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Abstract

Synthesizing high-quality tabular data is an important topic in many data science1

applications, ranging from dataset augmentation to privacy protection. However,2

developing expressive generative models for tabular data is challenging due to3

its inherent heterogeneous data types and intricate column-wise distributions. In4

this paper, we introduce TABDIFF, a unified diffusion framework that models5

all multi-modal distributions of mixed-type tabular data in one model. Our key6

insight is to design different continuous-time diffusion processes for numerical7

and categorical data, and learn one model to simultaneously predict the noise for8

different modalities. To counter the high disparity of different feature distributions,9

we further introduce feature-wise learnable diffusion processes to optimally balance10

the generative performance. The entire framework can be efficiently optimized in11

an end-to-end fashion. Comprehensive experiments on seven datasets demonstrate12

that TABDIFF achieves superior average performance over existing competitive13

baselines across five out of six metrics.14

1 Introduction15

Tabular data generation is a fundamental and important problem in many data processing and analysis16

tasks, such as training data augmentation (Fonseca & Bacao, 2023), data privacy protection (Assefa17

et al., 2021; Hernandez et al., 2022), and missing value imputation (You et al., 2020; Zheng &18

Charoenphakdee, 2022). The problem is highly challenging due to the inherent heterogeneous data19

types and intricate column-wise distributions. In the past few years, numerous deep generative models20

have been proposed for tabular data generation with autoregressive models (Borisov et al., 2023),21

VAEs (Liu et al., 2023), and GANs (Xu et al., 2019). Recently, with the rapid progress in diffusion22

models (Ho et al., 2020; Song et al., 2021; Rombach et al., 2022), researchers have also explored23

extending the framework for tabular data (Kim et al., 2022; Kotelnikov et al., 2023; Zhang et al.,24

2024). However, the advanced diffusion models are mainly designed for continuous data with Gaus-25

sian perturbation and cannot handle tabular categorical features. Existing methods typically rely on26

transforming these features into continuous space via various encoding techniques (Zheng & Charoen-27

phakdee, 2022; Zhang et al., 2024) or learning separate discrete-time diffusion processes (Kotelnikov28

et al., 2023; Lee et al., 2023). However, it has been shown that these solutions either are trapped with29

suboptimal performance due to encoding overhead or cannot capture complex co-occurrence patterns30

of different modalities because of low model capacity. As a result, we seek to develop a unified and31

expressive diffusion model in the joint space of continuous and discrete features.32

In this paper, we present TABDIFF, a unified diffusion framework for tabular data generation. To33

handle heterogeneous data types, we propose a novel continuous-time diffusion process that perturbs34

numerical and categorical features jointly with continuous and discrete noise, and learn one model35

to simultaneously predict the noise for different modalities. To counteract the high heterogeneity36

in feature distributions, we further develop principled feature-wise learnable diffusion processes to37
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optimally allocate the generative capacity. We parameterize TABDIFF with transformers processing38

different input types and optimize the entire framework efficiently in an end-to-end fashion. We39

conduct comprehensive experiments by comparing TABDIFF with eight state-of-the-art methods40

on seven widely adopted tabular benchmarks. The experimental results demonstrate that TABDIFF41

consistently outperforms previous methods over five out of six distinct evaluation metrics, suggesting42

our superior generative capacity on mixed-type tabular data.43

2 Method44

2.1 Overview45
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Figure 1: A high-level overview of TABDIFF. TABDIFF operates by
normalizing numerical columns and converting categorical columns
into one-hot vectors with an extra [MASK] class. Distinct forward
diffusion processes are applied to each type, with each column’s noise
rate controlled by customized, learned schedules. News samples are
generated via reverse diffusion, with the denoising network gradually
denoising x1 into x̂0 and followed by the inverse transform to recover
the original format.

