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ABSTRACT

Despite the progress in quantum computing, one major bottleneck against the
practical utility is its susceptibility to noise, which frequently occurs in current
quantum systems. Existing quantum error mitigation (QEM) methods either lack
generality to noise and circuit types or fail to capture the global dependencies
of entire systems in addition to circuit structure. In this work, we first propose
a unique circuit-to-graph encoding scheme with qubit-wise noisy measurement
aggregated. Then, we introduce GTranQEM, a non-message passing graph trans-
former designed to mitigate errors in expected circuit measurement outcomes
effectively. GTranQEM are equipped with a quantum-specific positional encoding,
a structure matrix as attention bias guiding nonlocal aggregation, and a virtual
quantum-representative node to further grasp graph representations, which guaran-
tees to model the long-range entanglement. Experimental evaluations demonstrate
that GTranQEM outperforms state-of-the-art QEM methods on both random and
structured quantum circuits across noise types and scales among diverse settings.

1 INTRODUCTION

Quantum computing promises to transform fields like cryptography (Gisin et al., 2002) and machine
learning (Biamonte et al., 2017) by solving problems intractable for classical computers. However,
during the Noisy Intermediate-Scale Quantum (NISQ) era (Brooks, 2019), noises significantly impede
its practical realization, limiting the performance and reliability of current quantum systems. While
Quantum Error Correction (QEC) (Calderbank & Shor, 1996; Gottesman, 1997; Terhal, 2015)
offers a theoretical framework for correcting errors through syndrome extraction and adaptive state
updates, it usually requires a substantial number of additional qubits. This qubit overhead makes
large-scale QEC implementations unfeasible with existing experimental hardware (Cai et al., 2023).
Accordingly, Quantum Error Mitigation (QEM) has emerged as an alternative. Unlike QEC, QEM
aims to produce near-noise-free results by algorithmically reducing noise-induced biases through
post-processing, most without the need for extra qubits (Kandala et al., 2019; Bravyi et al., 2022;
Daley et al., 2022; Kim et al., 2023; Liao et al., 2024). These strategies are crucial steps toward
achieving near-term quantum utility and surpassing the capabilities of classical supercomputers.

Despite their promise, traditional non-learning-based QEM methods face practical limitations. For
instance, Zero-Noise Extrapolation (ZNE) requires multiple executions of the same circuit at dif-
ferent noise levels to estimate the zero-noise limit, leading to exponential sampling overheads (Cai
et al., 2023). Clifford Data Regression (CDR) (Czarnik et al., 2021) usually imposes restrictions on
circuit structures by limiting the number of non-Clifford gates, and Probabilistic Error Cancellation
(PEC) (Van den Berg et al., 2023) can be susceptible to certain types of noise in the system.

Recent advances in machine learning–based QEM methods have shown improved efficiency (Liao
et al., 2024) and insensitivity to both circuit structure and noise types (Kim et al., 2020). However,
most of them fail to effectively encode the structural information of quantum circuits, such as the
mitigators based on multilayer perceptrons (MLPs) (Kim et al., 2020) or ordinary least squares
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(OLS) (Liao et al., 2024). While those based on graph neural networks (GNNs) can model the
topology of quantum circuits by representing them as graphs, they generally focus solely on local
interactions through message-passing mechanisms that update node representations based on local
neighborhoods but fail to capture the intrinsic nonlocality of global quantum systems (Bell, 1964;
Brunner et al., 2014). Furthermore, a common drawback of these ML-based models is their strict
reliance on ideal expectation values of training circuits as labels within the current paradigm, which
can be challenging to obtain without classical simulations (Cai et al., 2023).

To address these challenges, we propose a novel machine learning-based QEM method beyond the
circuit connections, capable of generalizing across diverse noise types and circuit structures. Unlike
the approach of Kim et al. (2020), we develop a circuit-to-graph encoding scheme that effectively
captures the structural information of quantum circuits. Compared to Liao et al. (2024), we introduce a
non-message-passing graph transformer to handle global context within quantum systems in addition
to circuit structure, circumventing the limitations of traditional GNNs. Furthermore, inspired by the
mirror techniques for customized benchmarking (Proctor et al., 2022), we design a data augmentation
scheme termed as circuit inverse composition, which reduces dependence on ideal expectation values
of training data and refines the learning framework. Overall, our main contributions are as follows:

1) Graph Encoding of Quantum Circuits: We introduce a novel circuit-to-graph encoding scheme
that effectively captures the structural information of quantum circuits. Circuit operations are rep-
resented as nodes with appropriately dimensioned features, qubit-wise noisy execution outcomes
are embedded into edge features, and the overall system structure is encapsulated using a proposed
quantum positional encoding.

2) Quantum-Native Graph Transformer: We tailor a graph transformer for QEM that captures
both the circuit structure and intrinsic quantum nonlocality without relying on message passing.
By leveraging multi-head attention mechanisms guided by a structure matrix encoding the graph
topology, it effectively captures long-range correlations within the quantum system. We also introduce
a learnable Quantum Circuit-Representative (QCR) node that adaptively aggregates global graph
information. After training, the QCR node’s representation serves as the input to the mitigator.

3) Refinement of the Learning Framework: We devise a data augmentation technique that constructs
training data by composing circuits with their inverse circuits with random initial state assigned.
It reduces the dependency on ideal expectation values in the training data, thereby refining the
framework for learning-based models and extending their applicability for larger quantum systems.

4) Extensive Experimental Validation: We perform comprehensive experiments to assess the
effectiveness of our proposed method. Our model demonstrates superior performance over both
classical and machine learning-based approaches on random and Trotterized circuits. Additionally, we
demonstrate that GTranQEM preserves effectiveness while training without circuits’ ideal expectation
values, underscoring its practical applicability.

2 PRELIMINARIES

2.1 BACKGROUND ON QUANTUM ERROR MITIGATION

Here, we briefly describe the key background related to QEM. Readers are referred to the seminal
textbook (Nielsen & Chuang, 2002) for comprehensive details on quantum computing.

Quantum State Vector. It is represented by a state vector (i.e., ket) in a complex Hilbert space,
encapsulating all the information about a quantum system. For a single qubit, residing in a 2-
dimensional Hilbert space, the state vector is expressed as follows, with normalization |α|2+|β|2 = 1:

|ψ⟩ = α|0⟩+ β|1⟩,

where |0⟩ and |1⟩ are the computational basis states, and α, β ∈ C. In an n-qubit system, the state
vector |ψ⟩ ∈ C2n is defined in a 2n-dimensional Hilbert space and can be written as:

|ψ⟩ = α1 |0 · · · 0⟩+ α2 |0 · · · 1⟩+ · · ·+ α2n |1 · · · 1⟩,

where the normalization condition is given by
∑2n

i=1 |αi|2 = 1, and |0 · · · 0⟩ = |0⟩⊗n represents a
basis state. Quantum states are manipulated using quantum circuits (QC), which are constructed by
applying a sequence of quantum gates.
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Expectation Value in Quantum Circuits. Consider a quantum circuit represented by the unitary
operation U acting on an initial quantum state |ψ0⟩. To evaluate the performance and outcomes of
a quantum circuit, it is essential to compute the expectation value of an observable O. The ideal
expectation value of O is mathematically defined as:

⟨O⟩ideal = ⟨ψ0|U†OU |ψ0⟩,

representing the expected measurement outcome of O when the system evolves under the unitary
operation U without any noise. However, in practical scenarios, quantum systems are susceptible
to various noise and errors due to decoherence, imperfect gate operations, and environmental dis-
turbances. Consequently, the obtained expectation value, denoted as ⟨O⟩noisy, deviates from the
ideal value with a noise-induced bias (Cai et al., 2023). The primary objective of QEM is to recon-
struct ⟨O⟩ideal from the noisy measurements ⟨O⟩noisy, thereby enhancing the accuracy of quantum
computations without the overhead of full quantum error correction.

2.2 QUANTUM DEVICE NOISE

Depending on whether the environment of the quantum system provides memory that retains cor-
relations across system-environment interactions, the noise can be classified into Markovian and
non-Markovian errors (Zhang et al., 2024).

A process that changes a system’s state ρ → ρ′ is considered Markovian if ρ′ depends only on
ρ. If the error associated with a particular gate g is Markovian, then it is described by some map
Gg : ρ → ρ′ that does not depend on the time, previous operations, or any other context variable.
Among Markovian errors, there are three key types: incoherent (stochastic) errors, coherent errors,
and other physical errors. Incoherent errors contain bit-flip error, phase-flip error and depolarizing
error, etc. A bit flip changes a qubit’s state from |0⟩ to |1⟩ or vice versa, while a phase flip alters the
relative phase between the states without changing the probability amplitudes. when a depolarizing
error occurs to a set of qubits, a random Pauli is applied to each qubit (Nielsen & Chuang, 2002).
Coherent errors arise from unwanted or imperfect unitary rotations within quantum circuits (Huang
et al., 2023). For slow noise processes, the error is often a coherent error(Beale et al., 2018). Other
physical errors, such as amplitude damping, where energy dissipates into the environment, leading to
state decay(Blume-Kohout et al., 2022).

