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Abstract—The gold standard for diagnosing dysphagia is the
Videofluoroscopic Swallowing Study (VFSS). In patients with
dysphagia, the invasion of food material into the airway is
known as penetration-aspiration. Assessing this risk using VFSS
is inherently subjective, with significant inter-patient and inter-
rater variability. This article proposes an AI pipeline that
introduces a novel approach in which bolus segmentation and
airway detection are combinationally assessed to interpret frame-
wise penetration-aspiration risk. The existing AI approaches rely
on manual frame selection and overlook the clinical significance
of bolus and airway. Additionally, addressing challenges posed
by varying airway orientations, we develop an automated Al
pipeline that tracks bolus and airway throughout VFSS videos.
We curated a VFSS dataset and annotated one-third of the
frames from 82 VFSS clips obtained from 40 patients due to a
lack of benchmarks. Our approach involved comparing various
segmentation models for bolus segmentation and fine-tuning
object detection model for airway detection. The segmented
bolus area and airway information are then processed to identify
penetration-aspiration events. Our pipeline achieved a dice score
of 0.80, a mean average precision of 0.93, and an accuracy of
89% in bolus segmentation, airway detection, and penetration-
aspiration detection. Our pipeline could be effectively trained
even with limited annotated frames. This saved clinicians time
and also reduced the burden of manual annotation. These
promising results have significant potential for assisting clinicians
in assessing penetration-aspiration risk.

Index Terms—Dysphagia, Airway detection, Bolus segmenta-
tion, Deep learning

I. INTRODUCTION

Dysphagia, a disorder characterized by difficulty swal-
lowing, is often associated with physiological impairments
that manifest during eating and drinking and is a common
condition affecting approximately 43% of the population [2],
[3]. The significant medical concern of dysphasia is airway
invasion, a pathological process that can lead to pneumonia
or asphyxia. Due to this invasion, food may aspirate (enter
the airway below the vocal fold) or penetrate (touch the vocal
fold). Aspiration pneumonia is a common cause of illness and
death among the elderly. Both healthy people and patients with
an inadequate cough reflex have small-volume aspiration of
oropharyngeal secretions while they sleep. On the other hand,

people who have dysphagia as a result of diseases such as
stroke, dementia, head and neck malignancies, and esophageal
motility problems experience large-volume aspiration [4], [5].

The videofluoroscopic swallowing study (VFSS) is the gold
standard for dysphagia assessment. It is an x-ray modality
that records the swallowing process of patients with different
food consistencies. The VESS videos primarily encompass a
sagittal view of the oropharynx, pharynx, and upper esoph-
agus, capturing all pertinent swallowing structures [1]. This
enables clinicians to assess the physiological function of the
swallowing process by visualizing bolus flow and structural
movement throughout the upper aerodigestive tract, aiding in
determining the severity of the condition. The VFSS images
are complex and require careful frame-by-frame analysis,
which can be time-consuming and subjective. The airway
invasion assessment using VFSS involves subjectivity and is
time-consuming, and there are reported cases of inter- and
intra-rater variability [5].

Artificial intelligence (AI) has been utilized widely in
medical image analysis for computer-aided diagnosis. No-
tably deep learning (DL) algorithms are predominantly used
for classifying abnormality, segmentation of structure, and
tracking objects in medical images. Researchers also tried the
application of DL in VFSS analysis. This includes pharyngeal
phase detection, pharyngeal swallow reflex detection, bolus
segmentation, hyoid bone detection, and temporal parameter
analysis [5], [8], [9]. There is a recent interest in the automatic
assessment of airway invasion from VFSS. The studies have
tried Al specifically DL algorithms to detect the penetration-
aspiration condition [16]-[18]. These studies are limited to
manual frame selection, not considering the significance of
bolus flow and airway in the VFSS images. These studies
identify the risk of penetration-aspiration directly from VFSS
images. However, in this scenario, there is no guarantee that
the model predicts the penetration-aspiration based on the
features of the bolus and airway. Therefore, we are motivated
to create an Al pipeline that includes bolus segmentation and
airway detection for airway invasion diagnosis.