Notations. For a given mixed-46

type tabular dataset T , we de-47

note the number of numeri-48

cal features and categorical49

features as Mnum and Mcat,50

respectively. The dataset is51

represented as a collection of52

data entries T = {x} =53

{[xnum,xcat]}, where each54

data entry x is a concate-55

nated vector consisting of56

its numerical features xnum57

and categorical features xcat.58

We represent the i-th numer-59

ical feature as xnum
i ∈ R,60

and represent the j-th cat-61

egorical feature as xcat
j ∈62

{1, ..., Cj} with Cj finite cat-63

egories. Hence, we have64

xnum ∈ RMnum and xcat ∈65 ∏Mcat

j=1 {1, ..., Cj}.66

Different from common data67

types such as images and text,68

developing generative models69

for tabular data is challenging70

as the distribution is determined by multi-modal data. We therefore propose TABDIFF, a unified gen-71

erative model for modeling the joint distribution p(x) using a continuous-time diffusion framework.72

TABDIFF can learn the distribution from finite samples and generate faithful, diverse, and novel73

samples unconditionally. We provide a high-level overview in Figure 1, which includes a forward74

diffusion process and a reverse generative process, both defined in continuous time. The diffusion75

process gradually adds noise to data, and the generative process learns to recover the data from prior76

noise distribution with neural networks parameterized by θ.77

2.2 Unified Diffusion Model78

Our unified diffusion framework is designed to directly operate on the data space and naturally handle79

each tabular column in its built-in datatype, both numerical and categorical. To counter the disparity80

in these datatypes, we thus introduce a hybrid forward process that gradually increases noise in both81

numerical and categorical column types with two different diffusion schedules σ. Let {xt}t=[0,1]82

denote a sequence of data in the diffusion process indexed by a continuous time variable t ∈ [0, 1],83

where x0 ∼ p0 are i.i.d. samples from real data distribution and x1 ∼ p1 are pure noise from prior84

distribution. The hybrid forward diffusion process can be then represented as (Ho et al., 2020):85

q(xt | x0) = q (xnum
t | xnum

0 ,σnum(t)) · q
(
xcat
t | xcat

0 ,σcat(t)
)
. (1)

Gaussian Diffusion for Numerical Features, The forward diffusion for continuous features is86

formulated as the solution to a stochastic differential equation (SDE) dx = f(x, t)dt + g(t)dw,87
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where f(·, t) : RMnum → RMnum is the drift coefficient, g(·) : R → R is the diffusion coefficient, and88

w is the standard Wiener process (a.k.a, Brownian motion). The reverse process can be formulated89

as a probability flow ordinary differential equation (ODE) dx =
[
f(x, t)− 1

2g(t)
2∇x log pt(x)

]
dt,90

where ∇x log pt(x) is the score function of x and this yields the backward trajectory of x as t goes91

from 1 to 0 (Song et al., 2021) . In this paper, we use the VE formulation (Song & Ermon, 2019;92

Song et al., 2021; Karras et al., 2022) with f(·, t) = 0 and g(t) =
√
2[ ddtσnum(t)]σnum(t) such that93

the forward process can be written as:94

xnum
t = xnum

0 + σnum(t)ϵ, ϵ ∼ N (0, IMnum). (2)
The reverse diffusion process can then be formulated accordingly as:95

dxnum = −[
d

dt
σnum(t)]σnum(t)∇x log pt(x

num)dt. (3)

We train the diffusion model for numerical features via denoising score matching:96

Lnum = Ex0∼p(x0)Et∼p(t)Eϵ∼N (0,IMnum ) ∥µnum
θ (xt;x0, t)− ϵ∥22 , (4)

Masked Diffusion for Categorical Features, For categorical features, we borrow the most recently97

developed discrete diffusion schema (Sahoo et al., 2024). We define Cat(·;π) as the categorical98

distribution over K classes with probabilities given by π ∈ ∆K , where ∆K is the K-simplex. Let99

the K-th category correspond to a special [MASK] token and m ∈ {0, 1}K be the one-hot vector100

for it, i.e., mK = 1. For forward masking, we set the target prior distribution π = m as the masked101

absorbing state, and diffuse via interpolating between real data distribution and the prior:102

q(xcat
t |xcat

0 ) = Cat(xcat
t ;αtx

cat
0 + (1− αt)m), (5)

where αt ∈ [0, 1] is a strictly decreasing function of t. Here we parameterize αt = exp(−σcat(t)),103

where σcat(t) : [0, 1] → R+. For the reverse process, we introduce a neural network model104

xθ(xt, t) : V × [0, 1] → ∆K to estimate x0, through which we can approximate the unknown true105

posterior as:106

pθ(x
cat
s |xcat

t ) =

{
Cat(xcat

s ;xcat
t ) xcat

t ̸= m,

Cat
(
xcat
s ;

(1−αs)m+(αs−αt)µ
cat
θ (xt,t)

1−αt

)
xt = m.

