
TableRAG: Million-Token Table Understanding with
Language Models

Si-An Chen1∗, Lesly Miculicich2, Julian Martin Eisenschlos3,
Zifeng Wang2, Zilong Wang4∗, Yanfei Chen2, Yasuhisa Fujii3,

Hsuan-Tien Lin1, Chen-Yu Lee2, Tomas Pfister2

1National Taiwan University, 2Google Cloud AI Research,
3Google DeepMind, 4UC San Diego

Abstract

Recent advancements in language models (LMs) have notably enhanced their
ability to reason with tabular data, primarily through program-aided mechanisms
that manipulate and analyze tables. However, these methods often require the
entire table as input, leading to scalability challenges due to the positional bias or
context length constraints. In response to these challenges, we introduce TableRAG,
a Retrieval-Augmented Generation (RAG) framework specifically designed for
LM-based table understanding. TableRAG leverages query expansion combined
with schema and cell retrieval to pinpoint crucial information before providing
it to the LMs. This enables more efficient data encoding and precise retrieval,
significantly reducing prompt lengths and mitigating information loss. We have
developed two new million-token benchmarks from the Arcade and BIRD-SQL
datasets to thoroughly evaluate TableRAG’s effectiveness at scale. Our results
demonstrate that TableRAG’s retrieval design achieves the highest retrieval quality,
leading to the new state-of-the-art performance on large-scale table understanding.
The implementation and dataset will be available at https://github.com/
google-research/google-research/tree/master/table_rag.

1 Introduction
Recent advancements have leveraged language models (LMs) for table understanding tasks [5]. This
typically involves prompting LMs with entire tables to ensure thorough analysis [24, 3, 11, 22, 10, 29].
However, scaling to larger tables poses several challenges. First, LMs face context-length constraints;
for example, a medium-sized table with 100 columns and 200 rows translates into over 40,000 tokens,
surpassing the limits of popular LMs like LLaMA and the GPT series. Additionally, long contexts
can degrade reasoning capabilities, a phenomenon known as the Lost-in-the-Middle [9]. Finally,
computation costs and latency increase significantly with table size. Therefore, developing a scalable
solution that efficiently handles large tables remains a critical area of research.

Naive approaches to making large table understanding feasible, such as truncating the table or only
reading the schema, often result in the loss of critical information. To address this, previous works
have attempted to retrieve key rows and columns to construct a sub-table that captures essential
information for answering queries [8, 17]. These methods encode entire rows and columns into sparse
or dense embeddings to reduce token costs for LMs, yet they still face computational and performance
challenges with extremely large tables. Encoding entire rows and columns requires processing the
whole table, which is infeasible for large tables containing millions of cells. Furthermore, compressing

∗Work done while the author was a student researcher at Google Cloud AI Research. Correspondence to:
Si-An Chen<sianchen.kevin@gmail.com>, Chen-Yu Lee<chenyulee@google.com>

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/google-research/google-research/tree/master/table_rag
https://github.com/google-research/google-research/tree/master/table_rag

(a) Read Table (b) Read Schema

(c) Row-Column
Retrieval

(d) Schema-Cell
Retrieval (Ours) (e) Retrieval Performance on ArcadeQA

Figure 1: Comparison between table prompting techniques for LMs. (a) - (d): Data included in the
LM prompt (shaded region). (a) Read Table: The LM reads the entire table, which is often infeasible
for large tables. (b) Read Schema: The LM reads only the schema, consisting of column names and
data types, resulting in a loss of information from the table content. (c) Row-Column Retrieval:
Rows and columns are encoded and then selected based on their similarity to the question. Only the
intersection of these rows and columns is presented to the LM. It is still infeasible to encode all rows
and columns for large tables. (d) Schema-Cell Retrieval (our work): Column names and cells are
encoded and retrieved based on their relevance to LM-generated queries about the question. Only
the retrieved schema and cells are provided to the LM, enhancing efficiency in both encoding and
reasoning. (e) Retrieval results on the ArcadeQA dataset show that TableRAG outperforms other
methods in both column and cell retrieval, thereby enhancing the subsequent table reasoning process.
The Read Table technique is excluded as reading entire tables is typically infeasible in this context.

long rows and columns into a fixed-size embedding can obscure semantic meaning, particularly when
the table contains diverse or less semantically rich content (e.g., numerical values).

In this work, we introduce, TableRAG, a scalable framework that leverages retrieval-augmented
generation (RAG) for LM-based table understanding. We illustrate the key differences between prior
table prompting approaches and the proposed TableRAG in Fig. 1.

Our method integrates schema retrieval and cell retrieval to extract essential information from tables,
enabling a program-aided LM agent to solve queries based on the provided information. Schema
retrieval allows LMs to identify crucial columns and their data types solely by column names,
avoiding the need to encode entire columns. Cell retrieval enables the identification of keywords
for indexing or pinpointing columns that contain necessary but hard-to-find information missed
by schema retrieval alone. To build the database for cell retrieval, TableRAG encoded each cell
independently, addressing the issue faced when encoding entire rows and columns. Furthermore,
TableRAG only encodes distinct and the most frequent categorical values, reducing the encoder’s
token cost (as shown in Fig. 3) and operating within a user-specified budget effectively. Both retrieval
processes in TableRAG are enhanced by query expansion [21] with dedicated prompts for schema
retrieval and cell retrieval, ensuring thorough and relevant data extraction.

Existing TableQA benchmarks typically feature only small tables with dozens of rows and columns.
To verify the scalability of TableRAG for larger tables, we build two new benchmarks sourced from
the real-world Arcade [26] and BIRD-SQL [7] datasets. Additionally, to assess performance across
various scales, we generated synthetic data expanding tables from the TabFact dataset to larger
sizes, while maintaining consistent questions and key table content for evaluation. Our experimental
results demonstrate that TableRAG outperforms existing table prompting methods significantly and
consumes fewer tokens across different table sizes.