Bolus segmentation helps to accurately track the movement



of the bolus during swallowing, which is crucial for detecting
penetration and aspiration. Airway detection, particularly iden-
tifying anatomical structures like the vocal cords and glottis,
provides interpretable insights into the AI’s decision-making
process. In combination, bolus segmentation and airway detec-
tion provide the AI model with a more complete understanding
of the swallowing process [26], [27]. This can help the
model to more accurately detect penetration and aspiration
events, and expedite the rating of VFSS recordings. However,
achieving this goal has the following research challenges.

The irregular shape of the bolus in VFSS poses challenges
for segmentation annotation. Additionally, the orientation of
the airway varies among VFSS images due to patient-specific
differences. To accurately identify the airway, including the
vocal fold and larynx, we annotate it as an oriented bounding
box with an angle. However, fine-tuning an object detection
model to predict the oriented bounding box is challeng-
ing because existing models typically predict only regular
rectangular bounding boxes. Penetration-aspiration events are
then determined using information from both the segmented
bolus and airway areas. Specifically, we calculate the overlap
between the segmented bolus mask and the airway box. In
VESS clips, temporal alignment between bolus segmentation
and airway detection is crucial for frame-wise risk assessment.
Setting a threshold for overlap and aggregating the frame-wise
risk remains challenging when categorizing normal, penetra-
tion, or aspiration cases in swallowing clips. In this article, we
develop an automated Al pipeline that includes the bolus and
airway tracking throughout the VFSS video and detects airway
invasion. We have examined the different state-of-the-art DL
algorithms in bolus segmentation and airway detection. The
combination of these modules improves the airway invasion
diagnosis.

The following are the main contributions of the article:

e To the best of our knowledge, for the first time, we
employ a deep-learning model to detect airway in VFSS
for automatic airway invasion detection.

o« We introduce an Al pipeline specifically designed for
airway invasion detection. The pipeline comprises three
key components:

— Bolus Segmentation Model: Identifies and segments
the bolus (swallowed food material) in VFSS videos.

— Airway Detection Model: Detects the airway region
within the VFSS frames.

— Decision-Making Module: Integrates the bolus and
airway information to make informed decisions.
Experimental results demonstrate that our pipeline
achieves precise tracking of both bolus and airway,
yielding comparable outcomes.

o To facilitate research in this domain,

— We curate the dataset for airway detection, bolus
segmentation, and penetration-aspiration detection.
Our dataset comprises 82 VFSS videos from 40
subjects.

— We annotate ground truth labels for bolus and airway

boxes in every one-third of frames within the VFSS
clips. We observed this limited number of frames
is sufficient to train the DL models for bolus seg-
mentation and airway detection. Our results align
with state-of-the-art methods for bolus segmentation.
Importantly, this annotation process significantly re-
duces the time burden on swallowing pathologists.

This article is structured as follows: we address related
works in Section II, which includes DL-based VFSS analysis.
The VFSS dataset and our methodology are described in
Section III. The implementation details, experiments, and
results are presented in Section IV. We analyzed the results
and compared them with previous studies in Section V. Section
VI concludes the article.

II. RELATED WORKS

A. Bolus segmentation

During VFSS, the direction of flow and placement of the
bolus are critical factors in diagnosing dysphagia. Clinicians
can observe the dynamic bolus flow in real time using
VESS. The constantly shifting perceptual features of the bolus
during transit make frame-by-frame quantitative analysis of
bolus flow subjective, labor-intensive, and time-consuming,
even if VFSS permits monitoring of the bolus’s velocity,
and trajectory during swallowing. Addressing the need for
automated bolus detection, Caliskan et al. [10] employed a
DL framework, specifically a Mask-RCNN, to automate the
identification of bolus in videofluoroscopic image frames.
Building upon this, Ariji et al. [11] and Shaheen et al. [12]
developed a DL model for automated bolus segmentation
on VFSS images using a U-Net neural network. In parallel,
Bandini et al. [6] implement weakly supervised learning for
bolus localization in VFSS by using a DL framework. The
approach leverages convolutional neural network (CNN) and
class activation maps to identify the pharyngeal phase and
localize the bolus without manual annotation of bolus location.

