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ABSTRACT

We propose Wyckoff Transformer, a generative model for materials conditioned
on space group symmetry. Most real–world inorganic materials have internal sym-
metry beyond lattice translation. Symmetry rules that atoms obey play a funda-
mental role in determining the physical, chemical, and electronic properties of
crystals. These symmetries determine stability, and influence key material struc-
tural and functional properties such as electrical and thermal conductivity, optical
and polarization behavior, and mechanical strength. And yet, despite the recent
advancements, state–of–the–art diffusion models struggle to generate highly sym-
metric crystals. We use Wyckoff positions as the basis for an elegant, compressed,
and discrete structure representation. To model the distribution we develop a
permutation–invariant autoregressive model based on Transformer and absence
of positional encoding. Our experiments demonstrate that Wyckoff Transformer
has the best performance in generating novel diverse stable structures conditioned
on the symmetry space group, while also having competitive metric values when
compared to model not conditioned on symmetry. We also show that it is compet-
itive in prediction formation energy, band gap, mechanical properties, and thermal
conductivity.

1 INTRODUCTION

Space of all possible combinations of atoms forming periodic structures is intractably large. It is not
possible to screen it fully, even with a fast machine learning algorithm. Practical materials, however,
occupy only a small part of it. Firstly, they must correspond to an energy minimum. Secondly,
occupying an energy minimum is not sufficient to establish if the material is synthesizable or indeed
experimentally stable. Having a generative model that outputs a priori stable materials is a step
towards speeding up automated material design by orders of magnitude.

1.1 SPACE GROUPS AND WYCKOFF POSITIONS

A crystal structure can be systematically described through its lattice and atomic basis. The lattice
provides a repeating geometric framework, defined as an infinite periodic arrangement of points in
space. Based on interactions between the constituent electrons and nuclei, atoms rearrange into such
a lattice and, therefore, follow a finite set of symmetries: the group of all such symmetry operations
that uniquely define the periodic arrangement is called the space group of the crystal. These arrange-
ments in a crystal are governed by a finite set of symmetry operations, such as rotations, reflections,
inversions, and translations. These operations combine to form the 230 distinct space groups, which
serve as a comprehensive classification system for all possible crystal symmetries in three dimen-
sions. Each space group defines the unique symmetry properties of a crystal structure, defining the
allowable positions for atoms within the unit cell. This ensures that every crystal possesses at least
the simplest level of symmetry, referred to as P1 symmetry, which involves only translational sym-
metry. The atomic basis specifies the arrangement of atoms associated with each lattice point, thus
defining the overall crystal structure.

Importantly, most known crystals have internal symmetry, see figure 1. Those symmetries are not
merely a mathematical observation; optical, electrical, magnetic, structural and other properties are
determined by symmetry, as shown by Malgrange et al. (2014); Yang et al. (2005), as well as our
results in section 3.4.
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Figure 1: Distribution of space groups in MP–20 dataset Xie et al. (2021) and the generated samples.
10 space groups most frequent in MP–20 are labeled, 98% of MP–20 structures belong to symmetry
groups other that P1. Plot design by Levy et al. (2024). The comparison of the distribution of
generated samples’ space groups to the original sample distribution is present in Table 2, column
Space Group χ2.

Within a given space group, a subgroup forms the site symmetry, referring to the set of symmetry
operations that leave a specific point in the crystal invariant. These operations describe the local
symmetrical environment, such as mirror, screw axis, or inversions centered on that a given region.
Higher site symmetry is in regions where multiple symmetry elements intersect, while those with
lower site symmetry include only one symmetry operation. Taking space group 225 Fm-3m as an
example, site symmetry subgroup m-3m represents a highly symmetric environment like the center
of a cubic unit cell, where multiple symmetry elements intersect, including mirror planes and a 3–
fold rotoinversion axis. In contrast, another lower site symmetry subgroup .3m corresponds to a less
symmetric environment with only a 3–fold rotation axis and a mirror plane.

These site symmetry points, classified by their symmetry properties, are grouped into Wyckoff posi-
tions (WPs) (Wyckoff, 1922). Mathematically, a WP encompasses all points whose site symmetry
groups are conjugate subgroups of the full space group Kantorovich (2004). Each WP is character-
ized by two key attributes:

1. Site symmetry
2. Symmetry equivalence: two different Wyckoff positions in the same space group can share

the same site symmetry but may still be symmetry equivalent. This equivalence arises
when the Wyckoff positions can be mapped onto each other using higher–order symmetry
operations, such as those defined by the Euclidean normalizer of the space group. These
symmetry–equivalent WPs form the basis for enumeration and augmentation in the subse-
quent sections of this work.

WPs for a given space group are commonly enumerated by Latin letters in the order of multiplicity,
the number of equivalent atomic positions in a crystal structure that are related by the symmetry
operations of the space group. WPs are denoted by a combination of the multiplicity value and the
letter, e. g. 2a. The number of distinct WPs in a space group is finite, ranging from a single WP
in the simplest symmetry group P1 to as many as 27 in the most complex space groups. These
classifications enable the description of not only discrete points but also more complex geometric
features. For example, some Wyckoff positions represent 1D lines, 2D planes, or even open 3D
regions within the unit cell, depending on the symmetry constraints. This flexibility underscores
the utility of Wyckoff positions in describing diverse crystallographic arrangements. By introduc-
ing these fundamental concepts – lattice, atomic basis, space groups, site symmetry, and Wyckoff
positions – this framework provides a foundation for understanding crystal structures. See also
Appendix A for an illustration.

1.2 OUR CONTRIBUTION

Our contribution can be summarized as follows:

1. Representing a crystal as an unordered set of tokens fused from the chemical element and
Wyckoff position; section 2.1.
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(a) A toy 2D crystal Goodall et al. (2020). It contains
4 mirror lines, and one rotation center. There are four
Wyckoff positions, illustrated by shading. Magenta
is the Wyckoff position that is invariant under all the
transformations, it only contains a single point; red
and yellow lie on the mirror lines, and teal is only
invariant under identity transformation and occupies
the rest of the space. Markers of the corresponding
colors show one of the possible locations of an atom
belonging to the corresponding Wyckoff position.

0 1

Sr (1a=[m-3m, 0]) (0, 0, 0) 

Ti (1b=[m-3m, 1]) (1/2, 1/2, 1/2)  

O (3d=[4/mm.m, 1]) (1/2, 0, 0)

Sr (1b=[m-3m, 1]) (1/2, 1/2, 1/2) 

Ti (1a=[m-3m, 0]) (0, 0, 0)  

O (3c=[4/mm.m, 0]) (0, 1/2, 1/2)  

(b) Two possible equivalent Wyckoff representations
of SrTiO3, depending on the lattice center choice:
[Ti, (m-3m, 0)], [Sr, (m-3m, 1)], [O, (4/mm.m, 1)]
[Ti, (m-3m, 1)], [Sr, (m-3m, 0)], [O, (4/mm.m, 0)]

Figure 2: Wyckoff positions illustrations

2. Encoding Wyckoff positions using their universally–defined symmetry point groups and
symmetry operations descriptors based on spherical harmonics; section 2.1.