Our contributions can be summarized as follows:

• We conduct the first extensive study exploring the application of LMs to large-scale, real-world
tables, analyzing the scalability and limitations of existing LM-based table reasoning approaches.

• We introduce two new real-world benchmarks derived from Arcade and BIRD-SQL, along with
an expanded synthetic dataset from TabFact. These datasets include tables ranging from tens to

2

millions of cells (Table 7), enabling comprehensive evaluation of LM capabilities across various
table scales.

• We develop TableRAG, an efficient framework for LM-based table understanding that demonstrates
superior performance on large tables while minimizing token consumption. We conduct a detailed
ablation study to validate the effectiveness of each component within TableRAG.

2 Related Work
Research in table understanding has evolved from fine-tuning specialized architectures [6, 4] to
leveraging LMs in few-shot setups [22, 10], capitalizing on the emerging reasoning capability of
these models. To enable LMs to understanding tables, table information must be included in the
prompts. Representative works like Dater [24], Binder [3] and subsequent works [22, 29, 11, 10, 28]
typically require LMs to process entire tables. These methods, while effective in leveraging LMs’
reasoning and programming capabilities for question answering, are often not feasible for larger
tables due to the context length constraints.

To address the limitations of processing full tables, two main streams have emerged: schema-based
and row-column retrieval methods. Schema-based methods, such as Text2SQL [30] and more recent
developments [20, 18, 13, 14], focus primarily on schema understanding to generate SQL commands.
This significantly reduces token complexity but at the cost of omitting valuable cell data. Row-
column retrieval methods, such as ITR [8] and TAP4LM [17], attempt to address scalability issues by
encoding and retrieving essential rows and columns. While this strategy reduces input lengths for
reasoning, it still requires substantial computation to encode entire rows and columns and can suffer
from poorer embedding quality for long sequences.

Our approach, TableRAG, innovates by combining schema retrieval with selective cell value retrieval
and frequency-aware truncation. This creates an efficient table prompting method where the input
length to LMs is independent of table sizes. This strategy significantly reduces computational
demands while preserving the benefits of accessing table contents, leading to superior performance
compared to other methods across various scales.

3 TableRAG
3.1 Motivation

An illustration of the workflow of our method is shown in Fig. 2. The core idea is to incorporate
schema retrieval and cell retrieval to obtain necessary information for solving the questions by
program-aided LMs. In practice, we often find that processing the entire table for LMs is unnecessary.
Instead, the critical information usually lies in specific column names, data types, and cell values
that directly relate to the question. For example, consider the question "What is the average price
for wallets?" To address this, a program may simply need to extract rows related to "wallets" and
then calculate the average from the price column. Knowing just the relevant column names and how
"wallets" are represented in the table suffices to write the program. Our method, TableRAG, leverages
the observation and addresses the context length limitations by RAG.

3.2 Problem Formulation

In large-scale table understanding, we are presented with a table T , represented as T =
vij | i ≤ N, j ≤M , where N is the number of rows, M is the number of columns, and vij is
the cell value at row i and column j. We address a natural language question Q and aim to produce
an answer A by an LM L. Given the often impractical size of T for direct processing, a table
prompting method P is employed to transform T into a more manageable prompt P (T), allowing
L to effectively generate the answer A = L(P (T)). Our objective is to develop an efficient P that
significantly reduces the size of the prompt, |P (T)|, compared to the original table, |T |, making it
feasible for the LM to process large tables.

3.3 Core Components of TableRAG

Tabular Query Expansion To effectively manipulate the table, it is essential to pinpoint the precise
column names and cell values necessary for the query. Unlike previous works [8, 17] that may use
the question as a single query, we propose generating separate queries for both schema and cell
values. For instance, for a question like "What is the average price for wallets?", the LM is prompted

3

Question

Schema Query 3Schema Query 2Cell Query 1

Schema Query 3Schema Query 2Schema Query 1

LM

LMTable

Cell DB
(Col-Cell Pairs)

Schema
DB

Relevant
Schema & Cells

Program-
Aided LM

Program

Answer

Tabular Query Expansion Schema & Cell Retrieval

Figure 2: Workflow of the TableRAG Framework. The table is utilized to build the schema and cell
databases. A question is then expanded into multiple schema and cell queries by LMs. These queries
are sequentially utilized to retrieve schemas and column-cell pairs. The top K candidates from each
query are combined and fed into the LM solver’s prompt to answer the question. The pseudocode
and an answering example on ArcadeQA can be found in Alg. 1 and Fig. 8 respectively.

to produce potential queries for column names such as "product" and "price", and for relevant cell
values like "wallet". These are then used to retrieve relevant schema and cell values from the table.

Schema Retrieval Following the generation of queries, the schema retrieval fetches pertinent column
names using a pre-trained encoder fenc, which encodes the queries and matches them against the
encoded column names to determine relevance. The retrieved schema data includes column names,
data types, and example values. We convert columns to integer, float, or datetime data types when
feasible; otherwise, we keep them as categorical columns. For columns identified as numerical or
datetime data type, we display the minimum and maximum values as example values. Conversely, for
categorical columns, we present the three most frequent categories as example values. We combine
the top-K retrieval results for each query and rank them by their similarity to the closest query. The
retrieved schema provides a structured overview of the table’s format and content that will be used
for more targeted data extraction.

Cell Retrieval Following schema retrieval, we proceed to extract specific cell values needed to
answer the question. This involves building a database of distinct column-value pairs from T , denoted
as V =

⋃
ij(Cj , vij), where Cj is the column name of the j-th column. In practice, the set of distinct

values is often much smaller than the total number of cells, as illustrated in Fig. 3. This discrepancy
significantly enhances the efficiency of cell retrieval.