(6)

where s < t are any two arbitrary times over the continuous time. Previous works (Kingma et al.,107

2023) have shown that increasing discretization resolution can help approximate tighter evidence108

lower bound (ELBO). Therefore, we optimize the likelihood bound Lcat under continuous time limit:109

Lcat = Eq

∫ t=1

t=0

α′
t

1− αt
log⟨µcat

θ (xt, t),x
cat
0 ⟩dt, (7)

where α′
t is the first order derivative of αt.110

Consolidating Lnum and Lcat we derive the total loss L with weight terms λnum(t) and λcat(t) as:111

L = λnumLnum + λcatLcat (8)

2.3 Adaptive Noise Schedule112

To balance the trade-off between the learnable noise schedule’s flexibility and robustness, we design113

two function families: the power mean numerical scheduler and the log-linear categorical scheduler.114

Power-mean scheduler for numerical features, For the numerical noise scheduler σnum(t) in eq. (2),115

we define σnum(t) = [σnum
i (t)]. For ∀i ∈ {1, · · · ,Mnum}:116

σnum
i (t) = (σ

1
ρi

min + t(σ
1
ρi
max − σ

1
ρi

min)
ρi . (9)

and we fix the same initial and final noise levels across all numerical features as σnum
i (0) = σmin and117

σnum
i (1) = σmax.118

Log-linear scheduler for categorical features, For the categorical noise scheduler σcat(t) in sec-119

tion 2.2, we define σcat(t) = [σcat
j (t)]. For ∀j ∈ {1, · · · ,Mcat}:120

σcat
j (t) = − log(1− tkj ) (10)

We update Mnum +Mcat parameters ρ1, · · · , ρMnum and k1, · · · , kMcat via backpropagation without121

the need of modifying the loss function.122
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3 Experiment123

3.1 Experimental Setup124

Datasets. We conduct experiments on seven real-world tabular datasets consisting of both numerical125

and categorical attributes: Adult, Default, Shoppers, Magic, Faults, Beijing, News, and Diabetes.126

Detailed introduction of the datasets is in Appendix A.1.127

Baselines. We compare the proposed TABDIFF with eight popular synthetic tabular data generation128

methods under four categories. 1) GAN-based method: CTGAN (Xu et al., 2019). 3) VAE-based129

methods: TVAE (Xu et al., 2019) and GOGGLE (Liu et al., 2023). 4) Autoregressive Language130

Model: GReaT (Borisov et al., 2023). 5) Diffusion-based methods: STaSy (Kim et al., 2023),131

CoDi (Lee et al., 2023), TabDDPM (Kotelnikov et al., 2023) and TabSyn (Zhang et al., 2024).132

Evalution Methods. Following previous methods (Zhang et al., 2024), We evaluate the quality of133

the synthetic data using six distinct metrics: Shape, Trend, α-Precision, β-Recall, Detection, and134

Machine Learning Efficiency (MLE). Among these metrics, Shape, Trend, α-Precision, β-Recall,135

and Detection evaluate if the synthetic data can faithfully recover the ground-truth data distribution,136

while MLE evaluates the synthetic data’s utility on downstream tasks. A detailed introduction of137

these metrics is in Appendix A.2.138

3.2 Results139

In Table 1, we present the performance comparison of all methods using the five metrics. For each140

metric, we report the average score with standard deviation across the seven datasets. As demonstrated141

in the Table, TABDIFF yields significant improvement over the competitive baselines on five out of142

the six metrics, except for the Machine Learning Efficiency task, where TABDIFF achieves similar143

performance compared to TabSyn. Notably, even on Shape and Trend, where the state-of-the-art144

(SOTA) performance is already extremely high, leaving little room for improvement, TABDIFF still145

achieved over 10% performance improvement. These results thoroughly demonstrate the capacity of146

TABDIFF in modeling multi-modal multivariate joint distributions. The detailed experimental results147

on each dataset is presented in Appendix B.148

Table 1: Comparison of the quality of synthetic data using six metrics. Each column represents the
mean performance with std on each metric across seven datasets.