Non-Markovian errors have memory effects, where the noise depends on the system’s history. One
signature of non-Markovian noise acting on a qubit can be obtained by analyzing the purity, p, of
the qubit state, which is defined as p = Tr[ρ2]. Oscillations of qubit coherence and purity over time
indicate the presence of non-Markovian noise in idle qubits (Agarwal et al., 2024). The types of noise
involved in this paper are detailed in Appendix A10.

2.3 GRAPH TRANSFORMER

Graph Transformers have emerged as a powerful tool for processing graph-structured data by com-
bining the strengths of both Graph Neural Networks (GNNs) and Transformer architectures. To
incorporate graph inductive biases into Transformers, many Graph Transformers integrate local
message-passing mechanisms. For instance, some works incorporate sparse attention on local neigh-
borhoods (Dwivedi & Bresson, 2020), or integrate various other types of Message-Passing Neural
Networks (MPNNs) modules into their models (Chen et al., 2022). However, such graph Trans-
formers may at least partially inherit some of the limitations of MPNNs, such as over-smoothing,
over-squashing, and expressive power limitations (Xu et al., 2018). In contrast, Graph Transformers
without (local) message-passing (Ma et al., 2023) allow each node to attend to other nodes, even if
they are far apart in the graph structure. However, in this case, learning meaningful attention scores
typically requires capturing important positional or structural relationships between nodes, and strong
positional encodings are challenging to design for common graph data (Ma et al., 2023). Nevertheless,
for the quantum error mitigation problem, our proposed method not only models quantum circuits as
graphs to incorporate structural information but also generates effective positional encodings for each
node based on the execution order of the quantum circuit to address this challenge.
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Figure 1: Overview of the pipeline. This figure depicts the architecture of the proposed quantum error mitigation
method. Left: The circuit-to-graph encoding process transforms an input quantum circuit into a directed acyclic
graph (DAG) to capture the circuit structure. Each operation is represented as a node with features including
gate type, target qubit, and operation parameters, further enhanced by Quantum-Native Positional Encoding to
capture the circuit’s execution sequence. Right: The GTranQEM module processes the graph using multi-head
attention mechanisms with a structure matrix and incorporates qubit-wise noisy measurement outcomes from
edge features. This updates the node representations with global dependencies built in the quantum systems.

3 APPROACH

Overview. In this section, we present our method for quantum error mitigation in detail. The
pipeline is displayed in Fig. 1. First, we introduce the problem formulation of the QEM adopted in
this manuscript. Second, we propose a circuit-to-graph scheme tailored for the QEM task, which
aggregates circuit information and dimensional noisy executions, with an additional quantum-native
positional encoding incorporated to capture circuits’ structural and temporal aspects. Finally, we
present a non-message passing graph transformer GTranQEM to predict ⟨O⟩ideal.

3.1 PROBLEM FORMULATION

We aim to predict the ideal expectation value ⟨O⟩ideal of a quantum circuit, formulated as a graph-level
regression problem. Let D = {(Gk,Xk,Ek, y

noisy
k , yk)}Nk=1 be a dataset of N samples, where each

sample consists of a quantum circuitCk represented as a directed acyclic graph (DAG) Gk = (Vk, Ek),
with node features Xk ∈ R|Vk|×d and edge features Ek ∈ R|Ek|×de . The corresponding noisy and
ideal expectation values are denoted by ynoisy

k = ⟨O⟩noisy
k ∈ R and yk = ⟨O⟩ideal

k ∈ R, respectively.

Our objective is to learn a function f , parameterized by a graph transformer model, that maps each
sample to a prediction of its ideal expectation value which minimizes the mean squared error between
the predicted and true ideal expectation values over the dataset:

min
f

1

N

N∑
k=1

(yk − ŷk)
2
, ŷk = f

(
Gk,Xk,Ek, y

noisy
k

)
For simplicity, we omit the subscript k in the following sections and refer to a single sample with
graph G = (V, E), node features X, edge features E, noisy expectation value ynoisy, and ideal
expectation value y.

3.2 ENCODING SCHEME

We construct a directed acyclic graph G = (V, E), where the node set V represents the quantum
operations (gates), including start and end operations for each qubit. The edge set E encodes the
directed qubit flow between operations.
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Node Features. We denote N = |V| as the number of nodes. Each node vi ∈ V is associated with
a feature vector x′

i ∈ Rd′
, d′ as the dimension of the node features. Specifically, the node feature

vector x′
i is defined as:

x′
i = [gi,qi, θi],

where gi ∈ {0, 1}Ngtype is a one-hot encoding of the gate type, with Ngtype being the total number of
unique gate types in the dataset. qi ∈ {0, 1}Nq is a multi-hot encoding of the qubits that the gate
operates on, with Nq being the total number of qubits. θi ∈ R is the normalized rotation angle for
rotational gates (set to zero for non-rotational gates).

Edge Features. Each edge (vi, vj) ∈ E represents the flow of qubits from operation vi to operation
vj . The edge features eij ∈ Rde capture the qubit-wise noisy expectation values of Pauli operators
acting on the qubits carried by the edge. Formally, the edge connected to a two-qubit operation node
acting on qubits q1 and q2 is defined as

eij =
[
⟨Xq1⟩noisy, ⟨Yq1⟩noisy, ⟨Zq1⟩noisy, ⟨Xq2⟩noisy, ⟨Yq2⟩noisy, ⟨Zq2⟩noisy

]
,

where ⟨Ωq⟩noisy = ⟨ψ|I⊗(q−1) ⊗ Ω ⊗ I⊗(Nq−q)|ψ⟩noisy,Ω ∈ X,Y, Z denoting a Pauli operator on
qubit q. If the edge carries only one qubit, the last three components are set to zero. Further details on
the computation of qubit-wise expectation values are provided in Appendix A9.

This approach offers two main advantages. First, the method guarantees agnosticism to the noise
types as it encodes noisy expectation values with no explicit knowledge of the noise type or error
rates required. Second, compared to the previous method (Liao et al., 2024), which aggregates only
the circuit-level noisy expectation value ⟨Z⊗Nq ⟩noisy as a scalar global feature, our approach includes
multi-dimensional qubit-level noisy information, potentially enhancing GTranQEM robustness.

3.3 QUANTUM-NATIVE GRAPH TRANSFORMER

3.3.1 QUANTUM-NATIVE POSITIONAL ENCODING

Graphs, though mapping quantum circuits structure naturally, inherently lack sequential order. On
the other hand, in quantum circuits, gates are applied sequentially along each qubit and may act
concurrently across different qubits. To capture this temporality in addition to the structure, we
introduce a quantum-native positional encoding scheme.

Specifically, for each node vi ∈ V , we assign a positional encoding pi ∈ Rdp that reflects both
the layer at which the gate operates and the qubits it acts upon. Specifically, let L denote the total
number of quantum layers in circuit C. We assign a layer index li ∈ {0, 1, . . . , L+ 1} of each node
vi, where li = 0 corresponds to the start operation, li = L+ 1 corresponds to the end operation. Let
Qi ⊆ {1, 2, . . . , Nq} denote the set of qubits that gate vi acts upon. For single-qubit gates, Qi = {q};
for two-qubit gates, Qi = {q1, q2}.

We define the positional encoding pi by first flattening the pair (li, Qi) to obtain a unique 1D temporal
position index of each vi, and then applying the positional encoding scheme from Vaswani et al.
(2017) to obtain a vector representation. As pi captures the execution order (via li) and the qubit
interactions (via Qi) of each node, it allows the model to leverage both the intrinsic properties of the
quantum operations, the structural context within the circuit, and the related temporal information,
enabling more accurate modeling of the entire quantum systems.

3.3.2 GTRANQEM ARCHITECTURE

With the quantum-native positional encoding, the final node features are then given by concatenation:

xi = [x′
i ||pi] ∈ Rd, d = d′ + dp.

