
Under review as submission to TMLR

Fast Slate Policy Optimization: Going Beyond Plackett-Luce

Anonymous authors
Paper under double-blind review

Abstract

An increasingly important building block of large scale machine learning systems is based
on returning slates; an ordered lists of items given a query. Applications of this technology
include: search, information retrieval and recommender systems. When the action space
is large, decision systems are restricted to a particular structure to complete online queries
quickly. This paper addresses the optimization of these large scale decision systems given an
arbitrary reward function. We cast this learning problem in a policy optimization framework
and propose a new class of policies, born from a novel relaxation of decision functions. This
results in a simple, yet efficient learning algorithm that scales to massive action spaces. We
compare our method to the commonly adopted Plackett-Luce policy class and demonstrate
the effectiveness of our approach on problems with action space sizes in the order of millions.

1 INTRODUCTION

Large scale online decision systems, ranging from search engines to recommender systems, are constantly
queried to deliver ordered lists of content given contextual information. As an example, a user who has just
seen the film ‘Batman’, might be recommended: Superman, Batman Returns, Bird Man, or a user that is
reading a page about ‘technology’ might be interested in other stories about biotechnology, solar power, and
large language models. A large scale production system must therefore be able to rapidly respond to a query
like ‘Batman’ or ‘technology’ with an ordered list of relevant items.

A proven solution to this problem is to generate the ordered list using an approximate maximum inner
product search (MIPS) algorithm (Shrivastava & Li, 2014), which, at the expense of a constraint in the
decision rule, provides extremely rapid querying even for massive catalogues. While MIPS based systems are
a proven technology at deployment time, the offline optimization of them is not. The standard algorithm
based on policy learning using the Plackett-Luce distribution is substantially slow, both in iteration cost and
number of iterations required. In this paper, we propose a simple algorithm that enjoys better convergence
properties and iterates much faster than Plackett-Luce based algorithms and other competitors.

We denote by x ∈ X a context; it can be the history of the user, a search query or even a whole web page.
The decision system is tasked to deliver, given the context x, an ordered list of actions AK = [a1, ..., aK] of
arbitrary size K ∈ N∗, often referred to as slates. This slate can be an ad banner, a list of recommended
content or search results. Our decision system, given contextual information x, constructs a slate by selecting
a subset of actions {a1, ..., aK} ⊂ A from a potentially large discrete set A and ordering them. Let P = |A| be
the size of the action set. Fixing the slate size K, we model our system by a decision function d : X → SK(A)
that maps contexts x to the space SK(A) of ordered lists of size K. Each pair of context x and slate AK is
associated with a reward function1 r(AK , x) that encodes the relevance of the slate AK for x. We suppose
that the contexts are stochastic, and coming from an unknown distribution ν(X). Our objective is to find
decision systems that maximize the expected reward, given by:

Ex∼ν(X) [r(AK = d(x), x)] .

Assuming that we have access to the reward function, the solution of this optimization problem is given by:

∀x ∈ X , d(x) = arg max
AK ∈SK (A)

r(AK , x). (1)

1motivated by business metrics and/or users engagement.

1

Under review as submission to TMLR

This solution, while optimal, is intractable as it requires, for a given context x, the search in the enormous
space SK(A) of size O(P K) to find the best slate. Instead of maximizing the expected reward over the whole
space, we want to restrict ourselves to decision functions of practical use. In this direction, we begin by
defining the parametric relevance function fθ : A×X → R:

∀(a, x) ∈ A× X , fθ(a, x) = hΞ(x)T βa,

with the learnable parameter θ = [Ξ, β], a parametric transform hΞ : X → RL that creates a context
embedding of size L, and βa the embedding of action a in RL. the embedding dimension L is usually taken
to be much smaller than P , the size of the action space. We then define our decision function:

∀x ∈ X , dθ(x) = argsortK

a∈A

{
hΞ(x)T βa

}
. (2)

with argsortK the argsort function truncated at the K-th item. Restricting the space of decision functions to
this parametric form reduces the complexity of returning a slate for the context x from O(P K) to O(P log K).
This complexity can be further decreased. Equation (2) transforms the querying problem to the MIPS:
Maximum Inner Product Search problem (Shrivastava & Li, 2014), for which different algorithms were
proposed (Gionis et al., 1999; Malkov & Yashunin, 2020; Guo et al., 2020) to find a solution in a logarithmic
time complexity. These algorithms build fixed indexes over the action embeddings β, with a structures
to allow the (approximate) identification of the K actions with the largest inner product with the query
hΞ(x). This allow us to reduce even further the complexity of the argsortK operator from O(P log K) to a
logarithmic time complexity O(log P). This makes fast decisions possible in problems with massive action
spaces A. This leaves us with the problem of finding the optimal decision function within the constraints of
this parametric form. This is achieved by solving the following:

θ∗ ∈ arg max
θ=[Ξ,β]

Ex∼ν(X) [r(AK = dθ(x), x)] .

As we do not have access to ν(X), we replace the previous objective with its empirical counterpart:

θ∗ ∈ arg max
θ=[Ξ,β]

1
N

N∑
i=1

r̂ (AK = dθ(xi), xi) , (3)

with {xi}i∈[N] observed contexts and r̂ an offline reward estimator; it includes the Direct Method, Inverse
Propensity Scoring (Horvitz & Thompson, 1952), Doubly Robust Estimator (Dudík et al., 2014) and many
other variants, as presented in (Sakhi et al., 2023b). The optimization problem of Equation (3) is complicated
by the fact that the reward can be non-smooth and that our decision function is not differentiable. A way to
handle this is by relaxing the optimization objective. Differentiable sorting algorithms (Grover et al., 2019;
Prillo & Eisenschlos, 2020) address a similar problem but make strong assumptions about the structure of
the reward function, and cannot scale to large action space problems. To be as general as possible, we take
another direction and relax the problem into an offline policy learning formulation (Bottou et al., 2013;
Swaminathan & Joachims, 2015). We extend our space of parametrized decision functions to a well chosen
space of stochastic policies πθ : X → P(SK(A)), that given a context x, define a probability distribution
over the space of slates of size K. Given a policy πθ, we relax Equation (3), taking an additional expectation
under πθ to obtain:

θ∗ ∈ arg max
θ=[Ξ,β]

R̂(πθ) = 1
N

N∑
i=1

EAK∼πθ(·|xi) [r̂(AK , xi)] . (4)

The most common policy class for this type of problem is Plackett-Luce (Plackett, 1975), that generalises
the softmax parametrization to slates of size K > 1. Under this policy class, computing exact gradients is
intractable but we can obtain approximate gradients w.r.t to θ of Equation (4). Common approximations
(Williams, 1992) are based on sampling from the policy, are computed in O(P log K) and suffer from a
variance that grows with the slate size K. In the special case of decomposable rewards over items on the
slate (Swaminathan et al., 2017), exploiting this linearity structure (Oosterhuis, 2022) provides gradient

2

Under review as submission to TMLR

Arbitrary Reward Low Gradient Variance Time Complexity Space Complexity
PL-PG ✓ ✗ O(SP) O(SP)

PL-Rank ✗ ✓ O(SP) O(SP)
LGP ✓ ✓ O(SP) O(SL)

LGP-MIPS ✓ ✓ O(S log P) O(SL)
Table 1: High level comparison between the different optimization algorithms for slate decision functions, with P
the size of the action space, L the size of the embedding space and S the number of samples used to approximate
the gradient. PL-PG is Plackett-Luce trained with the Score Function Gradient (Williams, 1992). PL-Rank is the
algorithm proposed in Oosterhuis (2022). LGP is our proposed method and LGP-MIPS is its accelerated variant. Our
method works with arbitrary rewards, scales logarithmically with P and have low memory footprint (L ≪ P).

estimates with better variance. However, training speed still scales linearly with P making policy learning
infeasible in large action spaces.

In this work, we propose LGP: Latent Gaussian Perturbation, a new policy class based on smoothing
the latent space, that is perfectly suitable to optimize decision functions of the form described in (2). As
shown in Table 1, our method provides fast sampling, low memory usage, gradient estimates with better
computational and statistical properties while being agnostic to the reward structure. When the embeddings
are prefixed, this class naturally benefits from approximate MIPS technology, making sampling logarithmic
in the action space size and opening the possibility for policy optimization over billion-scale catalogues.

This paper will be structured as follows. In Section 2, we will review the Plackett-Luce policy class and
present its limitations. Section 3 will introduce our newly proposed relaxation, motivate its use and propose
a learning algorithm. We focus in Section 4 on experiments to validate our findings empirically. Section 5
will cover the related work and we conclude with Section 6.

2 Plackett-Luce Policies

2.1 A Simple Definition

We relax our objective function and model online decision systems as stochastic policies over the space of
slates; ordered lists of actions. There are some natural parametric forms to define a policy on discrete action
spaces. If we are dealing with the simple case of K = 1 (slate of one action), we can adopt the softmax
policy (Swaminathan & Joachims, 2015; Sakhi et al., 2023b) that, conditioned on the context x ∈ X and for
a particular action a ∈ A, is of the form :

πθ(a|x) = exp{fθ(a, x)}∑
b exp{fθ(b, x)} = exp{fθ(a, x)}

Zθ(x) .

This softmax parametrization found great success (Swaminathan & Joachims, 2015; Chen et al., 2019; Sakhi
et al., 2023b), and is ubiquitous in applications where the goal is to learn policies or distributions over
discrete actions. Once we deal with K > 1, one can generalize the previous form giving us the Plackett-Luce
policy (Plackett, 1975). For a given x and a particular slate AK = [a1, ..., aK], we write its probability:

πθ(AK |x) =
K∏

i=1

exp{fθ(ai, x)}
Zi−1

θ (x)
=

K∏
i=1

πθ(ai|x, A1:i−1), (5)

with Z0
θ (x) = Zθ(x) and Zi

θ(x) = Zi−1
θ (x)− exp{fθ(ai, x)}.