Methods Shape↓ Trend↓ α-Precision↑ β-Recall↑ Detection↑ MLE div↓
CTGAN 15.99±4.72 16.36±15.72 82.40±13.19 23.11±10.45 64.44±10.72 23.73±39.80

TVAE 15.97±16.26 16.43±16.82 75.85±28.99 25.32±10.00 52.50±31.13 20.15±27.89

GOGGLE 17.91±18.07 28.18±25.33 70.82±26.24 9.78±6.62 33.79±34.33 42.06±51.94

GReaT 14.20±14.71 40.52±46.25 80.87±8.12 42.86±4.42 51.18±12.41 13.31±23.03

STaSy 7.72±7.01 7.77±6.43 88.91±2.98 42.32±8.66 60.83±10.98 10.95±21.64

CoDi 21.56±21.59 23.23±23.35 84.29±11.75 27.12± 34.35±32.21 30.18±32.01

TabDDPM 16.93±19.47 11.95±13.44 72.48±43.18 35.44±26.17 70.44±44.19 11.95±16.88

TabSyn 1.35±1.44 2.33±2.39 97.86±1.58 46.77±8.30 91.56±15.27 5.46±10.54

TABDIFF 1.17±1.26 1.80±1.85 98.16±1.35 49.09±6.62 97.87±2.34 5.71±12.27

Improv. 13.32% 22.64% 3.1% 4.9% 6.9% −

4 Conclusion149

In this paper, we introduced TABDIFF, a unified diffusion framework for generating high-quality150

synthetic data. TABDIFF combines a hybrid diffusion process to handle numerical and categor-151

ical features in their native formats. To address the disparate distributions of features and their152

interrelationships, we further introduced several key innovations, including learnable column-wise153

noise schedules. We conducted extensive experiments using a diverse set of datasets and metrics,154

comprehensively comparing TABDIFF with existing approaches. The results demonstrate TABDIFF’s155

superior capacity in learning the original data distribution and generating faithful and diverse synthetic156

data to power downstream tasks.157
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A Detailed Experiment Setups218

A.1 Datasets219

We use seven tabular datasets from UCI Machine Learning Repository1: Adult, Default, Shoppers,220

Magic, Beijing, News, and Diabetes, where each tabular dataset is associated with a machine-learning221

task. Classification: Adult, Default, Magic, Shoppers, and Diabetes. Regression: Beijing and News.222

The statistics of the datasets are presented in Table 2.

Table 2: Statistics of datasets. # Num stands for the number of numerical columns, and # Cat stands
for the number of categorical columns.

Dataset # Rows # Num # Cat # Train # Validation # Test Task

Adult 48, 842 6 9 28, 943 3, 618 16, 281 Classification
Default 30, 000 14 11 24, 000 3, 000 3, 000 Classification
Shoppers 12, 330 10 8 9, 864 1, 233 1, 233 Classification
Magic 19, 019 10 1 15, 215 1, 902 1, 902 Classification
Beijing 43, 824 7 5 35, 058 4, 383 4, 383 Regression
News 39, 644 46 2 31, 714 3, 965 3, 965 Regression
Diabetes 101, 766 9 27 61, 059 2, 0353 20, 354 Classification

223

A.2 Metrics224

A.2.1 Shape and Trend225

Shape and Trend are proposed by SDMetrics2. They are used to measure the column-wise density226

estimation performance and pair-wise column correlation estimation performance, respectively. Shape227

uses Kolmogorov-Sirnov Test (KST) for numerical columns and the Total Variation Distance (TVD)228

for categorical columns to quantify column-wise density estimation. Trend uses Pearson correlation229

for numerical columns and contingency similarity for categorical columns to quantify pair-wise230

correlation.231

Shape. Kolmogorov-Sirnov Test (KST): Given two (continuous) distributions pr(x) and ps(x) (r232

denotes real and s denotes synthetic), KST quantifies the distance between the two distributions using233

the upper bound of the discrepancy between two corresponding Cumulative Distribution Functions234