This enriched node feature matrix X ∈ RN×d and edge feature matrix E together are utilized
as input for the GTranQEM layer, as displayed in Fig. 1. Extending the standard Transformer
encoder (Vaswani et al., 2017), each layer consists of multi-head self-attention mechanisms with
global attention bias, followed by feed-forward networks (FFNs) for nodes, with layer normalization
and residual connections (Xiong et al., 2020).
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Multi-Head Attention. Specifically, given node features xℓ
i ∈ Rd and edge features eℓij ∈ Rde at

layer ℓ, the attention scores are computed as:

ak,ℓij =

(
(Qk,ℓxℓ

i)
⊤(Kk,ℓxℓ

j)√
dk

+ βMij

)
, i, j ∈ V, (1)

for attention head k ∈ {1, . . . ,H}, where Qk,ℓ ∈ Rdk×d represents the Query vector from the central
node i, and Kk,ℓ ∈ Rdk×d represents the Key vector from all nodes in the graph instead of neighbor
nodes. dk = d/H as in (Vaswani et al., 2017), and β is a learnable scalar parameter for the global
attention bias Mij (we shall introduce with details in the following section). The attention weights
are accordingly obtained via the softmax function:

αk,ℓ
ij = softmaxj∈V

(
ak,ℓij

)
. (2)

For edge features, we first update E via eℓ+1
ij = σ(Wee

ℓ
ij + be), (vi, vj) ∈ E , where We ∈ Rd×de

and be denotes a projection weight matrix and bias. σ(·) denotes an activation function. To employ
qubit-wise noisy measurement outcomes built-in E to assist the ideal expectation value prediction,
we browse G to incorporate egde features towards its source nodes.Namely, the graph-wise edge
attributes for node j is:

eℓ+1
j =

1

Dj

∑
s|(vj ,vs)∈E

eℓ+1
js , (3)

where Dj denotes the degree of node j. The averaged edge feature eℓ+1
j represents the mean of all

edge features connected to node j, which incorporates global edge information into each node’s
updated feature. Accordingly, node features are then updated as follows:

x̂ℓ+1
i = Oℓ

h

[
x̃1,ℓ+1
i ∥ . . . ∥ x̃H,ℓ+1

i

]
,

x̃k,ℓ+1
i =

∑
j∈V

αk,ℓ
ij

(
Vk,ℓxℓ

j + eℓ+1
j

)
,

(4)

with Vk,ℓ ∈ Rdk×d, denotes the value vectors from all nodes, Oℓ
h ∈ Rd×(Hdk) represents a projection

matrix, and ∥ denoting the concatenation operation.

Overall, this approach enables the model to integrate both node and edge information without relying
on explicit message passing along the adjacency structure.

Global Attention Bias. Instead of relying on message passing, it is important to find a way to
include the graph topology for learning better representations. Previous studies demonstrate that
structural information can be incorporated into attention score as a attention bias to guide the graph
transformers without traditional message passing (Rampášek et al., 2023; Xia et al., 2023). Therefore,
we compute a structure matrix M ∈ RN×N for the graph G, where Mij represents the shortest
distance between nodes vi and vj derived from the Floyd-Warshall algorithm (Floyd, 1962). Namely,

Mij =

{
distance(vi, vj) if distance(vi, vj) ≤Mmax

Mmax otherwise,

where Mmax denotes a maximum allowed step count.

The structure matrix M is accumulated to the attention score as a bias with a learnable scalar weight
in Eq. 1. Given the prevalence of quantum entanglement in most circuits, M enables GTranQEM
to grasp the global dependencies rather than focusing solely on local neighborhoods. Overall, this
mechanism is adaptive to QEM settings and can enhance the global awareness and the expressive
power of graph transformers for the QEM problem.

The node representations will eventually pass through separate Feed-Forward Networks with
residual connections and layer normalization, followed Vaswani et al. (2017).
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Quantum Circuit-Representative Node. To enhance the model’s capacity to capture global
patterns and dependencies within quantum circuits, we introduce a virtual Quantum Circuit-
Representative Node (QCR node) into the graph-level regression model, which is a learnable node to
capture the whole circuit representation, as shown in Fig. 1. The QCR node is designed to aggregate
information from all other nodes via the attention mechanism, thereby preserving crucial information
that might be lost through mean or max pooling operations.

Formally, we augment the node set V by adding the QCR node vQCR, resulting in an extended node
set V ′ = V ∪ {vQCR}. The QCR node is connected to all other nodes by special directed edges:

E ′ = E ∪ {(vi, vQCR) | vi ∈ V}.
There are no outgoing edges from the QCR node, and the feature vector of the QCR node, xQCR ∈ Rd,
is initialized as a learnable parameter.

During the transformer layers, the QCR node participates in the self-attention mechanism, attending
to all other nodes and aggregating information from the entire graph with the qubit-wise noisy
information from edges. Eventually, we utilize the xL

QCR of the QCR node as the input to the subsequent
regression module (error mitigator) rather than applying a pooling operation overall nodes.

3.4 ERROR MITIGATOR

After passing through L GTranQEM layers, we concatenate the representation of QCR node, xL
QCR ∈

Rd with the noisy expectation value (ynoisy) obtained from the quantum circuit execution to form
the input vector:

z = [xL
QCR || ynoisy ].

This vector z is then fed into a regression module consisting of two fully connected layers with a non-
linear activation function in between. The regression module outputs the predicted noise-mitigated
expectation value ŷ ∈ R.

4 EXPERIMENTS

In this section, we first propose the data augmentation schemes that refine the current framework of
machine learning-based QEM. We then elaborate on the experiment settings we utilized and display
the performance of GTranQEM.

4.1 DATA AUGMENTATION STRATEGIES

4.1.1 REDUCING DEPENDENCE ON IDEAL EXPECTATION VALUES FOR TRAINING

As discussed in the introduction, a primary challenge in training learning-based QEM schemes
is reliance on ideal expectation values (EVs) as labels for training data, potentially limiting ML-
based models’ capability. To address this issue, we reduce the need for direct reliance on ideal EVs
by constructing training circuits with known ideal outputs through inversed circuit composition.
Specifically, for each circuit C in the training set, we generate an augmented circuit C̄ by appending
its inverse C−1 to itself, resulting in the composite circuit: C̄train = C · C−1.

We initialize the circuit with a random state |ψ0,k⟩. In the absence of noise, the composite circuit C̄
satisfies UU−1 = I , leaving the state unchanged. Consequently, the ideal expectation value of the
observable Z⊗n (the Pauli-Z operator applied to all n qubits) serves as the training label is:

yideal
k = ⟨ψ0,k|Z⊗n|ψ0,k⟩. (5)

CX RZ
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H Y

|𝜓⟩
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Figure 2: Visualization of the inversed circuit
composition. The left half: original circuits.

It allows to obtain ideal expectation values without execut-
ing the original circuits. Moreover, the augmented circuits
retain a structure similar to the original circuits, incorpo-
rating the same types of gates. Such similarity ensures
that the training data encapsulates noise characteristics
comparable to those of the original test circuits.

Formally, the training dataset is constructed as:Dtrain ={(
Ḡk, ȳ

noisy
k , ȳideal

k

)}N

k=1
, where each augmented circuit
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Trotterized circuits. The symlog scale is used in the y-axis for clearer visualization.

All-6-Trotter Max-6-Random
Method Incoherent Mixed Noise Fake Provider Incoherent Mixed Noise Fake Provider

MAE ↓ CIR ↑ MAE ↓ CIR ↑ MAE ↓ CIR ↑ MAE ↓ CIR ↑ MAE ↓ CIR ↑ MAE CIR ↑
Raw Noisy 0.3574±0.2026 - 0.3227±0.1811 - 0.2911±0.1697 - 0.0737±0.0750 - 0.0721±0.0733 - 0.1405±0.1398 -

ZNE 0.2558±0.1397 0.8067 0.2746±0.1544 0.7900 0.1181±0.1071 0.8767 0.0647±0.0826 0.6667 0.0684±0.0772 0.5800 0.1102±0.1190 0.5900
CDR 0.0740±0.0776 0.8700 0.0803±0.0774 0.8967 0.0663±0.0964 0.8733 0.0857±0.1641 0.5667 0.0743±0.1412 0.6000 0.0966±0.1764 0.6000
PEC 0.2376±0.2060 0.7900 0.2203±0.2096 0.7633 0.1801±0.2048 0.8033 0.0461±0.0423 0.6367 0.0526±0.0501 0.6200 0.1461±0.1482 0.4333

OLS 0.0548±0.0516 0.8667 0.0491±0.0430 0.8600 0.0435±0.0405 0.8667 0.0335±0.0339 0.6800 0.0344±0.0325 0.6833 0.0467±0.0328 0.6833
MLP 0.0639±0.0515 0.8600 0.0581±0.0518 0.8667 0.0479±0.0445 0.8500 0.0291±0.0258 0.7300 0.0289±0.0256 0.7300 0.0447±0.0306 0.6933
GNN 0.0388±0.0335 0.8900 0.0397±0.0318 0.8500 0.0415±0.0389 0.8767 0.0325±0.0323 0.6833 0.0351±0.0315 0.6933 0.0472±0.0328 0.6733

GTranQEM 0.03610±0.0310 0.9067 0.0315±0.0272 0.9267 0.0371±0.0292 0.9133 0.0267±0.0228 0.7700 0.0290±0.0235 0.7467 0.0440±0.0338 0.7433

Table 1: Mean Absolute Error (MAE) and Circuit Improvement Ratio (CIR) for different methods under various
noise settings and circuit configurations. The best values in each column are highlighted in red, and the second-
best values are highlighted in blue. Formulas for the metric calculation are included in Appendix A12.2.

