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ABSTRACT

We dissect the recently introduced Fast Feed-Forward (FFF) neural network ar-
chitecture and propose a matrix formulation of FFF that allows a unified per-
spective on FFF and Mixture of Experts (MoE) architectures. This formulation
achieves, on average, nearly a 4x speedup in FFF inference on CPUs and 12x on
GPUs, compared to the original formulation, for FFF depths up to 8. Addition-
ally, it enables an almost 10% improvement in accuracy on the CIFAR-10 dataset
(Krizhevsky et al.), while maintaining the same training time.

1 INTRODUCTION

Recent years have witnessed significant progress in the field of machine learning, marked by the
development of increasingly complex and powerful models. One of the promising directions in this
domain is the application of Mixture of Experts (MoE) methods (Jacobs et al. (1991); Fedus et al.
(2022b;a); Jiang et al. (2024)).

The motivation behind employing MoE lies in addressing the challenges of scalability and efficiency
in large neural networks. Modern machine learning tasks often require substantial computational re-
sources. MoE techniques enable efficient allocation of computational resources by activating only
those submodels that are most relevant for a given task. This approach reduces the overall computa-
tional overhead while maintaining high-quality predictions.

MoE was first introduced in “Adaptive Mixtures of Local Experts” by Jacobs et al. (1991). The
central idea is a system comprising multiple models, each specializing in a subset of training data.
Alongside these experts, a gating model is trained to determine the weights of each expert during
inference.

Over time, the MoE concept has evolved, finding applications within the layers of deep neural net-
works, including large-scale language models (see Shazeer et al. (2017); Fedus et al. (2022b); Gale
et al. (2022)). A version of MoE, Hierarchical Mixture of Experts (HMoE, first introduced by Jor-
dan & Jacobs (1994)), dubbed Fast Feed-Forward Networks (FFF) in a namesake work by Belcak
& Wattenhofer (2023b) gained not much attention and remains less explored than traditional MoE
methods.

In this work, we present a matrix-based formulation of the FFF architecture that offers a unified
parameterization with Mixture of Experts (MoE) models. This formulation results in a significant
enhancement in efficiency, achieving nearly 4x faster inference on CPUs for networks with depths up
to 8, and 9x faster on GPUs for depths up to 13. Furthermore, we observe a nearly 10% improvement
in accuracy on the CIFAR-10 dataset, all while maintaining the same training time.

1.1 MIXTURE OF EXPERTS (MOE)

The primary concept of the MoE architecture involves partitioning a neural network layer (primarily
fully connected) into independent blocks of neurons, called experts. A routing layer, also known as a
router, precedes the experts and determines the subset of experts to be utilized at the inference time.
The performance of the model is highly sensitive to the choice of the router. Recently, the most
commonly employed mechanism for selecting experts involves calculating selection probabilities
and using a weighted average over the selected experts:
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R(i|x) = Softmax(Wx)i (1)

y =
∑

i∈top-k(R)

R(i|x)fi(x) (2)

where R(i|x) represents the probability of selecting the i-th expert, which is represented by the layer
fi.

For a MoE layer containing an equivalent total number of parameters as a dense fully connected
layer, inference is faster because only a subset of experts is activated. The number of operations
required during inference can be expressed as:

O(K + E × k)

where K is the total number of experts, E = M
K is the size of each expert, M is the total parameter

count of a layer, and k is the number of experts used during inference.

1.2 FAST FEED-FORWARD (FFF)

Figure 1: A diagram of a depth-2 tree in the FFF layer. The final layer provides probabilities for the
leaves.

Belcak & Wattenhofer (2023b;a) introduced the FFF layer architecture. The primary idea is to
achieve exponential acceleration during inference by selecting an expert from an exponentially large
set and replacing the MoE router layer with a binary tree structure (see Figure 1).

Each node i ∈ [1, 2d − 1] in the tree contains a parameter vector wi ∈ Rn. Based on the dot
product between the input vector and the node’s parameter vector, the probability of selecting the
next parameter vector for one of the child nodes is computed as:

P (2i|x, i) = σ(zi) = σ(w⊤
i x) (3)

where σ(x) = 1
1+e−x . The probability of selecting the opposite child node is given by:

P (2i+ 1|x, i) = σ(−zi) = 1− σ(w⊤
i x) (4)

At the final level of the tree are the leaf nodes in , similar to the experts in MoE, henceforth referred
to as experts. During training, data passes through all tree nodes, accumulating probabilities to form
a distribution over the leaf nodes at the final layer. These probabilities are subsequently used to
compute the weighted average:
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Ei∼R(i|x)[fi(x)] (5)

where R(i|x) denotes the probability of selecting leaf i, which is represented by the layer fi.

During training, an FFF layer of depth d = logK uses all O(2d×E+2d−1) parameters to compute
the average, ensuring all experts are utilized. This approach enables a differentiable router, facilitat-
ing accurate gradient computation. However, it significantly increases computational costs during
training (see Muqeeth et al. (2023)).