3. Wyckoff Transformer architecture and training protocol that combine autoregressive prob-
ability factorization with permutation invariance; section 2.3.

4. Model invariance with the respect to the arbitrary choice of the coset representative of the
space group affine normalizer; sections 2.1, 2.3.

5. Empirically, our model outperforms baseline methods in generating novel diverse materials
conditioned on space group symmetry; section 3.4.

6. Despite not using the information about atom coordinates, our model achieves property
prediction performance competitive with the machine learning models that use the full
structure; section 3.4.

1.3 RELATED WORK

Crystal generation is a burgeoning field, with most state–of–the–art models using a differentiable
non–invertible SO(3) invariant representation constructed from atom coordinates, such as a graph
neural networks. Then they use diffusion or flow matching to solve the generation problem (Jiao
et al., 2024a;b; Cao et al., 2024; Yang et al., 2023; Zeni et al., 2024; Xie et al., 2021; Klipfel et al.,
2023; Luo et al., 2024; Sinha et al., 2024). Our approach uses discrete Wyckoff space, and fast au-
toregressive sampling, as compared to gradual refinement in the aforementioned works. WyFormer
complements them naturally by providing symmetry constraints and/or initial structure approxima-
tion – the synergy with the most suitable partner, DiffCSP++, we evaluate thoroughly.

Wyckoff positions and machine learning. The concept of Wyckoff positions was originally pub-
lished more than a 100 years ago (Wyckoff, 1922), which laid the groundwork for understanding
equivalent positions in space groups, serving as a precursor to the International Tables for Crystal-
lography. Given their elegant representation, naturally, in modern times WPs have found their way
into machine learning. The main limiting factor in their adoption was the ability of machine learn-
ing algorithms to handle discrete structured data which is formed by WPs. WP–based representation
was used for property prediction (Goodall et al., 2020; Jain & Bligaard, 2018; Möller et al., 2018;
Goodall et al., 2022), and recently for generative models. Our work is inspired by Zhu et al. (2024),
the first such model. It uses a VAE over one–hot–encoded information about WPs, as opposed our
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Transformer encoder, a generally superior architecture for categorical data. AI4Science et al. (2023)
use GFlowNet Bengio et al. (2023) to sample space group and chemical composition, but not the
full Wyckoff representation. Finally, a concurrent work by Cao et al. (2024) independently explores
a Transformer–based approach similar to ours.

The main difference between our and all other approaches, that are based on Wyckoff positions, is
that they use Wyckoff letters as the representation. Wyckoff letter definitions depends on the space
group, unlike site symmetry, leading to data fragmentation. Zhu et al. (2024); Cao et al. (2024)
also don’t take into account dependency of the Wyckoff letters on the arbitrary choice of the coset
representative of the space group Euclidean normalizer. Finally, Cao et al. (2024) use positional
encoding to establish the relationship between the chemical elements and Wyckoff positions they
occupy, while we combine them in one token.

2 WYCKOFF TRANSFORMER (WYFORMER)

2.1 TOKENIZATION

Our work is based on the inductive bias that for stable materials space group symmetry and Wyckoff
sites almost completely define the structure – more than 98% of the materials in MP–20 Xie et al.
(2021) and MPTS–52 Baird et al. (2024) datasets, which tother contain almost all experimentally
stable structures from the Materials Project Jain et al. (2013), have unique Wyckoff representations.
Therefore is it safe to assume that for almost any Wyckoff representation there is either none, or
just one stable material conforming to it. Symmetry captured by this discrete part is sufficient to
determine properties of a material, such as piezoelectricity via non–centrosymmetry; direct/indirect
band gap via positions of the valence/conduction bands in the Brillouin Zone, while the fractional
coordinates can be linked to the magnitude of that property. We additionally prove this assumption
by various predicting material properties, see section 3.4. Given a Wyckoff representation that
reflects the lattice symmetry, coordinates can be determined as discussed in section 2.4.

We represent each structure as a set of tokens, as shown in figure 3. The first token contains the space
group, the others chemical elements and WPs. We encode a WP as a tuple containing site symmetry
and so-called enumeration. Several WPs can have the same site symmetry. To differentiate those
WPs we enumerate them separately within each space group and site symmetry according to the
conventional WP order Aroyo et al. (2006). For example, in space group 225 present in figure 3 WP
4a is encoded as (m-3m, 0), 4b as (m-3m, 1), and 8c as (-43m, 0). The purpose of this
encoding is to take advantage of the fact that, unlike Wyckoff letters, site symmetry definition is uni-
versal across different space groups. We also develop a physics–based description of enumerations
using spherical harmonics, it is discussed in details in Appendix B.

Element

Site symmetry

Enumeration

225

Mg

m-3m 

0

Tm

m-3m 

1

Hg

-43m 

0

Space 
group

Figure 3: An example of structure tokenization, TmMgHg2 mp-865981

The two-part encoding has another advantage. For some crystals enumerations part, and only this
part, of Wyckoff representation is not uniquely defined, as it depends on the arbitrary choice of the
coset representative of the space group Euclidean normalizer. See the example in figure 2b.

2.2 MODEL ARCHITECTURE

Elements, site symmetries, and enumeration are each embedded with a simple lookup table with
trainable weights, the embeddings are concatenated; then we apply a linear layer. The reason is that
in multi head attention different heads look at continuous blocks of the input vector.

Since our model is conditioned on space group, preventing data fragmentation is of utmost impor-
tance. To this end, space group is not encoded just as a categorical variable. Similarly to Bengio
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et al. (2023) we use pyXtal to get one–hot–encoded 15 × 10 matrix that represents symmetry ele-
ments on each axis for each space group, flatten it, discard the positions that do not vary across the
dataset and use the resulting vector as the space group embedding. Then we apply a linear layer, so
the representation becomes learnable – but still transferable between space groups.

Token sequences are used as an input for a Transformer encoder Vaswani (2017); Devlin (2018).
Wyckoff representation is permutation–invariant, so is Transformer; we don’t use positional encod-
ing, making the model formally permutation–invariant with the respect to the input.

De novo generation We use enumerations representation. We additionally add a STOP token
to each structure. To represent states where some parts of token are known and others are not,
we replace those values with MASK. We also add a fully–connected neural network for each part
of the token that we want to predict, three in total. To get the prediction, we take the output of
Transformer encoder on the token containing MASK value(s), concatenate it with a one–hot vector
encoding presence in the input sequence of each possible value for this token part, and use it as the
input for the corresponding fully–connected network.