C̄k = Ck · C−1
k corresponds to a graph Ḡk, and ȳideal

k = ⟨ψ0,k|Z⊗n|ψ0,k⟩. The test dataset consists
of the original circuits, defined as: Dtest = {Gk}Mk=1 . This strategy enables the generation of training
data for large-qubit circuits without the computational burden of simulating their ideal EVs, thereby
effectively allowing the model to learn the underlying noise characteristics.

4.1.2 NOISE SCALING AMPLIFICATION

To enhance the model’s robustness to varying noise levels, we adopt a noise amplification technique
inspired by ZNE (Temme et al., 2017; Li & Benjamin, 2017). Specifically, we scale the noise levels by
factors λ sampled from the interval [1, λmax]. For each scaling factor λ, the circuit is executed under
the scaled noise model to obtain the corresponding noisy expectation value yλ,noisy

k and qubit-wise
expectation values used as edge features. This augmentation introduces diverse noise profiles into the
dataset, enabling the model to generalize across different noise levels and enhancing its robustness to
noise variability. Formally, for each circuit Ck in the training set, we generate augmented data points:{(

Gλ
k , y

λ,noisy
k , yideal

k

) ∣∣∣∣λ ∈ Λ

}
, (6)

where Λ = {λ1, λ2, . . . , λL} represents the set of noise scaling factors.

By integrating these data augmentation strategies, we reduce the dependence on ideal expectation
values for training and mitigate the model’s sensitivity to noise with high variance, thereby better
reflecting the conditions of real quantum devices.

4.2 SETUPS AND COMPETITORS

Experiment setups, computation resources, and model configurations are displayed in the Ap-
pendix A12.1. Plenty of quantum error mitigation techniques have been developed for various
circuit types and noise models (Cai et al., 2023). In this manuscript, we select baselines that are
not only proven to be highly effective but also capable of handling different circuit types and noise
models, similar to GTranQEM. Specifically, for classical-quantum methods, we use Zero-Noise
Extrapolation (ZNE) (Temme et al., 2017; Li & Benjamin, 2017) and Probabilistic Error Can-
cellation (Van den Berg et al., 2023). Additionally, we include learning-based methods such as
ML-GNN (Liao et al., 2024), Clifford Data Regression (CDR) (Czarnik et al., 2021), OLS (Liao
et al., 2024), and MLP (Kim et al., 2020). Further details can be found in Appendix A11.
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Figure 4: Performance of mitigation methods across various circuit configurations and noise settings. The x-axis
displays different QEM methods, while the y-axis represents the absolute error distribution. Panels (a)–(e) use
a symlog scale for clearer visualization, as error rates are low after mitigation. Each panel title indicates the
specific setting. The width of each violin plot reflects data density at each value, with a broader shape near zero
indicating better performance. Our method is shown in red, and raw noisy data is in blue.

4.3 QUANTUM CIRCUITS

The experiments mainly focus on two types of circuits: the Max-N-Random circuits and the All-N-
Trotter circuits. Details for circuit and dataset configurations are provided in Appendix A12.4.

Max-Qubit random circuits: We utilize the random-structure circuits to demonstrate the generality
of GTranQEM. In this setting, circuits in a dataset consist of at most Nq qubits and most Ngate. The
allowed gates are chosen from {Pauli-X, Pauli-Y, Pauli-Z, Hadamard, RX, RY, RZ, Controlled-NOT,
Controlled-Z, SWAP, RZZ}. The types of, the orders of, and the qubits being operated by quantum
gates are randomized within each circuit.

Trotterized circuits: To benchmark our protocol’s performance on structured circuits, we employ
Trotterized brickwork circuits following the approach of Liao et al. (2024). We focus on the Trotterized
dynamics of the 1-D transverse-field Ising model (TFIM) as described in Chakrabarti et al. (1996).

4.4 QUANTUM ERROR SETTINGS

We evaluate the effectiveness of GTranQEM using four types of noise models. (1) IBM’s fake
providers: We simulate noisy quantum circuit executions using several IBM fake providers, such as
FakeHanoiV2, which mimic the complex noise profiles of real quantum devices. This demonstrates
the capability of GTranQEM in handling realistic quantum noise. (2) Incoherent noise setting: We
construct a noise model with depolarization errors, which degrade the quantum unitary state into a
mixed state, to showcase the efficacy of GTranQEM in addressing a specific noise type. (3) Mixed
noise setting: This model combines Pauli X errors, depolarization errors, and readout errors, aiming
to evaluate GTranQEM under a customized, complex mixed-error scenario. (4) Coherent noise
setting: This model combines a coherent over-rotation with the Fake Lima Provider. (5) IBM’s
Brisbane We execute the 50-qubit circuits on IBM’s Brisbane quantum device and obtain noisy
expectation values. Configurations of each error setting are presented in Appendix A12.3.3.

4.5 EXPERIMENTAL PERFORMANCE

Performance over Standard Settings. Trotterized Circuits. We first evaluated GTranQEM on 6-qubit
Trotterized circuits with Trotter steps ranging from 1 to 20 with three different noises. As depicted
in Fig. 3, GTranQEM consistently outperforms existing QEM techniques, maintaining lower MAE
values across all Trotter steps, which highlights the robustness of our approach in mitigating errors
as circuit depth increases. Tab. 1 demonstrates that GTranQEM is the only method that consistently
achieves a circuit improvement ratio (CIR) over 90%. For 15-qubit circuits with incoherent noise,
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Method Circuit-Scale Extrapolation Noise-Scale Amplification 15-Qubit-Circuit Coherent Noise
MAE ↓ CIR ↑ MAE ↓ CIR ↑ MAE ↓ CIR ↑ MAE ↓ CIR ↑

Raw Noisy 0.4294±0.1538 - 0.2958±0.1646 - 0.1900±0.1891 - 0.1324±0.1238 -

ZNE (Li & Benjamin, 2017) 0.3621±0.1352 0.9300 0.0906±0.0620 0.9050 0.1933±0.1917 0.4700 0.0974±0.1088 0.8667
CDR (Czarnik et al., 2021) 0.0814±0.0765 0.9500 0.0669±0.1036 0.8900 0.0488±0.1263 0.7000 0.0826±0.1564 0.7933

PEC (Van den Berg et al., 2023) 0.3464±0.2928 0.6000 0.1986±0.1388 0.7600 0.2076±0.2535 0.4100 0.1756±0.1827 0.4467

MLGNN (Liao et al., 2024) 0.1038±0.0727 0.9300 0.0425±0.0431 0.8700 0.0421±0.0299 0.6300 0.0699±0.1019 0.8167
OLS (Liao et al., 2024) 0.1209±0.0809 0.9500 0.0696±0.0493 0.8550 0.0411±0.0312 0.6400 0.0813±0.1082 0.7833
MLP (Kim et al., 2020) 0.1438±0.0825 0.9600 0.0466±0.0462 0.8450 0.0754±0.0691 0.6700 0.0779±0.1012 0.8467

GTranQEM 0.0788±0.0611 0.9700 0.0325±0.0304 0.8950 0.0246±0.0230 0.6800 0.0619±0.1017 0.8533

Table 2: Mean Absolute Error (MAE) and Circuit Improvement Ratio (CIR) for different methods under four
advanced settings. Formulas for the metric calculation are included in Appendix A12.2.

our method achieves an MAE of 0.0245, significantly smaller than other baselines, with the smallest
standard deviation (std) of 0.0245, as shown in Tab. 2. The error distribution of the 15-qubit circuits
is displayed in Fig. 4(b), where our method has the most significant concentration towards zero,
showcasing its effectiveness in handling larger circuit configurations.

Random Circuits. Superior was also observed for random circuits. As presented in Tab. 1, the MAE and
CIR indicate that GTranQEM achieves a noticeable error drop compared to baselines. For example,
under incoherent noise, our approach yields an MAE of 0.0267, whereas the second-best GNN
method achieves 0.0291. Fig. 4(a) visualizes the error distribution under provider noise, illustrating
that our method greatly outperforms traditional QEM methods and also has notable improvement
among other ML-based methods.

Performance in Alternative Task Settings. Additionally, we evaluated our method under noise
amplification, circuit extrapolation, and coherent noise conditions. As shown in Tab. 2 and Figs. 4
(c)-(e), GTranQEM consistently outperforms other mitigation strategies across these scenarios. For
example, in the circuit-scale extrapolation task—where QEM methods are trained on shallow circuits
with fewer than 15 Trotter steps and tested on deeper circuits with 16 to 20 Trotter steps—GTranQEM
achieves an MAE of 0.0325 and a CIR of 0.895. These results demonstrate the robustness and
generality of GTranQEM across various tasks and noise settings.