Cell retrieval plays an crucial role in TableRAG. It enhances LM’s table understanding capabilities in:

1. Cell Identification: It allows LMs to accurately detect the presence of specific keywords within the
table, which is essential for effective indexing. For example, it can distinguish between terms like
“tv” and “television”, ensuring that searches and operations are based on precise data entries.

2. Cell-Column Association: It also enables LMs to associate particular cells with their relevant
column names. This is crucial when questions pertain to specific attributes, such as linking the
term “wallet” directly to the “description” column, thereby enables row-indexing.

It should be noted that cell retrieval is primarily beneficial when indexing by cell values is required.
In other scenarios, simply knowing the schema may suffice. For example, to answer the question
"What is the average price?", identifying the relevant column name for prices is sufficient because
the actual computation of the average can be handled programmatically. Nevertheless, cell retrieval
still improves TableRAG with additional key values from the table, which will be shown in Sec 4.8.

Cell Retrieval with Encoding Budget In the worst case, the number of distinct values could match
the total number of cells. To maintain the feasibility of TableRAG in such cases, we introduce a
cell encoding budget B. If the number of distinct values exceeds B, we restrict our encoding to the
B most frequently occurring pairs, thus improving efficiency when processing large tables. It is
important to note that the encoding budget impacts only the cell retrieval process. Even if a cell is
not included for retrieval, the subsequent solver can still access the cell if its column name is known

4

Table 1: Token complexities of primary table prompting
approaches without truncation. Note that Read Schema
does not aware of any cell content. N : number of rows,
M : number of columns, K: number of top retrieval
results, D: number of distinct values in the table. It is
generally observed that K < M � D � NM .
Table Prompting Approach Methods Token Complexity

Read Table

Dater [24]
Binder [3]
MultiTableQA [11]
Chain-of-Table [22]
Mix-SC [10]
TableLlama [28]
ReAcTable [29]

Reasoning: O(NM)

Read Schema

MAC-SQL [20]
SQL-PaLM [18]
DIN-SQL [13]
DTS-SQL [14]

Reasoning: O(M)

Row-Col Retrieval ITR [8]
TAP4LM [17]

Encoding: O(NM)
Reasoning: O(K2)

Schema-Cell Retrieval TableRAG (our work) Encoding: O(D)
Reasoning: O(K)

Figure 3: Histogram of the proportion of
number of distinct values to number of cells
in ArcadeQA and BirdQA. The figure in-
dicates that for most tables, the number of
distinct values (D) are much smaller than
the number of cells (NM).

through schema retrieval or other cells. For instance, as shown in Fig. 8, the “description” column
contains free-form text, which likely results in a high number of unique values, many of which may
be truncated due to the cell encoding budget. Nevertheless, as long as the solver recognizes the
column, it can still perform operations on that column to extract the required information.

Program-Aided Solver After obtaining the column names and cell values relevant to the question,
the LMs can use these information to effectively interact with the table. TableRAG is compatible with
LM agents which can interact with tables programmatically. In this work, we consider ReAct [23],
which is a popular approach to extend the capability of LMs and has been used in recent literature
to achieve state-of-the-art results in Table QA benchmarks [10, 29]. An example of how TableRAG
works with ReAct is illustrated in Fig. 8.

3.4 Token Complexity Analysis

The efficiency and latency of invoking LMs are significantly influenced by the number of input tokens.
Therefore, we focus on analyzing token complexity, which refers to the complexity introduced by the
number of tokens in the LM’s input. We examine the token complexity of each operation within the
TableRAG framework and other table prompting methods. We assume that the length of a column
name, a cell value, and the question are all O(1). Note that N represents the number of rows, M
represents the number of columns, D is the number of distinct text cell values, B is the cell encoding
budget, and K is the number of top retrieval results.

The token complexity of primary table prompting approaches are shown in Table 1.

• Read Table feeds the entire table to LMs, resulting O(NM) tokens for reasoning.
• Read Schema only feeds the schema to LMs, which is O(M) tokens, but loss the information

from the table content.
• Row-Column Retrieval encodes all rows and columns to embeddings, resulting O(NM) tokens

for encoding. Then it retrieves top-K rows and columns to construct a K × K sub-table for
reasoning, which is O(K2).

We analyze the token complexity of each step in TableRAG as follows:

• Tabular Query Expansion: The prompt to the LM is primarily based on the question, which
typically comprises only a few words, thus the token complexity for this component is O(1).

• Building Schema Database: Each column name is encoded using the encoder function fenc,
resulting in a token complexity of O(M) for the encoder.

• Building Cell Database: This operation involves encoding distinct column-value pairs using fenc.
The total number of distinct pairs D is capped at B when exceeding the limit. Therefore, the token

5

complexity for building the cell database is O(min(D,B)), ensuring that the most frequent data is
processed to optimize performance. Note that it takes O(NM) CPU time to build the cell database,
but the computation cost is negligible compared to LM calls. For example, computing the distinct
values from 106 elements takes only 60 ms on a personal laptop, while it takes 1 second to encode
merely hundreds of words on CPUs2.

• LM Reasoning: The query expansion process generally produces approximately 3-5 queries,
which are considered O(1). Each query then retrieves the top-K results, leading to a total
complexity of O(K) for the columns and cell values included in the LM’s prompt. This step
ensures that the LM processes only the most pertinent information from the table, enhancing
efficiency and effectiveness in generating responses.

Overall, given that typically M � B and D, the token complexity for TableRAG is O(min(D,B))
for encoding and O(K) for reasoning, with neither being dependent on the overall size of the table.
Consequently, TableRAG maintains manageable costs even for large tables, optimizing computational
resources and response times for large-scale table understanding tasks.