Property prediction We use spherical harmonics representation. We take the average of the
Transformer encoder outputs tokens, excluding the token corresponding to the space group, compute
a weighted average with weights being equal to the multiplicities of WPs, and use the result as input
for a fully–connected neural network that outputs a scalar predicted value.

2.3 TRAINING

Following approach by Wang et al. (2023); Abramson et al. (2024), we use a simple architecture
and do no strictly enforce invariance with the respect to the choice of the coset representative of the
space group affine normalizer, but rather leave it as a training goal by picking a randomly selected
equivalent representation at every training epoch. It is especially viable because of the low number
of variants; in MP–20 (Xie et al., 2021) dataset for 96% structures there are less than 10.

De novo generation We train the model to predict next part of a token in a cascade fashion: first
the chemical element, then, conditioned on it, site symmetry and, finally, enumeration. On each
training iteration we randomly sample known sequence length and the part of the cascade to predict;
place MASK tokens as necessary, input the known parts of the sequences into the model, compute
cross–entropy loss between the predicted scores and the target.

Unlike Transformer itself, auto–regressive generation is not permutation–invariant. The number of
WPs is small, the average in MP-20 is just 3.0; this allows us to again follow the philosophy of
Wang et al. (2023); Abramson et al. (2024) and train the model to be invariant with augmentation
by shuffling the order of every Wyckoff representation at every training epoch. Moreover, we use
multi–class loss when training to predict the fist cascade part, chemical element, further reducing
learning complexity.

On MP–20 model is trained for 9 × 105 epochs using SGD optimizer without batching; due to
the efficiency of the representation gradient backpropagation for the entire dataset fits into GPU
memory. We use the loss on the validation dataset for early stopping, learning rate scheduling, and
manual hyperparameter tuning.

Property prediction The model is trained using MSE loss with batch size 500, and Adam opti-
mizer. For both MP–20 and AFLOW training takes around 5k epochs.

2.4 STRUCTURE GENERATION

We generate crystals conditioned on space group number which is sampled from the combination
of training and validation datasets. Wyckoff representation is then autoregressively sampled using
the Wyckoff Transformer. We use two ways to generate the final crystal structure conditioned on
the representation, the details are described in appendix section C. They both start with sampling a
structure conditioned on the Wyckoff representation with pyXtal (Fredericks et al., 2021), and then
relaxing it with CrySPR (Nong et al., 2024) and CHGNet (Deng et al., 2023) or DiffCSP++ (Jiao
et al., 2024b).
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3 EXPERIMENTAL EVALUATION

3.1 DE NOVO GENERATION

3.1.1 DATASET

We use MP-20 Xie et al. (2021), which contains almost all experimentally stable materials in Mate-
rials Project Jain et al. (2013) with a maximum of 20 atoms per unit cell, within 0.08 eV/atom of the
convex hull, and formation energy smaller than 2 eV/atom, 45229 structures in total, split 60/20/20
into train, validation and test parts.

We also utilize the AFLOW database Curtarolo et al. (2012), which contains 4,905 compounds
spanning a diverse range of chemistries and crystal structures. We use four material properties:
thermal conductivity, Debye temperature, bulk modulus, and shear modulus. The data is divided
into training, validation, and test sets using a 60/20/20 split.

3.1.2 METRICS

Structure property similarity metrics Coverage and Property EMD (Wasserstein) distance, have
been proposed as a low–cost proxy metric for de novo structure generation by Xie et al. (2021) and
then followed by most of the subsequent work.

Validity Xie et al. (2021) proposed verifying crystal feasibility according to two criteria:

• Structural validity means that no two atoms are closer than 0.5Å. All structures in MP–20
and almost all structures produced by state–of–the–art model fulfill it.

• Compositional validity means having neutral charge (Davies et al., 2019). Only 90%
of MP–20 structures pass this test meaning that nonconforming structures are physically
possible if somewhat rare.

Novelty and uniqueness The purpose of de novo generation is to obtain new materials. Generat-
ing materials that already exist in the training dataset increases the model performance according to
structure stability and similarity metrics, but such structures are useless for material design and just
increase the gap between the proxy metrics and the model fitness for its purpose. Therefore we ex-
clude generated materials that are not novel and unique from metric computation. On a deeper level,
generative models for materials are subject to exploration/exploitation trade–off: the more physi-
cally similar are the sampled materials to the training dataset, the more likely they are stable and
distributed similar to the data, but the less useful they are for the purpose of material design. From
a purely machine learning point of view, novelty percentage serves a proxy metric for overfitting.

Stability is important as it determines whether the material, in fact, exists under normal conditions.
It is estimated by computing energy above convex hull, and comparing it to a threshold Ehull <
0.08 eV, same as used during construction of MP–20 dataset. Then we compute S.U.N. Zeni et al.
(2024) – the fraction of stable unique novel structures.

Due to DFT computational costs, we use CHGNet (Deng et al., 2023) for stability estimation of
the generated structures, and then compute DFT for a manageable sample from the novel structures
generated by the strongest models. Materials Project (Jain et al., 2013) is the source of the structures
for the hull; we computed CHGNet predicted energies for it to use as references.

Symmetry of the structures has paramount physical importance. Controlling symmetries also leads
to control over physical, electronic, and mechanical behavior, which is desirable in property–directed
inverse design of materials. For example, in electronic materials, higher symmetry can improve car-
rier mobility and uniformity in electronic band structure, enhancing performance in applications
such as semiconductors or optoelectronics. Furthermore, high–symmetry structures often exhibit
isotropic properties, meaning their behaviors are the same in all directions, making them more ver-
satile for industrial use. From a computational perspective, for a fixed set of atoms that constitute
a crystal, enforcing symmetries (beyond the basic P1 translation symmetry) allows for computing
permutations to search for useful materials while maintaining a focus on practical, synthesizable
crystal structures.

6
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This combination of stability, desirable properties, and computational efficiency makes symmetry
consideration in crystals especially valuable in generative models for materials discovery. While
higher symmetry is more tractable to compute, experimental realization could require external en-
ergy inputs (higher temperatures and pressures: think diamond vs graphite); most databases com-
puted with DFT today are only at 0K and hence do not include this degree of freedom. Keeping
this in mind, to evaluate the models according to their ability to reproduce symmetry properties we
propose four new metrics:

P1 is the percentage of the structures that have symmetry group P1. In MP–20 the corresponding
number is just 1.7%, and yet more than a third of the structures generated by some state–of–the–art
models lack symmetry beyond lattice translation. We argue that presence of symmetry is good proxy
value for structure feasibility that is difficult to capture in standard DFT computations, and would
require finite–temperature calculations and/or improved methodologies.