Additionally, Li et al. [13] evaluated various DL mod-
els for VFSS bolus segmentation. The InceptionResNetV2
encoder in the UNet++ architecture performed best among
other models. Zeng et al. [14] introduced Video-TransUNet, a
deep architecture for segmenting the bolus and pharynx. The
method combines a Vision Transformer for non-local attention,
a ResNet CNN backbone for strong frame representation,
a UNet-based convolutional-deconvolutional architecture with
multiple heads for reconstructive capabilities for multiple
targets, and multi-frame feature blending for multi-targets.
Zeng et al. [15] proposed Video-SwinUnet for segmentation in
VESS in a separate study. The methodology collects features
from nearby frames throughout the temporal dimension and
merges them using a temporal feature blender. The high-level
spatiotemporal feature is subsequently tokenized, and the final
segmentation results are generated using an encoder-decoder
architecture similar to UNet.



B. Penetration-Aspiration Risk Assessment

Airway invasion, a pathological process that may result in
pneumonia or asphyxia, poses a significant clinical concern.
The consequences of airway invasion include airway obstruc-
tion, pneumonia, and asphyxia. Therefore, identifying patients
at risk of penetration-aspiration is crucial. However, assessing
airway invasion using VFSS involves subjectivity and is time-
consuming, with reported cases of variability among clinicians
[5]. To address this, several researchers have proposed DL
frameworks. For instance, Lee et al. [16] developed a deep-
learning pipeline to detect airway invasion from videofluoro-
scopic videos. The extended study measured inter and intra-
rater variability for the DL model and humans in penetration-
aspiration detection. The DL model from the study [16] and
three clinicians evaluated VFSS videos to determine whether
or not penetration-aspiration was present. The outcomes show
that the DL algorithm is as accurate as human examiners.

Building on this, Reddy et al. [18] sought to identify
the most effective DL architecture for detecting penetration-
aspiration from VFSS. They compared 2D-CNN, 3D-CNN
models, and CNN-LSTM, demonstrating the superiority of
3D-CNN in VFSS classification and the efficiency of multi-
label classification for 2D-CNN models. On top of this, San-
jeevi et al. [7] introduced SPAD, a clinical tool that classifies
different phases of swallowing and identifies penetration-
aspiration by assessing bolus residue. DL methodologies
have shown promising results in bolus segmentation and
penetration-aspiration detection. However, these methodolo-
gies face limitations for the following reasons: The clinical
significance of bolus segmentation and tracking remains to be
explored. Existing methods for penetration-aspiration involve
manual frame selection and ROI determination, which limits
automated airway invasion detection in real-time practice.

III. METHODOLOGY

This article presents an Al pipeline designed for detecting
penetration-aspiration in VFSS clips. Our pipeline consists
of two key modules: the bolus segmentation module and the
airway detection module as illustrated in Figure 1. To create
a robust dataset, we collected VFSS swallowing clips and
annotated them for bolus segmentation, airway detection, and
penetration-aspiration detection. We then evaluated various
state-of-the-art segmentation models to assess their perfor-
mance in bolus segmentation. We proposed the YOLO-V8
model for airway detection, which has demonstrated excep-
tional accuracy. Our pipeline works as follows: 1). Data Extrac-
tion: We extracted VFSS image frames from the swallowing
clips. ii). Preprocessing: We applied contrast-limited adaptive
histogram equalization (CLAHE) to enhance the image quality
of all extracted frames. iii). Bolus segmentation and airway
detection: The preprocessed images serve as input for our
segmentation models. These models perform bolus segmen-
tation, while YOLO-V8 focuses on detecting the airway in
VESS images. The predicted bounding box coordinates from
YOLO-V8 are used to create rectangular mask images for the
airway. iv). Decision-Making Module: We process both the

TABLE I: Patient Demographic details

Characteristics Value
Age, Year 60.69 + 15.63
Sex, Male: Female 25:15
Class, Normal: Penetration-Aspiration 40:42
6
Stroke 4
Brain Tumor 6
Cancer 10
Neurological disorder 3
Parkinson disease 4
Heart disease 3
Neck Surgery 7

bolus image and the airway rectangle images in our decision-
making module for airway invasion detection.