4 Empirical Studies
4.1 Dataset

Existing TableQA benchmarks such as TabFact [2] and WikiTableQA [12] feature small web tables
that fall within the context limits of most LMs, while others like Spider dataset [27] are designed
purely as text-to-SQL tasks with access only to the schema. To better assess reasoning capabilities
over larger, more realistic tables, we have developed two extensive table QA datasets, ArcadeQA
and BirdQA, derived from the Arcade [26] and BIRD-SQL [7] datasets, respectively. ArcadeQA
comprises tables with an average of 79, 000 rows and a maximum of 7 million cells, while BirdQA
tables feature an average of 62, 000 rows with a peak at 10 million cells. Furthermore, we expanded
TabFact to include synthetic tables ranging from 100× 100 to 1, 000× 1, 000, equivalent to a million
of cells, to examine the impact of different table sizes under the same question and key information.
Detailed methodology for dataset generation and the statistics of these datasets are provided in
Appendix C and summarized in Table 7.

4.2 Baseline

We compare TableRAG to four different approaches for incorporating table information into LMs.
To ensure a fair comparison of table access strategies, we have implemented the baselines and our
TableRAG based on the same PyReAct [10, 29] solver.

ReadTable This common approach in recent research includes embedding the entire table in the
prompt, then asking the LMs to solve the problem with the provided table information. This approach
is limited by the context length of the LMs. We discard data instances and consider them failures
when the table size exceeds the context length.

ReadSchema Widely-used in Text2SQL literature, this method assumes that table content is not
directly accessible. It incorporates column names and data types into the prompt, enabling LMs to
execute commands based on these column names without direct access to the row data.

RandRowSampling This method is a prevalent rule-based sampling approach [17] that randomly
selects rows from the table with equal probabilities. When the total number of rows exceeds K, we
select K rows to form a representative sample. This baseline is employed to underscore the benefits
of more targeted retrieval methods, illustrating how they can provide more relevant and efficient data
selection compared to random sampling.

RowColRetrieval This state-of-the-art approach reduces table sizes prior to LM reasoning. Follow-
ing the methodology of Sui et al. [17], we encode rows and columns and then retrieve the top K
rows and columns based on their similarity to the question’s embedding to form a sub-table. Since
encoding all rows and columns requires 2NM tokens, which is impractical for large tables with
millions of cells, we truncate the tables to B

2M rows. This truncation limits the number of tokens
encoded to B, aligning with the token limit in our TableRAG implementation.

2https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/

6

https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/

Table 2: Performance comparison of table prompting approaches on ArcadeQA and BirdQA across
LMs.

GPT 3.5 Turbo Gemini 1.0 Pro Mistral Nemo
Method ArcadeQA BirdQA ArcadeQA BirdQA ArcadeQA BirdQA

ReadTable 4.6 9.1 1.5 4.9 5.4 8.4
ReadSchema 43.1 40.3 30.8 31.8 32.3 35.7
RandRowSampling 42.3 34.7 20.8 25.3 28.5 33.4
RowColRetrieval 37.7 39.6 16.9 21.8 30.0 36.4

TableRAG 49.2 45.5 42.3 44.2 46.2 45.1

Table 3: Evaluation of retrieval performance. TableRAG shows best retrieval quality on all tasks. R:
recall, P: precision.

ArcadeQA BirdQA

Method Column Retrieval Cell Retrieval Column Retrieval Cell Retrieval

R P F1 R P F1 R P F1 R P F1

ReadSchema 100.0 12.4 23.4 0.0 0.0 0.0 100.0 30.8 41.6 0.0 0.0 0.0
RandRowSampling 100.0 12.4 23.4 66.5 0.5 3.5 100.0 30.8 41.6 48.9 1.7 7.2
RowColRetrieval 99.6 12.5 23.7 62.8 0.6 5.0 93.5 31.1 42.4 52.7 4.6 14.0
TableRAG 98.3 21.2 36.6 85.4 3.4 17.6 95.3 36.0 48.8 87.4 5.7 17.3

4.3 Experimental Setup

Our experiments employ GPT-3.5-turbo [1], Gemini-1.0-Pro [19] and Mistral-Nemo-Instruct-24073

as LM solvers. In ablation study, we use GPT-3.5-turbo if not specified. We use OpenAI’s text-
embedding-3-large4 as the encoder for dense retrieval. For TableRAG, we set the cell encoding
budget B = 10, 000 and the retrieval limit K = 5. For RandRowSampling and RowColRetrieval,
we increase the retrieval limit to K = 30. Each experiment is conducted 10 times and evaluated
by majority-voting to ensure the stability and consistency. The evaluation metric is the exact-match
accuracy if not specified.

4.4 Main Results

In evaluations across the datasets shown in Table 2, TableRAG consistently outperformed other
methods, achieving the highest accuracies across all LMs on both ArcadeQA and BirdQA. The
ReadTable method underperforms on both in ArcadeQA and BirdQA, indicating it suffers from long
context. Among the three LMs, GPT 3.5 Turbo consistently delivers the best performance, regardless
of the table prompting method used. These results demonstrate the effectiveness of TableRAG in
handling large-scale TableQA tasks.