Computing these probabilities can be done in O(P) which is comparable to the simple case where K = 1.
The probabilities given by the Plackett-Luce policy are intuitive. Equation (5) can be seen as the probability
to generate the slate AK = [a1, ..., aK] by sampling without replacement from a categorical distribution over
the discrete space A with action probabilities proportional to exp{fθ(a, x)}. This sampling procedure can
be done in O(KP), but its sequential nature is a bottleneck for parallelization. Another way to sample from

3

Under review as submission to TMLR

this distribution is to exploit the following expression:

πθ(AK |x) = Eγ∼GP (0,1)

[
1

[
AK = argsortK

a′∈A
{fθ(a′, x) + γi}

]]
,

with γ ∼ GP (0, 1) a vector of P independent Gumbel random variables. This is known in the literature
as the Gumbel trick (Huijben et al., 2021). This means that sampling from a Plackett-Luce boils down to
sampling P independent Gumbel random variables, which costs O(P), and then computing an argsortK of
the noised f(·, x) over the discrete action space. We cannot exploit approximate MIPS for this computation
as the noise is added after computing the inner product f(a, x), making this step cost O(P log K), which
makes the total complexity of sampling O(P log K), slightly better than the first procedure while compatible
with parallel acceleration.

2.2 Optimizing The Objective

We want to learn slate policies that can maximize the objective in Equation (4). As our objective is decom-
posable over contexts, stochastic optimization procedures can be adopted Ruder (2016) making optimization
over large datasets possible. For this reason, we can focus on the gradient of the objective for a single context
x. We derive the score function gradient (Williams, 1992):

∇θR̂(πθ|x) = Eπθ(·|x) [r̂(AK , x)∇θ log πθ(AK |x)] (6)

=
K∑

i=1
Eπθ(·|x) [r̂(AK , x)∇θ log πθ(ai|x, Ai−1)] . (7)

This gradient is defined as an expectation under πθ(·|x) over all possible slates. Computing it exactly requires
summing O(P K) terms which is infeasible. Alternatively we may approximate the gradient by sampling,
which reduces the computation complexity but we will see that this gradient suffers from further problems.

Computational Burden. The computational complexity of the gradient is crucial for allowing fast learn-
ing of slate as it impacts the running time of every gradient step. Even if we avoid computing the gradient
exactly, its approximation can still be a bottleneck when dealing with large action spaces for the following
reasons: (1) Sampling: Approximating the expectation by sampling slates from πθ(·|x) can be done in
O(P log K). However, if the action space is large (P in the order of millions), even a linear complexity
on P can be problematic, massively slowing down our optimization procedure. (2) The Normalizing
Constant: Approximating the gradient needs the computation of ∇θ log πθ(Ai

K |x) for the sampled slates
{Ai

K}i∈[S]. This can slow down the optimization procedure as computing the normalizing constant Zθ(x)
requires summing over all actions, making the complexity of the operation linear in P .

We can solve this computational burden by tackling the two previous problems separately. We can get rid
of the normalizing constant in the gradient by generalizing the results of Sakhi et al. (2023b). For a single
context x, we can derive a covariance gradient that does not require Zθ(x):

∇θR̂(πθ|x) = CovAK∼πθ(.|x)

[
r̂(AK , x),

K∑
i=1
∇θfθ(ai, x)

]
, (8)

with Cov[A, B] = E[(A−E[A]).(B−E[B])] a covariance between A a scalar function, and B a vector. The
proof of this new gradient expression is developed in Appendix A.1. One can see that for K = 1, we recover
the results of Sakhi et al. (2023b). This form of gradient does not involve the computation of a normalizing
constant, which solves the second problem, but still requires sampling from the policy πθ(·|x) to get a good
covariance estimation. To lower the time complexity of this step, we can use Monte Carlo techniques such
as Importance Sampling/Rejection Sampling (Owen, 2013) with carefully chosen proposals to achieve fast
sampling without sacrificing the accuracy of the gradient approximation. We develop a discussion around
accelerating Plackett-Luce training in Appendix A.1. While we may have ways to deal with the computation
complexity, the Plackett-Luce Policy gradient estimate still suffers from the following problems:

4

Under review as submission to TMLR

Variance Problems. Let us focus on the gradient derived in Equation (6). Its exact computation is
intractable, and we need to estimate it by sampling from πθ(·|x). Let us imagine we sample a slate AK =
[a1, ..., aK] to estimate the gradient:

Gθ(x) = r̂(AK , x)∇θ log πθ(AK |x)

= r̂(AK , x)
K∑

i=1
gi

θ(x),

with gi
θ(x) set to ∇θ log πθ(ai|x, Ai−1) to simplify the notation. Gθ(x) is an unbiased estimator of the

gradient ∇θR̂(πθ|x) and can be used in a stochastic optimization procedure in a principled manner (Ruder,
2016). However, the efficiency of any stochastic gradient descent algorithm depends on the variance of the
gradient estimate (Ajalloeian & Stich, 2021), which is defined for vectors X as:

V[X] = E
[
||X −E[X]||2

]
∈ R+.

Gradients with small variances allow practitioners to use bigger step sizes, which reduces the number of
iterations as it makes the whole optimization procedure converge faster. Naturally, we would want the
variance of our estimator to be small. Unfortunately, the variance of Gθ(x) grows with the slate size K.
Writing down the variance w.r.t πθ(·|x) of Gθ(x):

V[Gθ(x)] = V[r̂(AK , x)∇θ log πθ(AK |x)] =
K∑

i=1
V[r̂(AK , x)gi

θ(x)] + 2
∑
i<j

Cov[r̂(AK , x)gi
θ(x), r̂(AK , x)gj

θ(x)].

The first term of this variance is a sum over the slate of individual variances, which clearly grows as K
grows. For the covariance terms, we argue that, especially when initializing the parameter θ randomly, the
gradients gi

θ(x) and gj
θ(x) will have in expectation different signs making the covariance terms cancel out,

leaving the sum of the individual variance terms dominate. This gives a variance that grows in O(K).

Previous work already showed empirically that the score function gradient for the Plackett-Luce distribution
has a large variance (Gadetsky et al., 2020; Buchholz et al., 2022), large enough that learning is not possible
in difficult scenarios without considering variance reduction methods (Gadetsky et al., 2020). A possible
solution is Randomized Quasi-Monte Carlo (Buchholz et al., 2022; L’Ecuyer, 2016), which produces more
accurate estimates by covering the sampling space more evenly. Its value is only significant when we sample
few slates {As

K}s∈[S] to approximate the gradient (Buchholz et al., 2022; L’Ecuyer, 2016). Another direction
explores control variates (Gadetsky et al., 2020) as a variance reduction technique. This method requires
additional computational costs and a perfect modelling of a differentiable reward proxy to expect variance
reduction (Grathwohl et al., 2018).

We want to find a way to both reduce the variance of our method and the computational burden. One
of the simplest method to reduce the variance and gain in computation speed is to reduce the number of
parameters we want to train (Koch et al., 2021).

2.3 Fixing The Action Embeddings

As we are dealing with large action spaces, we are constrained to the following structure on the relevance
function fθ for fast querying:

∀a ∈ A fθ(a, x) = hΞ(x)T βa,

with both hΞ(x) and βa living in an embedding space RL with L ≪ P . The dimension of the matrix β is
[L×P], which can be very large when P is large, and dominates Ξ in terms of number of parameters (Koch
et al., 2021; Sakhi et al., 2023b). If we can fix the matrix β, it would benefit our approach both in terms
of computational efficiency and variance reduction. Indeed, reducing the number of parameters accelerates
learning, makes the problem more identifiable, and reduces drastically the gradient variance as:

V[Gθ(x)] = E[||Gθ(x)||2] = E[||GΞ(x)||2] +E[||Gβ(x)||2]
= V[GΞ(x)] +V[Gβ(x)]≫ V[GΞ(x)].

5

Under review as submission to TMLR

with Gθ(x) = Gθ(x)−∇θR̂(πθ|x) the centred gradient estimate. In many applications (think about informa-
tion retrieval, recommender systems or ad placement), the action embeddings can be learned from external
data we already have on the actions. In these scenarios, actions boil down to web pages, products, etc. we
want to recommend or place in an ad. We usually have a collaborative filtering signal (Sakhi et al., 2020;
Liang et al., 2018) or product descriptions (Vasile et al., 2016) to learn embeddings from. These signals
help us obtain good action embeddings β and allow us to fix the action matrix before proceeding to the
downstream task we are solving. This approach of fixing β is not new, e.g. Koch et al. (2021) fix β to learn
a large scale recommender system deployed in production, and Sakhi et al. (2023b) show empirically that
learning β actually hurts the performance of softmax policies in large scale scenarios.

We can still learn more about the actions. Even with β fixed, there are sufficient degrees of freedom
to solve our downstream task. If we write down:

hΞ(x) = hΞ′(x)Z,

with Ξ = [Ξ′, Z], Z being a learnable matrix of size [L′, L]. the relevance function can be written as:

fθ(a, x) = hΞ′(x)T (Zβa), ∀a ∈ A.

This means that, even though the matrix β is fixed, we can learn a linear transform of β with the help
of Z, injecting information from the downstream task and learning a transformed representation of the
actions in the embedding space. In the rest of the paper, we will fix the action embeddings β making the
parametrization of the relevance function fθ reduce to θ = Ξ, giving for any x:

fθ(a, x) = hθ(x)T βa, ∀a ∈ A.

3 Latent Gaussian Perturbation

Fixing the embeddings helps to decrease the variance and the number of parameters to optimize substantially,
which makes our policy learning routine converge faster. This approach, however, does not deal with the
fundamental limit of the Plackett-Luce variance, which grows with the slate size K. This policy class
also needs particular care to accelerate its learning; we should adopt the new gradient formula stated in
(8) combined with advanced Monte Carlo techniques to approximate the gradient efficiently, making the
implementation complex.

These issues come intrinsically with the adoption of the Plackett-Luce policy, and suggest that we should
think differently about how we define policies over slates. Let us investigate this family of policies. For a
particular context x and a slate AK , we write down its Gumbel trick (Huijben et al., 2021) expression:

πθ(AK |x) = Eγ∼GP (0,1)

[
1

[
AK = argsortK

a′∈A

{
hθ(x)T βa′ + γi

}]]
.