A. VFSS Dataset

This study analyzed VFSS video recordings from 40 sub-
jects experiencing swallowing difficulties. The VESS swallow
data was collected from patients admitted between 2021 and
2023 at Amrita Institute of Medical Sciences and Research
Center, Kochi, with ethical approval from the Institutional
Review Board. Informed consent was secured from all study
participants. During VFSS procedures, subjects were posi-
tioned upright before a video fluoroscopic device, capturing
a lateral view of the neck and head. Diluted barium was
mixed with two different substances - 3 mL and 5 mL of
thick and thin liquid, respectively. Some subjects struggled
to fully swallow the substances due to significant aspiration
or delayed reflexes. 82 video clips (recorded at 8 frames per
second) were collected, each featuring one swallow instance
during the VFSS. Video clip durations ranged from 10 to 15
seconds. Population class distribution and demographic details
are summarized in Table I.

1) Ground Truth Labeling: The ground truth labels for
penetration-aspiration risk, bolus segmentation, and airway
detection were established by two deglutologists and reviewed
by an expert physician. For airway invasion detection, annota-
tions were applied to 82 VFSS swallowing clips, categorizing
them as either *normal’ or ’penetration-aspiration.” The airway
invasion labeling utilized the penetration-aspiration scale [],
where scores of one indicate normal swallowing, while scores
of two to eight indicate airway invasion []. Bolus segmentation
and airway detection annotations were performed at the frame
level. A total of 7,068 frames were extracted from the 82
swallowing clips. In VFSS videos, adjacent frames exhibit
high similarity. However, significant changes occur in VFSS
components in approximately every one-third of the frames.
To reduce annotation workload, clinicians annotated bolus
masks and airway bounding boxes in every one-third of frames
within VFSS video clips. The airway region in VFSS images
was annotated using oriented rectangle bounding boxes. The
CVAT annotation tool [28] was used for annotating the VFSS



Bolus Segmentation

U-Net
VFSS Frames Preprocessing ™ N U—tljlct1;J+N
Extraction CLAHE tEI{ ion U-Net
SegNet
Deeplab V3+

Yolo V8

L, Airway Detection _,.

Segmented Bolus Area

Decision Normal
Making <

Penetration-Aspiration

4

N\ i

{
Airway Bounding
Box Coordinates

Airway Mask

Fig. 1: Illustration of methodology: VESS image frames are extracted and enhanced using CLAHE. Segmented bolus and the

airway, aiding airway invasion detection.

frames. Overall, 2,356 frames received bolus mask and airway
bounding box annotations.

B. Bolus Segmentation

The bolus travels from the oral cavity to the stomach and
is crucial in airway invasion detection. We enhance bolus
tracking and facilitate informed decision-making by accurately
segmenting the bolus in VFSS images. CNN-based models
have emerged as the predominant choice for medical image
segmentation. Our study explored various CNN segmenta-
tion algorithms, such as U-Net, U-Net++, Attention U-Net,
DeepLab V3+, and SegNet. These models were rigorously
evaluated across diverse medical image modalities and con-
sistently demonstrated state-of-the-art performance in medi-
cal image segmentation. We identified the optimal model to
enhance penetration-aspiration prediction by comparing their
results.

1) Segmentation Models: The U-Net architecture consists
of an expanding path (decoder) and a contracting path (en-
coder). The encoder uses 3 x 3 convolutions with ReLU
activation and 2 x 2 max pooling for downsampling, while
the decoder uses 2 x 2 up-convolutions. Skip connections
link the encoder and decoder, allowing fine-grained features
to influence image generation. The final layer converts multi-
channel features into a single-channel mask with 1 x 1
convolutions and sigmoid activation [21]. UNet++ enhances
U-Net by integrating convolution blocks into skip connections,
eliminating the need to trim and copy features. Dense con-
volution blocks and deep supervision during training further
improve learning [22].

Attention gates (AGs) in U-Net reduce computing overhead
and enhance prediction accuracy by focusing on relevant
features. Skip connections combine coarse- and fine-level pre-
dictions and multi-scale feature extraction captures contextual
information [23]. DeepLabv3+ uses atrous convolutions in
the encoder to capture multi-scale context and Atrous Spatial
Pyramid Pooling to enhance feature capture. The decoder

blends low-level and coarse semantic features, using atrous
separable convolutions to preserve spatial information [24].
SegNet’s encoder extracts features using convolutional layers
and max-pooling blocks, while the decoder uses max-pooling
indices for non-linear up-sampling, recovering spatial informa-
tion. The final layer is a sigmoid classifier for pixel-by-pixel
classification [25].