Performance with Refined Learning Paradigm. We further evaluated GTranQEM in scenarios
where ideal expectation values of original training circuits are excluded through inverse circuit
composition. Two experiments were conducted: one using 6-qubit Trotter circuits subjected to mixed
noise and another involving large-scale 50-qubit circuits executed on a real quantum device (IBM
Brisbane). As shown in Figs. 4 (f) and 7, our method significantly outperforms baseline mitigation
strategies and achieves a substantial reduction in error compared to raw noisy data. The error rates
are notably reduced towards zero, demonstrating the effectiveness of GTranQEM and our refined
learning paradigm (see Appendix A12.4.2 for further analysis).

5 CONCLUSION

We have devised a non-message-passing graph transformer, GTranQEM, for quantum error mitigation
that effectively captures both the graph structure of quantum circuits and the global dependencies in-
herent in quantum systems. It takes quantum circuit graphs with built-in qubit-wise noisy information
as input, generated through our devised encoding scheme. Unlike current machine learning-based
methods, our graph transformer aggregates information across the entire graph using a structure ma-
trix to guide the graph topology, incorporates a quantum-native positional encoding, and aggregates
graph representations within a global context into a QCR node. The representation of the QCR node,
which encapsulates both the circuit’s structure and the global dependencies, is then employed as input
for the error mitigator, thereby reducing the impact of errors in circuit executions. The source code
will be available at: https://github.com/btyll/GTranQEM.
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Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow, and
Jay M. Gambetta. Error mitigation extends the computational reach of a noisy quantum processor.
Nature, 567(7749):491–495, Mar 2019.

Changjun Kim, Kyungdeock Daniel Park, and June-Koo Rhee. Quantum error mitigation with
artificial neural network. IEEE Access, 8:188853–188860, 2020.

Youngseok Kim, Andrew Eddins, Sajant Anand, Ken Xuan Wei, Ewout Van Den Berg, Sami Rosen-
blatt, Hasan Nayfeh, Yantao Wu, Michael Zaletel, Kristan Temme, et al. Evidence for the utility of
quantum computing before fault tolerance. Nature, 618(7965):500–505, 2023.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Ying Li and Simon C. Benjamin. Efficient variational quantum simulator incorporating active error
minimization. Physical Review X, 7(2), June 2017. ISSN 2160-3308.

Haoran Liao, Derek S Wang, Iskandar Sitdikov, Ciro Salcedo, Alireza Seif, and Zlatko K Minev.
Machine learning for practical quantum error mitigation. Nature Machine Intelligence, November
2024.

Liheng Ma, Chen Lin, Derek Lim, Adriana Romero-Soriano, Puneet K Dokania, Mark Coates, Philip
Torr, and Ser-Nam Lim. Graph inductive biases in transformers without message passing. In
International Conference on Machine Learning, pp. 23321–23337. PMLR, 2023.
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A6 BROADER IMPACT

Our proposed method achieves nonlocal quantum error mitigation while preserving circuit topology
through a non-message-passing graph transformer. By modeling quantum circuits as graphs and em-
ploying a transformer architecture, we capture both their structural topology and global dependencies,
such as Bell nonlocality (Bell, 1964; Brunner et al., 2014). This approach addresses limitations in
existing machine learning-based error mitigation methods (Kim et al., 2020; Liao et al., 2024) that
often overlook circuit structure or nonlocal characteristics. Enhancing the reliability of quantum
computations in the NISQ era (Brooks, 2019), our work contributes to advanced quantum algorithms
and error mitigation strategies that fully exploit circuit topology and global entanglement. Ultimately,
this advancement promotes practical quantum advantage and accelerates the integration of quantum
computing into diverse scientific and industrial applications.

A7 LIMITATION

Compared to the traditional QEM methods, the ML-based QEM methods usually require the acqui-
sition of the training set and training process. Offline training introduces additional time costs, but
the advantage is the ability to quickly infer unseen samples. On the other hand, our method uses
measurement information from the circuit to construct the edge features, which may increase the
measurement cost during circuit execution. However, fortunately, in our circuit, we only use the
results of Pauli measurements on each qubit, which are considered local observables. By employing
the classical shadow algorithm (Huang et al., 2020), we can reduce the original M measurements to
only log(M) measurements, and this reduction is independent of the number of qubits in the quantum
circuit. This approach allows us to address potential scalability issues as circuit sizes grow.

A8 DISCUSSION

We want to emphasize the key innovations of our paper lie in the targeted, quantum-representative
design of GTranQEM, including the following aspects:

1) Novel Encoding Scheme: We introduce a unique encoding approach for QEM. Following the
standard approaches in graph learning for quantum computing (Wang et al., 2022b; Moflic et al.,
2023; He et al., 2023), quantum circuits are represented as DAGs, mapping each gate in the circuit to
a node in the graph. However, our encoding scheme differs from previous work in several key aspects
including node features with circuit attributes as well as quantum topological positional encoding,
and edge features with noisy qubit-wise measurement outcomes 3.2. Overall, our encoding captures
both the circuit topology and the measurement information in a unified framework, strengthening the
model’s ability to perform mitigation tasks in complex quantum systems.

3) Customized Quantum-Native Non-Message Passing Graph Transformers: We are among the
first to apply a non-message passing graph transformer architecture to the QEM problem. Traditional
message-passing mechanisms focus on neighborhood aggregation, failing to capture the long-range
dependencies within the quantum system. In contrast, GTraQEM leverages the circuit’s topology
incorporated in the graph encoding, the non-message passing aggregation scheme, and a learnable
QCR node to further facilitate graph-level feature aggregation, making GTraQEM particularly
quantum-native and customized for QEM tasks.

4) Refinement of the Learning-Based QEM Paradigm: Previous learning-based QEM meth-
ods (Kim et al., 2020; Liao et al., 2024) often rely on obtaining ideal expectation values of training
circuits through classical simulation for mitigator tuning, which becomes impractical for larger
circuits due to the exponential scaling of computational resources. We propose to refine the paradigm
by constructing the training set with standard circuits composed with their inverse with random
initial state assigned. This approach allows us to obtain ideal EVs as labels of the training circuits for
supervision without circuit executions, as the initial state becomes the final quantum state. This signif-
icantly reduces ML-based methods’ reliance on the simulation of ideal EVs, achieving label-efficient
training.

5) Comprehensive ML Perspective and Effective Pipeline: Given the limited number of existing
ML-based QEM methods, our work provides a fresh perspective by thoroughly exploring the intersec-
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tion of Graph learning and QEM. We propose an effective and thorough pipeline for error mitigation
across various circuit types and scales, highlighting its potential for wide applicability in the quantum
computing community.

A9 EDGE FEATURE CONSTRUCTION

1. Construction of Pauli-Identity Operators for the Qubit. The Pauli-Identity operator Ωq acting
on the q-th qubit in an Nq-qubit system is constructed as:

Ωq = I⊗(q−1) ⊗ Pq ⊗ I⊗(Nq−q),

where:

• I is the 2× 2 identity matrix.
• Pq ∈ {Xq, Yq, Zq} is one of the Pauli matrices acting on qubit q.
• I⊗n denotes the n-fold tensor product of the identity operator.

2. Qubit-wise Noisy Expectation Values

• For each qubit q carried by an edge (vi, vj), we compute the noisy expectation values of the
set of the Pauli-Identity operators mentioned previously.

• The qubit-wise noisy expectation value for a Pauli operator Ωq acting on qubit q is defined
as:

⟨Ωq⟩noisy = Tr
[
ρnoisyPq

]
,

where ρnoisy is the noisy state vector of the system.

3. Computation of Noisy Expectation Values

• For each qubit q on the edge (vi, vj), compute:

⟨Xq⟩noisy = Tr
[
ρnoisy

(
I⊗(q−1) ⊗X ⊗ I⊗(Nq−q)

)]
,

⟨Yq⟩noisy = Tr
[
ρnoisy

(
I⊗(q−1) ⊗ Y ⊗ I⊗(Nq−q)

)]
,

⟨Zq⟩noisy = Tr
[
ρnoisy

(
I⊗(q−1) ⊗ Z ⊗ I⊗(Nq−q)

)]
.

4. Edge Feature Vector Assembly

• Single-Qubit Edge:
– If the edge carries only one qubit q, the edge feature vector eij ∈ R6 is constructed as:

eij =
[
⟨Xq⟩noisy, ⟨Yq⟩noisy, ⟨Zq⟩noisy, 0, 0, 0

]
.

– The last three components are set to zero to maintain a consistent feature dimension.
• Two-Qubit Edge:

– If the edge carries two qubits q1 and q2, the edge feature vector eij ∈ R6 is constructed
as:

eij =
[
⟨Xq1⟩noisy, ⟨Yq1⟩noisy, ⟨Zq1⟩noisy, ⟨Xq2⟩noisy, ⟨Yq2⟩noisy, ⟨Zq2⟩noisy

]
.