Novel Unique Templates (#) is the number of the novel unique element–agnostic Wyckoff rep-
resentations (section 2.1) in the generated sample. Element-agnostic means that we remove the
chemical element, while retaining the symmetry information. For example, for the TmMgHg2
in figure 3, it will be as follows:{[(X, (m-3m, 0)), (X, (m-3m, 1)), (X, (-43m,
0))]; [(X, (m-3m, 1)), (X, (m-3m, 0)), (X, (-43m, 0))]}. The metric pro-
vides a lower limit on overfitting and physically meaningful sample novelty: if two materials have
different symmetry templates, their physical properties will be different, while inverse is not always
true. It serves as an addition to the strict structure novelty, which provides the upper bound. Finally,
the ability of a model to generate new templates allows it generate more structures before starting to
repeat itself, as we demonstrate in Appendix I.

Space Group χ2 is the χ2 statistic of difference of the frequencies of space groups between the
generated and test datasets.

S.S.U.N. is the percentage of the structures that are symmetric (space group not P1), stable, unique
and novel.

3.2 METHODOLOGY

Wyckoff Transformer was trained using MP–20 dataset following the original train/test/validation
split. We sampled 104 Wyckoff representations, then obtained 103 structures using pyXtal+CHGNet
and DiffCSP++ approaches described in section 3.2.

WyCryst (Zhu et al., 2024) only supports a limited number of unique elements per structure, there-
fore we trained it on a subsection of MP–20 containing only binary and ternary compounds, 35575
in total. Evaluation of Wyckoff Transformer trained on the same dataset as WyCryst is present
in Appendix J. As WyCryst also produces Wyckoff representations, and not structures, the same
pyXtal+CHGNet procedure was used to obtain them.

CrystalFormer (Cao et al., 2024) code and weights published by the authors were used by us to
produce the sample, conditioned on the space groups sampled from MP–20.

DiffCSP (Jiao et al., 2024a), DiffCSP++ (Jiao et al., 2024b), and FlowMM (Miller et al., 2024)
samples were provided by the authors.

Every data sample contained 1000 structures and was relaxed using CHGNet. The generated sam-
ples were filtered for uniqueness, more than 99.5% of structures for every method passed the filter-
ing, therefore its impact is minimal and not further discussed.

We computed for DFT for ∼ 90 novel structures for WyFormer and the baselines leading according
to CHGNet–based metrics; detailed description of the settings is available in Appendix G.

3.3 DE NOVO STRUCTURE GENERATION RESULTS

Evaluation results are present in tables 1,2, and 3; a sample of generated structures is illustrated in
figure 4.

7
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Wyckoff Transformer achieves the best template novelty, fraction of asymmetric structures and space
group distribution reproduction. Wyckoff Transformer and DiffCSP have similar S.S.U.N. (T–test
p = 0.8) and S.U.N. (T–test p = 0.2). Given the limited DFT sample size, and DiffCSP’s superior
S.U.N. computed with CHGNet, it is likely that on a larger DFT sample it will surpass WyFormer.
The correlation of CHGNet–determined stability with DFT–determined is 0.33 – 0.44, meaning that
CHGNet is a blunt, but still useful tool for stability estimation.

Proxy metrics are present in table 3. Every model wins in at least one category, with the second
place usually being close. We therefore would like to point out to some of the largest differences.
WyCryst and CrystalFormer have significantly lower novelty compared to the other models. While
manageable per se, it also means that the models have been overfitted, and their structures are more
similar to the training dataset. DiffCSP++ oversamples the structures with the large number of
unique elements, WyFormer matches the distribution most closely, as depicted in figure 6.

Table 1: Evaluation of the stability of the generated structures, as estimated by DFT and CHGNet.
Ehull < 0.08 stability threshold is used, the same as in the training dataset, MP–20. Due to lim-
ited resources, DFT was only computed for the baselines with the strongest CHGNet S.U.N. and
S.S.U.N.; # refers to the number of DFT samples; r is the Pearson correlation between structures’
stability determined by DFT and CHGNet. Bold indicates the values within p = 0.1 statistical sig-
nificance threshold from the best.

Method DFT ↑ r CHGNet ↑
# S.U.N. (%) S.S.U.N. (%) S.U.N. (%) S.S.U.N. (%)

WyFormer 96 7.5 7.5 0.33 39.2 38.2
WyFormerDiffCSP++ 95 14.1 14.1 0.44 36.7 36.0
DiffCSP++ 94 8.5 8.5 0.32 41.4 40.8
CrystalFormer – – – – 33.9 33.8
WyCryst – – – – 36.6 35.2
DiffCSP 82 20.8 13.1 0.36 57.4 40.6
FlowMM – – – – 49.2 29.9

Table 2: Evaluation of the methods according to the symmetry metrics. Sample size is 1000; the
metrics are computed only using novel structurally valid examples; structures were relaxed with
CHGNet.

Method Novel Unique P1 (%) Space Group
Templates (#) ↑ ref = 1.7 χ2 ↓

WyFormer 180 3.24 0.223
WyFormerDiffCSP++ 186 1.46 0.212
DiffCSP++ 10 2.57 0.255
CrystalFormer 74 0.91 0.276
WyCryst 165 4.79 0.710

DiffCSP 76 36.57 7.989
FlowMM 51 44.27 12.423

3.4 MATERIAL PROPERTY PREDICTION

MP–20 dataset contains two properties: formation energy and band gap, which we predict using
WyFormer. The results are shown in Table 4. WyFormer achieves competitive results with the
models that use full structures.

We also trained and evaluated property predictions using the AFLOW Curtarolo et al. (2012)
database. WyFormer demonstrated superior performance in predicting thermal conductivity. For
the remaining three properties, the model’s performance is comparable to that of the baseline mod-
els.
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Table 3: Evaluation of the methods according to validity and property distribution metrics. Struc-
tures were relaxed with CHGNet. Following the reasoning in section 3.1.2, we apply filtering by
novelty and structural validity, and do not discard structures based on compositional validity. An
evaluation following the protocol proposed by Xie et al. (2021) is available in Appendix H.