(CDFs):235

KST = sup
x

|Fr(x)− Fs(x)|, (11)

where Fr(x) and Fs(x) are the CDFs of pr(x) and ps(x), respectively:236

F (x) =

∫ x

−∞
p(x)dx. (12)

Total Variation Distance: TVD computes the frequency of each category value and expresses it as a237

probability. Then, the TVD score is the average difference between the probabilities of the categories:238

TVD =
1

2

∑
ω∈Ω

|R(ω)− S(ω)|, (13)

where ω describes all possible categories in a column Ω. R(·) and S(·) denotes the real and synthetic239

frequencies of these categories.240

Trend. Pearson Correlation Coefficient: The Pearson correlation coefficient measures whether two241

continuous distributions are linearly correlated and is computed as:242

ρx,y =
Cov(x, y)

σxσy
, (14)

1https://archive.ics.uci.edu/datasets
2https://docs.sdv.dev/sdmetrics
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where x and y are two continuous columns. Cov is the covariance, and σ is the standard deviation.243

Then, the performance of correlation estimation is measured by the average differences between the244

real data’s correlations and the synthetic data’s corrections:245

Pearson Score =
1

2
Ex,y|ρR(x, y)− ρS(x, y)|, (15)

where ρR(x, y) and ρS(x, y)) denotes the Pearson correlation coefficient between column x and246

column y of the real data and synthetic data, respectively. As ρ ∈ [−1, 1], the average score is divided247

by 2 to ensure that it falls in the range of [0, 1], then the smaller the score, the better the estimation.248

Contingency similarity: For a pair of categorical columns A and B, the contingency similarity score249

computes the difference between the contingency tables using the Total Variation Distance. The250

process is summarized by the formula below:251

Contingency Score =
1

2

∑
α∈A

∑
β∈B

|Rα,β − Sα,β |, (16)

where α and β describe all the possible categories in column A and column B, respectively. Rα,β252

and Sα,β are the joint frequency of α and β in the real data and synthetic data, respectively.253

A.2.2 α-Precision and β-Recall254

Following Liu et al. (2023) and Alaa et al. (2022), we adopt the α-Precision and β-Recall proposed255

in Alaa et al. (2022), two sample-level metric quantifying how faithful the synthetic data is. In256

general, α-Precision evaluates the fidelity of synthetic data – whether each synthetic example comes257

from the real-data distribution, β-Recall evaluates the coverage of the synthetic data, e.g., whether258

the synthetic data can cover the entire distribution of the real data (In other words, whether a real data259

sample is close to the synthetic data.)260

A.2.3 Detection261

The detection measures the difficulty of detecting the synthetic data from the real data when they are262

mixed. We use the classifer-two-sample-test (C2ST) implemented by SDMetrics, where a logistic263

regression model plays the role of a detector.264

A.2.4 Machine Learning Efficiency265

In MLE, each dataset is first split into the real training and testing set. The generative models are266

learned on the real training set. After the models are learned, a synthetic set of equivalent size is267

sampled.268

The performance of synthetic data on MLE tasks is evaluated based on the divergence of test scores269

using the real and synthetic training data. Therefore, we first train the machine learning model on270

the real training set, split into training and validation sets with a 8 : 1 ratio. The classifier/regressor271

is trained on the training set, and the optimal hyperparameter setting is selected according to the272

performance on the validation set. After the optimal hyperparameter setting is obtained, the corre-273

sponding classifier/regressor is retrained on the training set and evaluated on the real testing set. The274

performance of synthetic data is obtained in the same way.275

B Detailed Experiments Results276

In the following sections, we present the detailed results on each metric and dataset.277

B.1 Faithfulness278

The faithfulness of synthetic data is measured across Shape, Trend, α-precision, β-recall, and CS2T279

scores. The corresponding detailed results measured on all datasets are presented in Tables 3 to 7.280
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B.2 Performance on Downstream Tasks281

The generated data’s utility on downstream tasks, measured by the Machine Learning Efficiency282

(MLE) is presented in Table 8.283

Table 3: Error rates (%) of Shape in low-order statistics. Red Bold Face highlights the best score for
each dataset. A lower error rate indicates a closer resemblance between the synthetic and real data
in terms of column-wise density (i.e., superior results). On average TABDIFF outperforms the best
generative baseline model by 13.3% .

