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Abstract

Molecular conformation generation aims to generate three-dimensional coordinates of all
the atoms in a molecule and is an important task in bioinformatics and pharmacology. Pre-
vious methods usually first predict the interatomic distances, the gradients of interatomic
distances or the local structures (e.g., torsion angles) of a molecule, and then reconstruct its
3D conformation. How to directly generate the conformation without the above intermedi-
ate values is not fully explored. In this work, we propose a method that directly predicts
the coordinates of atoms: (1) the loss function is invariant to roto-translation of coordinates
and permutation of symmetric atoms; (2) the newly proposed model adaptively aggregates
the bond and atom information and iteratively refines the coordinates of the generated
conformation. Our method achieves the best results on GEOM-QM9 and GEOM-Drugs
datasets. Further analysis shows that our generated conformations have closer properties
(e.g., HOMO-LUMO gap) with the groundtruth conformations. In addition, our method
improves molecular docking by providing better initial conformations. All the results demon-
strate the effectiveness of our method and the great potential of the direct approach. The
code is released at https://github.com/DirectMolecularConfGen/DMCG.

1 Introduction

Molecular conformation generation aims to generate 3D atomic coordinates of a molecule, which then can
be used in molecular property prediction (Axelrod & Gomez-Bombarelli, 2021), docking (Roy et al., 2015),
structure-based virtual screening (Kontoyianni, 2017), etc. While molecular conformation is experimentally
obtainable, such as via X-ray crystallography, it is prohibitively costly for industry-scale tasks (Mansimov
et al., 2019). Ab initio methods, e.g., based on density functional theory (DFT) (Parr, 1980; Baseden &
Tye, 2014), can accurately predict molecular structures, but take several hours per small molecule (Hu et al.,
2021). To handle large molecules, people turn to leverage classical force fields, like UFF (Rappe et al., 1992)
or MMFF (Halgren, 1996) and its extension (Cleves & Jain, 2017), to optimize conformations, which is
efficient but at the cost of low accuracy (Kanal et al., 2018).

Recently, machine learning methods have attracted much attention for conformation generation due to their
accuracy and efficiency. Most of previous methods first predict some intermediate values, like interatomic
distances (Simm & Hernández-Lobato, 2020; Shi et al., 2020; Xu et al., 2021a;b), the gradients w.r.t. in-
teratomic distances (Shi et al., 2021; Luo et al., 2021b), or the torsion angles (Ganea et al., 2021), and then
reconstruct the conformation based on them. While those methods improve molecular conformation gener-
ation, the intermediate values they used should satisfy additional hard constraints, which are unfortunately
violated in many cases. For example, GraphDG (Simm & Hernández-Lobato, 2020) predicts the interatomic
distances and then reconstructs the conformation based on them. The real distances (e.g., considering three
atoms) should satisfy the triangle inequality, but the distances predicted by GraphDG violate the inequality
out of 8.65% cases according to our study. For another example, ConfGF (Shi et al., 2021) predicts the gradi-
ent of interatomic distances, and the rank of a squared distance matrix is at most five. Such constraint makes
gradients ill-defined, because other distances cannot all be held constant while taking an infinitesimal change
to a specific distance dij (see Appendix C for more details). Directly generating the coordinates without
those intermediate values is a more straightforward strategy but is not fully explored. AlphaFold 2 (Jumper
et al., 2021) is such a kind of direct approach and has achieved remarkable performances on protein structure
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Figure 1: An example of symmetric substructure of a molecule.

prediction. The success of AlphaFold 2 inspires us to explore the method of directly generating coordinates
for molecular conformation.

A challenge of this approach is to maintain roto-translation invariance and permutation invariance. Specif-
ically, (1) rotating and translating the coordinates of all atoms as a group do not change the conformation
of a molecule, which should be taken into consideration for the direct approach; (2) Permutation invariance
should be considered for symmetry-related atoms. For example, as shown in Figure 1, due to the symmetry
of the pyrimidine part along the C-S bond (atom 11 and 12), atoms 13, 14 and atoms 17, 16 are equivalent.
Therefore, swapping the coordinates of 13 with 17 and 14 with 16 yields the same conformation. According
to our statistics on a subset of 40K molecules from GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2021), on
average, each molecule has 5.9 atom mappings which could result in the same conformation (more specif-
ically, the average number of |S| in Eqn.(1) is 5.9). The number is non-negligible for loss function design.

To maintain roto-translation and permutation invariance, in our method, we design a loss function as the
minimal distance between two sets of coordinates after any roto-translation and permutation of symmatric
atoms. Based on the new loss function, we design a model that iteratively refines atom coordinates. The
model stacks multiple blocks, and each block outputs a conformation which is then refined by the following
block. A block consists of several modules that encode the previous conformation as well as the representa-
tions of bonds, atoms and global information of molecules. At the end of each block, we add a normalization
layer that centers the coordinates at the origin. Since a molecule may have multiple conformations, inspired
by variational auto-encoder (VAE), we introduce a random variable z and a regularization term on z, which
allows diverse generation.

We conduct experiments on four benchmarks: GEOM-QM9 and GEOM-Drugs with the small-scale set-
ting (Shi et al., 2021) and large-scale setting (Axelrod & Gomez-Bombarelli, 2021). The small-scale GEOM-
QM9 and GEOM-Drugs have 200K molecule-conformation pairs for training, and the large-scale GEOM-
QM9 and GEOM-Drugs have 1.37M and 2.0M training pairs. Our method achieves state-of-the-art results
on all of them, demonstrating the effectiveness of our method. Specifically, on small-scale GEOM-QM9, our
method improves the recall-based mean coverage score and mean matching score by 4.7% and 0.3%. On
small-scale GEOM-Drugs, the improvements are 7.4% and 16.3%. On the large-scale settings, the improve-
ments are more significant: 7.3% and 47.1% for GEOM-QM9, and 25.3% and 36.0% for GEOM-Drugs. To
further verify the generation quality, we use Psi4 (Smith et al., 2020) to calculate the properties of generated
conformations and groundtruth conformations (e.g., HOMO-LUMO gap). Our conformations have closer
properties to the groundtruth compared with other methods. We also find that our generated conformations
can help improve molecular docking by providing better initial conformations.

To summary, (1) we design a dedicated loss function, that can maintains both permutation invariance on
symmetric atoms and roto-translation invariance on conformations; (2) we design a new model that iteratively
refines the conformation. (3) our method, named Direct Molecular Conformation Generation (DMCG),
outperforms strong baselines and achieves state-of-the-art results on all benchmarks we tested.

Problem Definition: Let G = (V, E) denote a molecular graph, where V and E are collections of atoms
and bonds, respectively. Specifically, V = {v1, v2, · · · , v|V |} with the i-th atom vi. Let eij denote the bond
between atom vi and vj . For ease of reference, we simply use i ∈ V and (i, j) ∈ E to denote the i-th atom
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in V and the bond eij in E. Let N(i) denote the neighbors of atom i, i.e., N(i) = {j | (i, j) ∈ E}. We use R
to represent the conformation of G, where R ∈ R|V |×3. The i-th row of R (denoted as Ri) is the coordinate
of atom vi. Given a graph G = (V, E), our task is to learn a mapping, that can output the coordinates R of
all atoms in V , i.e., R ∈ R|V |×3.

2 Framework

In this section, we first introduce the loss function. After that, we present the overall training and inference
workflow of our method. Finally, we introduce our proposed model.