By following these steps, we construct edge features that capture essential quantum state information
encoded in the noisy expectation values of Pauli operators for the qubits flowing between quantum
operations. This representation is crucial for analyzing quantum circuits using graph-based machine
learning techniques.
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A10 QUANTUM ERRORS

Quantum error sources are a critical challenge in quantum computing. These errors, ranging from
coherent to incoherent and systematic to random, arise from imperfect qubit control, unwanted inter-
actions, and measurement inaccuracies. In this paper, we conduct QEM experiments on incoherent
errors, coherent errors, and readout errors.

A10.1 INCOHERENT ERRORS

Incoherent errors are caused by random interactions with the environment, leading to non-unitary
dynamics. These errors cause decoherence and loss of quantum information. Incoherent errors (from
entanglement of the physical qubits with a memoryless environment) can be modeled as random
Pauli operators on the physical qubits. In our paper, we involve two types of incoherent errors: bit-flip
error and depolarizing error.

A bit-flip channel transforms the quantum state from |0⟩ to |1⟩ (or vice versa) with a probability of
1− p, and it has the following operators:

E0 =
√
pI =

√
p

[
1 0
0 1

]
, (7)

E1 =
√

1− pX =
√
1− p

[
0 1
1 0

]
. (8)

Its effect on a state ρ is given by

ΦBF [ρ] = pρ+ (1− p)XρX. (9)

The depolarizing channel is an important type of quantum noise. Imagine that we take a single qubit
and depolarize it with probability p, meaning the qubit is replaced by a completely mixed state I/2.
The single qubit remains unchanged with probability 1− p. The state of the quantum system ρ after
this noise is given by:

ΦDE [ρ] =
pI

2
+ (1− p)ρ. (10)

If we observe that for any ρ, the following holds:

I

2
=
ρ+XρX + Y ρY + ZρZ

4
,

then we can obtain:

ΦDE [ρ] =

(
1− 3p

4

)
ρ+

p

4
(XρX + Y ρY + ZρZ). (11)

This shows that the depolarizing channel has the set of operators {
√

1− 3p/4I,
√
pX/2,√

pY/2,
√
pZ/2}.

A10.2 COHERENT ERRORS

Coherent errors arise from unwanted or imperfect unitary rotations within quantum circuits, which
can be modeled as:

U(θ) = e−
i
2 θσ, (12)

where θ = (θ1, ..., θ4Nq ) represents the magnitude of the coherent error on the 4Nq Pauli basis. These
errors transform noiseless pure states into other pure states while preserving quantum coherence
due to the unitary nature of the operations. Although they are purity-preserving, coherent errors can
significantly undermine the reliability of multi-qubit quantum computations.
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A10.3 READOUT ERRORS

Readout errors occur during the measurement process of quantum states. These errors manifest when
the outcome of a quantum measurement does not accurately reflect the actual state of the qubit.
For instance, a qubit in the |0⟩ state might be incorrectly measured as |1⟩, and vice versa. Readout
errors are particularly detrimental in quantum algorithms that rely heavily on accurate measurement
outcomes for decision-making and result interpretation.

The probability of a readout error can be characterized by a confusion matrix M , which quantifies
the likelihood of each possible measurement outcome given the true state:

M =

(
P (0|0) P (1|0)
P (0|1) P (1|1)

)
,

where P (a|b) denotes the probability of measuring outcome a given the qubit was in state |b⟩.

A11 RELATED WORKS

A11.1 QUANTUM ERROR MITIGATION

Traditionally, Zero-Noise Extrapolation (ZNE) is a widely implemented mitigation scheme. The
essence of ZNE lies in deliberately introducing varying levels of noise into the quantum circuits
and performing multiple executions of these circuits. Based on these noisy outcomes, ZNE employs
extrapolation namely fitting techniques to estimate the ideal quantum state probability distribution in
the absence of noise, whereby the Richardson extrapolation is a basic fitting method. However, ZNE
requires high computational resources by necessitating multiple executions of quantum operations at
varying noise levels, leading to higher resource consumption. It also heavily relies on the accuracy of
the assumed noise model for extrapolation.

Czarnik et al. (2021) proposes Clifford Data Regression (CDR) to predict the noise-free observable.
The majority of non-Clifford gates in the target circuit are (approximately) replaced with nearby
Clifford gates, such that classically simulable training data can be efficiently constructed, as the
Clifford gates are more friendly for efficient simulation. Then a linear regression model is employed
that regresses the noisy expectation values of those circuits onto the ideal ones.

Kim et al. (2020) employs an ordinary Neural Network (NN) and a concatenated NN to learn the
amount of error in the result measurement of quantum output states. However, the inputs of their NNs
only consider the number of gates and ideal and noisy measurement information. Liao et al. (2024)
benchmarks four models: linear regression, random forests, multi-layer perceptrons, and graph neural
networks, to minimize the sum squared error between the mitigated and ideal expectation values.
They convert the transpiled circuit into an acyclic graph and take it as input to GNNs. However,
they struggle to handle large-scale quantum circuits effectively because they train the model by
mimicking other scalable QEM methods, such as ZNE, which limits their model from outperforming
the mimicked method. In contrast, our approach ensures scalability and leverages inverse circuits to
handle large-scale problems effectively.

A11.2 GRAPH TRANSFORMER

In recent years, Graph Transformers have emerged as a powerful tool for processing graph-structured
data by combining the strengths of both Graph Neural Networks (GNNs) and Transformer architec-
tures. This hybrid model has demonstrated strong performance across a wide range of tasks, including
node classification, graph generation, and molecular property prediction. Graph Transformers can
be classified into message-passing-based and non-message-passing-based models, based on their
approach to information propagation in graphs.

Message-passing-based models integrate traditional GNN frameworks, where each node aggregates
information from its neighbors. GAT (Veličković et al., 2018) is an early example, using attention
mechanisms to assign weights to neighboring nodes during aggregation. Graphormer (Ying et al.,
2021) extends this by adding global attention to enhance performance in tasks like molecular property
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prediction. GPS (Rampášek et al., 2022), another variant, merges message-passing with self-attention
for efficient local and global interaction handling.

However, graph transformers that use message-passing inherit known issues of message-passing,
such as over-smoothing, over-squashing, and expressive power limitations, and differ significantly
from Transformers used in other domains, thus making a transfer of research advances more difficult.
In contrast, non-message-passing models rely solely on the Transformer’s self-attention mecha-
nism, bypassing iterative neighbor aggregation. GraphiT (Mialon et al., 2021), for instance, employs
self-attention and positional encodings without traditional message-passing. Graph-BERT (Zhang
et al., 2020) applies Transformer-style attention directly to node embeddings, capturing long-range
dependencies more effectively. GTNcite (Yun et al., 2019) focuses on hierarchical graph represen-
tation using edge-wise attention, optimizing computational efficiency. For non-message-passing
non-message-passing, learning meaningful attention scores typically requires capturing important
positional or structural relationships between nodes, and strong positional encodings are challenging
to design since the structure and symmetries of graph data are fundamentally different from that of
other (Euclidean) domains. Nevertheless, in the field of quantum noise mitigation, we can not only
model quantum circuits as graphs to incorporate structural information but also generate effective
positional encodings for each node based on the execution order of the quantum circuit. The proposed
approach effectively addresses the challenge.

A11.3 GRAPH NEURAL NETWORKS FOR ELECTRONIC DESIGN AUTOMATION

Graph Neural Networks (GNNs) are specialized models designed to transform graph-structured data
through trainable parameters. As GNN research progresses, novel architectures are being introduced
that target graph topological properties Zhao et al. (2023) and scalability to large graphs Wu et al.
(2022; 2023a;b). Given the inherent (hyper-)graph structure of circuit netlists, GNNs are naturally
suited for applications in Electronic Design Automation (EDA), particularly in the context of Power,
Performance, and Area (PPA) estimation. Early GNN models, such as GCN Defferrard et al. (2016);
Kipf & Welling (2017), extend the concept of convolutions from low-dimensional regular grids to high-
dimensional irregular domains, while GAT Veličković et al. (2018) introduces attention mechanisms
to learn adaptive weights for neighboring nodes. GCNII Chen et al. (2020) addresses the over-
smoothing issue through initial residual connections and identity mapping, whereas GINE Hu et al.
(2020), an extension of GIN Xu et al. (2018), incorporates edge features to enhance expressiveness
and was originally designed to tackle graph isomorphism challenges. Despite their success, these
models face limitations when applied to circuit graphs with long timing paths due to restricted local
receptive fields, which could lead to over-smoothing problems.

To overcome these limitations, recent works have developed GNN variants specifically tailored for
EDA tasks. Net2 Xie et al. (2021) leverages graph attention networks to estimate net length during
the pre-placement phase. CircuitGNN Yang et al. (2022) represents circuits as heterogeneous graphs
and introduces a topo-geom message passing paradigm to predict wire length and congestion. Timing-
GCN Guo et al. (2022) models a GNN inspired by timing engines, enabling effective slack prediction
in pre-routing stages. LHNN Wang et al. (2022a) employs a lattice hyper-graph neural network for
routing congestion prediction. Finally, GTN Fan et al. (2024) proposes a Graph-Transformer-based
architecture as a surrogate model for circuit evaluation, achieving significant acceleration in circuit
topology optimization without compromising performance.