Method Adult Default Shoppers Magic Beijing News Diabetes Average

CTGAN 16.84± 0.03 16.83±0.04 21.15±0.10 9.81±0.08 21.39±0.05 16.09±0.02 9.82±0.08 15.99
TVAE 14.22±0.08 10.17±0.05 24.51±0.06 8.25±0.06 19.16±0.06 16.62±0.03 18.86±0.13 15.97
GOGGLE1 16.97 17.02 22.33 1.90 16.93 25.32 24.92 17.91
GReaT2 12.12±0.04 19.94±0.06 14.51±0.12 16.16±0.09 8.25±0.12 OOM OOM 14.20
STaSy 11.29±0.06 5.77±0.06 9.37±0.09 6.29±0.13 6.71±0.03 6.89±0.03 OOM 7.72
CoDi 21.38±0.06 15.77± 0.07 31.84±0.05 11.56±0.26 16.94±0.02 32.27±0.04 21.13±0.25 21.55
TabDDPM3 1.75±0.03 1.57± 0.08 2.72±0.13 1.01±0.09 1.30±0.03 78.75±0.01 31.44±0.05 16.93
TABSYN 0.81±0.05 1.01±0.08 1.44±0.07 1.03±0.14 1.26±0.05 2.06±0.04 1.85±0.02 1.35

TABDIFF 0.63±0.05 1.24±0.07 1.28±0.09 0.78±0.08 1.03±0.05 2.35±0.03 0.89±0.23 1.17
Improv. 22.2% ↓ 0.0% ↓ 11.11% ↓ 14.29% ↓ 18.25% ↓ 0% ↓ 46.39% ↓ 13.3% ↓
1 The results of baselines above TABSYN on datasets, except for Diabetes, are taken from Zhang et al. (2024).
2 We encounter difficulty in reproducing TABSYN’s results, so we report our own runs.
3 GOOGLE set fixed random seed during sampling in the official codes, and we follow it for consistency.
4 GReaT cannot be applied on News for maximum length limit.
5 STaSy runs out of memory on Diabetes that has hight cardinality categorical columns
6 TabDDPM cannot produce meaningful content on the News dataset.

Table 4: Error rates (%) of Trend in low-order statistics. Red Bold Face highlights the best score
for each dataset. A lower error rate indicates a closer resemblance between the synthetic data and
the testing in terms of pair-wise column correlation (i.e., superior results). On average TABDIFF
outperforms the best generative baseline model by 22.6% .

Method Adult Default Shoppers Magic Beijing News Diabetes Average

CTGAN 20.23±1.20 26.95±0.93 13.08±0.16 7.00±0.19 22.95±0.08 5.37±0.05 18.95±0.34 16.36
TVAE 14.15±0.88 19.50±0.95 18.67±0.38 5.82±0.49 18.01±0.08 6.17±0.09 32.74±0.26 16.44
GOGGLE 45.29 21.94 23.90 9.47 45.94 23.19 27.56 28.18
GReaT 17.59±0.22 70.02±0.12 45.16±0.18 10.23±0.40 59.60±0.55 OOM OOM 44.24
STaSy 14.51±0.25 5.96±0.26 8.49±0.15 6.61±0.53 8.00±0.10 3.07±0.04 OOM 7.77
CoDi 22.49±0.08 68.41±0.05 17.78±0.11 6.53±0.25 7.07±0.15 11.10±0.01 29.21±0.12 23.21
TabDDPM 3.01±0.25 4.89±0.10 6.61±0.16 1.70±0.22 2.71±0.09 13.16±0.11 51.54±0.05 11.95
TABSYN 1.93±0.07 2.81±0.48 2.13±0.10 0.88±0.18 3.13±0.34 1.52±0.03 3.90±0.04 2.33