2.1 Loss function

Let R ∈ R|V |×3 and R̂ ∈ R|V |×3 denote the groundtruth conformation and the generated conformation. The
roto-translation and permutation invariant loss is defined as follows:

ℓRTP(R, R̂) = min
ρ; σ∈S

∥R − ρ(σ(R̂))∥2
F . (1)

In Eqn.(1), (i) ρ denotes a roto-translational operation, which means to rotate and translate a conformation
rigidly; (ii) S denotes the collection of the permutation operations on symmetric atoms. For example, in
Figure 1, S contains two elements σ1 and σ2, where σ1 is an identical mapping, i.e. σ1(i) = i for any
i ∈ {1, 2, · · · , 18}, and σ2 is the mapping on symmetric atoms of the pyrimidine: σ2(13) = 17, σ2(17) =
13, σ2(14) = 16, σ2(16) = 14 and σ2(i) = i for the remaining atom i’s. (iii) ∥A∥2

F is defined as
∑

i,j |Ai,j |2.
In all, Eqn.(1) defines a loss between R and R̂ as the minimal achievable distance under any roto-translation
operation and any permutation operation of symmetric atoms, hence is invariant to these operations. Eqn.(1)
can be solved via quaternions (Karney, 2007; Hamilton, 1840) and graph isomorphism (Meli & Biggin, 2020).

To solve Eqn. (1), the optimization can be decomposed into two sub problems: (S1) ℓRT = minρ ∥ρ(R̂)−R∥2
F ;

(S2) ℓP = minσ∈S ∥σ(R̂) − R∥2
F .

Karney (2007) propose to use quaternions (Hamilton, 1840) to solve (S1). A quaternion q is an extension of
complex numbers, q = q0u + q1i + q2j + q3k, where q0, q1, q2, q3 are real scalars and u, i, j, k are orientation
vectors. With quaternions, any rotation operation is specified by a 3 × 3 matrix, where each element in
the matrix is the summation/multiplication of q0 to q3. The solution to (S1) is the minimal eigenvalue
of a 4 × 4 matrix obtained by algebraic operations on R and R̂. To stabilize training, we stop gradient
back-propagation through ρ (see Appendix B.3 for the ablation study).

To solve (S2), we need to find all elements in S, and then enumerate them to get the minimal value. S can
be mathematically described as follows: (1) ∀i ∈ V , atom i and atom σ(i) have the same label, which is
defined as the union of the atom type itself and also the types of all the bonds connected to it1. (2) There
exists a bond between atoms i and j if and only if there exists a bond between atoms σ(i) and σ(j) in the
same molecular graph. Therefore, we convert finding S into a graph isomorphism problem on molecular
graphs. Inspired by Meli & Biggin (2020), we use the graph_tool toolkit2 to find all permutations in S. By
combining the above two strategies, we are able to solve Eqn.(1). We provide several examples in the online
supplementary material to show how our method works.

Hopcroft & Wong (1974) proposed an algorithm whose complexity of testing planar graphs for isomorphism
is O(|E|) , where |E| is the number of edges in a graph. A planar graph can be regarded as a type of
graph that no edges cross each other (see Wiki for a quick introduction). For the widely used GEOM-QM9
and GEOM-Drugs datasets (Shi et al., 2021; Xu et al., 2022) of conformation generation, all the molecules
are planar graphs. We also randomly sample 30M compounds from PubChem, and only 4.5k of them are
not planar graphs (0.015%). This shows that although our method needs to test graph isomorphism, the
time complexity could still be controlled. In addition, the |S|’s of 99.8% molecules in GEOM-Drugs are
smaller than 100 and efficient to enumerate them all in GPU. A limitation is that, when stepping from small

1For example, in Figure 1, the label of atom 11 is “S-2Single”, and the label of atom 17 is “N-2Aromatic”.
2https://graph-tool.skewed.de
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Figure 2: The workflow of our method. Green and orange lines represent how to obtain R̂(z, G) and q(z|R, G)
respectively. Solid lines and dashed lines represent the model components and outputs respectively.

molecules to proteins with a long chain, |S| will significantly increase, resulting in large computation cost of
obtaining ℓRTP. We will improve it in the future.

A molecule might correspond to multiple conformations. Thus, we introduce a random variable z to our model
for diverse conformation generation. Given a molecular graph G, different z could result in different confor-
mations (denoted as R̂(z, G)). Inspired by the variational auto-encoder (VAE) (Kingma & Welling, 2014;
Rezende et al., 2014; Sohn et al., 2015), we introduce a (conditional) inference model q(z|R, G) to describe the
posterior distribution of z, reform the reconstruction loss in a probabilistic style Eq(z|R,G)

[
ℓRTP(R, R̂(z, G))

]
,

and append a regularization term in the form of the Kullback-Leibler (KL) divergence w.r.t. a prior distri-
bution p(z), i.e. DKL(q(z|R, G)∥p(z)). In this way, the aggregated (i.e. averaged/marginalized) posterior∫

q(z|R, G)pdata(R) dR is driven towards the prior p(z), which in turn allows generating a new conformation
from pdata(R) by passing through the decoder with a p(z) sample. It is easy to draw a random variable z
from p(z) and encourages diversity.

By properly choosing q(z|R, G), the loss is tractable to optimize. We specify q(z|R, G) := N (z|µR,G, ΣR,G)
as a multivariate Gaussian with a diagonal covariance matrix, where the µR,G and ΣR,G are outputs from
an encoder. It enables tractable loss optimization via reparameterization (Kingma & Welling, 2014): z ∼
q(z|R, G) is equivalent to z(i) = µ

(i)
R,G +

√
Σ(i,i)

R,Gϵ, ∀i, where ϵ ∼ N (0, 1), z(i) and µ
(i)
R,G are the i-th element

of z and µR,G, and Σ(i,i)
R,G denotes the i-th diagonal element. The KL divergence loss is specialized as

DKL(N (µR,G, ΣR,G)∥N (0, I)), which has closed form solution.

Overall, the overall training objective function is defined as follows:

min Eϵ∼N (0,I)ℓRTP(R, R̂(z, G)) + βDKL(N (µR,G, ΣR,G)∥N (0, I)), (2)

where β > 0 is a hyperparameter. The minimization in Eqn.(2) is taken over all the network parameters
(including the conformation generator and auxiliary model q).

2.2 Training and inference flow

Now we show the training and inference workflow. The training process involves three modules, φ2D, φ3D
and φdec. The workflow is illustrated in Figure 2(a). Specifically,
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Figure 3: Network architecture of the l-th block.

(1) The encoder φ2D takes the molecular graph G as its input, and outputs several representations: H
(0)
V ∈

R|V |×d for all atoms, H
(0)
E ∈ R|E|×d for all bonds, a global graph feature U (0) ∈ Rd, and initial conformation

R̂(0) ∈ R|V |×3. Note d is the dimension of the representations. Formally, (H(0)
V , H

(0)
E , U (0), R̂(0)) = φ2D(G).

(2) The encoder φ3D extracts features of the conformation R for constructing the conditional inference
module q(z|R, G). According to the above specification, φ3D only needs to output the mean and covariance
of the Gaussian, or formally, (µR,G, ΣR,G) = φ3D(R, G).

(3) We randomly sample a variable z from the Gaussian distribution N (µR,G, ΣR,G), and then feed H
(0)
V ,

H
(0)
E , U (0), R̂(0), z into the decoder φdec to obtain the conformation R̂(z, G). That is, R̂(z, G) =

φdec(φ2d(G), z) = φdec(H(0)
V , H

(0)
E , U (0), R̂(0), z). Note that sampling z ∼ N (µR,G, ΣR,G) is equivalent to

sampling ϵ ∼ N (0, I) and then setting z(i) = µ
(i)
R,G +

√
Σ(i,i)

R,Gϵ.