A12 EXPERIMENT SETTINGS

A12.1 SETUPS

The quantum circuits in our experiments are executed on IBM’s backend. Our graph-learning QEM
algorithm is implemented on a system running Ubuntu 16.04, with CUDA 11.0, PyTorch 1.13.0, and
PyTorch Geometric 2.3.1. Most experiments are conducted on an NVIDIA 4090 GPUs with 24GB
of memory.
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A12.2 METRICS CALCULATION

To evaluate the performance of our proposed model, we employ two key metrics: Mean Absolute Error
(MAE) and Circuit Improvement Ratio (CIR). These metrics provide a comprehensive assessment of
the model’s effectiveness in mitigating errors within quantum circuits.

A12.2.1 MEAN ABSOLUTE ERROR (MAE)

The Mean Absolute Error (MAE) quantifies the average magnitude of errors between the predicted val-
ues and the actual ground truth values, without considering their direction. It is defined mathematically
as:

MAE =
1

N

N∑
i=1

|ŷi − yi| (13)

where N is the total number of quantum circuits evaluated. ŷi represents the predicted value for the
i-th circuit. yi denotes the actual ground truth value for the i-th circuit.

A lower MAE indicates higher prediction accuracy, reflecting the model’s ability to closely approxi-
mate the true values of the quantum circuits.

A12.2.2 CIRCUIT IMPROVEMENT RATIO (CIR)

The Circuit Improvement Ratio (CIR) measures the proportion of quantum circuits that have been
successfully improved through the error mitigation process. It is calculated using the following
formula:

CIR =
Number of Improved Circuits

Total Number of Circuits
× 100% (14)

where Number of Improved Circuits refers to the count of circuits that exhibit enhanced performance
post-error mitigation compared to their original state. Total Number of Circuits is the overall number
of circuits subjected to error mitigation.

A higher CIR signifies a more effective error mitigation strategy, indicating that a greater percentage
of circuits have benefited from the proposed enhancements.

A12.3 DATA PREPARATION

We provide detailed descriptions of the experimental settings used in our work to facilitate future
reproduction. We cover the circuit datasets, noise models, experimental configurations across different
quantum system scales, and the hyperparameters used in our method.

A12.3.1 CIRCUITS CONSTRUCTION

Trotterized Circuits Construction. We focus on the Trotterized dynamics of the one-dimensional
transverse-field Ising model (TFIM) as described in Chakrabarti et al. (1996). The Trotterized circuits
used in our experiments simulate the dynamics of a spin chain governed by the Hamiltonian:

Ĥ = −J
∑
j

ẐjẐj+1 + h
∑
j

X̂j = −JĤZZ + hĤX ,

where J represents the exchange coupling between neighboring spins, and h denotes the transverse
magnetic field. We generated multiple circuit instances by randomly assigning the parameters J , h,
and the evolution time t, with coupling strengths uniformly sampled from the paramagnetic phase
(J < h). The number of Trotter steps varied within specified ranges, determining the depth of the
circuits.

Random Circuits Construction We utilize the random-structure circuits to demonstrate the gener-
ality of GTranQEM. In this setting, circuits in a dataset consist of at most Nq qubits and most Ngate.
The allowed gates are chosen from {Pauli-X, Pauli-Y, Pauli-Z, Hadamard, RX, RY, RZ, Controlled-
NOT, Controlled-Z, SWAP, RZZ}. The types of, the orders of, and the qubits being operated by
quantum gates are randomized within each circuit. Rotation angle for rotation gates are randomly
selected from [0, 2π]
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A12.3.2 CIRCUIT DATASET CONSTRUCTION

We constructed various circuit datasets to evaluate the performance of GTranQEM across different
system sizes and experimental settings. The datasets are categorized based on the circuit types and
scales:

Max-6-Random and All-6-Trotter Datasets For the max-6-random and all-6-trotter datasets, we
generated circuits with up to 6 qubits. The training set consists of 750 circuits with a maximum
length of 150 gates, randomly selected from the allowed gate list. We used an additional 150 circuits
for validation and 300 circuits for testing. These datasets are used to evaluate the performance of
GTranQEM on small-scale quantum systems.

All-15-Trotter Dataset The all-15-trotter dataset comprises circuits with 15 qubits. We employed
260 circuits for training, 40 circuits for validation, and 100 circuits for testing. This dataset allows us
to assess the scalability of GTranQEM to medium-scale quantum systems.

All-50-Trotter Dataset For large-scale systems, we constructed the all-50-trotter dataset, consisting
of 50-qubit circuits. We created 20 Trotter circuits with Trotter steps ranging from 1 to 3. Each circuit
was initialized with 10 random initial states, resulting in 200 training circuits. Two original circuits
were used for validation, and the remaining 18 circuits were used for testing. This dataset was executed
on a real quantum device (IBM Brisbane) to evaluate the practical applicability of GTranQEM.

Circuit-Scale Extrapolation Dataset We constructed a dataset with circuits having Trotter steps
ranging from 1 to 20. We used 260 circuits with Trotter steps from 1 to 15 for training, 40 circuits
for validation, and 100 circuits with Trotter steps from 16 to 20 for testing. This setting allows us to
evaluate the ability of GTranQEM to extrapolate to deeper circuits beyond those seen during training.

Noise Scale Amplification Dataset We applied noise scaling factors Λ = {1, 2, 3} to augment
the training set without generating additional circuits. We used 200 circuits for training, resulting in
600 data points after noise scaling, and 200 circuits for testing. This dataset allows us to assess the
robustness of GTranQEM to varying noise levels.

6-Qubit No-Ideal Setting Dataset For the 6-qubit no-ideal setting, we constructed a training
dataset of 400 inverse-composed circuits, each with one random initial state. We used 100 circuits
for validation and 300 circuits for testing. This dataset was used to evaluate the performance of
GTranQEM when ideal expectation values are not available.

Remarks. In all experimental settings, we ensured that there was no overlap between the training,
validation, and testing datasets. This separation is crucial for obtaining unbiased evaluations of the
model’s performance.

A12.3.3 NOISE SETTINGS

We evaluated the performance of GTranQEM under various noise settings to best testify the perfor-
mance of GTranQEM. The noise models used in our experiments are:

1) Fake Provider Setting FakeHanoiV2 is used, which emulates the noise characteristics of the
IBM Hanoi quantum device.

2) Incoherent error-only setting Incoherent noise was simulated by applying a combination of
Pauli X and depolarizing errors on all single-qubit and two-qubit gates. The error rates followed the
statistics of the Sycamore quantum device (Arute et al., 2019), as listed in Table 3.

3) Mixed Noise Setting Mixed noise combines incoherent noise with additional error sources to
simulate a more realistic noise environment.

4) Coherent Noise Setting Coherent noise was introduced by adding systematic over-rotation errors
to the double-qubit gates (CX, CY, CZ, and Swap gates) with an average over-rotation angle of 0.02π
with a combination of the noise model extracted from the Fake Lima provider.
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Figure 5: The topology of qubits of IBM Brisbane.
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Figure 6: Visualization of the distribution of AEs for all-6-trotter circuits under three noise settings. Distributions
closer to zero represent better performance.

Table 3: Error rates for Incoherent and Mixed noise settings based on the Sycamore quantum device Arute et al.
(2019).

System # of Qubits Single-Qubit Gate Error Two-Qubit Gate Error Readout Error

Sycamore Arute et al. (2019) 53 0.16% 0.62% 3.8%

5) IBM’s Brisbane For experiments on real quantum devices, we executed circuits on
IBM Brisbane, a 127-qubit quantum computer provided by IBM. The details of the quantum
device are as follows:

1. Topology: IBM Brisbane has a 127-qubit architecture. We utilized the Qiskit quantum
cloud platform, which optimizes the 50-qubit circuits and maps them onto the 127 qubits
using the generate_preset_pass_manager function. The topology of these qubits
is illustrated in Fig. 5.

2. Coherence Times: The median relaxation time T1 is 213.21 µs, and the median dephasing
time T2 is 147.61 µs, indicating relatively long coherence times suitable for executing deep
quantum circuits.

3. Fidelities: IBM Brisbane provides the metric 2Q Error (layered), representing the av-
erage two-qubit error rate per layered gate (EPLG) for a 100-qubit chain. The 2Q Error
(layered) for IBM Brisbane is 2.06× 10−2.

4. Additional Parameters: The median echoed cross-resonance (ECR) error is 8.340× 10−3,
the median single-qubit gate (SX) error is 2.345× 10−4, and the median readout error is
1.370× 10−2.
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A12.4 EXPERIMENTAL CONFIGURATIONS

We conducted experiments across three scales of quantum systems—small-scale (4–6 qubits),
medium-scale (15 qubits), and large-scale (50 qubits)—under both standard and non-standard settings.