During inference, the FFF layer sequentially selects the most probable node at each level of the tree
in a greedy manner, with the output of the selected leaf node serving as the final output vector. The
computational complexity of this algorithm is logarithmic in the number of leaves, given by:

O(d+ E)

Thus, for an equivalent number of experts, FFF achieves exponential acceleration in search. How-
ever, this algorithm lacks parallelism, as each tree level must be computed sequentially.

2 COMMON PARAMETRIZATION FOR FFF AND MOE

2.1 LOGARITHMIC TRANSFORMATION

Consider the router in FFF, which represents the distribution of the selected experts R(i|x). It is
defined as follows:

R(i|x) =
∏

j∈Path(i)

P (j|x, ⌊ j
2
⌋) (6)

where Path(i) contains the indices of all nodes along the path from the root to the leaf i, and the
probabilities P inside the product take the form of equations 3 or 4 depending on the parity of j,
parameterized by weight vectors.

The logarithm of this distribution can be computed as:

logR(i|x) =
∑

j∈Path(i)

a((−1)jz⌊j/2⌋) (7)

where a(x) is defined as:

a(x) = log σ(x) = −Softplus(−x) (8)

In this equation, (−1)j indicates that for odd nodes, the probability is computed as the activation
of an opposite value, as shown in equation 4. Expression in 7 represents a linear combination of
activations from a subset of tree nodes. It can also be interpreted as a weighted sum of activations
from all nodes1, similar to the pre-activation in the next layer of a fully connected network for layers
of size 2d − 1 and 2d.

2.2 LINEARITY

Since expression 7 is a linear combination, it can be represented in a matrix form. We can also
convert this expression into probabilities by normalization. If z = (z1, . . . , z2d−1) = Wx, the
expert distribution is expressed as:

R(i|x) = Softmax(Ta(Sz))i (9)

1The weights are 1 for the nodes on the path to the given leaf and 0 for all others.
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where T ∈ R2d×2(2d−1) is a matrix where tij = 1 if j ∈ Path(i) and 0 otherwise, and S ∈
R2(2d−1)×2d−1 contains ±1 along the diagonal to account for the sign before the activation.

For example if FFF layer has depth d = 2, then T and S are constructed as follows:

T =

1 0 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 1 0 0 0 1

 S =


1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1


Firstly, this formulation illustrates that the FFF architecture is a specific instance of a more general
parameterization, given by Ta(Sz), where T , S, and a can be chosen arbitrarily. For example, the
MoE model can be recovered by setting S = T = I (the identity matrix) and defining a(x) = x.

Furthermore, the FFF architecture can be understood as computing the distribution over 2d − 1 ex-
perts, followed by an inductive bias that regroups and filters this distribution to produce probabilities
for 2d experts. This perspective highlights how the architecture leverages intermediate computations
to enable more expressive modeling with minimal structural changes.

Secondly, this formulation clarifies the potential for parallelizing computations of the probabilities.
However, a possible limitation of this approach is the challenge of storing these matrices in memory,
especially when represented in their full form. Despite this, it is evident that the matrices are highly
sparse, which allows for efficient storage using specialized data structures, such as the Compressed
Sparse Row (CSR) format, to significantly reduce memory overhead while maintaining computa-
tional efficiency.

2.3 CHANGING THE ACTIVATION FUNCTION

Let us examine the activation function in the original FFF architecture in details. By removing
the sign from the argument and flipping the signs of all weights at the nodes, we can construct an
equivalent model. Additionally, the second sign in the Softplus function serves a critical purpose: it
ensures that, during the transition to probabilities, the resulting values lie within the interval [0, 1].
However, this second sign can be removed if appropriate normalization is applied at the end of the
computation to achieve the same effect.

Given these considerations, we adopt the standard form of the activation function, a(x) =
Softplus(x), as the default choice for the base FFF architecture.

With the flexibility to adjust our current parametrization, we further experiment with alternative
activation functions within the model to explore their impact on performance.

3 EXPERIMENTS

To assess the impact of activation functions in the FFF architecture, we conducted experiments using
the CIFAR-10 dataset Krizhevsky & Hinton (2009), chosen to its alignment with the FFF paper and
its lightweight nature, which allows for rapid iteration across numerous model configurations. We
trained several FFF models with varying depths, ranging from 1 to 4. For activation functions, we
selected the following options: the baseline Softplus(x), a linear activation f(x) = x, and the ReLU
function ReLU(x) = max(0, x).

3.1 TRAINING SETUP

The model architecture consists of a single FFF layer, configured with either 8 or 16 hidden neurons
in each tree node. The experts are two-layer MLPs, also featuring 8 and 16 hidden neurons, respec-
tively. Each model was trained for 8 epochs with a batch size of 128, using the Adam optimizer
and a one-cycle learning rate schedule. The maximum learning rate was set to 8× 10−4 to facilitate
faster convergence.
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Activation d=2.0 d=3.0 d=4.0
Linear 0.422 0.427 0.415
ReLU 0.422 0.403 0.404
Softplus 0.383 0.389 0.369

Table 1: Accuracy values for different activation functions across varying d values. Bold values
indicate highest accuracy for each d value.