(4) After obtaining R̂(z, G) and N (µR,G, ΣR,G), we optimize Eqn.(2) for training. Recall that R̂(z, G) is
related to φ2D, φ3D, φdec, and µR,G, ΣR,G are related to φ3D.

The inference workflow is shown in Figure 2(b), where the well-trained φ2D and φdec are leveraged: (1)
Given a molecular graph G, we use φ2D to encode G and obtain R̂(0), H

(0)
V , H

(0)
E , U (0); (2) we sample a

random variable z from Gaussian N (0, I); (3) we feed R̂(0), H
(0)
V , H

(0)
E , U (0), z into φdec and obtain the

eventual conformation R̂(z, G). Note that φ3D is not used in inference phase.

2.3 Model architecture

The encoders φ2D, φ3D and the decoder φdec share the same architecture. They all stack L identical blocks.
We take the decoder φdec as an example to introduce its l-th block, and leave the details of φ2D and φ3D to
Appendix A.1.

Figure 3 shows the architecture of the l-th block of φdec. Roughly speaking, this block takes the outputs from
its preceding block (including the conformation R̂(l−1), atom representations H

(l−1)
V , edge representations

H
(l−1)
E and the global representation U (l−1) of the whole molecule) and outputs refined conformation and

representations of atoms, bonds, the whole graph. The process is repeated until the eventual output R̂(L) is
obtained. For the input of the first block (i.e., l = 1), the H

(0)
V , H

(0)
E , U (0) and R̂(0) are the outputs of φ2D.

We use a variant of the GN block (Battaglia et al., 2018; Addanki et al., 2021) as the backbone of our model
due to its superior performance in molecular modeling. In each block, we first update bond representations,
then atom representations, and finally the global molecule representation and the conformation. For ease of
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reference, let h
(l)
i denote the representation of atom i output by the l-th block, and h

(l)
ij the representation

of the bond between atom i and j. Also, let MLP denote a feed-forward network.

Mathematically, the l-th block takes following operations:

(1) Update bond representations: We first incorporate the coordinate information into the representations by

h̄
(l)
i = h

(l−1)
i + MLP(R̂(l−1)

i ) + z, ∀i ∈ V, (3)

h̄
(l)
ij = h

(l−1)
ij + MLP(∥R̂

(l−1)
i − R̂

(l−1)
j ∥), ∀(i, j) ∈ E,

where z ∼ N (µR,G, ΣR,G). After that, the bond representations are updated as follows: ∀(i, j) ∈ E,

h
(l)
ij = h

(l−1)
ij + MLP(h̄(l−1)

i , h̄
(l−1)
j , h̄

(l−1)
ij , U (l−1)). (4)

(2) Update atom representations: for any atom i ∈ V ,

h̃
(l)
i =

∑
j∈N(i)

αjWvconcat(h̄(l)
ij , h̄

(l−1)
j ) where αj ∝ exp(a⊤ζ(Wqh̄

(l−1)
i + Wkconcat(h̄(l−1)

j , h̄l
ij)));

h
(l)
i = h

(l−1)
i + MLP

(
h̄

(l−1)
i , h̃

(l)
i , U (l−1)

)
.

(5)

In Eqn.(5), a, Wq, Wv and Wk are the parameters to be learned, concat(·, ·) is the concatenation of two
vectors and ζ is the leaky ReLU activation. For atom vi, we first use GATv2 (Brody et al., 2021) to aggregate
the representations from its connected bonds to obtain h̃i, and then update vi based on h̃

(l)
i , h̄

(l−1)
i and U (l−1).

(4) Update global molecule representation:

U (l) = U (l−1) + MLP
( 1

|V |
∑|V |

i=1
h

(l)
i ,

1
|E|

∑
i,j

h
(l)
ij , U (l−1)

)
. (6)

(5) Update the conformation: ∀i ∈ V ,

R̄
(l)
i = MLP(h(l)

i ), m(l) = 1
|V |

∑|V |

j=1
R̄

(l)
j , R̂

(l)
i = R̄

(l)
i − m(l) + R̂

(l−1)
i . (7)

An important step in Eqn.(7) is that, after making initial prediction R̄
(l)
i , we calculate its center and normalize

their coordinates by moving the center to the origin. This normalization ensures that the coordinates
generated by each block are in reasonable numeric ranges.

We use R̂(L) output by the last block in φdec as the final prediction of the conformation.

3 Discussions with related work

CVGAE (Mansimov et al., 2019) is an early attempt to directly generating conformation. Unfortunately,
its performance is not as good as distance-based methods developed afterwards (Shi et al., 2020; Simm
& Hernández-Lobato, 2020). Our method, pursuing the same spirit, makes several finer designs: (1) We
design a dedicated training objective that takes the invariance of both roto-translation and permutation on
symmetric atoms into consideration. (2) We iteratively refine the output of each block, which is effective
for conformation generation (see Figure 7 for ablation study). In comparison, CVGAE only outputs the
conformation in the last layer. (3) Our model integrates several advanced and more effective modules,
including GATv2 (Brody et al., 2021) and GN block (Battaglia et al., 2018), while CVGAE mainly leverages
GRU (Bahdanau et al., 2015) and its variants on graphs, which are outperformed by the modules used in our
model. GeoDiff (Xu et al., 2022) is a concurrent work, which uses a diffusion-based method for conformation
generation and also directly predicts the coordinates without using intermediate distances. Compared with
our method, GeoDiff does not consider the permutation invariance of symmetric atoms and is not as efficient
as our method due to its sequential sampling.
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ConfGF (Shi et al., 2021) and DGSM (Luo et al., 2021b) are two recent works that can also directly output
the coordinates. They both model the gradient of log-density w.r.t interatomic distances, and then generate
coordinates by running Langevin dynamics using the gradients. The gradient model is learned via score-
matching. ConfGF considers the distances of 1-hop, 2-hop and 3-hop neighbors, and DGSM also considers
distances of two randomly sampled nodes to model non-bonded distances. In comparison, we completely
get rid of modeling distances. More importantly, the permutation invariance of symmetric atoms are not
considered in those works. Ganea et al. (2021) propose another method for conformation generation: they
first build the local structure (LS) by predicting the coordinates of non-terminal atoms, and then refine the
LS by the predicted distances and dihedral angles. In comparison, our method does not require refinement
based on the predicted distances and angles. Furthermore, although Ganea et al. (2021) use a permutation
invariant loss, they only consider the terminal atoms. According to our statistics on a subset of 40K molecules
from GEOM-Drugs, besides terminal atoms, on average, a molecule has 4.9 non-terminal symmetric atoms,
accounting for 10.8% of all atoms. We consider all symmetric atoms.

Our method models the roto-translation and permutation invariance through the loss function, while pre-
vious works model the molecules using equivariant networks (Hoogeboom et al., 2022; Xu et al., 2022).
More specifically, these works use the diffusion model for conformation generation. Rotational invariance
of the conformation distribution is implemented using an invariant latent prior and an equivariant model
structure (reverse diffusion process) to map from the latent space to the conformation space. This effec-
tively makes an invariant loss in the latent space. Hoogeboom et al. (2022) also generate the composition
of a molecule, by leveraging continuous representation of ordinal/categorical variables. In comparison, our
method removes the constraints on equivariant neural networks by introducing equivariance/invariance into
loss function, which is different from previous works that rely on specific network designs to ensure equiv-
ariance/invariance. A recent work (Du et al., 2022) points that only using radial direction to represent the
geometric information (like the models used in Hoogeboom et al. (2022) and Xu et al. (2022)) abandons
high-order tensor information, thus bringing direction degeneration problem and is insufficient to express
complex geometric qualities. Therefore, in our approach, we can adopt both equivariant network models and
more general (non-equivariant) networks, enabling the possibility of using more powerful non-equivariant
neural models.