4.5 Retrieval Performance Analysis

To better understand the retrieval quality of various table prompting approaches, in Table 3, we
assessed the recall, precision and f1 score for the prompts fed to LMs for reasoning. The ground
truths are extracted from the program annotations in the ArcadeQA and BirdQA datasets. In column
retrieval, while all methods achieved high recall due to the small number of columns, TableRAG
demonstrated superior precision across both datasets, indicating its effectiveness in identifying the
most relevant columns concisely. In contrast, ReadSchema and RowColRetrieval showed lower
precision, suggesting that they retrieved more irrelevant columns. For cell retrieval, TableRAG
consistently outperformed other methods on all metrics. TableRAG’s high recall in cell retrieval
marks a significant improvement over other table prompting methods, indicating it can retrieve most
necessary cells for the subsequent reasoning. In summary, this analysis underscores TableRAG’s
efficacy in retrieving essential information in both the column and cell aspects.

3https://mistral.ai/news/mistral-nemo/
4https://openai.com/index/new-embedding-models-and-api-updates/

7

https://mistral.ai/news/mistral-nemo/
https://openai.com/index/new-embedding-models-and-api-updates/

Figure 4: Performance evaluation of
Synthetic Tabfact in varying scales.
TableRAG shows consistently superior
results, and it decreases gracefully com-
pared to competitive methods.

Figure 5: Impact of varying top retrieval results (K).
Different K values influence both prompt length and
accuracy. Each point is labeled with its corresponding
K value. TableRAG retrieves the top K schema and cell
values, RandRowSampling selects K random rows, and
RowColRetrieval retrieves K rows and K columns.

Table 4: Comparison of TableRAG with state-
of-the-art methods on WikiTableQA.

Method Accuracy

TaBERT [25] 52.30
Text-to-SQL [15] 52.90
Binder [3] 56.74
Dater [24] 52.81

TableRAG (Ours) 57.03

Table 5: Performance comparison of different
retrieval approaches in TableRAG on Arcad-
eQA and BirdQA.
Method ArcadeQA BirdQA

TableRAG (BM25) 37.7 35.7
TableRAG (Hybrid) 46.2 44.5
TableRAG (Embed) 49.2 45.5

4.6 Scalability Test on TabFact

To understand the performance across varying table sizes under similar conditions, we create a set
of synthetic data from TabFact with table sizes ranging from 50× 50, 100× 100, 500× 500, and
1000×1000. The synthetic data allow us to analysis how table prompting methods perform in different
scales with the same questions and key table contents. The results are shown in Fig. 4. ReadTable
exhibited strong initial accuracy with the original data but failed dramatically as table sizes increased,
infeasible for sizes 100 and beyond due to the context length limitations. Conversely, TableRAG
demonstrated the most consistent and scalable performance, decreasing moderately from 83.1 to 68.4
as table size increased to 1000 rows and columns, showcasing its effectiveness in understanding larger
tables. Both ReadSchema and RowColRetrieval showed declines in performance with increasing
table size, yet maintained moderate accuracy, highlighting their relative scalability compared to
ReadTable but less effectiveness than TableRAG in handling large tables.

4.7 Comparison with State-of-the-Art on WikiTableQA

To evaluate performance on small-scale TableQA datasets, we compared TableRAG with state-of-
the-art approaches that rely on reading entire tables, using the commonly used WikiTableQA [12]
benchmark. As shown in Table 4, TableRAG surpasses all existing methods, including TaBERT [25],
Text-to-SQL [15], Binder [3], and Dater [24]. This highlights TableRAG’s effectiveness, even in
small-scale settings. These results confirm that, while TableRAG is designed for large-scale TableQA,
its approach is versatile and maintains state-of-the-art performance across different table sizes and
complexities.

4.8 Ablation Studies

Impact of Retrieval Methods in TableRAG: Table 5 compares different retrieval approaches within
TableRAG. BM25 [16], a well-known statistical retrieval method, excels in efficiency and can process
all cells but lacks semantic understanding. We also compare it with our embedding-based retrieval and

8

Figure 6: Impact of cell encoding budget B.
TableRAG retrieves from the B most frequent
cells, maintaining robust performance even with
a smaller budget. RowColSampling truncates
more rows as B decreases, showing greater sen-
sitivity to budget changes and generally under-
performing compared to TableRAG.

Figure 7: Effect of query expansion. Query
expansion consistently improves TableRAG
across all scenarios, indicating that it provides
better coverage of user intents.

Table 6: Ablation study of schema retrieval (Rows 1 vs 3 and 2 vs 4) and cell retrieval (Rows 1 vs
2 and 3 vs 4). The first column indicates whether the LM processed all schemas or only retrieved
schemas. The second column indicates whether the LM ignored cell values or processed retrieved
column-cell pairs. Schema retrieval leads to an improvement in accuracy of up to 9.4%, while cell
retrieval results in an increase of up to 11.5%.

Schema Cell GPT 3.5 Turbo Gemini 1.0 Pro
ArcadeQA BirdQA ArcadeQA BirdQA

all none 43.1 40.3 30.8 31.8
all retrieval 48.5 42.5 42.3 41.6
retrieval none 46.9 44.8 36.9 42.2
retrieval retrieval 49.2 45.5 42.3 44.2

a hybrid approach that combines scores from both methods. The results show that embedding-based
retrieval achieves the best performance, outperforming both BM25 and the hybrid method, despite not
processing the entire table due to encoding constraints. This underscores the importance of semantic
understanding in retrieval, where embedding-based methods offer better comprehension of table data,
significantly enhancing TableRAG’s performance.

Number of Top Retrieval Results K: Fig 5 illustrates the impact of varying the number of top
retrieval results (K) on the performance and the token cost for the subsequent LM reasoning. The
results demonstrate that that increasing the number K, while increasing the prompt lengths, does
not consistently improve performance. Though larger K allows LMs access to more information, it
also results in a longer context which can exacerbate the lost-in-the-middle phenomenon. In contrast,
TableRAG excels by requiring fewer K values, thus reducing the context tokens needed and lowering
subsequent reasoning costs while still outperforming other methods.