The Plackett-Luce policy is a smoothed, differentiable relaxation of the following deterministic policy:

bθ(AK |x) = 1

[
AK = argsortK

a′∈A

{
hθ(x)T βa′

}]
= 1 [AK = dθ(x)] .

bθ is a deterministic policy putting all its mass on the actions chosen by our decision function dθ. Note
that, taking an expectation under bθ in Equation (4) recovers Equation (3). It means that introducing noise
relaxed Equation (3) to a differentiable objective. This relaxation is achieved by randomly perturbing the
scores of the different actions with Gumbel noise (Huijben et al., 2021). As this perturbation is done in
the action space level, it induces properties that are not desirable: (1) The gradient of this policy is an
expectation under a potentially large action space, accentuating variance problems. (2) The perturbation
scales with the size of the action space, as we need P random draws of Gumbel noises. (3) Sampling from
this policy cannot naturally benefit from approximate MIPS algorithms, as discussed previously.

6

Under review as submission to TMLR

We observe that the majority of these problems emerge from doing this perturbation in the action space
level. With this in mind, we introduce the LGP: Latent Gaussian Perturbation policy, that is defined
for a context x and a slate AK by:

πσ
θ (AK |x) = Eϵ∼N (0,σ2IL)

[
1

[
AK = argsortK

a′∈A

{
(hθ(x) + ϵ)T βa′

}]]
,

with σ > 0, a shared standard deviation across dimensions in the latent space RL. The LGP policy defines
a smoothed, differentiable relaxation of the deterministic policy bθ by adding Gaussian noise in the latent
space RL. This approach can be generalized by perturbing the latent space with any other continuous
distribution Q. The resulting method, called LRP: Latent Random Perturbation is presented in
Appendix A.2. Focusing on LGP, this class of policies present desirable properties:

Fast Sampling. For a given x, sampling from a LGP policy boils down to sampling a Gaussian noise and
computing an argsort as:

AK ∼ πσ
θ (·|x) ⇐⇒ AK = argsortK

a′∈A

{
(hθ(x) + σϵ0)T βa′

}
, ϵ0 ∼ N (0, IL).

As the action embeddings β are fixed, and we are performing a perturbation in the latent space, sampling
can be done by calling approximate MIPS on the perturbed query hϵ

θ(x) = hθ(x) + ϵ, achieving a complexity
of O(log P) and improving on the sampling complexity O(P log K) of the Plackett-Luce family.

Well behaved gradient. Similar to the gradient under the Plackett-Luce policy (6), we can derive a score
function gradient for LGP policies. Let AK{h} = argsortK

a′∈A
{

hT βa′
}

the MIPS result for query h. Let
us write the expected reward under πσ

θ for a particular context x:

R̂(πσ
θ |x) = EAK∼πσ

θ
(·|x) [r̂(AK , x)]

= Eϵ∼N (0,σ2IL) [r̂(AK{hθ(x) + ϵ}, x)]
= Eh∼N (hθ(x),σ2IL)[r̂(AK{h}, x)].

The last equality allows us to derive the following gradient:

∇θR̂(πσ
θ |x) = ∇θEh∼N (hθ(x),σ2IL)[r̂(AK{h}, x)]

= Eh∼N (hθ(x),σ2IL)[r̂(AK{h}, x)∇θ log qθ(x, h)],

with log qθ(x, h) the log density of N (hθ(x), σ2IL) evaluated in h. We can obtain an unbiased gradient
estimate by sampling ϵ0 ∼ N (0, IL), setting h = hθ(x) + σϵ0 and computing:

Gσ
θ (x) = r̂(AK{h}, x)∇θ log qθ(x, h)

= 1
σ

r̂(AK{h}, x)∇θ(ϵT
0 hθ(x)) (9)

This gradient expression solves all issues that the Plackett-Luce gradient estimate suffered from:

• Fast Gradient Estimate. This gradient can be approximated in a sublinear complexity O(log P).
Building an estimator of the gradient follows these three steps: (1) We sample ϵ0 ∼ N (0, IL), which
is done in a complexity O(L) ≪ O(P). (2) We evaluate the gradient of ϵT

0 hθ(x) in O(L) with no
dependance on P . (3) We generate the slate AK{h}. This boils down to computing an argsort that
can be accelerated using approximate MIPS technology, giving a complexity of O(log P).

• Better Variance. LGP’s gradient estimate have better statistical properties for two main reasons:
(1) The gradient is defined as an expectation under a continuous distribution on the latent space
RL, instead of an expectation under a large discrete action space A of size P ≫ L. This can have
an impact on the variance of the gradient estimator as the sampling space is smaller. (2) The

7

Under review as submission to TMLR

approximate gradient defined in Equation (9) does not depend on the slate size K. This results
in a variance that does not grow with K, which will translate to substantial performance gains on
problems with larger slates. However, the expression of this gradient suggests that our attention
should be directed towards the standard deviation σ , as the variance of the gradient estimate defined
in Equation (9) will scale in O(1/σ2).

Even if σ can be treated as an additional parameter, we fix it to σ = 1/L in all our experiments. The
resulting approach will be hyper-parameter free, and has both statistical and computational benefits. We
give a sketch of the resulting optimization procedure in Algorithm 1. This procedure is easy to implement
in any automatic differentiation package (Paszke et al., 2019) and is compatible with stochastic first order
optimization algorithms (Ruder, 2016). In the next section, we will measure the benefits of the proposed
algorithm in different scenarios.

Algorithm 1: Learning with Latent Gaussian Perturbation
Inputs: D = {xi}N

i=1, reward estimator r̂, the action embeddings β
Parameters: T ≥ 1, Monte Carlo samples number S ≥ 1
Initialise: θ = θ0, MIPS index of β, σ = 1/L
for t = 0 to T − 1 do

sample a context x ∼ D
sample S standard Gaussian noises ϵ1, ..., ϵS ∼ N (0, IL)
compute for s ∈ [S], hs = hθ(x) + ϵs

compute slates AK{hs} for s ∈ [S] with MIPS
Estimate the gradient:

gradθ ←
1

Sσ

S∑
s=1

r̂(AK{hs}, x)∇θ(ϵT
s hθ(x))

Update the policy parameter θ:
θ ← θ − αgradθ

end
return θ

4 Experiments

4.1 Experimental Setting

For our experiments, we focus on learning slate decision functions for the particular case of recommendation as
collaborative filtering datasets are easily accessible, facilitating the reproducibility of our results. We choose
three collaborative filtering datasets with varying action space size, MovieLens25M (Harper & Konstan,
2015), Twitch (Rappaz et al., 2021) and GoodReads (Wan & McAuley, 2018; Wan et al., 2019). We process
these datasets to transform them into user-item interactions of shape [U, P] with U and P the number of
users and actions. The statistics of these datasets are described in Table 2.

We follow the same procedure as Sakhi et al. (2023b) to build our experimental setup. Given a dataset, we
split randomly the user-item interaction session [X, Y] into two parts; the observed interactions X and the
hidden interactions Y . the observed part X represents all the information we know about the user, and will
be used by our policy πθ to deliver slates of interest. The hidden part Y is used to define a reward function
that will drive the policy to solve a form of session completion task. For a given slate AK = [a1, ..., aK], we
define the reward as:

r̂(AK , X) =
K∑

k=1

1[ak ∈ Y]
2k−1 .

Although we can adopt an arbitrary form for the reward function, we want rewards that depend on the whole
slate (Aouali et al., 2023b) and that take into account the ordering of the items. We choose a linear reward

8

Under review as submission to TMLR

to be able to compare our method to PL-Rank (Oosterhuis, 2022), which exploits the reward structure to
improve the training of Plackett-Luce policies. The objective we want to optimize is the following:

R̂(πθ) = 1
U

U∑
i=1

EAK∼πθ(·|Xi) [r̂(AK , Xi)] .

The next step is to parametrize the policy πθ. For large scale problems, and for a given X, we are restricted
to use the following parametrization of the relevance function fθ:

fθ(a, X) = hθ(X)T βa, ∀a ∈ A.

Given the observed interactions X, we compute the action embeddings β using an SVD matrix decomposition
(Klema & Laub, 1980). This allows us to project the different action into a latent space of lower dimension
L≪ P , making β of dimension [L, P]. In all experiments, β will be fixed unless we want to study the impact
of training the embeddings. When β is fixed, we create an approximate MIPS index using the HNSW
algorithm (Malkov & Yashunin, 2020) with the help of the FAISS library (Johnson et al., 2019). This index
will accelerate decision-making online as described in Equation (2) and can also be exploited to speed up
the training of LGP policies. With β defined, we still need to parametrize the user embedding function hθ.
Given X, we first define the mean embedding function M : X → RL:

M(X) = 1
|X|

∑
a∈X

βa.

The function M computes the average of the item embeddings the user interacted with in X (Koch et al.,
2021). hθ follows as:

hθ(X) = M(X)θ (10)

with θ a parameter of dimension [L, L], much smaller than [L, P], the dimension of β. All policies in these
experiments will use this parametrization. Experiments with deep policies can be found in Appendix A.3.4.
The training is conducted on a CPU machine, using the Adam optimizer (Kingma & Ba, 2014), with a batch
size of 32. We tune the learning rate on a validation set for all algorithms. We adopt Algorithm 1 to train
LGP and its accelerated variant LGP-MIPS. We denote by PL-PG, the algorithm that trains the Plackett-Luce
policy trained with the score function gradient; we sample S ≥ 1 slates {A1

K , ..., AS
K} from πθ to derive the

gradient estimate for a given X:

GS
θ (X) = 1

S

S∑
i=1

r̂(As
K , X)∇θ log πθ(As

K |X). (11)

We also compare our results to PL-Rank (Oosterhuis, 2022) that exploits the linearity of the reward to have
a better gradient estimate. As we are mostly interested in the performance of the decision system dθ, all the
rewards reported in the experiments are computed using:

R̂(dθ) = 1
U

U∑
i=1

r̂(dθ(Xi), Xi).