There are some other works on conformation generation, but they target at different problems. G-
SchNet (Gebauer et al., 2019; Hoogeboom et al., 2022) takes some properties as input (not 2D graph)
and output a conformation with desired properties. Luo et al. (2021a) focus on generating a conformation
that can bind with specific binding pocket. We can combine our method with them in the future.

4 Experiments

4.1 Settings

Datasets: Following prior works (Xu et al., 2021a; Shi et al., 2021), we use the GEOM-QM9 and GEOM-
Drugs datasets (Axelrod & Gomez-Bombarelli, 2021) for conformation generation. We verify our method
on both small-scale setting and large-scale setting. For the small-scale setting, we use the same datasets
provided by Shi et al. (2021) for fair comparison with prior works. The training, validation and test sets of
the two datasets consist of 200K, 2.5K and 22408 (for GEOM-QM9)/14324 (for GEOM-Drugs) molecule-
conformation pairs respectively. After that, we work on the large-scale setting by sampling larger datasets
from the original GEOM to validate the scalability of our method. We use all data in GEOM-QM9 and
2.2M molecule-conformation pairs for GEOM-Drugs. The numbers of training, validation and test sets for
the larger GEOM-QM9 setting are 1.37M, 165K and 174K, and those for larger GEOM-Drugs are 2M, 100K
and 100K.

Model configuration: All of φ2D, φ3D and φdec have 6 blocks. The dimension d of the features is 256. Inspired
by the feed-forward layer in Transformer (Vaswani et al., 2017), MLP also consists of two sub-layers, where
the first one maps the input features from dimension 256 to hidden states, followed by Batch Normalization
and ReLU activation. Then the hidden states is mapped to 256 again using linear mapping. Considering
that our method outputs a conformation R̂(l) at each block l, we also require that each R̂(l) should try to
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be similar to the groundtruth R. Therefore, the ℓRTP is Eqn.(2) is implemented as

ℓRTP(R̂(L), R) + λ

L−1∑
l=0

ℓRTP(R̂(l), R), (8)

where L is the number of blocks in the decoder, R̂(0) is the output from φ2D, and λ is determined according
to validation performance. More details are summarized in Appendix A.2.

Evaluation: Assuming in the test set, the molecule x has Nx conformations. Following Shi et al. (2020;
2021), for each molecule x in the test set, we generate 2Nx conformations. Let Sg and Sr denote all generated
and groundtruth conformations respectively. We use coverage score (COV) and matching score (MAT) to
evaluate the generation quality. To measure the difference between R and R̂, we use the GetBestRMS in the
RDKit package and denote the root-mean-square deviation as RMSD(R, R̂). The recall-based coverage and
matching scores are defined as follows:

COV(Sg,Sr) = 1
|Sr|

∣∣∣{R ∈ Sr | RMSD(R, R̂) < δ, ∃R̂ ∈ Sg

}∣∣∣ ;

MAT (Sg,Sr) = 1
|Sr|

∑
R∈Sr

min
R̂∈Sg

RMSD(R, R̂).
(9)

A good method should have a high COV score and a low MAT score. Following (Shi et al., 2021; Xu et al.,
2022), the δ’s are set as 0.5 and 1.25 for GEOM-QM9 and GEOM-Drugs, respectively. The COV-δ curves
are left in Figure 9 of the appendix. There are also precision-based COV and MAT scores by switching the
Sr and Sg in Eqn.(9). We leave the precision-based results in Appendix B.1.

Baselines: (1) RDKit, which is a widely used toolkit and generates the conformation based on the force
fields; (2) CVGAE (Mansimov et al., 2019), which is an early attempt to generate raw coordinates; (3)
GraphDG (Simm & Hernández-Lobato, 2020), a representative distance-based method with VAE; (4)
CGCF (Xu et al., 2021a), which is another distance-based method leveraging continuous normalizing flow;
(5) ConfVAE (Xu et al., 2021b), an end-to-end framework for molecular conformation generation, which
still uses the pairwise distances among atoms as intermediate variables; (6) ConfGF (Shi et al., 2021) and
DGSM (Luo et al., 2021b), which uses score matching to generate the gradients w.r.t distances and then re-
cover the conformation; (7) GeoDiff (Xu et al., 2022), which uses diffusion model to generate conformations;
(8) GeoMol (Ganea et al., 2021), which predicts local atomic 3D structures and torsion angles. Considering
Ganea et al. (2021) use a different data split from previous work, we reproduce their method following the
more commonly used data split (Xu et al., 2021a; Shi et al., 2021).

4.2 Results

The recall-based results are shown in Table 1. For small-scale datasets, we independently train our models
with five different random seeds, and report the mean and standard derivations. We have the following
observations:

(1) On the four settings in Table 1, our method achieves state-of-the-art results on all of them. The median
COV(%) being 100% means that for more than half of the groundtruth conformations, there exist generated
conformations that are close to them within a predefined threshold. These results show the effectiveness and
scalability of our method.

(2) For the molecules in GEOM-QM9 and GEOM-Drugs, our method achieves more improvement on
molecules with more heavy atoms. Take the small-scale results in Table 1 as an example. On average,
GEOM-QM9 and GEOM-Drugs have 8.8 and 24.9 heavy atoms respectively. In terms of MAT mean values,
on GEOM-QM9, our method improves ConfGF and GeoDiff by 22.7% and 1.2%, while on GEOM-Drugs,
the improvements are 37.9% and 16.3%. The results demonstrate the effectiveness of our method on large
molecules.

More analysis is in Appendix B.5.
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Table 1: Recall-based coverage and matching scores. Bold fonts indicate the best results. The standard
derivations of our method (five independent runs) on small-scale datasets are reported.

Small-scale QM9 Small-scale Drugs

Methods COV(%)↑ MAT (Å)↓ COV(%)↑ MAT (Å)↓
Mean Median Mean Median Mean Median Mean Median

RDKit 83.26 90.78 0.3447 0.2935 60.91 65.70 1.2026 1.1252
CVGAE 0.09 0.00 1.6713 1.6088 0.00 0.00 3.0702 2.9937
GraphDG 73.33 84.21 0.4245 0.3973 8.27 0.00 1.9722 1.9845
CGCF 78.05 82.48 0.4219 0.3900 53.96 57.06 1.2487 1.2247
ConfVAE 80.42 85.31 0.4066 0.3891 53.14 53.98 1.2392 1.2447
GeoMol 71.26 72.00 0.3731 0.3731 67.16 71.71 1.0875 1.0586
ConfGF 88.49 94.13 0.2673 0.2685 62.15 70.93 1.1629 1.1596
DGSM 91.49 95.92 0.2139 0.2137 78.73 94.39 1.0154 0.9980
GeoDiff 90.54 94.61 0.2090 0.1988 89.13 97.88 0.8629 0.8529
DMCG 96.23 99.26 0.2083 0.2014 96.52 100.00 0.7220 0.7161

Std ±0.38 ±0.37 ±0.0052 ±0.0040 ±0.14 ±0.00 ±0.0027 ±0.0061

Large-scale QM9 Large-scale Drugs

Methods COV(%)↑ MAT (Å)↓ COV(%)↑ MAT (Å)↓
Mean Median Mean Median Mean Median Mean Median