Method Novelty Validity (%) ↑ Coverage (%) ↑ Property EMD ↓
(%) ↑ Struct. Comp. COV-R COV-P ρ E Nelem

WyFormer 90.00 99.56 80.44 98.67 96.72 0.74 0.053 0.097
WyFormerDiffCSP++ 89.50 99.66 80.34 99.22 96.79 0.67 0.050 0.098
CrystalFormer 76.92 86.84 82.37 99.87 95.13 0.52 0.100 0.163
DiffCSP++ 89.69 100.00 85.04 99.33 95.80 0.15 0.036 0.504
WyCryst 52.62 99.81 75.53 98.85 87.10 0.96 0.113 0.286
DiffCSP 90.06 100.00 80.94 99.55 96.21 0.82 0.052 0.294
FlowMM 89.44 100.00 81.93 99.67 99.64 0.49 0.036 0.131

From this we can conclude that the symmetries and composition of the crystal alone already carry
a considerable amount of information about its properties. This is especially true for the band
gap, where Brillouin zones are defined by symmetry, and thermal conductivity, which is a non-
equilibrium phonon transport property also conditioned on underlying symmetry of the structure.
To first order approximation kinetic theory, higher symmetry crystals typically have higher thermal
conductivity due to (1) higher group velocities and (2) longer scattering times due to lower anhar-
monicity Newnham (2004); Yang et al. (2021).

Table 4: One–shot energy and band gap prediction. We computed CHGNet energy predictions on
the MP-20 dataset, the rest of the baseline values are from Lin et al. (2023); The MP–20 test set is
a part of CHGNet training set. Xie & Grossman (2018); Jha et al. (2019) report the error between
DFT–computed and experimental results ≈ 0.08 eV for energy, and ≈ 0.6 eV for band gap.

Method Energy, meV Band gap, meV Train Test
CGCNN 31 292

Materials Project–2018.6.1

SchNet 33 345
MEGNet 30 307
GATGNN 33 280
ALIGNN 22 218
Matformer 21 211
PotNet 19 204
CHGNet 34 – MPTrj MP–20

WyFormer 25 247 MP–20

Table 5: MAE values for AFLOW dataset; baseline values are from Wang et al. (2021).

Method Thermal conductivity Debye temperature Bulk modulus Shear modulus
Roost 2.70 37.17 8.82 9.98
CrabNet 2.32 33.46 8.69 9.08
HotCrab 2.25 35.76 9.10 9.43
ElemNet 3.32 45.72 12.12 13.32
RF 2.66 36.48 11.91 10.09

WyFormer 2.20 36.36 9.63 10.14

4 CONCLUSIONS AND LIMITATIONS

Ehull determined from formation energy (Ef) as a proxy for stability is commonly used, but is imper-
fect, as it doesn’t take into account configurational and vibrational entropic contributions, and hull
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K2AsAuS3, C2 (5)

EuCoSi3, I4mm (107)

Ce5Bi3, P63/mcm (193)

CeTlS2, R-3m (166)

NdBi3, Pm-3m (221)

K2NaAgF6, Fm-3m (225)

NdSbS, P4/nmm (129)

DySeBr, Pnma (62)

Li6Mn3O8, P1 (1)

Nd2Cl3, R-3c (167)

(a) stable (b) unstable

Figure 4: 10 structures generated from WyFormerDiffCSP++ and presented without additional re-
laxation. The labels contain the chemical formula, followed by the space group symbol in the short
Hermann-Mauguin notation, and space group number. To the left 8 structures were randomly chosen
from 15 stable structures as validated by DFT calculations, to the right 2 from unstable structures.
The solid box lines represent the primitive cell.

determination relies on already known structures. Using CHGNet for stability estimation adds yet
another level of systematic uncertainty to these estimates. Moreover, our results, along with Miller
et al. (2024) show that generated structures with space symmetry group P1 are consistently found
stable at a much higher rate than they occur in nature. There are two logical conclusions from this:
either DiffCSP and FlowMM have, in passing, discovered a new class of asymmetric materials – or
our stability estimation methodology is systematically flawed.

Novelty and diversity evaluation is a crucial and, in our opinion, an open question. A model can
generate structures that are same or similar to the ones in the training dataset, and are valid, but not
very useful for material design. Counting complete duplicates is a step in the right direction, but
doesn’t measure substantial sample diversity Hicks et al. (2021).

An important part of the future work is Crystal Structure Prediction (CSP). Unlike the models that
work with atoms and coordinates, it is hard to ensure that WyFormer output strictly conforms to a
given stoichiometry. But we can add the stoichiometry as a generation condition, like space group.
Then, as as we show in Appendix 6, WyFormer is four order of magnitude faster than other CSP
solution, which allows to simply use rejection sampling.

In conclusion, we show that our Wyckoff Transformer represents a novel advancement in the gen-
eration of realistic symmetric crystal structures by leveraging Wyckoff positions to encode material
symmetries more efficiently. Unlike previous methods, Wyckoff Transformer achieves a higher de-
gree of structure diversity while maintaining stability, by encoding the discrete symmetries of space
groups without relying on atomic coordinates. This unique tokenization of symmetry elements en-
ables the model to explore a reduced, yet highly representative space of possible configurations,
resulting in more stable and purportedly synthesizable crystals. The model respects the inherent
symmetry of crystalline materials, outperforms existing models in generating both novel and phys-
ically meaningful structures. These innovations underscore the method’s potential in accelerating
material discovery while maintaining accuracy in predicting key properties like formation energy
and band gap, comparable to complementary methods.

REPRODUCIBILITY STATEMENT

The code and trained model weights will be published with the paper under an open source license.
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APPENDIX

A WYCKOFF REPRESENTATION WITH FRACTIONAL COORDINATES

A crystal can be represented as a space group, a set of WPs and chemical elements occupying
them, the fractional coordinates of the WP degrees of freedom, and free lattice parameters. Such
representation reduces the number of parameters by an order of magnitude without information loss.
For example, see figure 5.

Group: I4/mmm (139)
Lattice: a = b = 8.9013, c = 5.1991, α = 90.0, β = 90.0, γ = 90.0
Wyckoff sites:
Nd @ [ 0.0000 0.0000 0.0000], WP [2a] Site [4/m2/m2/m]
Al @ [ 0.2788 0.5000 0.0000], WP [8j] Site [mm2.]
Al @ [ 0.6511 0.0000 0.0000], WP [8i] Site [mm2.]
Cu @ [ 0.2500 0.2500 0.2500], WP [8f] Site [..2/m]

Figure 5: Wyckoff representation of Nd(Al2Cu)4 (mp-974729), variable parameters in bold. If rep-
resented as a point cloud, the structure has 13[atoms]×3[coordinates]+6[lattice] = 42 parameters;
if represented using WPs, it has just 4 continuous parameters (WPs 8i and 8j each have a free
parameter, and the tetragonal lattice has two), and 5 discrete parameters (space group number, and
WPs for each atom).