In the next section, we study empirically the performance of these approaches by training them with the
same time budget on the different datasets. Additional experiments can be found in Appendix A.3 to confirm
the robustness of our results and better understand the behaviour of both the Plackett-Luce policy and the
newly introduced LGP policy.

4.2 Performance under the same time budget

To measure the performance of our algorithms, we use all three datasets with their statistics described in
Table 2. We fix the latent space dimension L = 100 and use a slate size of K = 5 for these experiments.

9

Under review as submission to TMLR

#Actions #Users Interactions Density
MovieLens 25M 55K 162K 0.24%

Twitch 750K 580K 0.008%
GoodReads 2.23M 400K 0.01%

Table 2: The statistics of the datasets after preprocessing

We split each dataset by users and keep 10% to create a validation set, on which the reward of the decision
function is reported. As these algorithms present different iteration speeds, we fix the same time budget for
all training methods for a fair comparison. Training with a time budget also simulates a real production
environment, where practitioners are bounded by time constraints and scheduled deployments. For all
datasets and training routines, we allow a runtime of 60 minutes, and evaluate our policies on the validation
set for 10 equally spaced intervals. The results of these experiments are presented in Figure 1 where we plot
the evolution of the validation reward on all datasets, for different values of S ∈ {1, 10, 100}; the number of
samples used to approximate the gradient.

Our first observation from the graph is that PL-PG cannot compete with other algorithms, even in the simplest
scenario of the MovieLens dataset. Its poor performance is mainly due to the high variance of its gradient
estimate. This is confirmed by the performance of PL-Rank. Indeed, the PL-Rank algorithm works with the
same policy class, has the same iteration cost (scales linearly in P) and only differs on the quality of the
gradient estimate; exploiting the structure of the reward allow us to obtain an estimate with lower variance.
These results confirm our first intuition. PL-PG suffer from large variance problems (even in modest sized
problems) and is not suitable to solve large scale slate decision problems.

Let us now focus on our newly proposed algorithms; LGP and its accelerated variant LGP-MIPS. We observe
that in all scenarios considered, the acceleration brought by the approximate MIPS index benefits our algo-
rithm in terms of performance. For the same time budget, LGP-MIPS obtains better reward than LGP, with
the biggest differences observed on datasets with large action spaces; Twitch and GoodReads. LGP-MIPS
always gives the best performing decision function, for all datasets and number of Monte Carlo samples S
considered. These results are promising as our algorithm which is agnostic to the form of the reward outper-
forms PL-Rank that is solely designed to tackle the particular case of linear rewards. This performance is due
to LGP-MIPS’s superior sampling complexity combined with an unbiased, low variance gradient estimate. We
were unable to run algorithms optimizing Plackett-Luce policies (PL-PG and PL-Rank) on the GoodReads
dataset with S = 100 due to its massive memory footprint. Plackett-Luce-based methods have a high
memory cost O(SP) compared to the cost of O(SL) for LGP-based methods as the sampling is no longer
performed in the large action space but in the smaller latent space. Being able to increase the number of
Monte Carlo Samples S is desirable, as it helps reduce the variance of the gradient estimates and accelerates
further the training.

These results2 demonstrate the utility of our newly proposed method over Plackett-Luce for learning slate
decision systems. The LGP policy class combined with accelerated MIPS indices produces unbiased, low
variance gradient estimates that are fast to compute, can scale to massive action spaces and exhibit low
memory usage, making our algorithm the best candidate for optimizing large scale slate decision systems.

4.3 Performance under the same number of iterations

We proposed a new family of policies that enables fast optimization, and naturally benefits from unbiased
gradient estimates with a variance that does not depend on the slate size K. The results reported in Figure 1
show that the newly proposed methods are suitable for optimizing large scale decision systems, under strict
time constraints. We provide further experiments and compare the performance of the obtained policies after
training them, with different approaches, under the same number of iterations. This gives insight into the
behaviour of the variance of the gradient approximations while neglecting the iteration cost. For the same
learning rate, gradient approximations with low variance need less optimization iterations to converge. As
PL methods tend to iterate slowly, especially in large action space scenarios (Twitch and Goodreads), we fix

2Code to reproduce the results will be released upon acceptance.

10

Under review as submission to TMLR

0 1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
wa

rd
 o

n
Va

lid
at

io
n

Da
ta

MovieLens

0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

Twitch

0 1 2 3 4 5 6 7 8 9 10

0.2

0.3

0.4

0.5

0.6

S
=

1

Goodreads

0 1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
wa

rd
 o

n
Va

lid
at

io
n

Da
ta

0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10

0.2

0.3

0.4

0.5

0.6

S
=

10

0 1 2 3 4 5 6 7 8 9 10
Number of evaluations

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Re
wa

rd
 o

n
Va

lid
at

io
n

Da
ta

0 1 2 3 4 5 6 7 8 9 10
Number of evaluations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9 10
Number of evaluations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
=

10
0

LGP-MIPS
LGP
PL-Rank
PL-PG

Figure 1: The performance of slate decision functions obtained after optimizing them by different training algorithms
for the same time budget of 60 minutes. Each evaluation on the validation data is done after 6 minutes of training.

the number of iterations in all experiments to the iterations made by PL-PG after 60 minutes of optimization.
We report the evolution of the training reward of all methods, for different settings, in Figure 2. We identify
two evolution patterns from the plots. A first, fast convergence pattern that PL-Rank alongside the LGP
family enjoy, and a second, much slower convergence pattern of PL-PG. This difference in training reward
evolution conveys the following message; the LGP family benefit from a gradient estimate with a variance
similar to PL-Rank, and much lower than the variance of the PL-PG gradient estimate. In addition, not
only can the LGP family iterates faster, but it enjoys low variance gradient estimates and does not rely on
a linearity assumption on the reward. This further confirms the improvements brought by the LGP family,
motivating it as an excellent alternative to Plackett-Luce for optimize large scale decision systems.

5 Related work

Learning from interactions. Recent advances in learning large scale decision systems adopt the offline
Contextual Bandit/Reinforcement Learning framework (Chen et al., 2022; Wang et al., 2022; Ma et al., 2020;
Chen et al., 2019) proving itself as a powerful paradigm to align business metrics with the offline optimization
problem. Research in this direction either explore the use of known policy learning algorithms (Chen et al.,
2022) for learning online decision systems or define better rewards to guide this learning (Wang et al.,
2022; Christakopoulou et al., 2022). Chen et al. (2019) showed that large scale recommender systems can
benefit from the contextual bandit formulation and introduced a correction to the REINFORCE gradient to
encourage softmax policies to recommend multiple items. Their method can be seen as a heuristic applicable
when the slate level reward is decomposable into a sum of single item rewards. This assumption is violated
in settings where strong interactions exist between the items in the slate. Our method is versatile, does not
assume any structure on the reward, and is able to optimize slate decision systems by introducing a new
relaxation, smoothing them into a policy that has a better learning behavior than classical Plackett-Luce.

11

Under review as submission to TMLR

0 20000 40000 60000 80000 100000 120000
0.3

0.4

0.5

0.6

0.7

0.8
Re

wa
rd

 o
n

Tr
ai

ni
ng

 D
at

a

MovieLens

0 1000 2000 3000 4000 5000 6000 7000

0.10

0.15

0.20

0.25

Twitch

0 500 1000 1500 2000 2500 3000
0.16

0.18

0.20

0.22

0.24

0.26

0.28

S
=

1

Goodreads

0 2000 4000 6000 8000 10000 12000
0.3

0.4

0.5

0.6

0.7

0.8

Re
wa

rd
 o

n
Tr

ai
ni

ng
 D

at
a

0 200 400 600 800 1000 1200

0.08

0.10

0.12

0.14

0.16

0 100 200 300 400
0.17

0.18

0.19

0.20

0.21

0.22

0.23

S
=

10

0 200 400 600 800 1000 1200 1400 1600
Number of iterations

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Re
wa

rd
 o

n
Tr

ai
ni

ng
 D

at
a

0 10 20 30 40 50 60
Number of iterations

0.075

0.080

0.085

0.090

0.095

0.100

0 50 100 150 200 250
Number of iterations

0.18

0.20

0.22

0.24

0.26

S
=

10
0

LGP-MIPS
LGP
PL-Rank
PL-PG

Figure 2: Comparing the performance of slate decision functions obtained by running our different training algo-
rithms for the same iterations. The newly proposed relaxation LGP have a gradient estimate of quality comparable
to PL-Rank as they result in policies with a similar training behaviour. LGP methods enjoy low variance gradient
estimate without making an assumption on the structure of the reward, contrary to PL-Rank.

Scalability. The question of scaling offline policy learning to large scale decision systems has received limited
attention. It has been shown that offline softmax policy learning can be scaled to production systems (Chen
et al., 2019). Recently, Sakhi et al. (2023b) focused on studying the scalability of optimizing policies tailored
to one item recommendation, using the covariance gradient estimator combined with importance sampling
(Owen, 2013) to exploit approximate MIPS technology in the training phase. Their gradient approximation
is provably biased, sacrificing the convergence guarantees provided by stochastic gradient descent (Ruder,
2016). Our method extends the scope of this paper, as it can be applied to slate recommendation. It provides
a simpler relaxation than Plackett-Luce, producing a learning algorithm that benefits from approximate
MIPS technology, naturally obtaining unbiased gradient estimates with better statistical properties.

Learning to Rank. The learning to rank literature separates algorithms by the output space they operate
on, making a clear distinction between pointwise, pairwise and listwise approaches (Liu, 2009). Our method
falls in the latter (Xia et al., 2008), as we operate with policies on the slate level. The majority of work
in LTR trains decision systems through the optimization of ranking losses (Wang et al., 2018; Oosterhuis,
2022), defined as differentiable surrogates of ranking metrics or by an adapted maximum likelihood estimation
(Rendle et al., 2009; Ma et al., 2021). In the same direction, differentiable sorting algorithms (Grover et al.,
2019; Prillo & Eisenschlos, 2020) aim at producing a differentiable relaxation to sorting functions that handle
reward on the item level These methods also require linear rewards in addition to training an item-item
interaction matrix, quadratic on the action space size, making them unsuitable to massive action spaces. We
are interested in training reward-driven, large scale slate decision systems, to learn rankings that are more
aligned with arbitrary, complex rewards functions.