RDKit 81.61 85.71 0.2643 0.2472 69.42 77.45 1.0880 1.0333
CVGAE 0.00 0.00 1.4687 1.3758 0.00 0.00 2.6501 2.5969
GraphDG 13.48 5.71 0.9511 0.9180 1.95 0.00 2.6133 2.6132
CGCF 81.48 86.95 0.3598 0.3684 57.47 62.09 1.2205 1.2003
ConfVAE 80.18 85.87 0.3684 0.3776 57.63 63.75 1.2125 1.1986
ConfGF 89.21 95.12 0.2809 0.2837 70.92 85.71 1.0940 1.0917
GeoMol 91.05 95.55 0.2970 0.2993 69.74 83.56 1.1110 1.0864
DMCG 98.34 100.00 0.1486 0.1340 96.22 100.00 0.6967 0.6552

(3) Our method is much more sample-efficient than methods based on Langevin dynamics like ConfGF,
since we can generate IID samples free of the auto-correlation in a Markov chain. ConfGF requires 5000
sequential forward steps, while we only need to sample once from N (0, I) and forward through the model.
For a fair comparison, following the official implementation of ConfGF, we split the test sets of small-scale
GEOM-QM9 and GEOM-Drugs into 200 batches. ConfGF requires 8511.60 and 11830.42 seconds to decode
QM9 and Drugs test sets, while our method only requires 32.68 and 54.89 seconds respectively. Our method
speeds up the decoding more than 200 times. Our method is also much more efficient than the recent GeoMol
algorithm , which takes 99.34s and 668.95s to decode the above two datasets.

(4) As shown in Table 1, the standard derivations of our method are significantly smaller than the gain
compared to the previously best results. This shows the effectiveness and robustness of our method. In
addition, considering that our method takes a random conformation as input, to test the confidence interval,
we run decoding with 10 different initial conformations. The mean COV and MAT scores on small-scale
GEOM-QM9 are 96.24 ± 0.12 and 0.2079 ± 0.0010, and those two numbers on small-scale GEOM-Drugs are
96.38 ± 0.19 and 0.7239 ± 0.0025. Our method is not sensitive to the choice of initial conformations.

The number of rotatable bonds is an important metric of how flexible a molecule is. We report coverage
score w.r.t. the number of rotatable bonds in Figure 4 based on small-scale GEOM-Drugs. More rotatable
bonds indicate harder generation. Our method outperforms previous baselines.

In Figure 5, we visualize the conformation of different methods. We randomly select three molecules from
the small-scale GEOM-drug dataset, generate several conformations, and visualize the best-aligned ones
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with the groundtruth. We can see that our method can generate high-quality conformations than previous
methods, which are the most similar to the groundtruth.

Computation cost analysis: We use PyTorch profiler3 to analyze the training time of the following
components: (1) model forward time, which denotes the time of calculating the hidden representations from
the input layer to output layer; (2) transformation time, which denotes the time of calculating the optimal
roto-translation operation ρ∗; (3) permutation time, which denotes the time of enumerating all possible
permutations in S and find the optimal one σ∗ ∈ S; note that we can use torch.no_grad to reduce time
and memory; (4) loss forward time, which is the total of calculating the loss after obtaining ρ∗ and σ∗; (5)
loss backward time, which denotes the time of gradient backpropagation.

The time is summarized in Table 2. We can see that model forward and loss forward/backward takes
about 71.4% of the total computation time. The transformation and permutation takes 20.4% and 8.2%
of the total time. Note that there are 7 transformation operations in the experiments (see Eqn.(8)). For
the full training pipeline where data loading, model forwarding, loss forwarding, gradient backpropagation,
metric calculation and CPU/GPU communications are all considered, DMCG takes 20% more time than
that without roto-translation and permutation.

Table 2: Computation time statistics of each part in 100 iterations.

Model forward Transformation Permutation Loss forward Loss backward
5.515 (52.8%) 2.136 (20.4%) 0.858 (8.2%) 0.052 (0.5%) 1.886 (18.1%)

We use graph isomorphism algorithms to find all S. Although the general graph isomorphism problem is
NP-hard, the size of drug-like molecules is largely limited, otherwise the molecule’s druggability is limited
(one can refer to Lipinski’s rule of five). Therefore, our method does not need scalability to a large scale. In
our experiments, it takes 4.9 seconds to process 10k molecules in GEOM-QM9, and 6.6 seconds to process
10k molecules in GEOM-Drugs. This is negligible compared to the training time, and we only need to process
the data for one time in data preparing stage.

4.3 Molecular docking

Molecular docking (Roy et al., 2015) is a widely used technique in drug discovery, which aims to find the
optimal binding conformation of a drug (i.e., the small molecule) in the pocket of a given target protein and
the corresponding binding affinity. In most cases, the molecular docking algorithms treat proteins as rigid
bodies and take one conformation of the small molecules as the initial structure inputs. The algorithms then
search for the optimal conformation in the conformation space of the small molecules guided by the scoring
function. However, due to the complexity of the conformation space, it is difficult for the algorithm to
converge to a global minimum. Therefore, the choice of the initial structure often leads to different binding
conformations and needs to be taken seriously.

Previously, RDKit was often used to generate initial conformations of small molecules, which usually got
reasonable but not optimal results after docking. To verify the effectiveness of our method, we compared
the docked poses which take initial conformations generated by our method (DMCG), ConfGF, GeoMol,
GeoDiff and RDKit as the initial conformations for docking respectively.

We use Smina (Koes et al., 2013) for molecular docking and make evaluation on PDBbind refined set (Liu
et al., 2017) which is a comprehensive collection of experimentally measured binding affinity for all biomolec-
ular complexes deposited in the Protein Data Bank4. We randomly select 100 protein-ligand pairs for
evaluation. Appendix A.3 shows detailed optimization hyper-parameters.

Two metrics were used to evaluate the results of docking. One is the docking score (roughly, the estimation of
binding affinity), which measures how well a molecule fits the binding site. A smaller value indicates better
binding affinity. The other is the root-mean-square deviation (RMSD, the smaller, the better) compared to

3https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
4https://www.rcsb.org/
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Figure 6: Histograms of docking scores and RMSD scores.

the crystal complex structure. As shown in Figure 6(a), the distributions for the three methods have the
similar shape but our method is much more left-shifted than the others. This shows that for the same small
molecule, our method tends to help docking to find conformations with higher binding affinities. Furthermore,
docking tends to find lower RMSD binding conformations using the conformation generated by our method
as the initial conformation, suggesting that our method can help docking to find binding conformations that
are closer to the native crystal structures (Figure 6(b)). We also summarize the mean values of the docking
scores and RMSD of different algorithms in the legends of Figure 6. All these results show that our method
provides more proper initial conformations for molecular docking and thus facilitates the real application in
computer-aided drug discovery.

4.4 Property prediction

In addition to conformation generation task, we also conduct experiments on property prediction task,
which is to predict molecular property based on an ensemble of generated conformation (Axelrod & Gomez-
Bombarelli, 2021). We first randomly choose 30 molecules from GEOM-QM9 test sets, and then sample
50 conformations for each molecule using RDKit, ConfGF and our method. We use the quantum chemical
calculation package Psi4 (Smith et al., 2020) to calculate the energy, HOMO and LUMO for each generated
conformation and groundtruth conformation. Next, we calculate the ensemble properties of average energy
E, lowest energy Emin, average HOMO-LUMO gap ∆ϵ, minimum gap ∆ϵmin and maximum gap ∆ϵmax based
on the conformational properties of each molecule5. We use mean absolute error to measure the property
differences between the generated conformations and groundtruth conformations.

Table 3: Mean absolute error of predicted ensemble properties. (Unit: eV).