C. Airway Detection

The airway plays a critical role in assessing the risk of pene-
tration and aspiration. Analyzing the airway component within
VESS images is essential for evaluating this risk. Additionally,
tracking the airway in VFSS images contributes to accurate
penetration-aspiration risk assessment. In the field of computer
vision, YOLO (You Only Look Once) family networks are
commonly used for object detection [32]. In VFSS images, the
airway appears as an oriented object. Leveraging the state-of-
the-art YOLO-V8 model, which supports oriented bounding
box predictions [33], we fine-tuned it specifically for airway
detection in VFSS images.

1) Yolo-V8: YOLO-V8, an algorithmic model, was created
by Ultralytics [29]. The head, neck, and backbone are the three
primary parts of its network architecture. Updated CSPDark-
net53 serves as the backbone network for YOLO-V8. Five
separate scale features are obtained by downsampling input
features five times. With the C2f module, the original Cross
Stage Partial (CSP) module in the backbone is replaced. By
using gradient shunt connections, the C2f module improves
information flow without sacrificing design. Convolution is
applied to the input data by the CSP module, which then pro-
duces the output by batch normalization and SiLU activation.
To adaptively pool input feature maps to a fixed-size output,
the backbone network integrates the spatial pyramid pooling
fast (SPPF) module [19], [20].

Neck: YOLO-V8 has a PAN-FPN (Pyramid Attention
Network-Feature Pyramid Network) structure in the neck,
which was inspired by PANet (Path Aggregation network).



Through the combination of top-down and bottom-up net-
works, PAN-FPN improves feature completeness and variety
by combining deep semantic information with shallow loca-
tion information. Head: A decoupled head structure is used
by YOLO-V8’s detection component. Separate branches for
predicted bounding box regression and classification of objects
are included in this framework. Both of these tasks are applied
with different loss functions. Positive and negative samples are
properly defined by the anchor-free detection model. To fine-
tune the head portion, we froze the YOLO-V8 backbone and
neck weights in this study. To create the mask on the airway of
VESS frames, our objective was to determine the airway and
forecast the orientated bounding box coordinates [19], [20].

D. Penetration-Aspiration Detection

The frames were extracted from VFSS video clips. After
preprocessing, these frames serve as input to the segmentation
and airway detection model. The bolus information and the air-
way bounding box coordinates in VFSS images are extracted
from the segmentation model and YOLO-VS, respectively.
Subsequently, a binary mask for the bounding box is generated
based on predicted coordinates. Next, we applied a logical
AND operation between the predicted bolus masks and the
airway bounding boxes. If overlapping pixels occur, the frame
is classified as a penetration-aspiration frame; otherwise, it
is considered normal. This frame-level classification applies
to each frame in the VFSS clip. Additionally, we leveraged
the efficient Boyer-Moore algorithm [30] which is an efficient
algorithm for finding the majority element in a list. Specifi-
cally, the Boyer—-Moore majority vote algorithm was employed
to aggregate the VFSS swallowing clip into either normal or
penetration-aspiration categories.

IV. EXPERIMENTS & RESULTS
A. Implementation

The experiments were conducted in computational envi-
ronments hosted on a cloud server equipped with an Intel®
Xeon® processor and an Nvidia V100 GPU. All experiments
were performed using Python 3.10.12 and the PyTorch 2.3.0
framework.

B. Training

To reduce computational complexity, all images were re-
sized to a resolution of 224x224x3. The segmentation models
were initialized with ImageNet pre-trained weights in the
encoder part, using ResNet50 as the backbone. We employed
the AdamW optimizer and a loss function combining binary
cross-entropy and dice loss. For all models, training lasted
100 epochs, with early stopping and lower learning rate
adjustments. Additionally, we fine-tuned the YOLO-V8 model
pre-trained on the DOTA v1 dataset [31] for 50 epochs, using a
batch size of 8 for airway-oriented bounding box prediction on
our dataset. The loss function combined distribution focal loss
and complete intersection over union (CIoU), and we used the
AdamW optimizer. To avoid overfitting the data augmentation
on images such as random rotation and flipping were carried
out.

train/box_loss train/cls_loss train/dfl_loss
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Fig. 2: Loss convergence of Yolo-V8 model in airway detec-
tion.
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Fig. 3: Performance of Segmentation models across 5-fold
cross-validation.