B SPHERICAL HARMONICS

Enumerations are defined by an arbitrary convention, in this respect they are no better than Wyckoff
letters. We propose a way to address this – a physics–based representation that is defined consis-
tently across space groups. Consider a Wyckoff position consisting of a set of k symmetry operations
{Air + bi, i = 1...k}. We apply those operations to points r1 = [0, 0, 0] and r2 = [1, 1, 1] ob-
taining two matrices W (1) and W (2): W (j)

i = Airj + birj . Finally, we convolve the transformed
coordinates with spherical harmonics:

ϕ
(j)
i = arctan([W (j)]2i ,W

(j)]1i ); θ
(j)
i = arccos([W (j)]3i )

h(j) =

k∑
i=1

|W (j)
i |[Y 0

n (θ
(j)
i , ϕ

(j)
i ), ..., Y n

n (θ
(j)
i , ϕ

(j)
i )]/k,

(1)

n is the degree of spherical harmonics, a parameter, and the resulting complex vectors h(1) and h(2)

each n + 1 dimensions. n = 2 is enough to disambiguate all Wyckoff positions with the same site
symmetry belonging to the same space groups; n = 1 is not. Finally, we obtain the final 2n + 2
dimensional descriptor s by concatenation: s = ℜ(h(1) ⊕ h(1)) ⊕ ℑ(ℜ(h(1) ⊕ h(1))) By itself
harmonic representation does not allow for easy prediction, a way to use it for structure generation
is discussed in Appendix N; performance is discussed in Appendix M.

C STRUCTURE GENERATION DETAILS

The process of obtaining crystal structures from Wyckoff representations using PyXtal Fredericks
et al. (2021) begins by specifying a space group and defining WPs. PyXtal allows users to input
atomic species, stoichiometry, and symmetry preferences. Based on these parameters, PyXtal gen-
erates a random crystal structure that respects the symmetry requirements of the space group. Once
the initial structure is generated, we then perform energy relaxation using CHGNet. CHGNet is a
neural network–based model designed to predict atomic forces and energies, significantly speeding
up calculations that would traditionally require density functional theory (DFT). We repeat the pro-
cess for six random initializations and pick the structure with the lowest energy. Energy relaxation
involves optimizing the atomic positions to reach a minimum energy configuration, which represents
the most stable form of the material. CHGNet, trained on vast DFT datasets, can efficiently relax
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crystal structures by adjusting atomic positions to reduce the total energy. This approach ensures that
the final structure is not only symmetrical but also physically realistic in terms of energy stability.

For the 2nd structure generation method, DiffCSP++ is a diffusion-based crystal structure predic-
tion model that focuses on generating purportedly stable crystal structures by sampling from an
energy landscape in a physically consistent manner. DiffCSP++ generation also starts with PyXtal
sampling.

D INFERENCE SPEED

We conducted experiments on a machine with NVIDIA RTX 6000 Ada and 24 physical CPU cores.
For baselines, we used source code, model hyperparameters and weights published by the authors.
Assuming that the downstream costs of structure relaxation by DFT or machine–learning interaction
potential are fixed, the inference cost per S.U.N. structure is present in the table 6.

Method S.U.N. GPU ms per CPU s per
(%) structure S.U.N. structure S.U.N.

WyFormerRaw 4.8 0.05 1.0 0.105 2.2
WyForDiffCSP++ 14.1 840 5957 0.940 6.7
DiffCSP 20.8 360 1731 0.360 1.73
DiffCSP++ 8.5 1250 14705 1.35 15.9

Table 6: Inference time per S.U.N. structure. When a GPU is running, it also occupies a CPU
core, which is taken into account. S.U.N. rates are measured according to DFT stability estimation.
CHGNet is not used anywhere, for WyFormerRaw we sample a structure with pyXtal and use it
directly as an input for DFT.

E PLOTS

Figure 6 contains the number of unique elements per structure for MP–20 and novel generated
structures.
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Figure 6: Distribution of the number of unique elements per structure for MP–20 and novel gener-
ated structures.
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Figure 7: The empirical cumulative density function (ECDF) for root mean squared deviation
(RMSD) of DFT-unrelaxed structures from DFT-relaxed counterparts. RMSD is calculated us-
ing pymatgen.analysis.StructureMatcher sub–module, in which only the RMSD of
matched structure pairs is reported.

F ENERGY ABOVE HULL CALCULATIONS

To obtain the Ehull, we firstly constructed the reference convex hull data by querying all 153235
structures from the Materials Project (MP), and then using CHGNet (Deng et al., 2023) with using
CrySPR interface (Nong et al., 2024) to do structure relaxations for all MP structures by relaxing
both lattice cells and atomic positions (vc-relax), which renders 153,226 valid entries for relaxed
structures and energies; secondly, for each 1,000 generated structures from each generative model,
we followed the same vc-relax procedure to get the relaxed structures and energies; finally, using
the pymatgen.analysis.phase diagram sub–module the Ehull for each entry of generated
structure was computed by referencing to the MP convex hull, Ehull = max{∆Ei}, where ∆Ei is
the decomposition energy of any possible path for a structure decomposing into the reference convex
hull.

G DFT DETAILS

All DFT structure relaxations were performed using the Vienna ab-initio simulation package (VASP)
with the plane-wave basis set. Kresse & Furthmüller (1996) The electron-ion interaction is described
by the projector augmented wave (PAW) pseudo-potentials. Kresse & Joubert (1999) The pseudo-
potentials recommended by the VASP team are used. The exchange-correlation of valence electrons
is treated with the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient ap-
proximation (GGA). Perdew et al. (1996) The cutoff for kinetic energy of plane waves was set to
520 eV. Convergence thresholds of 10−8 eV for total energy and 10−4 eV Å

−1
atom−1 for force

were set. The Monkhorst-Pack scheme of k-points sampling in the Brillouin zone with spacing of
0.15 Å

−1
is used Monkhorst & Pack (1976), in which the Γ point is included. The Dudarev et al.

simplified DFT+U scheme Dudarev et al. (1998) was adopted for the oxides and fluorides that con-
tain one or more of the following transition metals: Co (3.32 eV), Cr (3.7 eV), Fe (5.3 eV), Mn (3.9
eV), Mo (4.38 eV), Ni (6.2 eV), V (3.25 eV), W (6.2 eV), consistent with the MP. Spin-polarized
relaxations initialized with ferromagnetic, high-spin valence configurations were also performed to
check if there is any magnetic atom with magnetism ≥ 0.15 µB.

The MP convex hull (v2023.11.1) was used as the reference hull. To do so comparably, addi-
tional DFT relaxations and self-consistent field (SCF) calculations using the VASP settings from
MPRelaxSet and MPStaticSet in pymatgen were further performed based on the previously
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relaxed structures. The raw total energies of SCF calculations using the MPStaticSet are then
corrected using the correction scheme of MaterialsProject2020Compatibility before
putting into the PhaseDiagram to obtain the DFT Ehull. What should be emphasized here
is that the precision parameters, which are generated by MPRelaxSet and MPStaticSet,
are too coarse, regarding especially the convergence thresholds (2 × 10−4 eV for energy, and
2×10−3 eV Å

−1
for cumulative force) and the density of k-points sampling (equivalent to a spacing

of only 0.35 Å
−1

). The MPRelaxSet is not strictly appropriate for direct structure relaxations for
generated structures that typically are far off equilibrium.