3.2 RESULTS

The results demonstrated a consistent improvement in accuracy across all model sizes when ReLU
or linear activation functions were used, compared to the baseline Softplus. An unexpected obser-
vation was that the absence of an activation function outperformed the baseline. This phenomenon
may be attributed to activation functions inhibiting the propagation of signals from features with
negative contributions, thereby reducing the model’s ability to select the appropriate expert effec-
tively. Figure 2 presents the accuracy and loss trends for models with 8 hidden neurons, showcasing
the performance dynamics across depths and activation functions. Additional plots for models with
16 hidden neurons are in the Appendix: A.

Figure 2: FFF loss on training and validation datasets, and validation accuracy for different model
depth and activation functions.

The average change in relative model accuracy was analyzed for different activation functions. The
baseline configuration, an FFF model with Softplus activation, represents the activation used in the
original formulation. The average increase in accuracy, ∆Aavg, was calculated across various model
depths. Notably, the ReLU activation function resulted in an average accuracy improvement of
6.9%, while the linear activation function achieved an even greater improvement of 9.8%. These
results are summarized in Table 1.

The decrease in performance when an activation function is present is likely due to the following
reason: the activation function blocks the signal from features that negatively affect the router prob-
abilities, making it more difficult for the model to adapt within this architecture.

4 BENCHMARKS

Benchmarking was conducted to evaluate the computational performance of FFF and MoE lay-
ers across different implementations. Since the calculation of expert outputs is independent of the
method, the focus was on comparing the speed of probability computation for all routers. The tests
included three variants of FFF and one MoE implementation, all of which have nearly identical
numbers of parameters. The number of parameters is given by the expression 2d ·ninput for MoE and
(2d − 1) · ninput for FFF implementations, where ninput denotes the input vector dimension.

The ”FFF orig” implementation replicates the original training-mode FFF, sequentially computing
probabilities layer by layer. ”FFF inference” modifies this for inference, processing only one branch
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per layer based on the sign of a single dot product. ”FFF logs” operates similarly to the original
but uses logarithmic transformation 7 and applies exponentiation only at the last step. ”FFF T, S”
optimizes the process using three matrix multiplications in dense configurations as described in 9.

The ”MoE” implementation follows the standard Mixture of Experts structure, computing
Softmax(Wx) via a single matrix multiplication, i.e. with S = T = I , eliminating the extra
computation step. These variants were compared for computational efficiency and scalability.

Figure 3: Performance comparison of the FFF layer in different implementations and MoE on CPU

Figure 4: Performance comparison of the FFF layer in different implementations and MoE on GPU

4.1 AVERAGE SPEEDUP

Method GPU CPU
Up to 8 Up to 13 Up to 8 Up to 13

MoE 45.63 57.84 7.27 4.55
FFF T,S 11.89 8.93 3.55 0.88

FFF Inference 4.22 4.52 0.90 1.09
FFF Logs 2.58 3.22 1.27 1.07
FFF Orig 1.00 1.00 1.00 1.00

Table 2: Average time ratios relative to original implementation with the same number of parameters

The average speedup was computed using the harmonic mean of the time ratios between ”FFF
T,S” and ”FFF orig” across varying depths, as shown in Table 2. The results demonstrated a 3.5x
speedup on CPUs for depths up to 8, corresponding to 256 experts, a scale that is already consid-
erable and in line with common practices where the number of experts typically does not exceed a
few hundred. Beyond this depth, performance deteriorated exponentially due to the computational
overhead of dense matrix operations. On GPUs, as shown in Figure 4, ”FFF T,S” achieved a 9x
speedup over ”FFF orig”, while the classical ”MoE” model was 4.9x faster. This disparity is at-
tributed to the MoE’s direct computation of probabilities following the first matrix multiplication,
whereas FFF requires an additional step of distributing the probabilities across experts. Despite the
observed improvements, the results underscore the trade-off between computational efficiency and
architectural complexity.
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5 CONCLUSION

This work presents a matrix-based formulation of the FFF architecture, providing a unified view
with MoE models. The approach achieves up to 4x and 9x faster inference on CPUs and GPUs for
depths up to 8, while improving accuracy on CIFAR-10 by nearly 10%, driven by changes in the
activation function. Benchmarking shows FFF T,S outperforms the original FFF but remains 6.4x
slower than MoE on GPUs. FFF is efficient with more than 28 experts on CPU or 213 on GPU;
otherwise, MoE or the matrix formulation is preferable. These results highlight the scalability and
efficiency of the proposed formulation.
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A ADDITIONAL RESULTS FOR MODELS WITH 16 HIDDEN NEURONS

This section presents the accuracy and loss plots for models with 16 hidden neurons in each tree
node, corresponding to the experimental setup described in Section 3. These plots provide additional
insights into the performance of different activation functions and model depths.

Figure 5: Accuracy and loss plots for models with 16 hidden neurons, across different activation
functions and model depths.
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