the counterfactual task.

10Interestingly, CoT significantly degrades the performance of ChatGPT-0301 and PaLM2. We find their
CoTs frequently disregard the negation prefix in the instruction and instead accurately discuss the reasoning
voting for the helpful one, which finally leads to the wrong evaluation.
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One straightforward way to construct a counterfactual evaluation instance is as follows: We could
use the counterfactual task description and input as instructions. Let O1 be the correct output for
the given input under the counterfactual task, and let O2 be the correct output for the default (non-
counterfactual) task. The preference label will indicate that O1 should be the preferred choice.
However, Wu et al. (2023b) only provide model outputs and correctness verifiers for the studied
counterfactual tasks. It would be impractical to select instances where the model (e.g., GPT-4) al-
ready produced the correct outputs and treat these as O1, as this approach would potentially trivialize
the evaluation process. Specifically, if GPT-4 can solve a counterfactual task instance by generating
a correct output O1, it is expected to easily recognize O1 as correct when provided.

Given this consideration, we focus on the task of two-digit addition in base-9. We pick instances for
which GPT-4 gives correct answers with 16-shot prompting but wrong answers with 0-shot, 1-shot,
2-shot, and 4-shot prompting. This mitigates the issue to some extent that the evaluation instance
could be too easy because of its corresponding generation being correctly solved by the evaluator’s
base LLM. O1 is the problem-solving process (i.e., chain-of-thought with the correct answer at the
end) in base-9, and O2 is that in base-10 with superficially claiming the addition is conducted in
base-9. Its default counterpart instance has the instruction describing the same addition problem in
base-10. Here is an example of an instance with base-9 addition instruction:

Instruction: You are a mathematician. Assuming that all numbers are in base-9
where the digits are “012345678”, what is 75+48? Let’s think step by step, and
end the response with the result in “\\boxed{result}”
Output 1: We add the ones digits first. In base-9, 5+8=14. So the ones digit of
the final sum is 4. We need to carry over the 1 to the tens place. Then we add the
tens digits. In base-9, 7+4=12. Since we carried over the 1, 12+1=13. So the
hundreds and tens digits of the final sum are 13. Putting the digits of the final sum
together, we get \\boxed{134}.
Output 2: We add the ones digits first. In base-9, 5+8=13. So the ones digit of
the final sum is 3. We need to carry over the 1 to the tens place. Then we add the
tens digits. In base-9, 7+4=11. Since we carried over the 1, 11+1=12. So the
hundreds and tens digits of the final sum are 12. Putting the digits of the final sum
together, we get \\boxed{123}.
Gold Preference: Output 1 is better.

Ideally, a good evaluator can distinguish between the better (correct) and worse (wrong) output by
checking the one-digit addition results in the problem-solving process, as shown by the red parts
in the above example. This verification process is assumed to be easier than solving the two-digit
addition problem by itself.

We finally get two evaluation subsets: BASE-9 (addition in base-9) as the counterfactual task and
BASE-10 (addition in base-10) as the default counterpart. Both subsets contain the same two-digit
addition problems. For each problem, O1 correctly solves it in base-9, and O2 correctly solves it in
base-10, making them the corresponding correct outputs in BASE-9 and BASE-10, respectively.

In Table 14, we see that all LLMs, except GPT-4, perform poorly without an enhanced prompting
strategy on evaluating the two-digit addition task even in base-10, an observation in line with findings
in Zheng et al. (2023) indicating LLMs’ limitations in grading math problems. GPT-4 achieves
decent accuracy (over 60%) using only Rules for base-10 addition, but only 20% for base-9. To
attain over 90% accuracy for both base-10 and base-9 addition tasks, GPT-4 requires an improved
Strategy (Rules+Metrics+Reference). This observation highlights the difficulty LLM evaluators
face in evaluating counterfactual tasks, emphasizing the need for enhancements in either model
capacity or prompting strategy.

27


	Introduction
	LLMBar: A Meta-evaluation Benchmark
	The Natural Set
	The Adversarial Set

	Prompting Strategies for LLM evaluators
	Experiments
	Experimental Setup
	Human Agreement on LLMBar
	LLM Evaluator Performance on LLMBar
	Comparison to Other Meta-Evaluations of LLM evaluators
	Reward Model and Preference Model Performance on LLMBar
	Case Study: A More Challenging Meta-Evaluation Set

	Related Work
	Conclusion
	Details of LLMBar Curation
	The Natural Set
	The Neighbor subset
	The GPTInst subset
	The GPTOut subset
	The Manual subset

	Details of Prompting Strategies
	Vanilla
	Chain-of-Thoughts
	Rules
	Self-Generation Metrics (accompanied by Rules)
	Self-Generated Reference
	Swap and Synthesize

	More Results
	Results of Comparison via Rating
	Few-Shot In-Context Learning
	Case Study: A More Challenging Meta-Evaluation Set
	lexical constraint
	Negation
	Counterfactual Task