Encoding Budget B: The results from Fig. 6 demonstrate how different token encoding budgets
(B) affect the performance of TableRAG and RowColRetrieval. While a higher budget theoretically
allows for more information to be retrieved, the results show that it does not always lead to better
performance. Specifically, RowColRetrieval shows a decline in performance with increased budgets,
potentially due to the retrieval of more rows that complicate selecting the correct ones and produce
noisier embeddings from longer column sequences. In contrast, TableRAG maintains consistent
performance across various budgets, indicating that its approach of building the corpus by cell
frequency effectively captures essential information even with limited budgets.

Query Expansion: The effectiveness of our query expansion method is analyzed in Fig. 7. The
results demonstrate that query expansion consistently enhances TableRAG’s performance across
various datasets and LMs.

9

Schema Retrieval and Cell Retrieval: We analyze the impact of schema retrieval and cell retrieval
on performance in Table 6. The results demonstrate that schema retrieval consistently enhances
reasoning performance across datasets and LMs, with a maximum improvement of 9.4%, regardless
of whether cell values are considered. The results indicate that even for tables with small number
of columns (average 20.5 columns in ArcadeQA and 11.1 columns in BirdQA), schema retrieval is
still helpful to only provide relevant columns for the subsequent reasoning. Similarly, cell retrieval
consistently improves accuracies across all datasets and LMs, with a maximum improvement of
11.5%, indicating cell retrieval can effectively extract key information from the table contents.

5 Conclusion
In this work, we have presented TableRAG, the first framework to demonstrate effective and efficient
LM-based table understanding with millions of tokens. To fill in the evaluation gap, we have
introduced three new million-token scale table understanding benchmarks. TableRAG’s retrieval
design, combining schema and cell retrieval with frequency-aware truncation, significantly reduces
computational costs and token usage without sacrificing performance. Our extensive experiments on
both real-world and synthetic datasets showcase TableRAG’s superior performance across various
table sizes. TableRAG paves the way for future research on even larger and more complex table
understanding tasks.

6 Limitations
Theoretically, the worst-case complexity for cell retrieval could reach O(NM) if all cell values
are distinct, potentially leading to loss of crucial information even with frequency-based truncation.
Also, our evaluation is limited to QA and verification tasks due to the scarcity of large-scale table
benchmarks. Finally, we focus on benchmarking on comparing TableRAG with other representative
table prompting methods using the same LM solver, rather than against the latest state-of-the-art
techniques, to specifically assess its efficacy on large tables.

10

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023. 7

[2] Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou
Zhou, and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification.
In International Conference on Learning Representations, 2020. 6

[3] Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming
Xiong, Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu.
Binding language models in symbolic languages. In The Eleventh International Conference on
Learning Representations, 2023. 1, 3, 5, 8

[4] Julian Eisenschlos, Syrine Krichene, and Thomas Müller. Understanding tables with intermedi-
ate pre-training. In Findings of the Association for Computational Linguistics: EMNLP 2020,
pages 281–296, 2020. 3

[5] Xi Fang, Weijie Xu, Fiona Anting Tan, Jiani Zhang, Ziqing Hu, Yanjun Qi, Scott Nickleach,
Diego Socolinsky, Srinivasan Sengamedu, and Christos Faloutsos. Large language models on
tabular data–a survey. arXiv preprint arXiv:2402.17944, 2024. 1

[6] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Müller, Francesco Piccinno, and Julian
Eisenschlos. TaPas: Weakly supervised table parsing via pre-training. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pages 4320–4333, 2020.
3

[7] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36, 2024. 2, 6, 15

[8] Weizhe Lin, Rexhina Blloshmi, Bill Byrne, Adrià de Gispert, and Gonzalo Iglesias. An inner
table retriever for robust table question answering. In Proceedings of the 61st Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9909–9926,
2023. 1, 3, 5

[9] Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts. Transactions of
the Association for Computational Linguistics, 12:157–173, 2024. 1

[10] Tianyang Liu, Fei Wang, and Muhao Chen. Rethinking tabular data understanding with large
language models. arXiv preprint arXiv:2312.16702, 2023. 1, 3, 5, 6

[11] Vaishali Pal, Andrew Yates, Evangelos Kanoulas, and Maarten de Rijke. MultiTabQA: Gener-
ating tabular answers for multi-table question answering. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
6322–6334, 2023. 1, 3, 5

[12] Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 1470–1480, 2015. 6, 8

[13] Mohammadreza Pourreza and Davood Rafiei. DIN-SQL: Decomposed in-context learning
of text-to-SQL with self-correction. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. 3, 5

[14] Mohammadreza Pourreza and Davood Rafiei. Dts-sql: Decomposed text-to-sql with small large
language models. arXiv preprint arXiv:2402.01117, 2024. 3, 5

[15] Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-sql capabilities
of large language models. arXiv preprint arXiv:2204.00498, 2022. 8

11

[16] Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and
beyond. Foundations and Trends in Information Retrieval, 3(4):333–389, 2009. 8

[17] Yuan Sui, Jiaru Zou, Mengyu Zhou, Xinyi He, Lun Du, Shi Han, and Dongmei Zhang. Tap4llm:
Table provider on sampling, augmenting, and packing semi-structured data for large language
model reasoning. arXiv preprint arXiv:2312.09039, 2023. 1, 3, 5, 6

[18] Ruoxi Sun, Sercan O Arik, Hootan Nakhost, Hanjun Dai, Rajarishi Sinha, Pengcheng Yin,
and Tomas Pfister. Sql-palm: Improved large language modeladaptation for text-to-sql. arXiv
preprint arXiv:2306.00739, 2023. 3, 5

[19] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023. 7

[20] Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Qian-Wen Zhang, Zhao
Yan, and Zhoujun Li. Mac-sql: Multi-agent collaboration for text-to-sql. arXiv preprint
arXiv:2312.11242, 2023. 3, 5