C. Evaluation Metrics

The implementation of performance metrics is essential for
determining a model’s efficacy and constraints. Dice coef-
ficient score (DCS), intersession over union (IoU) for seg-
mentation and accuracy, F1 Score, precision, recall, and mean
average precision (mAP) for object detection and penetration-
aspiration detection are among the metrics used in the studies
to assess the models. By calculating the degree of alignment
between the model’s output and the actual output at the pixel
level, DCS evaluates a model’s performance. Conversely, the
IoU metric establishes how much the segmented and ground
truth masks overlap [11], [12].

True positive (TP): The model accurately predicts the posi-
tive class. True negative (TN): The model accurately predicts
the negative class. False positive (FP): The model incorrectly



U-Net

U-Net++

. .
A \
\ \

Attention U-Net

Image

‘\ | '\\

SegNet Deeplab v3+ Airway Detection  Overlapping Image

2

) .

Fig. 4: Bolus segmentation comparison: Abnormal patient results (top row) vs. normal patient results (bottom row).

forecasts the positive class. False negative (FN): The model
incorrectly forecasts the negative class Precision quantifies the
proportion of positive class predictions that are part of the
positive class. Recall (also known as the true positive rate
or sensitivity) measures how many positive class predictions
were made out of all the positive examples in the dataset. The
harmonic mean of recall and precision is known as the F1-
score. The Mean Average Precision (mAP) is computed by
determining the Average Precision (AP) for each class and
subsequently averaging these values across all classes [16],
[17].

2 x Area of Overlap
DCS =
Total Area (1)
Tol — Area of Inters§ction
Area of Union 2)
TP
Precision =
TP+FP 3)
TP
Recall = ————
CO = TPYFN 4)
Precision*Recall
F1-S8 = 2% ———
core * Precision+Recall 5

D. Result Analysis

We utilized a total of 2356 annotated image frames for
training and validation of our model. To prevent patient frame
repetition in the train and test sets, we split the images in
an 80:20 ratio based on patient IDs. Both the segmentation
models and YOLO-V8 underwent 5-fold cross-validation. Fig-
ure 2 shows the convergence of Yolo-V8 in airway detection.
In Table II, we present a performance comparison of the
segmentation models. The original U-Net model excelled in
bolus segmentation, achieving a mean DCS of 0.80 and an

TABLE II: Bolus Segmentation performance comparison

Model DCS* IoU*
U-Net 0.80+0.01 | 0.66+0.01
U-Net++ 0.74+0.02 | 0.56+0.02
Attention U-Net | 0.76+0.01 | 0.60+0.02
SegNet 0.73+0.01 | 0.56+0.02
Deeplab V3+ 0.77+0.01 | 0.64+0.02

* The results were presented in Mean+SD

TABLE III: Performnce of Yolo-V8 in airway detection for 5
fold cross validation

Fold Precision Recall mAPS(0 mAP50-95
Fold 1 0.92 0.93 0.94 0.47
Fold 2 0.93 0.92 0.95 0.57
Fold 3 0.94 0.92 0.92 0.54
Fold 4 0.91 0.85 0.92 0.54
Fold 5 0.94 0.89 0.93 0.61

Mean+SD | 0.92+0.01 | 0.90£0.03 | 0.93+0.01 | 0.54+0.05

IoU of 0.66. Table III showcases the 5-fold validation results
for the YOLO-V8 model in airway detection, with average
precision, recall, and mAP 50 scores of 0.92, 0.90, and 0.93,
respectively. Figure 3 shows the performance of segmentation
models across 5-fold cross-validation. Figure 4 illustrates the
segmentation, and airway results from various segmentation
models and YoloV8. For penetration-aspiration detection, we
combined the outputs from different segmentation models
with the YOLO-V8 model. Notably, the U-Net model, which
performed best in bolus segmentation, also yielded the top
result in penetration-aspiration detection. The macro average
precision, recall, and F1 score were 0.90, 0.89, and 0.89,
respectively. Figure 5 illustrates the pipeline’s efficiency in
penetration-aspiration detection.