Smoothing non-differentiable objectives. Our procedure can be interpreted as a stochastic relaxation
of non-differentiable decision functions. This relaxation is achieved by introducing a well chosen noise in
the latent space. PAC-Bayesian policy learning (London & Sandler, 2019; Sakhi et al., 2023a; Aouali et al.,

12

Under review as submission to TMLR

2023a) and Black-Box optimization algorithms (Bajaj et al., 2021; Rechenberg, 1978; Staines & Barber,
2012) adopt a similar paradigm to optimize non-smooth loss functions. They proceed by injecting noise
in the parameter space and derive a gradient with respect to the noise distribution. This parameter level
perturbation can suffer from computational issues when the number of parameters increases. Our method is
agnostic to the number of parameters. By perturbing the latent space directly, we bypass this problem and
simplify the sampling procedure resulting in faster and more efficient training.

6 Conclusion and future work

Countless large scale online decision systems are tasked with delivering slates based on contextual informa-
tion. We formulate the learning of these systems in the offline contextual bandit setting. This framework
relaxes decision systems to stochastic policies, and proceeds at learning them through REINFORCE-like
algorithms. Plackett-Luce provides an interpretable distribution over ordered lists of items but its use in a
large scale policy learning context is far from being optimal. In this paper, we motivate the Latent Gaus-
sian Perturbation, a new policy class over ordered lists defined as a stochastic, differentiable relaxation
of the argsort decision function, induced by perturbing the latent space. The LGP policy provides gradient
estimates with better computational and statistical properties. We built an intuition on why this new policy
class is better behaved and demonstrated through extensive experiments that not only LGP is faster to
train, considerably reducing the computational cost, but it also produces policies with better performance
making the use of Plackett-Luce policies in this context obsolete. This work gives practitioners a new way to
address large scale slate policy learning and aim at contributing into the adoption of REINFORCE decision
systems. The results obtained in this paper suggest that the relaxations used to define policies have a big
role in optimization and that we might need to take a step backward and reconsider the massively adopted
Softmax/Plackett-Luce parametrization. As we only focused on simple noise distributions, a nice avenue of
research will be to study the impact of the choice of these distributions on the learning algorithm produced.

13

Under review as submission to TMLR

References
Ahmad Ajalloeian and Sebastian U. Stich. On the convergence of sgd with biased gradients, 2021.

Imad Aouali, Victor-Emmanuel Brunel, David Rohde, and Anna Korba. Exponential smoothing for off-policy
learning. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 984–1017. PMLR, 23–29 Jul 2023a. URL
https://proceedings.mlr.press/v202/aouali23a.html.

Imad Aouali, Achraf Ait Sidi Hammou, Sergey Ivanov, Otmane Sakhi, David Rohde, and Flavian Vasile.
Probabilistic Rank and Reward: A Scalable Model for Slate Recommendation. working paper or preprint,
January 2023b. URL https://hal.science/hal-03959643.

Ishan Bajaj, Akhil Arora, and M. M. Faruque Hasan. Black-Box Optimization: Methods and Applications,
pp. 35–65. Springer International Publishing, Cham, 2021. ISBN 978-3-030-66515-9. doi: 10.1007/
978-3-030-66515-9_2. URL https://doi.org/10.1007/978-3-030-66515-9_2.

Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X. Charles, D. Max Chickering, Elon Portu-
galy, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and learning systems: The
example of computational advertising. Journal of Machine Learning Research, 14(65):3207–3260, 2013.
URL http://jmlr.org/papers/v14/bottou13a.html.

Alexander Buchholz, Jan Malte Lichtenberg, Giuseppe Di Benedetto, Yannik Stein, Vito Bellini, and Matteo
Ruffini. Low-variance estimation in the plackett-luce model via quasi-monte carlo sampling, 2022. URL
https://arxiv.org/abs/2205.06024.

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, Francois Belletti, and Ed H. Chi. Top-k off-
policy correction for a reinforce recommender system. In Proceedings of the Twelfth ACM International
Conference on Web Search and Data Mining, WSDM ’19, pp. 456–464, New York, NY, USA, 2019.
Association for Computing Machinery. ISBN 9781450359405. doi: 10.1145/3289600.3290999. URL https:
//doi.org/10.1145/3289600.3290999.

Minmin Chen, Can Xu, Vince Gatto, Devanshu Jain, Aviral Kumar, and Ed Chi. Off-policy actor-critic for
recommender systems. In Proceedings of the 16th ACM Conference on Recommender Systems, RecSys ’22,
pp. 338–349, New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450392785.
doi: 10.1145/3523227.3546758. URL https://doi.org/10.1145/3523227.3546758.

Konstantina Christakopoulou, Can Xu, Sai Zhang, Sriraj Badam, Trevor Potter, Daniel Li, Hao Wan,
Xinyang Yi, Ya Le, Chris Berg, Eric Bencomo Dixon, Ed H. Chi, and Minmin Chen. Reward shaping for
user satisfaction in a reinforce recommender, 2022. URL https://arxiv.org/abs/2209.15166.

Miroslav Dudík, Dumitru Erhan, John Langford, and Lihong Li. Doubly robust policy evaluation and
optimization. Statistical Science, 29(4):485–511, 2014.

Artyom Gadetsky, Kirill Struminsky, Christopher Robinson, Novi Quadrianto, and Dmitry Vetrov. Low-
variance black-box gradient estimates for the plackett-luce distribution. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 34(06):10126–10135, Apr. 2020. doi: 10.1609/aaai.v34i06.6572. URL
https://ojs.aaai.org/index.php/AAAI/article/view/6572.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing. In
Proceedings of the 25th International Conference on Very Large Data Bases, VLDB ’99, pp. 518–529, San
Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. ISBN 1558606157.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoff Roeder, and David Duvenaud. Backpropagation through
the void: Optimizing control variates for black-box gradient estimation. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=SyzKd1bCW.

14

https://proceedings.mlr.press/v202/aouali23a.html
https://hal.science/hal-03959643
https://doi.org/10.1007/978-3-030-66515-9_2
http://jmlr.org/papers/v14/bottou13a.html
https://arxiv.org/abs/2205.06024
https://doi.org/10.1145/3289600.3290999
https://doi.org/10.1145/3289600.3290999
https://doi.org/10.1145/3523227.3546758
https://arxiv.org/abs/2209.15166
https://ojs.aaai.org/index.php/AAAI/article/view/6572
https://openreview.net/forum?id=SyzKd1bCW

Under review as submission to TMLR

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting networks
via continuous relaxations. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=H1eSS3CcKX.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar. Acceler-
ating large-scale inference with anisotropic vector quantization. In International Conference on Machine
Learning, 2020. URL https://arxiv.org/abs/1908.10396.

F. Maxwell Harper and Joseph A. Konstan. The movielens datasets: History and context. ACM Trans.
Interact. Intell. Syst., 5(4), dec 2015. ISSN 2160-6455. doi: 10.1145/2827872. URL https://doi.org/
10.1145/2827872.

Daniel G Horvitz and Donovan J Thompson. A generalization of sampling without replacement from a finite
universe. Journal of the American statistical Association, 47(260):663–685, 1952.

Iris AM Huijben, Wouter Kool, Max B Paulus, and Ruud JG van Sloun. A review of the gumbel-max trick
and its extensions for discrete stochasticity in machine learning. arXiv preprint arXiv:2110.01515, 2021.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE Transac-
tions on Big Data, 7(3):535–547, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

V. Klema and A. Laub. The singular value decomposition: Its computation and some applications. IEEE
Transactions on Automatic Control, 25(2):164–176, 1980. doi: 10.1109/TAC.1980.1102314.

Olivier Koch, Amine Benhalloum, Guillaume Genthial, Denis Kuzin, and Dmitry Parfenchik. Scalable
representation learning and retrieval for display advertising. arXiv preprint arXiv:2101.00870, 2021.

Pierre L’Ecuyer. Randomized Quasi-Monte Carlo: An Introduction for Practitioners. In 12th International
Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (MCQMC 2016),
Stanford, United States, August 2016. URL https://hal.inria.fr/hal-01561550.

Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. Variational autoencoders for
collaborative filtering. In Proceedings of the 2018 World Wide Web Conference, WWW ’18, pp. 689–698,
Republic and Canton of Geneva, CHE, 2018. International World Wide Web Conferences Steering Com-
mittee. ISBN 9781450356398. doi: 10.1145/3178876.3186150. URL https://doi.org/10.1145/3178876.
3186150.

Tie-Yan Liu. Learning to rank for information retrieval. Found. Trends Inf. Retr., 3(3):225–331, mar 2009.
ISSN 1554-0669. doi: 10.1561/1500000016. URL https://doi.org/10.1561/1500000016.

Ben London and Ted Sandler. Bayesian counterfactual risk minimization. In Kamalika Chaudhuri and Ruslan
Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp. 4125–4133. PMLR, 09–15 Jun 2019. URL https:
//proceedings.mlr.press/v97/london19a.html.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Ji Yang, Minmin Chen, Jiaxi Tang, Lichan Hong, and Ed H. Chi. Off-policy
learning in two-stage recommender systems. In Proceedings of The Web Conference 2020, WWW ’20, pp.
463–473, New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450370233. doi:
10.1145/3366423.3380130. URL https://doi.org/10.1145/3366423.3380130.

Jiaqi Ma, Xinyang Yi, Weijing Tang, Zhe Zhao, Lichan Hong, Ed Chi, and Qiaozhu Mei. Learning-to-rank
with partitioned preference: Fast estimation for the plackett-luce model. In Arindam Banerjee and Kenji
Fukumizu (eds.), Proceedings of The 24th International Conference on Artificial Intelligence and Statistics,
volume 130 of Proceedings of Machine Learning Research, pp. 928–936. PMLR, 13–15 Apr 2021. URL
https://proceedings.mlr.press/v130/ma21a.html.