Methods E Emin ∆ϵ ∆ϵmin ∆ϵmax

RDKit 0.8875 0.6530 0.3484 0.5570 0.2399
GraphDG 45.1088 9.2868 3.8970 6.6997 1.7724
ConfGF 2.8349 0.2012 0.6903 4.9221 0.1820
GeoMol 4.5700 0.5096 0.5616 3.5083 0.2650

DMCG 0.4324 0.1364 0.2057 1.3229 0.1509

5From a physics perspective, using the Boltzmann-weighted average of the energies of the molecules is a better choice, but
the distribution is missing from the dataset. Following (Simm & Hernández-Lobato, 2020; Shi et al., 2021; Luo et al., 2021b),
we use the average number here instead of the weighted version.
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Table 4: Ablation study on small-scale GEOM-Drugs.

Methods COV(%)↑ MAT (Å)↓
Mean Median Mean Median

DMCG 96.52 100.00 0.7220 0.7161

No ℓP 77.78 86.09 1.0657 1.0563
No attention 94.99 100.00 0.7611 0.7581
No normalization 92.77 98.68 0.8002 0.7977

The results are shown in Table 3. Our method significantly outperforms GraphDG, ConfGF and the recent
GeoMol, which shows the effectiveness of our method. We can observe that RDKit achieves the best results
on ∆ϵmin, and we will combine our method with RDKit in the future.

4.5 Ablation study

We conduct ablation study on the small-scale GEOM-Drugs dataset. The results are shown in Table 4.

(1) We remove the permutation invariant loss and use the roto-translation invariant loss only, i.e., the ℓRTP
in Eqn.(2) is replaced with ℓRT defined in Section.(2.1). The results are denoted as “No ℓP” in Table 4.
(2) We replace attentive node aggregation by a simple MLP network. That is, Eqn.(5) is replaced by

h
(l)
i = h

(l−1)
i + MLP(h(l−1)

i , U (l−1),
1

|N(i)|
∑

j∈N(i)

h
(l−1)
j ).

The results are denoted as “No attention” in Table 4.

(3) We remove the normalization step in Eqn.(7), i.e., the m(l) is not used. Denote the results as “No
normalization”.

We can see that: (1) The permutation invariant loss is extremely important, without which the mean COV
drops 18.91 while MAT increases 0.3434. We also visualize several cases in Appendix B.2 to compare the
results with or without ℓP. (2) Without attentively aggregating the atom features, the mean COV drops 1.70
points and MAT score increases 0.0345 points. (3) Without the conformation normalization, the performance
is also hurt. These results demonstrate the importance of the components in our method.

Finally, we compute the COV and MAT scores of R̂(l) against the groundtruth, which is the output confor-
mation of the l-th block in the decoder. R̂(0) is the output of φ2D. The results are shown in Figure 7. We can
see that iteratively refining the conformations can improve the performances, which shows the effectiveness
of our design. This phenomenon is consistency with the discovery in machine translation (Xia et al., 2017),
image synthesis (Chen & Koltun, 2017) and protein structure prediction (Jumper et al., 2021).

We leave the discussion about additional constraints on loss functions, the comparison of model sizes and
more discussions in Appendix B.

5 Conclusions and future work

In this work, we propose a new method, that directly generates the coordinates of conformations. For this
purpose, we design a dedicated loss function, which is invariant to roto-translation and permutation on
symmetric atoms. We also design a new model with many advanced modules (i.e., GATv2, GN block) that
can iteratively refine the conformations. Experimental results on both small-scale and large-scale GEOM-
QM9 and GEOM-Drugs demonstrate the effectiveness of our method.

For future work, first, we will incorporate chemical rules into deep learning models to improve generation
quality. Second, current methods are mainly non-autoregressive, where all coordinates are generated simul-
taneously. We will study the autoregressive setting so as to further improve the accuracy. Third, Villar et al.
(2021) point that equivariance/invariance can be universally approximated through polynomial functions.
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Figure 7: The MAT and COV scores of R̂(l) output by different blocks.

This is a good direction to explore in molecular conformation generation. Fourth, when the number of per-
mutation invariant mappings in a molecule is extremely large, enumerating all of them is not the best choice
due to the exponentially increased computation cost. We will improve our method along this direction.
Fifth, we will deeply collaborate with chemists and biologists on more case studies.
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A Procedure descriptions

A.1 Details of other model components

The model architectures of φ2D and φ3D are similar to φdec, with the following differences.

Comparing φ2D with φdec, the differences are the initial conformation R̂(0) and initial features (i.e., the
H

(0)
V , H

(0)
E and U (0)). φ2D takes a random conformation sampled from uniform distribution in [−1, 1] as

input. The initial atom and edge features are the embeddings of the atoms and edges respectively. φ2D
will also output a prediction of the conformation. Note that the random variable z sampled from Gaussian
N (µR,G, ΣR,G) is not used in φ2D.

Comparing φ3D with φdec, the differences are the initial conformation R̂(0), initial features (i.e., the H
(0)
V ,

H
(0)
E and U (0)) too. φ3D takes the groundtruth conformation as input. The initial atom and edge features

are the embeddings of the atoms and edges respectively. Another difference is that the fourth step of φdec,
i.e., Eqn.(7), is not used.
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A.2 More details about training

We use AdamW optimizer (Loshchilov & Hutter, 2019) with initial learning rate η0 = 2 × 10−4 and weight
decay 0.01. In the first 4000 iterations, the learning rate is linearly increased from 10−6 to 2 × 10−4. After
that, we use cosine learning rate scheduler (Loshchilov & Hutter, 2016), where the learning rate at the t-th
iteration is η0(1 + cos(π t

T ))/2, where T is the half of the period (i.e., the iteration numbers of 10 epochs in
our setting). Similarly, we also use the cosine scheduler to dynamically set the β at range [0.0001, 0.008].
The batch size is fixed as 128. All models are trained for 100 epochs. For the two small-scale settings, the
experiments are conducted on a single V100 GPU. For the two large-scale settings, we use two V100 GPUs
for experiments. The λ in Eqn.(8) for large-scale QM9 is 0.1, and for the remaining settings, λ is set as
0.2. The hyperparameter is selected according to validation performance. The detailed hyper-parameters
are described in Table 5.

Table 5: Hyper-parameters for our experiments.

Small-Scale Large-Scale
Layer number 6 6
Dropout 0.1 0.1
Learning rate 2e-4 2e-4
Batch size 128 128
Epoch 100 100
β Min 0.0001 0.001
β Max {0.001, 0.002, 0.004, 0.008, 0.01} {0.005, 0.01, 0.02, 0.04,0.05}
Latent size 256 256
Hidden dimension 1024 1024
GPU number 1× NVIDIA V100 2× NVIDIA V100

A.3 More details about molecular docking

For RDKit, we generated one initial conformation as input and set num_modes to 50 when performing
docking6. For our method, ConfGF, GeoDiff and GeoMol, since the generated conformations are independent
and diverse, we randomly selected five of them, performed five independent molecular docking calculations
and set num_modes to 10 to ensure all three methods generate equal number of conformations. Eventually,
each method got about 50 binding conformations. The conformation corresponding to the lowest binding
affinity was selected as the final docked pose.

B More experimental results

B.1 Precision-based results

The precision-based coverage and matching scores are defined as follows:

COV-P(Sg,Sr) = 1
|Sg|

∣∣∣{R̂ ∈ Sg | RMSD(R, R̂) < δ, ∃R ∈ Sr

}∣∣∣ ;

MAT-P (Sg,Sr) = 1
|Sg|

∑
R̂∈Sg

min
R∈Sr

RMSD(R, R̂).
(10)

The results are in Table 6. The results of GraphDG, CGCF, ConfVAE, ConfGF and GeoDiff are from (Xu
et al., 2022). Our method is still the best one.