H LEGACY METRICS

For completeness sake, in table 7 we present the metrics computed following the protocol set up
by Xie et al. (2021). We would like to again reiterate the issues with it. Firstly, the metrics are neg-
atively correlated with structure novelty, the raison d’être for material generative models. Secondly,
filtering by charge neutrality aka compositional validity means discarding viable structures. In terms
of our newly defined metrics, let’s consider stability and symmetry in detail below:

1. Stable is important as it determines thermodynamic stability of the generated structure and
possibility of that compound to decompose to other energetically more favorable com-
pounds,

2. Symmetry is critical to determine if the generated structure is not only stable, but also if
there is a lower energy configuration belonging to a higher (or at least changed) symmetry.
Therefore DFT relaxation for any generated structure is critical. If the symmetry changes
after DFT relaxation, then the generated structure has a Ehull < 0.08 eV/atom (defined as
Stable in #1 above) but there exists a higher symmetry structure which has lower energy -
hence we need to pay attention to symmetry not changing after further DFT relaxation.

Table 7: Method comparison according the protocol set up by Xie et al. (2021).

(a) Directly using structures produced by the methods, without additional relaxation. Note that CHGNet is an
integral part of generating structures with Wyckoff Transformer and WyCryst, so it’s used.

Method Validity (%) ↑ Coverage (%) ↑ Property EMD ↓
Struct. Comp. COV-R COV-P ρ E Nelem

WyckoffTransformer 99.60 81.40 98.77 95.94 0.39 0.078 0.081
WyFormerDiffCSP++ 99.80 81.40 99.51 95.81 0.36 0.083 0.079
CrystalFormer 93.39 84.98 99.62 94.56 0.19 0.208 0.128
DiffCSP++ 99.94 85.13 99.67 99.54 0.31 0.069 0.399
WyCryst 99.90 82.09 99.63 96.16 0.44 0.330 0.322
DiffCSP 100.00 83.20 99.82 99.51 0.35 0.095 0.347
FlowMM 96.87 83.11 99.73 99.39 0.12 0.073 0.094

(b) All structures have been relaxed with CHGNet.

Method Validity (%) ↑ Coverage (%) ↑ Property EMD ↓
Struct. Comp. COV-R COV-P ρ E Nelem

WyckoffTransformer 99.60 81.40 98.77 95.94 0.39 0.078 0.081
WyTransDiffCSP++ 99.70 81.40 99.26 95.85 0.33 0.070 0.078
CrystalFormer 89.92 84.88 99.87 95.45 0.19 0.139 0.119
DiffCSP++ 100.00 85.80 99.42 95.48 0.13 0.036 0.453
WyCryst 99.90 82.09 99.63 96.16 0.44 0.330 0.322
DiffCSP 100.00 82.50 99.64 95.18 0.46 0.075 0.321
FlowMM 100.00 82.83 99.71 99.56 0.17 0.046 0.093
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I TEMPLATE NOVELTY AND DIVERSITY

To asses the impact of template novelty on the diversity of the generated data can be assessed by
evaluating the number of unique structures as the function of the total dataset size. We sampled 118k
examples from the model with the lowest template novelty, DiffCSP++, and the highest, WyFormer.
We present the number of unique samples as a function of the generated sample size in figure 8.
DiffCSP++ uniqueness is clearly lower; due to its high inference costs (see Appendix 6), we were
unable to prepare a larger sample.
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Figure 8: Fraction of unique structures and total number of unique structures as a function of sample
size. For Wyckoff Transformer we used only the Wyckoff representations for uniqueness assess-
ment, meaning that the uniqueness is likely to be slightly underestimated.

J EVALUATION ON MP–20 BINARY & TERNARY

Comparison of WyFormer to WyCryst is presented in tables 8 and 9. Both models were trained on a
subset of MP–20 training data containing only binary and ternary structures, and similarly selected
subset of MP–20 testing dataset is used as the reference for property distributions. All generated
structures were relaxed with CHGNet. CHGNet was used for the formation energy computation for
both generated and hull reference structures.

WyFormer outperforms WyCryst across the board. S.U.N. values are close, but this is achieved by
WyCryst sacrificing sample diversity and property similarity metrics, with about half of the gener-
ated structures already existing in the training dataset.

Method Template Novelty P1 (%) Space Group S.S.U.N.
(%) ↑ ref = 1.7 χ2 ↓ (%) ↑

WyFormer 25.63 1.43 0.224 37.9
WyCryst 18.51 4.79 0.815 35.2

Table 8: Evaluation of the methods according to the symmetry metrics. Aside from Template Nov-
elty, metrics are computed only using novel structurally valid structures.
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Method Novelty Validity (%) ↑ Coverage (%) ↑ Property EMD ↓ S.U.N.
(%) ↑ Struct. Comp. COV-R COV-P ρ E Nelem (%) ↑

WyFormer 91.19 99.89 77.28 98.90 96.75 0.83 0.064 0.084 38.4
WyCryst 52.62 99.81 75.53 98.85 89.27 1.35 0.128 0.003 36.6

Table 9: Evaluation of the methods according to validity and property distribution metrics. Follow-
ing the reasoning in section 3.1.2, we apply filtering by novelty and structural validity, and do not
discard structures based on compositional validity. Validity is also computed only for novel struc-
tures.

K HYPERPARAMETERS

K.1 OPTIMIZER

We use SGD optimizer with starting learning rate 0.2, and ReduceLROnPlateau scheduler with
factor=0.8 and patience of 40k epochs monitoring the validation dataset loss.

L FINE-TUNING LLM WITH WYCKOFF REPRESENTATION

To challenge Wyckoff Transformer’s architecture, we compared it with pre–trained language models
that were used in vanilla mode as well as after fine–tuning, essentially combining approach by
Gruver et al. (2024) with Wyckoff representation. We explored two different textual representations
of crystals corresponding to a given space group:

• Naive, which contains the specifications of atoms at particular symmetry groups encoded
by Wyckoff symmetry labels: Na at a, Na at a, Na at a, Mn at a, Co
at a, Ni at a, O at a, O at a, O at a, O at a, O at a, O at
a