15

https://openreview.net/forum?id=H1eSS3CcKX
https://openreview.net/forum?id=H1eSS3CcKX
https://arxiv.org/abs/1908.10396
https://doi.org/10.1145/2827872
https://doi.org/10.1145/2827872
https://hal.inria.fr/hal-01561550
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1145/3178876.3186150
https://doi.org/10.1561/1500000016
https://proceedings.mlr.press/v97/london19a.html
https://proceedings.mlr.press/v97/london19a.html
https://doi.org/10.1145/3366423.3380130
https://proceedings.mlr.press/v130/ma21a.html

Under review as submission to TMLR

Yu A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchi-
cal navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell., 42(4):824–836, apr 2020. ISSN
0162-8828. doi: 10.1109/TPAMI.2018.2889473. URL https://doi.org/10.1109/TPAMI.2018.2889473.

Harrie Oosterhuis. Learning-to-rank at the speed of sampling: Plackett-luce gradient estimation with min-
imal computational complexity. In Proceedings of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’22, pp. 2266–2271, New York, NY, USA,
2022. Association for Computing Machinery. ISBN 9781450387323. doi: 10.1145/3477495.3531842. URL
https://doi.org/10.1145/3477495.3531842.

Art B. Owen. Monte Carlo theory, methods and examples. https://artowen.su.domains/mc/, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

R. L. Plackett. The analysis of permutations. Journal of the Royal Statistical Society. Series C (Ap-
plied Statistics), 24(2):193–202, 1975. ISSN 00359254, 14679876. URL http://www.jstor.org/stable/
2346567.

Sebastian Prillo and Julian Martin Eisenschlos. Softsort: A continuous relaxation for the argsort operator.
In Proceedings of the 37th International Conference on Machine Learning, ICML’20. JMLR.org, 2020.

Jérémie Rappaz, Julian McAuley, and Karl Aberer. Recommendation on Live-Streaming Platforms: Dynamic
Availability and Repeat Consumption, pp. 390–399. Association for Computing Machinery, New York, NY,
USA, 2021. ISBN 9781450384582. URL https://doi.org/10.1145/3460231.3474267.

I. Rechenberg. Evolutionsstrategien. In Berthold Schneider and Ulrich Ranft (eds.), Simulationsmethoden
in der Medizin und Biologie, pp. 83–114, Berlin, Heidelberg, 1978. Springer Berlin Heidelberg. ISBN
978-3-642-81283-5.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian per-
sonalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth Conference on Uncertainty
in Artificial Intelligence, UAI ’09, pp. 452–461, Arlington, Virginia, USA, 2009. AUAI Press. ISBN
9780974903958.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747,
2016.

Otmane Sakhi, Stephen Bonner, David Rohde, and Flavian Vasile. BLOB: A Probabilistic Model for Rec-
ommendation That Combines Organic and Bandit Signals. In Proceedings of the 26th ACM SIGKDD In-
ternational Conference on Knowledge Discovery &; Data Mining, KDD ’20, pp. 783–793, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3403121.
URL https://doi.org/10.1145/3394486.3403121.

Otmane Sakhi, Pierre Alquier, and Nicolas Chopin. PAC-Bayesian Offline Contextual Bandits With Guar-
antees. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning, vol-
ume 202 of Proceedings of Machine Learning Research, pp. 29777–29799. PMLR, 23–29 Jul 2023a. URL
https://proceedings.mlr.press/v202/sakhi23a.html.

Otmane Sakhi, David Rohde, and Alexandre Gilotte. Fast Offline Policy Optimization for Large Scale
Recommendation. Proceedings of the AAAI Conference on Artificial Intelligence, 37(8):9686–9694, Jun.
2023b. doi: 10.1609/aaai.v37i8.26158. URL https://ojs.aaai.org/index.php/AAAI/article/view/
26158.

16

https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1145/3477495.3531842
https://artowen.su.domains/mc/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.jstor.org/stable/2346567
http://www.jstor.org/stable/2346567
https://doi.org/10.1145/3460231.3474267
https://doi.org/10.1145/3394486.3403121
https://proceedings.mlr.press/v202/sakhi23a.html
https://ojs.aaai.org/index.php/AAAI/article/view/26158
https://ojs.aaai.org/index.php/AAAI/article/view/26158

Under review as submission to TMLR

Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner product search
(mips). In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger (eds.), Advances
in Neural Information Processing Systems, volume 27. Curran Associates, Inc., 2014. URL https://
proceedings.neurips.cc/paper/2014/file/310ce61c90f3a46e340ee8257bc70e93-Paper.pdf.

Joe Staines and David Barber. Variational optimization, 2012. URL https://arxiv.org/abs/1212.4507.

Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization: Learning from logged bandit
feedback. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 814–823, Lille, France,
07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/swaminathan15.html.

Adith Swaminathan, Akshay Krishnamurthy, Alekh Agarwal, Miroslav Dudík, John Langford, Damien Jose,
and Imed Zitouni. Off-policy evaluation for slate recommendation. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, pp. 3635–3645, Red Hook, NY, USA,
2017. Curran Associates Inc. ISBN 9781510860964.

Flavian Vasile, Elena Smirnova, and Alexis Conneau. Meta-prod2vec: Product embeddings using side-
information for recommendation. In Proceedings of the 10th ACM Conference on Recommender Sys-
tems, RecSys ’16, pp. 225–232, New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450340359. doi: 10.1145/2959100.2959160. URL https://doi.org/10.1145/2959100.2959160.

Mengting Wan and Julian J. McAuley. Item recommendation on monotonic behavior chains. In Sole
Pera, Michael D. Ekstrand, Xavier Amatriain, and John O’Donovan (eds.), Proceedings of the 12th ACM
Conference on Recommender Systems, RecSys 2018, Vancouver, BC, Canada, October 2-7, 2018, pp.
86–94. ACM, 2018. doi: 10.1145/3240323.3240369. URL https://doi.org/10.1145/3240323.3240369.

Mengting Wan, Rishabh Misra, Ndapa Nakashole, and Julian J. McAuley. Fine-grained spoiler detection from
large-scale review corpora. In Anna Korhonen, David R. Traum, and Lluís Màrquez (eds.), Proceedings
of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pp. 2605–2610. Association for Computational Linguistics,
2019. doi: 10.18653/v1/p19-1248. URL https://doi.org/10.18653/v1/p19-1248.

Xuanhui Wang, Cheng Li, Nadav Golbandi, Mike Bendersky, and Marc Najork. The lambdaloss framework
for ranking metric optimization. In Proceedings of The 27th ACM International Conference on Information
and Knowledge Management (CIKM ’18), pp. 1313–1322, 2018.

Yuyan Wang, Mohit Sharma, Can Xu, Sriraj Badam, Qian Sun, Lee Richardson, Lisa Chung, Ed H. Chi,
and Minmin Chen. Surrogate for long-term user experience in recommender systems. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’22, pp. 4100–4109,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450393850. doi: 10.1145/
3534678.3539073. URL https://doi.org/10.1145/3534678.3539073.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning, 8(3):229–256, 1992. doi: 10.1007/BF00992696.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to learning to rank: The-
ory and algorithm. In Proceedings of the 25th International Conference on Machine Learning, ICML ’08,
pp. 1192–1199, New York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605582054.
doi: 10.1145/1390156.1390306. URL https://doi.org/10.1145/1390156.1390306.

17

https://proceedings.neurips.cc/paper/2014/file/310ce61c90f3a46e340ee8257bc70e93-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/310ce61c90f3a46e340ee8257bc70e93-Paper.pdf
https://arxiv.org/abs/1212.4507
https://proceedings.mlr.press/v37/swaminathan15.html
https://doi.org/10.1145/2959100.2959160
https://doi.org/10.1145/3240323.3240369
https://doi.org/10.18653/v1/p19-1248
https://doi.org/10.1145/3534678.3539073
https://doi.org/10.1145/1390156.1390306

Under review as submission to TMLR

A Appendix

A.1 Accelerating Plackett-Luce training

Algorithm 2: Categorical Distribution: Rejection sampling using MIPS
Input: hΞ, β, x, and indexes on β and parameter K, catalogue size P
Output: a which is a sample from P (A = a) = exp(hΞ(x)T βa)∑

a′ exp(hΞ(x)T βa′)

α1, ..., αK = argsort(hΞ(x)T β)1:K
Z ′ = P exp(hΞ(x)T βαK

)
Z ′′ =

∑K
a′ exp(hΞ(x)T βa′)− exp(hΞ(x)T βαK

)
PK = [exp(hΞ(x)T βα1)/Z ′′, ..., exp(hΞ(x)T βαK

)/Z ′′]
while True do

d ∼ cat([tail, head], [Z′

Z′+Z′′ , Z′′

Z′+Z′′])
if d=head then

r ∼ cat(α1, ..., αK , PK)
return r

end
if d=tail then

Sample q uniformly from the set {1, ..., P}
Sample u from a uniform distribution
if exp(hΞ(x)T βq)

exp(hΞ(x)T βαK
) > u then

return q
end

end
end

As it was discussed in the main paper, we can derive a covariance gradient that does not require the
computation of the normalizing constant Zθ(x):

∇θR̂(πθ|x) = CovAK∼πθ(.|x)

[
r̂(AK , x),

K∑
i=1
∇θfθ(ai, x)

]
,

with Cov[A, B] = E[(A − E[A]).(B − E[B])] a covariance between A a scalar function, and B a vector.
The proof follows:

∇θR̂(πθ|x) = Eπθ(·|x)[r̂(AK , x)∇θ log πθ(AK |x)]

=
K∑

i=1
Eπθ(·|x)[r̂(AK , x)∇θ log πθ(ai|x, Ai−1)]

=
K∑

i=1
Eπθ(·|x)

[
r̂(AK , x)

(
∇θfθ(ai, x)−∇θ log Zi−1

θ (x)
)]

Using the log trick, we derive the following equality:

∇θ log Zi−1
θ (x) = Eπθ(ai|x,Ai−1)[∇θfθ(a, x)].