[21] Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language
models. In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023.
2

[22] Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng
Wang, Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, and Tomas Pfister. Chain-
of-table: Evolving tables in the reasoning chain for table understanding. In The Twelfth
International Conference on Learning Representations, 2024. 1, 3, 5

[23] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and
Yuan Cao. React: Synergizing reasoning and acting in language models. In The Eleventh
International Conference on Learning Representations, 2023. 5

[24] Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language
models are versatile decomposers: Decomposing evidence and questions for table-based rea-
soning. In Proceedings of the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 174–184, 2023. 1, 3, 5, 8

[25] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. TaBERT: Pretraining for
joint understanding of textual and tabular data. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 8413–8426, 2020. 8

[26] Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua
Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, Oleksandr Polozov, and Charles
Sutton. Natural language to code generation in interactive data science notebooks. In Proceed-
ings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 126–173, 2023. 2, 6, 15

[27] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 3911–3921, 2018. 6

[28] Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. Tablellama: Towards open large generalist
models for tables. arXiv preprint arXiv:2311.09206, 2023. 3, 5

[29] Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen Deep, and Jignesh M Pa-
tel. Reactable: Enhancing react for table question answering. arXiv preprint arXiv:2310.00815,
2023. 1, 3, 5, 6

[30] Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries
from natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017. 3

12

A TableRAG Example

Schema Database

Cell Database

What is the average price for wallets?

Question

Thought I need to filter out the prices from the given
cell values.

Action df[‘price’] =
df['price'].str.replace('$', '').astype(float)

Observation success!

Thought Now, I need to filter out the prices for
leather wallets only.

Action wallet_prices = df[df['description']
.str.contains('Wallet')][‘price’]

Observation success!

Thought I should calculate the average price for
wallets.

Action wallet_prices.mean()

Observation 442.7916666666667

Thought Before giving the final answer, you should
think about the observations

Answer 442.7916666666667

Program-Aided LLM Solver

Name Type Example Values

price String “$449”, “$399”, “$509”

quantity Integer min: 1, max: 4

description String “Lipstick…”, “Mirror…”

order_date Date min: 2021-06-13
max: 2022-02-05

… … …

Relevant Information

Schema Retrieval

Column Cell Value

order_status “Delivered to Buyer”

description “Leather Wallet with …”

description “Clutch Purse: …”

description “Men’s Wallet with …”

… …

Cell Retrieval

What is the average price for wallets?

Question

product name, price, category

Schema Query

wallet, seller, order status

Cell Query

Tabular Query
Expansion

Build Database

Name Type Example Values

… … …
… … …

Column Cell Value

… …
… …

Table

Question

Figure 8: Example of TableRAG in ArcadeQA.

13

B TableRAG Pseudo Code
See Alg. 1.

Algorithm 1: TableRAG Algorithm
Data: T : table, Q: questions, L: LM, K: number of retrieval results, B: token encoding budget,

fenc: encoder
Result: Â is the predicted answer to the question

1 Function TableRAG(T,Q,L,K,B, fenc):
2 schema_db← BuildSchemaDB(T, fenc);
3 cell_db← BuildCellDB(T,B, fenc);
4 foreach q ∈ Q do
5 Qschema, Qcell ← TabularQueryExpansion(L, q);
6 Rschema ← MultiQueryRetrieve(fenc, Qschema,K, schema_db);
7 Rcell ← MultiQueryRetrieve(fenc, Qcell,K, cell_db);
8 Â← ProgramAidedSolver(L, q, T,Rschema, Rcell);
9 end

10 return Â
11 Function BuildSchemaDB(T, fenc):
12 corpus← φ;
13 foreach (Cj , Dj , Ej) ∈ T do
14 corpus← corpus ∪ (fEnc(Cj), (Cj , Dj , Ej));
15 end
16 return corpus
17 Function BuildCellDB(T,B, fenc):
18 corpus← φ;
19 V ← getDistinctColumnCellPairbyFreq(T);
20 V ← V [: B];
21 foreach (Cj , vij) ∈ V do
22 corpus← corpus ∪ (fEnc((Cj , vij)), (Cj , vij))
23 end
24 return corpus
25 Function MultiQueryRetrieve(L, Q,K, corpus):
26 res← φ;
27 foreach q ∈ Q do
28 res← res ∪ RetrieveK(q, corpus)
29 end
30 return res

14

C Dataset
Here we describe the generation of each datasets. The statistics of each dataset are shown in Table 7.

ArcadeQA The ARCADE dataset [26] consists of a collection of annotated data science notebooks
with natural language to code annotations for every cell. The notebooks executes on large scale
Kaggle ML datasets5. We extract the examples where there is an executed result, and that result is
either a single primitive value or a list of values (single column table). In contrast, examples that
focus on data wrangling without a returned value, or where the result is a table are skipped. In total
we obtain 130 examples with questions such as “How many countries are south of the equator?” and

“What is the city that had cash on delivery as the most common payment method?”.

BirdQA We leverage a subset of BIRD dataset [7], a collection for large-scale database grounded
text-to-SQL. It also contains annotations for columns descriptions, and external knowledge evidence
in some examples. To convert the task to table-QA, we extract 308 examples where a single table was
used. We use only the table and question without additional helper annotations such as descriptions
and external knowledge evidence. The tables have 40 thousand rows in average and it comprises on
single an multiple value answers.

Synthetic TabFact To complement existing datasets and better evaluate LMs on larger table struc-
tures, we have synthesized an extension of the TabFact dataset to include tables of significantly
greater sizes. This synthesis involves a series of steps designed to expand original small tables into
larger ones without losing the integrity of the data or the logical consistency required for correct query
answering. We utilize LM-generated column names, sampling functions, and solution programs
to create tables and validate them through a rigorous process where solution programs verify the
correctness of answers, ensuring the synthetic tables maintain the challenge and integrity of the
original dataset.