• Augmented, which contains the specifications of atom types with its’ symmetries and site
enumerations: Na @ m @ 0, Na @ m @ 0, Na @ m @ 0, Mn @ m @ 0, Co
@ m @ 0, Ni @ m @ 0, O @ m @ 0, O @ m @ 0, O @ m @ 0, O @ m
@ 0, O @ m @ 0, O @ m @ 0, where the set of valid symmetries is: [’2.22’,
’4/mmm’, ’1’, ’-3..’, ’6mm’, ’m-3m’, ’2’, ’3mm’, ’.m’,
’-6mm2m’, ’4mm’, ’.32’, ’322’, ’.2/m.’, ’-1’, ’.m.’, ’..m’,
’m.2m’, ’.3m’, ’3m’, ’m2m.’, ’2mm’, ’-32/m.’, ’2..’, ’..2’,
’.3.’, ’2/m’, ’-43m’, ’4/mm.m’, ’.2.’, ’2/m2/m.’, ’23.’,
’222’, ’m..’, ’mm.’, ’-3.’, ’m-3.’, ’3.’, ’4/m..’, ’.-3m’,
’2m.’, ’-32/m’, ’-42m’, ’m.mm’, ’4..’, ’m.m2’, ’422’, ’32.’,
’22.’, ’-622m2’, ’3m.’, ’.-3.’, ’mmm..’, ’222.’, ’mm2..’,
’-4m2’, ’2/m..’, ’mm2’, ’-3m2/m’, ’-4m.2’, ’2mm.’, ’3..’,
’-42.m’, ’..2/m’, ’4m.m’, ’-4..’, ’6/mm2/m’, ’m2m’, ’m2.’,
’2.mm’, ’mmm.’, ’mmm’, ’32’, ’m’, ’-6..’]

We fine-tuned the OpenAI chatGPT-4o-mini-2024-07-18 model using different represen-
tations and compared it with the vanilla OpenAI gpt-4o-2024-08-06 model. For each of
the cases prompt looked like: Provide example of a material for spacegroup
number X. The table below contains details of the model training:

Both training and inference times were measured using batch job execution on OpenAI’s cloud. The
fine-tuned model returned a JSON string that was easy to parse, while the vanilla model required
additional parsing of its output.

Comparison the WyFormer to WyLLM is present in table 11. When fine–tuned, an LLM using
Wyckoff representations shows similar performance to WyFormer – at a much greater computa-
tional cost. Using site symmetries instead of Wyckoff letters doesn’t unequivocally increase the
LLM performance, a possible explanation is that since this representation is our original proposi-
tion, the LLM is less able to take advantage of pre–training that contained letter–based Wyckoff

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Model Base
Model

Representation Hyperparameters Training
Time

Inference
Time

Number of
Parameters

WyLLM-
vanilla

gpt-4o-
2024-08-06

Naive – – 74m ≈ 200B

WyLLM-
naive

gpt-4o-
mini-2024-
07-18

Naive epochs: 1, batch: 24, learn-
ing rate multiplier: 1.8

51m 51m ≈ 8B

WyLLM-
site-
symmetry

gpt-4o-
mini-2024-
07-18

Site Symmetry epochs: 1, batch: 24, learn-
ing rate multiplier: 1.8

95m 37m ≈ 8B

Table 10: Comparison of different models and their characteristics. Number of parameters is not
known exactly and is taken from public sources as an approximate estimation. For reference,
WyFormer has 150k parameters.

Method Novelty Validity (%) ↑ Coverage (%) ↑ Property EMD ↓
(%) ↑ Struct. Comp. COV-R COV-P ρ E Nelem

WyFormer 89.50 99.66 80.34 99.22 96.79 0.67 0.050 0.098
WyLLM-naive 94.67 99.79 82.89 98.72 94.97 0.39 0.067 0.015
WyLLM-vanilla 95.59 99.82 88.75 94.46 59.67 2.23 0.234 0.253
WyLLM-site-symmetry 89.58 99.89 83.89 99.44 96.32 0.29 nan 0.039

Method Wyckoff Validity Novel Unique P1 (%) Space Group
(%) ↑ Templates (#) ↑ ref = 1.7 χ2 ↓

WyFormer 97.8 186 1.46 0.212
WyLLM-naive 94.9 237 1.38 0.167
WyLLM-vanilla 28.7 87 2.03 0.621
WyLLM-site-symmetry 89.6 191 2.24 0.158

Table 11: Comparison for WyFormer to different variant of WyLLM. All structures have been re-
laxed with DiffCSP++. Sample size is 1000 structures per model. The metrics described in section
3.1.2. nan is placed where the generated structures contained a rare element that crashed the prop-
erty computation code. Wyckoff Validity refers to the percentage of the generated outputs that are
valid Wyckoff representations. Aside from LLM–specific problems, such as non–existent elements,
a Wyckoff representation can be invalid if it places several atoms at Wyckoff position without de-
grees of freedom, or refers to Wyckoff positions that do not exist in the space group.
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representations. Without fine-tuning, the majority of LLM outputs are formally invalid, and the
distribution of the valid ones doesn’t match MP–20.

M PERFORMANCE ANALYSIS OF ENCODING WPS WITH SPHERICAL
HARMONICS

To assess impact of spherical harmonics we compare the performance of models with the same
set of hyperparameters for the property prediction task on MP–20, leaving generative performance
comparison for the future work. The results are present in table 12, hyperparameters in table 13.

Representation Energy MAE, meV Band Gap MAE, meV
Site symmetry only 31.7 247.8
Wyckoff letter 30.5 234.0
Site symmetry & Enumeration 30.7 244.1
Site symmetry & Harmonics 29.7 238.7

Table 12: Performance of WyFormer with different representation. The values are slightly different
from table 4, as there we have tuned hyperparameters.

Parameter Value

Element embedding size 16
Wyckoff letter embedding size 27
Site symmetry embedding size 16

Site enumerations embedding size 7
Harmonic vector length 12

Batch size 500
Number of fully-connected layers 3

Number of attention heads 4
Dimension of feed–forward layers inside Encoder 128

Dropout inside Encoder 0.2
Number of Encoder layers 3

Table 13: Hyperparameters used in the ablation study.

N SAMPLING HARMONIC–ENCODED WPS

WP harmonic representation is a real–valued vector. But for each space group it can only take up
to 8 possible values, so learning the full distribution of such vectors is not necessary. Therefore, we
propose the following procedure:

1. Take the harmonic representations of all the WPs in all space group

2. Use K–means clustering to find 8 cluster centers.

3. Separately for each space group, assign harmonic labels to each enumeration:

(a) Compute the Euclidean distances between all cluster centers and all WPs in the SG
(b) Choose the smallest distance. Assign the WP to the corresponding cluster, remove

WP and the cluster center from consideration.
(c) Repeat until all WPs are assigned

This way all we obtain a discrete prediction target with one–to–one mapping with enumerations, but
where physically–similar values are grouped together.
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O SUPERCONDUCTOR CRITICAL TEMPERATURE PREDICTION

We used WyFormer to predict the critical temperature in superconductors on the 3DSC dataset Som-
mer et al. (2023); obtained test MLSE of 0.81
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