TABDIFF 1.49±0.16 2.55±0.75 1.74±0.08 0.76±0.12 2.59±0.15 1.28±0.04 2.20±0.16 1.80
Improve. 22.8% ↓ 9.3% ↓ 18.3% ↓ 13.6% ↓ 0.0% ↓ 15.8% ↓ 37.3% ↓ 22.6% ↓

Table 5: Comparison of α-Precision scores. Red Bold Face highlights the best score for each dataset.
Higher scores reflect better performance. TABDIFF consistently achieves the best or second-best
score on each dataset and surpasses all other baseline methods on average.

Methods Adult Default Shoppers Magic Beijing News Diabetes Average Ranking

CTGAN 77.74±0.15 62.08±0.08 76.97±0.39 86.90±0.22 96.27±0.14 96.96±0.17 79.89±0.10 82.40 5
TVAE 98.17±0.17 85.57±0.34 58.19±0.26 86.19±0.48 97.20±0.10 86.41±0.17 19.24±0.15 75.85 7
GOGGLE 50.68 68.89 86.95 90.88 88.81 86.41 23.09 70.81 9
GReaT 55.79±0.03 85.90±0.17 78.88±0.13 85.46±0.54 98.32±0.22 OOM OOM 80.87 6
STaSy 82.87±0.26 90.48±0.11 89.65±0.25 86.56±0.19 89.16±0.12 94.76±0.33 OOM 88.91 3
CoDi 77.58±0.45 82.38±0.15 94.95±0.35 85.01±0.36 98.13±0.38 87.15±0.12 64.80±0.53 84.29 4
TabDDPM 96.36±0.20 97.59±0.36 88.55±0.68 98.59±0.17 97.93±0.30 0.00±0.00 28.35±0.11 72.48 8
TABSYN 99.39±0.18 98.65±0.23 98.36±0.52 99.42±0.28 97.51±0.24 95.05±0.30 96.61±0.24 97.86 2

TABDIFF 99.02±0.20 98.49±0.28 99.11±0.34 99.40±0.29 98.06±0.24 97.36±0.17 95.69±0.19 98.21 1
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Table 6: Comparison of β-Recall scores. Red Bold Face highlights the best score for each dataset.
Higher scores reflects better results. TABDIFF consistently achieves the best or second-best β-
Recall score on each dataset and surpasses all other baseline methods on average, indicating that the
generated data spans a broad range of the real distribution. Though some baseline methods attained
higher scores on specific datasets, they fail to demonstrate competitive performance on α-Precision,
as models has to trade off fine-grained details in order to capture a broader range of features.

Methods Adult Default Shoppers Magic Beijing News Diabetes Average Ranking

CTGAN 30.80±0.20 18.22±0.17 31.80±0.350 11.75±0.20 34.80±0.10 24.97±0.29 9.42±0.26 23.11 8
TVAE 38.87±0.31 23.13±0.11 19.78±0.10 32.44±0.35 28.45±0.08 29.66±0.21 4.92±0.13 25.32 7
GOGGLE 8.80 14.38 9.79 9.88 19.87 2.03 3.74 9.78 9
GReaT 49.12±0.18 42.04±0.19 44.90±0.17 34.91±0.28 43.34±0.31 OOM OOM 43.34 3
STaSy 29.21±0.34 39.31±0.39 37.24±0.45 53.97±0.57 54.79±0.18 39.42±0.32 OOM 42.32 4
CoDi 9.20±0.15 19.94±0.22 20.82±0.23 50.56±0.31 52.19±0.12 34.40±0.31 2.70±0.06 27.12 6
TabDDPM 47.05±0.25 47.83±0.35 47.79±0.25 48.46±0.42 56.92±0.13 0.00±0.00 0.03±0.01 35.44 5
TABSYN 47.92±0.23 46.45±0.35 49.10±0.60 48.03±0.50 59.15±0.22 43.01±0.28 33.72±0.16 46.77 2

TABDIFF 51.64±0.20 51.09±0.25 49.75±0.64 47.67±0.31 59.63±0.23 42.10±0.32 41.74±0.17 49.35 1

Table 7: Detection score (C2ST) using logistic regression classifier. Higher scores reflect superior
performance. TABDIFF consistently achieves the best or second-best performance across all datasets.
Notably, TABDIFF demonstrates exceptional performance on Diabetes, which contains many high-
cardinality categorical features, highlighting its advanced capacity in generating faithful categorical
data.