Table 7: Dataset statistics. Values are presented in averages, except for the total counts of tables and
questions.

Data # of
tables

of
questions

of rows
(N)

of cols
(M)

of cells
(NM)

of distinct
values (D)

of categorical
columns

ArcadeQA 48 130 79,376.2 20.5 1,247,946.6 50,609.4 9.4
BirdQA 53 308 62,813.1 11.1 721,077.6 39,649.5 4.9

Synth-TabFact-original 288 288 14.1 6.3 88.8 41.1 4.4
Synth-TabFact-50 288 288 50.0 50.0 2,500.0 149.1 27.0
Synth-TabFact-100 288 288 100.0 100.0 10,000.0 268.1 54.1
Synth-TabFact-500 288 288 500.0 500.0 250,000.0 1,140.5 267.2
Synth-TabFact-1K 288 288 1,000.0 1,000.0 1,000,000.0 2,196.8 539.9

5https://www.kaggle.com/datasets

15

https://www.kaggle.com/datasets

D Prompt of Query Expansion for Schema Retrieval

=== Prompt ===

Given a large table regarding "amazon seller order status prediction orders data", I want
to answer a question: "What is the average price for leather wallets?"
Since I cannot view the table directly, please suggest some column names that might contain
the necessary data to answer this question.
Please answer with a list of column names in JSON format without any additional explanation
.
Example:
["column1", "column2", "column3"]

======================================= Completion =======================================
["product_name", "category", "price"]

Figure 9: Prompt of Query Expansion for Schema Retrieval

E Prompt of Query Expansion for Cell Retrieval

=== Prompt ===

Given a large table regarding "amazon seller order status prediction orders data", I want
to answer a question: "What is the average price for leather wallets?"
Please extract some keywords which might appear in the table cells and help answer the
question.
The keywords should be categorical values rather than numerical values.
The keywords should be contained in the question.
Please answer with a list of keywords in JSON format without any additional explanation.
Example:
["keyword1", "keyword2", "keyword3"]

======================================= Completion =======================================
["leather wallets", "average price", "amazon seller", "order status prediction", "orders
data"]

Figure 10: Prompt of Query Expansion for Cell Retrieval

16

F Prompt of TableRAG Solver

=== Prompt ===

You are working with a pandas dataframe regarding "amazon seller order status prediction
orders data" in Python. The name of the dataframe is ‘df‘. Your task is to use ‘
python_repl_ast‘ to answer the question: "What is the average price for leather wallets?"

Tool description:
- ‘python_repl_ast‘: A Python interactive shell. Use this to execute python commands. Input
should be a valid single line python command.

Since you cannot view the table directly, here are some schemas and cell values retrieved
from the table.

Schema Retrieval Results:
{"column_name": "item_total", "dtype": "object", "cell_examples": [’$449.00’, ’$399.00’, ’
$549.00’]}
{"column_name": "quantity", "dtype": "int64", "min": 1, "max": 4}
{"column_name": "order_no", "dtype": "object", "cell_examples": [’402-4845680-8041921’,
’405-9763961-5211537’, ’404-3964908-7850720’]}
...

Cell Retrieval Queries: leather wallets, average price, order status, prediction, amazon
seller
Cell Retrieval Results:
{"column_name": "order_status", "cell_value": "Delivered to buyer"}
{"column_name": "description", "cell_value": "Pure Leather Camel Color Gent’s Wallet with
Coin Compartment and Card Holders | Men’s Ultra Slim Money Organiser (1 pc)"}
...

Strictly follow the given format to respond:
Thought: you should always think about what to do
Action: the single line Python command to execute
Observation: the result of the action
... (this Thought/Action/Observation can repeat N times)
Thought: before giving the final answer, you should think about the observations
Final Answer: the final answer to the original input question (Answer1, Answer2, ...)

Notes:
- Do not use markdown or any other formatting in your responses.
- Ensure the last line is only "Final Answer: Answer1, Answer2, ..." form, no other form.
- Directly output the Final Answer rather than outputting by Python.
- Ensure to have a concluding thought that verifies the table, observations and the
question before giving the final answer.

Now, given a table regarding "amazon seller order status prediction orders data", please
use ‘python_repl_ast‘ with the column names and cell values above to answer the question: "
What is the average price for leather wallets?"

Begin!

======================================= Completion =======================================
Thought: I need to remove the comma in the item_total values before converting them to
float.
Action: df[’item_total’] = df[’item_total’].str.replace(’$’,’’).str.replace(’,’,’’).astype(
float)
Observation: success!
Thought: Now, I can filter out the rows with leather wallets and calculate the average
price.
Action: df[df[’description’].str.contains(’wallet’, case=False)][’item_total’].mean()
Observation: 442.7916666666667
Thought: before giving the final answer, I should consider the observations and ensure that
the calculations are accurate.
Final Answer: The average price for leather wallets is $442.79.

Figure 11: Prompt of TableRAG solver

17

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Abstract and Section 1
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Section 3

18

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 3, 4, Appendix
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it
may be necessary to either make it possible for others to replicate the model with the
same dataset, or provide access to the model. In general. releasing code and data is
often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the
model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]

19

Justification: Under review by company
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 4
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The experiments are already conducted with majority-voting by 10 times.
Additional trials to report error bars are too computational intensive.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Section 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work is based on public data and APIs.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research solely focus on table understanding. There is no societal impact
of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

21

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We only use public APIs and tabular datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Section 4

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

22

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Section 4, Appendix C
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

23