6When using different random seeds, the conformations output by RDKit is not diverse enough. Therefore, we only choose
one here.
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Table 6: Precision-based coverage and matching scores. Bold fonts indicate the best results.

Small-scale QM9 Small-scale Drugs
COV-P(%)↑ MAT-P(Å)↓ COV-P(%)↑ MAT-P(Å)↓

Methods Mean Median Mean Median Mean Median Mean Median
GraphDG 43.90 35.33 0.5809 0.5823 2.08 0.00 2.4340 2.4100
CGCF 36.49 33.57 0.6615 0.6427 21.68 13.72 1.8571 1.8066
ConfVAE 38.02 34.67 0.6215 0.6091 22.96 14.05 1.8287 1.8159
ConfGF 49.02 46.69 0.5111 0.4979 23.15 15.73 1.7304 1.7106
GeoDiff 52.79 50.29 0.4448 0.4267 61.47 64.55 1.1712 1.1232
GeoMol 84.98 89.90 0.3292 0.3269 75.54 94.13 1.0028 0.9082
DMCG 87.26 91.00 0.2872 0.2926 81.05 95.51 0.9210 0.8785

Dataset Large-scale QM9 Large-scale Drugs
Methods Mean Median Mean Median Mean Median Mean Median

COV-P(%)↑ MAT-P(Å)↓ COV-P(%)↑ MAT-P(Å)↓
ConfGF 46.23 44.87 0.5171 0.5133 28.23 20.71 1.6317 1.6155
GeoMol 78.28 81.03 0.3790 0.3861 41.46 36.79 1.5120 1.5107
DMCG 90.86 95.36 0.2305 0.2258 74.57 81.80 0.9940 0.9454

B.2 Combination with distance-based and angle-based loss functions

One may be curious about whether using distance-based loss and angle-based can further improve the
performance, since the latter two are equivariant to the transformation of coordinates. For ease of reference,
let Ri denote the groundtruth coordinate of atom vi and R̂i denote the predicted coordinate of atom vi.
Recall in Section 1, we use E to denote the collection of all bonds. We define E2 as {(i, j, k)|(i, j) ∈ E, (i, k) ∈
E, k ̸= j}.

Inspired by (Winter et al., 2021) and (Ganea et al., 2021), we use the following two functions:

ℓangle = 1
|E2|

∑
(i,j,k)∈E2,

∥ cosine(Rj − Ri, Rk − Ri) − cosine(R̂j − R̂i, R̂k − R̂i)∥2
F , (11)

ℓbond = 1
|E|

∑
(i,j)∈E

(
distance(Rj , Ri) − distance(R̂j − R̂i)

)2
, (12)

where cosine(a, b) = a⊤b
∥a∥∥b∥ and distance(a, b) = ∥a−b∥, a and b are two vectors. That is, we apply additional

constraints to bond length and bond angles. Please note that with the above two auxiliary loss functions,
our method still generates coordinates directly and does not need to generate intermediate distances and
angles.

We verify the following three loss functions:

L1 = Eϵ∼N (0,I)ℓRT(R, R̂(µR,G + ΣR,Gϵ, G)) + βDKL(N (µR,G, ΣR,G)∥N (0, I)), (13)
L2 = Eϵ∼N (0,I)ℓRT(R, R̂(µR,G + ΣR,Gϵ, G)) + βDKL(N (µR,G, ΣR,G)∥N (0, I)) + λ(ℓangle + ℓbond), (14)
L3 = Eϵ∼N (0,I)ℓRTP(R, R̂(µR,G + ΣR,Gϵ, G)) + βDKL(N (µR,G, ΣR,G)∥N (0, I)) + λ(ℓangle + ℓbond), (15)

where λ = 0.1. Note in Eqn.(13) and Eqn.(14), we use the roto-translation loss only without considering
permutation invariant loss on symmetric atoms. We conduct experiments on GEOM-Drugs (small-scale
setting). The results are reported in Table 7.

We have the following observations:

(1) Comparing L1 with our method, we can see that using permutation invariant loss on symmetric atoms are
important, without which the results significantly drop. (2) Comparing L2 with our method, we can see that
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Table 7: Results of combining with constraints on bond lengths and bond angles.

Methods COV(%)↑ MAT (Å)↓
Mean Median Mean Median

DMCG 96.52 100.00 0.7220 0.7161
L1 77.78 86.09 1.0657 1.0563
L2 92.45 98.70 0.8983 0.9016
L3 96.01 100.00 0.7235 0.7199

when we do not use the permutation invariant loss, using more constraints on bond lengths and bond angles
can help improve the performances. (3) When using both permutation invariant loss and roto-translation
invariant loss, using ℓbond and ℓangle will not bring more significant improvement. These results demonstrate
that for molecular conformation generation, it is important to consider the permutation of symmetric atoms.

To illustrate the impact of the permutation invariant loss, we show two examples in Figure 8. For these two
examples, there exists a rotatable ring at the end of a molecule, where the ring is symmetric to the bond
connecting itself to the rest of the molecule. Without the permutation invariant loss (see the row No ℓP), our
method fails to generate the coordinates of such rings, but simply puts them in a line. This is because the
model is trapped into local optimal. By using the permutation invariant loss, we can successfully recover the
conformations of those rings (see the row “DMCG”). This shows the importance of using the permutation
invariant loss ℓP as we proposed.

Molecular
Graph

No ℓ𝑷

Reference

DMCG

Figure 8: The illustration of the impact of the permutation invariant loss. “No ℓP" means without the
permutation invariant loss.

B.3 Gradient back-propagation through roto-translational operation?

As introduced Section 2.1, the optimal roto-translation operation ρ∗ can be obtained by calculating the
eigenvalues and eigen vectors of a matrix. This is implemented by using the torch.linalg.eig. However,
the official document lists a warning of this function: “Gradients computed using the eigenvectors tensor
will only be finite when A has distinct eigenvalues. Furthermore, if the distance between any two eigenvalues
is close to zero, the gradient will be numerically unstable, as it depends on the eigenvalues λi through the
computation of 1

mini̸=j λi−λj
” (the words are from the official document). Therefore, we disable the gradients

through ρ∗ for stability.
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We compare the performance between enabling and disabling the gradients. The results are in Table 8.
Overall speaking, enabling the gradients slightly hurts the performance (especially the MAT for GEOM-
Drugs) and increases computation time. Therefore, we recommend disabling the gradients through ρ∗.

Table 8: Results with/without gradient back-propagation through ρ∗.

Small-scale QM9 Small-scale Drugs
COV-P(%)↑ MAT-P(Å)↓ COV-P(%)↑ MAT-P(Å)↓

Methods Mean Median Mean Median Mean Median Mean Median
with gradient 96.14 99.43 0.2090 0.2062 96.08 100.00 0.7345 0.7247
without gradient 96.23 99.26 0.2083 0.2014 96.52 100.00 0.7220 0.7161

B.4 Study of model parameters

In this section, we compare the performances of our method and ConfGF. The ConfGF model has 0.81M
parameters. We reduce the network parameter of our method to 0.98M . The results are shown in Table 9.