TABLE IV: Penetration-Aspiration Detection

Al Pipeleine Precision | Recall | F1 Score | Accuracy

U-Net
+

Yolo-V8

U-Net++
+

Yolo-V8
Attention U-Net

0.90 0.89 0.89 0.89

0.86 0.85 0.85 0.86

+
Yolo-V8 0.90 0.88 0.88 0.88

SegNet
+
Yolo-V8

Deeplab V3+

0.85 0.84 0.84 0.84

+
Yolo-V8 0.87 0.86 0.86 0.86

Airway invasion

True Labels

Normal

Normal

Airway invasion
Predicted Labels

Fig. 5: Confusion matrix of prediction using Al pipeline
consists of U-Net and Yolo-V8 model.

V. DISCUSSION

In this article, we propose an Al pipeline for penetration-
aspiration detection, encompassing bolus segmentation and
airway detection. Both the bolus and airway play critical
roles in the swallowing process, and analyzing these compo-
nents holds significance for penetration-aspiration detection.
To enhance airway invasion detection, we incorporated bolus
and airway tracking modules into our pipeline. For bolus
segmentation, we employed various state-of-the-art models,
including U-Net++, U-Net, SegNet, Attention U-Net, and
Deeplab V3+. Among these, the U-Net model exhibited the
best performance. In constructing the training dataset, we
observed that one-third of the annotation frames are sufficient
for achieving results comparable to the state-of-the-art studies
on bolus segmentation.

Previous research has explored bolus segmentation. For
instance, Ariji et al. [11] achieved a DCS of 0.95 in bolus
segmentation, albeit with a small number of patients. Other
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Fig. 6: Pipeline misclassified the normal case as a penetration-
aspiration case.

studies by Shaheen et al. [12] and Li et al. [13] reported DCS
scores of 0.67 and 0.81, respectively. Our U-Net model also
achieved a DCS score of 0.80, aligning with existing research.
Notably, our study is the first to detect airways in VFSS images
for penetration-aspiration detection. Leveraging the YOLO-V8
model, we fine-tuned it to achieve an impressive 0.93 mAP in
airway detection.

The bolus and airway tracking within VFSS clips hold
promise for penetration-aspiration detection. Our pipeline cap-
italizes on bolus segmentation and airway detection, a novel
approach to decision-making. With a macro average F1 score
of 0.89, our AI pipeline performs comparably to existing
studies. Lee et al. [16], Kim et al. [17], and Reddy et al.
[18] have explored DL for penetration-aspiration detection,
achieving accuracies of 93.2%, 94.7%, and 90%, respectively.
Our pipeline also achieves comparable results, with an 89%
accuracy.

However, our Al pipeline has limitations. It relies on the
performance of the bolus segmentation model and airway
detection model. In some cases, when creating rectangle
bounding box masks for airways, portions of the food path
may be covered, leading to the misclassification of normal
patients as at-risk (Figure 6). Additionally, in abnormal patient
swallowing videos, a small number of overlapping frames
can lead to misclassification of penetration-aspiration patients
as normal. These overlapping frames predominantly occur
during the pharyngeal phase of the VFSS clip. To enhance
performance, integration of the pharyngeal frame identification
module into our pipeline is needed. Additionally, it’s important
to note that our pipeline has been trained and validated on
our hospital’s VFSS data. To improve its generalizability, we
should consider training and validating it using multicenter
data.

VI. CONCLUSION

This article presents the first Al pipeline incorporating
bolus segmentation and airway detection to detect penetration-
aspiration. We curated the VFSS dataset to facilitate bolus
segmentation, airway detection, and penetration detection.
Remarkably, our experiments demonstrate that using only one-
third of the annotated frames from VFSS clips, we achieve
comparable results to state-of-the-art bolus segmentation and



penetration-aspiration detection methods. Notably, our study
pioneers airway detection in VFSS images. We fine-tuned
YOLO-VS8 for airway detection, achieving a state-of-the-art
mAP50 of 0.93. This implies that our pipeline leverages the
features of both the bolus and the airway, which are two
critical components involved in penetration-aspiration. These
promising results have significant implications for supporting
clinical decision-making. Moving forward, our research aims
to further refine the Al pipeline and deploy clinical trans-
lational tools for assessing penetration-aspiration risk in the
penetration aspiration scale.
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