A12.4.1 STANDARD SETTINGS

We evaluated GTranQEM under three standard settings—small-scale, medium-scale, and large-scale
systems—to demonstrate its effectiveness across different scales. For small-scale systems, we used
datasets like max-6-random, all-6-trotter, and all-4-trotter under various noise conditions, including
fake provider, incoherent noise only, mixed noise, and coherent noise. In medium-scale systems,
we assessed the scalability of GTranQEM using the all-15-trotter dataset under incoherent noise
only. For large-scale systems, we validated GTranQEM on real quantum devices by performing error
mitigation on the all-50-trotter dataset executed on IBM Brisbane.

A12.4.2 NON-STANDARD EXPERIMENTAL SETTINGS

To further demonstrate the generality and robustness of GTranQEM, we conducted experiments under
non-standard settings.

Circuit Depth Generality We testify the generality of GTranQEM by performing mitigation tasks
over the circuit-scale extrapolation datasets. Training was conducted on circuits with Trotter steps
from 1 to 15, and testing was performed on circuits with Trotter steps from 16 to 20. The results
demonstrated in Tab. 2 and Fig. 4 (c), demonstrate GTranQEM’s capability of generalizing to deep
circuits.

Evaluation Without Ideal Expectation Values We assessed the performance of GTranQEM in
the absence of ideal expectation values (EVs) by employing the 6-qubit no-ideal setting dataset to
evaluate the effectiveness of our proposed circuit inverse composition scheme.

Initially, we conducted experiments on the 6-qubit dataset without ideal EVs to provide insights into
error mitigation for larger quantum circuits. The results, presented in Fig.7, indicate that GTranQEM
performs effectively under these conditions. Notably, GTranQEM achieves a superior performance
over the traditional QEM methods showing the effectiveness of our circuit inverse composition
paradigm; GTranQEM outperforms other machine learning-based models that operate under the same
paradigm in this setting, highlighting the efficacy of our model architecture. It is important to mention
that the 6-qubit setting serves primarily to validate the proposed paradigm, as ideal EVs are readily
obtainable for such small quantum systems. Indeed, GTranQEM demonstrates strong performance
when trained with ideal EVs as labels (see Figs.3 and 6).

When extending the mitigation to larger qubit systems, the advantages of our paradigm become
more pronounced. As depicted in Fig. 4,(f), GTranQEM surpasses Zero-Noise Extrapolation (ZNE),
which is among the few traditional QEM methods feasible within reasonable execution times for
large-qubit circuits with general structures. Although multilayer perceptron (MLP) and graph neural
network (GNN) models can also be utilized under our paradigm for larger systems, they exhibit
inferior performance compared to GTranQEM, underscoring the effectiveness of our model design.

A12.4.3 HYPERPARAMETERS

The hyperparameters of the GTranQEM model layers for each experimental setting are provided in
Table 4. These parameters were chosen based on preliminary experiments to optimize performance
for each specific setting.

A13 TIME ANALYSIS

Comparing the computational time between machine learning (ML)-based and classical quantum
error mitigation (QEM) methods is challenging due to inherent differences in their workflows.

Classical QEM approaches typically handle quantum circuits individually, potentially involving
extensive mitigation time due to circuit-specific tuning, multiple circuit executions, or additional
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Figure 7: Distributions of AEs for no ideal EV setting of all-6-trotter circuits under the mixed noise setting.

Table 4: Hyperparameters of GTranQEM layers for each experimental setting.

Experiment Name Number of Layers Hidden Dimension
All-6-Trotter, Mixed Noise 1 24
All-6-Trotter, Incoherent Noise 1 128
All-6-Trotter, Provider Noise 1 32

Max-6-Random, Mixed Noise 1 64
Max-6-Random, Incoherent Noise 2 64
Max-6-Random, Provider Noise 2 64

All-15-Trotter, Incoherent Noise 2 256

Circuit-Scale Extrapolation 1 64
Noise Amplification 1 64

6-Qubit, No Ideal Expectation Values 1 64
50-Qubit, No Ideal Expectation Values 2 512

Table 5: Training and inference times for different methods over various datasets. The times for ZNE and CDR
correspond to the mitigation times applied to the same number of circuits during inference. All quantum circuit
simulations are executed via IBM Qiskit. GTraQEM is implemented on a computing system running Ubuntu
18.04.6 with CUDA version 12.1. The majority of experiments are performed on an NVIDIA GeForce RTX
4090 GPU with 24 GB of memory.

Method 4-qubit, 300 circuits 6-qubit, 300 circuits 15-qubit, 100 circuits
Training Inference Training Inference Training Inference

GTraQEM 21.90 s 0.1760 s 38.70 s 0.1868 s 18.64 s 0.121 s
OLS 3.42 s 0.0734 s 5.53 s 0.0864 s 2.21 s 0.022 s
ML-GNN 31.57 s 0.1473 s 43.54 s 0.1916 s 26.41 s 0.104 s
MLP 25.57 s 0.0896 s 32.71 s 0.1037 s 15.94 s 0.098 s
ZNE n/a 548.78 s n/a 782.03 s n/a 2166.46 s
CDR n/a 1841.34 s n/a 1796.65 s n/a 17405.38 s

qubit overheads. Moreover, their performance is often significantly influenced by the number of
qubits and the scale of the circuits.

In contrast, ML-based approaches consist of two primary stages: model training and inference. Once
the model is trained, inference (i.e., the actual error mitigation) can be performed quickly. For instance,
after fine-tuning GTraQEM for 6-qubit Trotter circuits executed under the Fake Hanoi Provider, we
can mitigate the results of new 6-qubit Trotter circuits on that device in negligible time. Consequently,
a direct and fair comparison between these two types of methods is not straightforward.

To provide a comparative perspective, we present in Table 5 the training and inference times required
by each ML-based method, alongside the mitigation times for Zero-Noise Extrapolation (ZNE) and
Clifford Data Regression (CDR) when applied to the same number of circuits during inference. The
table demonstrates that GTraQEM achieves computational efficiency comparable to other ML-based
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Index PE Edge Feature QCR node MP MAE Std CIR
0 0.0416 0.0347 0.9033

1 ✓ 0.0440 0.0283 0.8867

2 ✓ 0.0547 0.0467 0.9033

3 ✓ ✓ 0.0332 0.0250 0.9100

4 ✓ 0.0425 0.0364 0.9233

5 ✓ ✓ 0.0434 0.0279 0.8433

6 ✓ ✓ 0.0547 0.0467 0.9033

7 ✓ ✓ ✓ 0.0324 0.0261 0.8967

8 ✓ 0.0360 0.0282 0.9267

9 ✓ ✓ 0.0448 0.0328 0.8867

10 ✓ ✓ 0.0359 0.0305 0.9200

11 ✓ ✓ ✓ 0.0373 0.0305 0.8967

12 ✓ ✓ 0.0380 0.0286 0.9233

13 ✓ ✓ ✓ 0.0323 0.0277 0.9133

14 ✓ ✓ ✓ 0.0350 0.0314 0.9133

15 ✓ ✓ ✓ ✓ 0.0315 0.0272 0.9267

Table 6: Ablation study results showing the effect of each module on the QEM performance. The check marks
indicate the inclusion of the respective module.

methods while delivering superior mitigation performance. While GTraQEM’s inference time is
marginally slower than that of the MLP and ML-GNN models, all three methods achieve inference
times within one second, rendering the differences practically insignificant.

A14 ABLATION STUDIES

We modify the classical graph transformer architecture with quantum-native modules to construct a
graph transformer specialized for QEM tasks. To assess the impact of each proposed module, we
conduct comprehensive ablation studies focusing on the quantum-native positional encoding (PE),
qubit-wise edge features, the Quantum Circuit Representation (QCR) node, and the message passing
(MP) scheme.

For the experiments, we utilize 6-qubit Trotter circuits subjected to mixed noise damage to perform the
error mitigation task. As a baseline, we employ the Message Passing Neural Network (MPNN) Gilmer
et al. (2017) as a standard graph transformer model without any quantum adaptive modules for
comparison. We systematically add or remove each module to observe its influence on performance.

When the QCR node is turned off, we replace it with a standard graph mean pooling layer to
aggregate node features. Additionally, when the message passing scheme is disabled, we use the
standard adjacency matrix instead of the structure matrix to guide the training process.

Tab. 6 summarizes the results of our ablation studies. Overall, the inclusion of quantum-native modules
significantly enhances the performance of our model, GTranQEM, on QEM tasks. Specifically,
GTranQEM achieves a Mean Absolute Error (MAE) of 0.0315 ± 0.0272, noticeably outperforming
the baseline MPNN, which attains an MAE of 0.0416± 0.0347. We also report the highest Circuit
Improvement Ratio (CIR), demonstrating the effectiveness of our approach.
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