This equality is then injected in the gradient formula derived above to obtain:

∇θR̂(πθ|x) = CovAK∼πθ(.|x)

[
r̂(AK , x),

K∑
i=1
∇θfθ(ai, x)

]
.

18

Under review as submission to TMLR

This concludes the proof. One can see that for K = 1, we recover the results of Sakhi et al. (2023b). This form
of gradient still requires sampling from the policy πθ(·|x) to get a good covariance estimation. To lower the
time complexity of this step, we can use Monte Carlo techniques such as Importance Sampling/Rejection
Sampling (Owen, 2013) with carefully chosen proposals to achieve fast sampling without sacrificing the
accuracy of the gradient approximation.

In Sakhi et al. (2023b), a softmax policy learning algorithm was accelerated by approximating the gradients
using a self normalized importance sampling algorithm with a proposal distribution that can both exploit the
MIPS structure and is a good approximation of the target softmax distribution. This idea can also be used
to motivate a rejection sampling algorithm, as a similar proposal can be shown to form an envelope of the
target density. It can also be extended from softmax to Plackett-Luce. When the idea of rejection sampling
is combined with the MIPS proposal, it results in the rejection sampling algorithm shown in Algorithm 2.
While Algorithm 2 can be extended to the slate policy case, enabling the fast evaluation of the covariance
gradient estimator, it will still suffer from high variance gradient estimates.

A.2 LRP: Latent Random Perturbation

The method presented in the main paper can be generalized. Instead of focusing on Gaussian distributions,
the latent perturbation can be done by any continuous distribution resulting in the more general LRP:
Latent Random Perturbation policy. For a context x and a slate AK , its expression is given by:

πQ
θ (AK |x) = Eϵ∼Q

[
1

[
AK = argsortK

a′∈A

{
(hθ(x) + ϵ)T βa′

}]]
,

with Q a continuous distribution on the latent space RL. the LRP policy defines a smoothed, differentiable
relaxation of the deterministic policy bθ by adding noise in the latent space RL. This class of policies present
desirable properties:

Fast Sampling. For a given x, sampling from a LRP policy boils down to sampling from Q and computing
an argsort as:

AK ∼ πQ
θ (·|x) ⇐⇒ AK = argsortK

a′∈A

{
(hθ(x) + ϵ)T βa′

}
, ϵ ∼ Q.

Let us suppose the sampling from Q is easy. As the action embeddings β are fixed, and we are performing a
perturbation in the latent space, we can set hϵ

θ(x) = hθ(x)+ϵ which makes sampling compatible with approx-
imate MIPS technology making the sampling achievable in O(log P), better than the sampling complexity
O(P log K) of the Placett-Luce family.

Well behaved gradient. Similar to the gradient under the Plackett-Luce policy (6), we can derive a score
function gradient for LRP policies. For a given x, let us write its expected reward under πQ

θ :

R̂(πQ
θ |x) = EAK ∼πQ

θ
(·|x) [r̂(AK , x)]

= Eϵ∼Q [r̂(AK{hθ(x) + ϵ}, x)]
= Eh∼Qθ(x)[r̂(AK{h}, x)]

h ∼ Qθ(x) ⇐⇒ h = hθ(x) + ϵ, ϵ ∼ Q
AK{h} = argsortK

a′∈A

{
hT βa′

}
.

Qθ(x) is the induced distribution on the user embeddings. Qθ(x) has a tractable density if we choose a
classical noise distribution Q (e.g. Gaussian). Working with the induced distribution Qθ(x) transforms the
learning parameters θ to parameters of the distribution, allowing us to derive the following gradient:

∇θR̂(πQ
θ |x) = ∇θEh∼Qθ(x)[r̂(AK{h}, x)]

= Eh∼Qθ(x)[r̂(AK{h}, x)∇θ log qθ(x, h)],

19

Under review as submission to TMLR

with log qθ(x, h) the log density of Qθ(x) evaluated in h. We can obtain an unbiased gradient estimate by
sampling h ∼ Qθ(x):

GQ
θ (x) = r̂(AK{h}, x)∇θ log qθ(x, h). (12)

This gradient expression solves all issues that the Plackett-Luce gradient estimate suffered from:

• Fast Gradient Estimate. This gradient can be approximated in a sublinear complexity O(log P).
Building an estimator of the gradient follows these three steps: (1) We sample h ∼ Qθ(x), which
boils down to adding the noise ϵ ∼ Q to hθ(x). This can be done in a complexity O(L) ≪ O(P) if
Q is chosen properly. (2) We evaluate the gradient of the log density ∇θ log qθ(x, h) on h. With a
well-chosen Q, this can be done in O(L) as we do not need to normalize over a large discrete action
space. (3) We generate the slate AK{h}. This boils down to computing an argsort which can be
accelerated using approximate MIPS technology, giving a complexity of O(log P).

• Better Variance. LRP’s gradient estimate have better statistical properties for two main reasons:
(1) The gradient is defined as an expectation under a continuous distribution on the latent space
RL, instead of an expectation under a large discrete action space A of size P ≫ L. This can have
an impact on the variance of the gradient estimator as the sampling space is smaller. (2) The
approximate gradient defined in Equation (12) does not depend on the slate size K. This results
in a variance that does not grow with K. This means that we will notice substantial gains when
training policies with larger slates.

A.3 Additional Experiments

A.3.1 Robustness of the results

We conduct a further simulation study to be sure that the results obtained in the main paper are robust
both to initialisation and to the slate size K. To this end, we repeat the same experimental setup as in the
performance subsection; we use all three datasets, and we fix the latent space dimension L = 100. We run
the optimization of our algorithms for 10 minutes and evaluate the obtained policy on the validation split.
For each dataset, we define two settings; a setting with a moderate slate size of K = 5 and one with a bigger
slate size of K = 100. The training procedure is repeated for 6 different seeds, and we present the average
performance and the standard error for different values of S ∈ {1, 10, 100}; the number of samples used to
approximate the gradient. We present results of two different natures:

• The performance on the validation set, of the obtained policies after training them with different
algorithms, under the same time constraint of 10 minutes, is reported in Table 3.

• The performance on the training set, of the obtained policies, after training them for the same number
of iterations. As training with PL algorithms can be very slow, we fix the number of iterations to the
iterations done by PL-PG in 10 minutes. The results of these experiments are reported in Table 4.

Let us first focus on the performance obtained after training policies under the same time budget. Looking
at Table 3, we can clearly observe that LGP, especially its MIPS accelerated version, always yields the best
performing policies no matter the setting adopted. The obtained results are significant, as the standard
error is small compared to the difference of performance between the methods. These observations confirm
that the LGP family is perfectly suited for industrial applications, as it iterates faster and is robust to
different settings. It is noteworthy that the PL family cannot run with large numbers of Monte Carlo
samples S, especially in applications with large action spaces, as it suffers from a large memory footprint.

For the sake of completeness, we also report in Table 4, the performance of our decision systems after training
them with different approaches under a fixed number of iterations. One can observe that PL-Rank results in
the best decision systems, followed by the LGP family. These results suggest that by exploiting the linearity
of the reward, the gradient estimates derived by PL-Rank enjoy a better variance than the gradient estimates

20

Under review as submission to TMLR

of the LGP family. The application of PL-Rank however is only restricted to linear rewards, contrary to our
newly proposed approach that does not make any assumptions on the structure of the reward. This means
that when the reward is complex, LGP methods should be adopted, as they offer a better alternative to the
naive, gradient estimate of PL-PG.

Algorithm S MovieLens Twitch GoodReads
K = 5 K = 100 K = 5 K = 100 K = 5 K = 100

LGP-MIPS
S = 1 0.834± 0.003 0.599± 0.002 0.438± 0.009 0.343± 0.005 0447± 0.002 0.396± 0.007
S = 10 0.866 ± 0.003 0.881 ± 0.003 0.567± 0.007 0.563± 0.004 0.539± 0.004 0.554± 0.004
S = 100 0.865 ± 0.002 0.867± 0.002 0.607 ± 0.005 0.609± 0.005 0.580 ± 0.001 0.592 ± 0.002

LGP
S = 1 0.753± 0.005 0.776± 0.004 0.171± 0.004 0.195± 0.004 0.259± 0.013 0.278± 0.013
S = 10 0.716± 0.004 0.744± 0.005 0.133± 0.002 0.152± 0.003 0.227± 0.012 0.244± 0.012
S = 100 0.700± 0.003 0.721± 0.003 0.097± 0.002 0.111± 0.003 0.192± 0.010 0.204± 0.010

PL-Rank
S = 1 0.750± 0.004 0.769± 0.005 0.103± 0.003 0.113± 0.003 0.188± 0.009 0.200± 0.010
S = 10 0.584± 0.013 0.597± 0.010 0.087± 0.002 0.096± 0.003 0.179± 0.009 0.191± 0.010
S = 100 0.342± 0.015 0.353± 0.016 0.084± 0.002 0.093± 0.003 N/A N/A

PL-PG
S = 1 0.347± 0.019 0.356± 0.020 0.084± 0.002 0.093± 0.002 0.181± 0.009 0.194± 0.009
S = 10 0.345± 0.021 0.354± 0.021 0.084± 0.002 0.093± 0.003 0.180± 0.009 0.192± 0.010
S = 100 0.323± 0.018 0.332± 0.018 0.084± 0.002 0.093± 0.003 N/A N/A

Table 3: Performance by time budget (10 minutes). Results obtained by the different algorithms while changing
the slate size K and the number of Monte Carlo samples S. All runs were completed in 10 minutes. We report in
this table the average performance and its standard error over 6 different seeds. All statistics are reported on the
validation set. The proposed algorithms give robust results in different settings.