Table 9: Comparison of our method and ConfGF with different model sizes

Dataset GEOM-QM9 GEOM-Drugs

Methods COV(%)↑ MAT (Å)↓ COV(%)↑ MAT (Å)↓
Mean Median Mean Median Mean Median Mean Median

ConfGF (0.81M) 88.49 94.13 0.2673 0.2685 62.15 70.93 1.1629. 1.1596
DMCG (0.98M) 94.28 98.20 0.2399 0.2361 89.40 97.06 0.8653 0.8670
DMCG (normal) 96.23 99.26 0.2083 0.2014 96.52 100.00 0.7220 0.7161

By reducing the network parameters of our method, the performance also drops, but still significantly better
than ConfGF.

B.5 More discussions on the conformation with more heavy atoms

In Table 1, we observe that our method works better than distance-based methods (include modeling the
distances directly, or the gradients of distances) on molecules with more heavy atoms. Our conjecture is
that for these distance-based works, they usually extend the molecular graph with 1,2,3-order neighbors,
which is sufficient to determine the 3D structure in principle. For GEOM-QM9 dataset, considering the
number of atoms is less than 10, this extended graph is nearly a complete graph and can provide enough
signals to reconstruct the 3D structure. Therefore, these distance-based performances are good on GEOM-
QM9 dataset. For GEOM-Drugs dataset, the numbers of atoms are much more than those in GEOM-
QM9. Although in theory, the distances in a third-order extended graph can reconstruct the 3D structure,
practically the signals are still not enough. Our method does not rely on the interatomic distances, and can
achieve good results on large molecules.

To verify our conjecture, on GEOM-Drugs, we categorize the molecules based on their numbers of heavy
atoms. We choose one of the five independently run DMCG models for analysis. The number of heavy atoms
in the i-th group lie in [10i + 1, 10(i + 1)]. We compare our method against ConfGF (the code of DGSM
is not available) and GraphDG. The results are in Table 10. We have similar observation, that our method
brings more improvements than previous method on larger molecules.

B.6 More results about property prediction

The median absolute error of the property prediction is shown in Table 11. We can see that our method still
outperforms all deep learning based methods, which demonstrate the effectiveness of our method.
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Table 10: COV and MAT mean scores w.r.t numbers of heavy atoms on small-scale GEOM-Drugs. The i
indicates that the heavy atom number lies in range [10i + 1, 10(i + 1)], i ∈ {1, 2, 3}.

Metric COV(%)↑ MAT(Å)↓
i = 1 i = 2 i = 3 average i = 1 i = 2 i = 3 average

ConfGF 99.95 66.28 15.34 62.54 0.7764 1.1510 1.5345 1.1637
GraphDG 15.11 1.78 0.0 3.12 2.0578 2.5863 2.9849 2.5847
DMCG 100.00 97.62 90.04 96.69 0.5305 0.7190 0.8794 0.7223

Table 11: Median absolute error of predicted ensemble properties. (Unit: eV).

Methods E Emin ∆ϵ ∆ϵmin ∆ϵmax

RDKit 0.8721 0.6119 0.3057 0.4414 0.1830
GraphDG 13.1707 1.9221 3.4136 7.6845 1.1663
ConfGF 1.5167 0.1972 0.6588 4.8920 0.1686
DMCG 0.4132 0.1100 0.1276 0.8486 0.1288
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Figure 9: The Coverage score w.r.t different threshold δ.

B.7 Results with different training sizes

To investigate whether our method relies on a large dataset, we subsample training data of the large-scale
GEOM-QM9 and GEOM-Drugs to 10%, 25%, 50%, 75%. The validation and test sets remain unchanged.
The results are in Table 12.

We can see that:

1. Generally, DMCG benefits from more training data.

2. With 10% training data, our method is better than previous baselines ConfGF and GeoMol.

B.8 Adding more blocks

In this section, we study whether adding more blocks are helpful. We increase the number of blocks from
6 to 12. The results are in Table 13. For GEOM-QM9, we do not observer performance improvement
by increasing the number of blocks. For GEOM-Drugs, increasing the number of blocks further improves
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Table 12: Results with different training sizes. The baseline mehtods are trained on the full dataset. For
our DMCG, it is trained on 10%, 25%, 50%, 75% and the full dataset.

Dataset GEOM-QM9 GEOM-Drugs

Methods COV(%)↑ MAT (Å)↓ COV(%)↑ MAT (Å)↓
Mean Median Mean Median Mean Median Mean Median

ConfGF 89.21 95.12 0.2809 0.2837 70.92 85.71 1.0940 1.0917
GeoMol 91.05 95.55 0.2970 0.2993 69.74 83.56 1.1110 1.0864
DMCG (10%) 91.48 97.45 0.2748 0.2692 94.47 100.00 0.7934 0.7624
DMCG (25%) 97.65 100.00 0.1858 0.1676 95.17 100.00 0.7475 0.7092
DMCG (50%) 98.23 100.00 0.1606 0.1457 96.38 100.00 0.7057 0.6771
DMCG (75%) 98.31 100.00 0.1544 0.1384 96.14 100.00 0.6947 0.6562
DMCG (100%) 98.34 100.00 0.1486 0.1340 96.22 100.00 0.6967 0.6552

the performance. Our conjecture is that, the molecules in GEOM-Drugs are more complex than those in
GEOM-QM9, which benefit more from larger models.

Table 13: Results with different number of blocks.

Dataset GEOM-QM9 GEOM-Drugs

# blocks COV(%)↑ MAT (Å)↓ COV(%)↑ MAT (Å)↓
Mean Median Mean Median Mean Median Mean Median

6 96.23 99.26 0.2083 0.2014 96.52 100.00 0.7220 0.7161
8 95.55 98.91 0.2217 0.2190 96.77 100.00 0.7122 0.7093
10 95.71 99.52 0.2215 0.2212 97.29 100.00 0.7089 0.7079
12 94.65 99.11 0.2280 0.2284 97.11 100.00 0.7092 0.6996

B.9 Iterative refinement v.s. recursive refinement

Currently, the parameters of the blocks in the decoder (i.e., φdec) are not shared. Another option is to
implement a recursive model, where the parameters of different decoder blocks are shared. The results are
in Table 14. We can see that using the recursive model hurts the performances.

Table 14: Results with recursive decoder.

Dataset GEOM-QM9 GEOM-Drugs

# Method COV(%)↑ MAT (Å)↓ COV(%)↑ MAT (Å)↓
Mean Median Mean Median Mean Median Mean Median

DMCG 96.23 99.26 0.2083 0.2014 96.52 100.00 0.7220 0.7161
DMCG with recursive decoder 94.03 98.00 0.2726 0.2771 95.20 100.00 0.7883 0.7862

C Constraints on distances

Let G be a molecular graph with N atoms (N ≥ 3). Let dij denote the distance between atom i and atom j.
Define D as the distance matrix, which is an N × N matrix, and dij locates in the i-th row and j-th column
of D.

The triangle inequalities means that for any three different i, j, k, di,j + dj,k ≥ dj,k.
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A valid distance matrix D is induced from the 3N−6 degree-of-freedom (DOF) of N 3D-coordinates excluding
global translation and rotation, while the popular practice of independently generating distances to 2- or
3-hop neighbors (Xu et al., 2021a) often introduces more DOF.

Moreover, a distance matrix should have a rank at most 5 after element-wise squared (Dokmanic et al.,
2015). In other words, the rank of matrix D̃ = {d2

ij}i,j is at most 5. Such a constraint is hard to guarantee
even if the DOF is matched (Simm & Hernández-Lobato, 2020) (e.g., λI has one DOF but is almost surely
full-rank). It also makes gradients ill-defined (Shi et al., 2021) (other distances cannot all be held constant
while taking an infinitesimal change to dij). Careful treatments (Hoffmann & Noé, 2019) often increase the
order of computation complexity.
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