Method Adult Default Shoppers Magic Beijing News Diabetes Average

CTGAN 0.5949 0.4875 0.7488 0.6728 0.7531 0.6947 0.5593 0.6444
TVAE 0.6315 0.6547 0.2962 0.7706 0.8659 0.4076 0.0487 0.5250
GOGGLE 0.1114 0.5163 0.1418 0.9526 0.4779 0.0745 0.0912 0.3380
GReaT 0.5376 0.4710 0.4285 0.4326 0.6893 OOM OOM 0.5118
STaSy 0.4054 0.6814 0.5482 0.6939 0.7922 0.5287 OOM 0.6083
CoDi 0.2077 0.4595 0.2784 0.7206 0.7177 0.0201 0.0008 0.3435
TabDDPM 0.9755 0.9712 0.8349 0.9998 0.9513 0.0002 0.1980 0.7044
TABSYN 0.9910 0.9826 0.9662 0.9960 0.9528 0.9255 0.5953 0.9156

TABDIFF 0.9950 0.9774 0.9843 0.9989 0.9781 0.9308 0.9865 0.9787
Improv. 0.40% ↓ 0.0% ↓ 1.87% ↓ 0.0% ↓ 2.66% ↓ 0.57% ↓ 65.71% ↓ 6.89% ↓

Table 8: Evaluation of Machine Learning Efficiency: AUC and RMSE are used for classification and
regression tasks, respectively. ↑ (↓) denotes whether a higher or lower score shows better performance.
TABDIFF consistently achieves the best or second-best performance across all datasets.

Methods Adult Default Shoppers Magic Beijing News1 Diabetes Average Gap

AUC ↑ AUC ↑ AUC ↑ AUC ↑ RMSE ↓ RMSE ↓ AUC ↑ %

Real .927±.000 .770±.005 .926±.001 .946±.001 .423±.003 .842±.002 .704±.002 0%

CTGAN .886±.002 .696±.005 .875±.009 .855±.006 .902±.019 .880±.016 .569±.004 23.7%
TVAE .878±.004 .724±.005 .871±.006 .887±.003 .770±.011 1.01±.016 .594±.009 20.2%
GOGGLE .778±.012 .584±.005 .658±.052 .654±.024 1.09±.025 .877±.002 .475±.008 42.1%
GReaT .913±.003 .755±.006 .902±.005 .888±.008 .653±.013 OOM OOM 13.3%
STaSy .906±.001 .752±.006 .914±.005 .934±.003 .656±.014 .871±.002 OOM 10.9%
CoDi .871±.006 .525±.006 .865±.006 .932±.003 .818±.021 1.21±.005 .505±.004 30.2%
TabDDPM2 .907±.001 .758±.004 .918±.005 .935±.003 .592±.011 4.86±3.04 .521±.008 11.95%1

TABSYN .909±.001 .763±.002 .914±.004 .937±.002 .547±.009 .850±.024 .684±.002 5.46%

TABDIFF .912±.002 .763±.005 .921±.004 .936±.003 .555±.013 .866±.021 .689±.016 5.76%

1 As in CoDi (Lee et al., 2023), the continuous targets are standardized to avoid large values.
2 TabDDPM fails to produce meaningful News data, so we exclude it from the average gap calculation.

10


	Introduction
	Method
	Overview
	Unified Diffusion Model
	Adaptive Noise Schedule

	Experiment
	Experimental Setup
	Results

	Conclusion
	Detailed Experiment Setups
	Datasets
	Metrics
	Shape and Trend
	-Precision and -Recall
	Detection
	Machine Learning Efficiency


	Detailed Experiments Results
	Faithfulness
	Performance on Downstream Tasks