Algorithm S MovieLens Twitch GoodReads
K = 5 K = 100 K = 5 K = 100 K = 5 K = 100

LGP-MIPS
S = 1 0.645± 0.011 0.507± 0.004 0.098 ± 0.004 0.107± 0.005 0.192± 0.010 0.205± 0.011
S = 10 0.528± 0.012 0.537± 0.011 0.086± 0.003 0.096± 0.004 0.179± 0.007 0.194± 0.007
S = 100 0.361± 0.016 0.374± 0.017 0.079± 0.005 0.088± 0.006 0.185± 0.007 0.198± 0.006

LGP
S = 1 0.623± 0.009 0.646± 0.004 0.094± 0.004 0.108± 0.005 0.192± 0.010 0.207± 0.011
S = 10 0.513± 0.012 0.524± 0.010 0.086± 0.003 0.096± 0.004 0.179± 0.007 0.193± 0.007
S = 100 0.360± 0.015 0.372± 0.016 0.081± 0.005 0.088± 0.005 0.184± 0.007 0.197± 0.006

PL-Rank
S = 1 0.750 ± 0.006 0.779 ± 0.003 0.102 ± 0.004 0.113 ± 0.005 0.188± 0.010 0.203± 0.010
S = 10 0.587± 0.011 0.600± 0.009 0.082± 0.003 0.092± 0.003 0.176± 0.007 0.190± 0.007
S = 100 0.332± 0.016 0.334± 0.016 0.081± 0.005 0.088± 0.005 N/A N/A

PL-PG
S = 1 0.342± 0.017 0.356± 0.019 0.084± 0.004 0.096± 0.004 0.181± 0.010 0.196± 0.004
S = 10 0.348± 0.018 0.355± 0.020 0.079± 0.002 0.090± 0.003 0.176± 0.007 0.190± 0.007
S = 100 0.305± 0.018 0.313± 0.018 0.081± 0.005 0.088± 0.005 N/A N/A

Table 4: Performance by iteration. Results obtained with the different algorithms while changing the slate size K
and the number of Monte Carlo samples S. The number of iterations is decided by the slowest iterating algorithm
(PL-PG) after running for 10 minutes. We report in this table the average performance and its standard error over 6
different seeds. PL-Rank gives the best results, followed by the LGP family.

A.3.2 Effect of fixing β

In this section, we want to validate the intuition we built throughout the paper about the behaviours of both
the Plackett-Luce and LGP policy classes. We focus on MovieLens (Harper & Konstan, 2015), a medium
scale dataset that allows us to test all our methods, regardless of their potential to scale to harder problems.
For all experiments in this section, we fix L = 100 ≪ P and we study the impact of fixing the action
embeddings β. As discussed in Section 3, having the embeddings fixed is a natural solution to improve the
learning of these large scale decision systems as it can reduce both the variance of the gradient estimates
and the running time of the optimization procedure. To validate this, we focus on the Plackett-Luce policy
and define two slightly different parametrizations:

• Learn θ: this is the parametrization introduced in Equation (10), with β fixed and we only learn the
parameter θ.

21

Under review as submission to TMLR

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of training iterations

15.5

15.0

14.5

14.0

13.5

Lo
g

Va
ria

nc
e

of
 G

ra
di

en
t E

st
im

at
es

0 2500 5000 7500 10000 12500 15000 17500 20000
Number of training iterations

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

ni
ng

 R
ew

ar
d

PL-PG: Training
PL-PG: Training

Figure 3: Experiments on the MovieLens dataset: We look at the effect of fixing the action embeddings β on the
training of Plackett-Luce policies. Training β results in a slow optimization procedure and gradient estimates with
bigger variance.

• Learn β: We treat β as a parameter after initializing it with the SVD values. Because our user
embedding function hθ is linear in θ, we get rid of this parameter as it becomes redundant once β
can be optimized. This gives the following parametrization:

∀(x, a) ∈ X ×A, fβ(a, x) = M(X)T βa

We train a Plackett-Luce policy with both parametrizations for one epoch, while fixing the slate size K = 2
and the Monte Carlo samples to S = 1. In this experiment, our objective is not to produce the best
policies but to understand how fixing the embeddings can impact the optimization procedure. We report in
Figure 3 the evolution of both the gradient estimate variance and the reward on the training data for both
parametrizations. We can observe that treating β as a parameter to optimize, even when initialized properly
leads to slow learning. The variance of the gradient estimate when learning β is bigger than the variance
when learning θ with β fixed, and this will get bigger for problems with larger action spaces as P ≫ L.
We suspect that this is one of the reasons that explain the pace of learning when optimizing β. The same
phenomena was observed in Sakhi et al. (2023b). The same experiments demonstrated that training θ alone
was twice as fast as training β in this experiment. This suggests that fixing β to a good value is beneficial
for training large scale decision systems both in terms of iteration efficiency. We advocate for fixing the
action embeddings β when learning large scale MIPS systems.

A.3.3 Impact of the slate size K.

One of the caveats of the Plackett-Luce slate policy is that its gradient estimate has a variance that grows
with the slate size K, reducing its scope of applications to modest slate sizes. the gradient estimate of
LGP however does not suffer from this issue, and we want to showcase that with a simple experiment. We
derived gradient estimates for LGP-based methods that have a variance that scales inO(1/σ2). Although the
standard deviation σ can be treated as a hyperparameter depending on the task, to allow a fair comparison of
the gradient variance of these methods, we set σ to a particular value coming from the following observation.
For a particular action a:

h ∼ N (hθ(x), σ2IL) =⇒ hT βa ∼ N (hθ(x)T βa, σ2||βa||2)
=⇒ hT βa = hθ(x)T βa + ϵa

with ϵa ∼ N (0, (σ||βa||)2). This can be interpreted as adding a scaled guassian noise to the score of action
a. As we add standardized Gumbel noise γa ∼ G(0, 1) to the action scores to define the Plackett-Luce policy,
we want, for a fair comparison, to have:

∀a ∈ A, σ||βa|| ≈ 1

22

Under review as submission to TMLR

0 500 1000 1500 2000 2500 3000 3500
Number of training iterations

17

16

15

14

13

12

11

Lo
g

Va
ria

nc
e

of
 G

ra
di

en
t E

st
im

at
es

PL-PG, K = 2
LGP, K = 2

PL-PG, K = 5
LGP, K = 5

PL-PG, K = 10
LGP, K = 10

Figure 4: Impact of the slate size K on the log variance of the gradient estimate of both PL-PG and LGP on MovieLens.
Contrary to LGP, PL-PG has a gradient estimate with a variance that grows with K.

One heuristic to approximately achieve that is to compute the empirical mean of the β norms B =
1
P

∑
a∈A ||βa|| and set σ = 1/B. This value will be used for this experiment.

We use the MovieLens dataset, and train the LGP policy without exploiting the MIPS index on β, and
Plackett-Luce with the parametrization of Equation (10) for 10 epochs with S = 1, while varying the slate
size K ∈ {2, 5, 10}. Note that all policies are initialized with the same random seed for a fair comparison.
We report the evolution of the variance of the gradient estimate alongside the reward on the training data.
The results of these experiments are presented in Figure 4.

Focusing on the evolution of the variance, we can see that Plackett-Luce does indeed have a variance that
grows with K contrary to LGP that has a variance of its gradient estimate staying at the same scale no
matter the value of K. We argue that this has a direct impact on the optimization procedure as for the same
value of K, we observe in Figure 1 that LGP-based methods outperform Plackett-Luce learning schemes
consistently, making it a good candidate for learning slate policies.

A.3.4 Experiments with Neural Networks.

For these experiments, we want to explore deep policies and see if we can still empirically validate our
findings in this case as well. For this, we adopt the following function to compute the user embedding hθ1,θ2 :

hθ1,θ2(X) = sigmoid
(
M(X)T θ1

)
θ2, (13)

which boils down to a sigmoid, two layer feed forward neural network with both θ1 and θ2 of size [L, L].
We run PL-PG, PL-Rank and LGP-MIPS on the three datasets, for the same running time (60 minutes)
and cross-validate the learning rate choosing the best value for each algorithm. We aggregate the results
on Figure 5. The plot suggests that even for deep policies, LGP-MIPS outperforms Plackett-Luce-based
methods on all datasets and for different values of the number of Monte Carlo samples S. We also observe
that training in this case is more unstable, especially for Plackett-Luce-based methods as having more
parameters accentuate the variance problems of their gradient estimates. It is noteworthy that, the reward
obtained with deep policies in our experiment is less than the one achieved by linear policies. This suggests
that deep policies require additional care when training, and we might want to stick to simple policies if we
are interested in fast and reliable optimization.

23

Under review as submission to TMLR

0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
wa

rd
 o

n
Va

lid
at

io
n

Da
ta

MovieLens

0 1 2 3 4 5 6 7 8 9 10

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
Twitch

0 1 2 3 4 5 6 7 8 9 10

0.20

0.25

0.30

0.35

0.40

0.45

S
=

1

Goodreads

0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Re
wa

rd
 o

n
Va

lid
at

io
n

Da
ta

0 1 2 3 4 5 6 7 8 9 10

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

S
=

10

0 1 2 3 4 5 6 7 8 9 10
Number of evaluations

0.3

0.4

0.5

0.6

0.7

0.8

Re
wa

rd
 o

n
Va

lid
at

io
n

Da
ta

0 1 2 3 4 5 6 7 8 9 10
Number of evaluations

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10
Number of evaluations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
=

10
0

LGP-MIPS
PL-Rank
PL-PG

Figure 5: The performance of slate decision functions, with Neural Network Backbones, obtained by our different
training algorithms after running the optimization for 60 minutes.

24

	INTRODUCTION
	Plackett-Luce Policies
	A Simple Definition
	Optimizing The Objective
	Fixing The Action Embeddings

	Latent Gaussian Perturbation
	Experiments
	Experimental Setting
	Performance under the same time budget
	Performance under the same number of iterations

	Related work
	Conclusion and future work
	Appendix
	Accelerating Plackett-Luce training
	LRP: Latent Random Perturbation
	Additional Experiments
	Robustness of the results
	Effect of fixing
	Impact of the slate size K.
	Experiments with Neural Networks.

