
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A REPRODUCIBILITY

All models and data used in our work are publicly available. We additionally provide hyperparameter
details in Appendix 2. The code will be released as a public repository upon publication.

B ADDITIONAL IMPLEMENTATION DETAILS

Moatless-Adapted is an extended version of the moatless-tools library with support for a tree struc-
ture, the ability to revert to earlier versions of the codebase, and the capability to run tests.

The standard implementation of moatless-tools is based on a finite state machine structure where a
state holds information about file context and properties set in the configuration or from previous
states. It can then transition to a new state when an action is executed. The request that initiates the
action is created by an LLM. This follows a linear structure where one state can transition to another
state. In Moatless-Adapted, this model is extended so that a state can expand by using actions to
create more states. The connections between states are then represented in a tree structure with
nodes.

Each state has a file context associated with it. This file context will be included in the prompt
sent to an LLM. To limit the size of the prompt, files are divided into ”spans,” where a span could
be, for example, a section of code (e.g., imports), a class, or a function. These are identified by
span IDs. Thus, the LLM sees a limited part of the code at a time but can request more context by
searching for or adding files and spans. The file context therefore changes over time, and a specific
state of file context is linked to a specific state. In the standard implementation of moatless-tools,
changes to the codebase are made linearly, and each change is saved directly to the file system. In
Moatless-Adapted, however, there is a need to be able to revert to earlier states and thus return to a
previous version of the codebase. To handle this, the code is stored in a git repository where each
change is committed, and each state has a reference to a commit as well as the current patch of the
diff from the initial commit that existed before starting. This way, one can go back to an earlier state
by specifying the state ID, and the commit that was current at that time will be checked out.

The test files present in the file context are run each time the Plan state is initiated, and the test
results are provided to the state. The tests are then run in Docker images built via the SWE-bench
library. To use this approach in a benchmark where a larger number of instances should be able to
run simultaneously, a solution is used where these images are run as pods in a Kubernetes cluster.
Moatless-tools communicates with the testbed by applying patches and running commands via an
API. When a new instance starts, a pod is created which is then reset at each run, applying the
current patch and running tests according to the test command specified in the SWE-bench library.
It’s important to add here that the agent is not aware of the PASS TO PASS or FAIL TO PASS
tests in the SWE-bench harness, but only knows how to run the tests. This corresponds to a real
engineering environment where each project can have its own test commands.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C MCTS HYPERPARAMETERS

The Monte Carlo Tree Search (MCTS) algorithm used in this study employs several hyperparame-
ters.

Table 2: MCTS Hyperparameters
Hyperparameter Description Default
c param UCT exploration parameter 1.41
max expansions Max children per node 5
max iterations Max MCTS iterations 100
provide feedback Enable feedback True
best first Use best-first strategy True
value function temperature Value function temperature 0.2
max depth Max tree depth 20
UCT Score Calculation Parameters
exploration weight UCT exploration weight 1.0
depth weight Depth penalty weight 0.8
depth bonus factor Depth bonus factor 200.0
high value threshold High-value node threshold 55.0
low value threshold Low-value node threshold 50.0
very high value threshold Very high-value threshold 75.0
high value leaf bonus constant High-value leaf bonus 20.0
high value bad children bonus constant High-value bad children bonus 20.0
high value child penalty constant High-value child penalty 5.0
Action Model Parameters
action model temperature Action model temperature 0.2
Discriminator Parameters
number of agents Number of Discriminator Agents 5
number of round Number of debate rounds 3
discriminator temperature Discriminator temperature 1.0

These hyperparameters can be adjusted to fine-tune the MCTS algorithm’s performance for specific
problem domains or computational constraints. The values listed here are the defaults as defined in
the TreeSearchSettings class and the MCTS implementation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D ABILITY OF MCTS TO ESCAPE UNPRODUCTIVE LOOPS VS. BASELINE

Node11

RequestCodeChange RequestCodeChange

EditCode EditCode

Node42 Node50

RequestCodeChange RequestCodeChange

EditCode EditCode

Node71 Node54

RequestCodeChange Finish

EditCode Finished

Node73

100

75

50

25

0

25

50

75

100

R
ew

ar
d

SWE-searchMoatless-adapted

 Start

Node1

SearchCode

Action2

IdentifyCode

Node3

RequestCodeChange

Action4

EditCode

Node5

None

Action5

RequestCodeChange

Action6

EditCode

Node7

RequestCodeChange

Action8

EditCode

Node9

RequestCodeChange

Action10

EditCode

Node11

RequestCodeChange

Action12

EditCode

Node13

RequestCodeChange

Action14

EditCode

Node15

RequestCodeChange

Action16

EditCode

Node17

RequestCodeChange

Action18

EditCode

Node19

RequestCodeChange

Action20

EditCode

Node21

RequestCodeChange

Action22

EditCode

Node23

RequestCodeChange

Action24

EditCode

Node25

[TERMINATED]

Figure 6: Avoiding Repetitive Actions, django django 10914. We found that the base agent can
often get stuck performing repetitive actions that do not bring it closer to solving the issue, and which
commonly lead to unresolvable dead-ends. In this example, the base agent was stuck implementing
wrong tests which continuously returned errors. In contrast, when this happens in SWE-Search, the
Value Agent recognizes this, terminating these trajectories quickly, as happens in Node 73 (orange).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E MODEL INSTANCE RESOLUTION UNIQUENESS

To understand the complementary strengths of different models in resolving software issues, we
analyzed how unique their resolved issue subsets where. Figure 7 illustrates the resolution patterns
for each model across five of the codebases in SWE-bench-lite.

Figure 7: Unique Issue Resolution Patterns Across Models and Libraries. Each column repre-
sents a different Python repository, and each row within a column represents a specific issue. Colored
blocks indicate successful resolution by the corresponding model (see legend). White spaces denote
unresolved issues. This visualization highlights the diverse problem-solving capabilities of different
models across various software domains, demonstrating that no single model dominates across all
issues and libraries.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

F ABILITY OF VALUE FUNCTION TO DISCERN SUCCESSFUL TRAJECTORIES

Before implementing SWE-Search, we conducted a general study across many models to evaluate
the models’ ability to differentiate states which led to resolved vs. unresolved issues. Figure 8 shows
the results of this study. We found that in general, models assigned higher rewards to states which
eventually led to resolved issues. Of particular interest was the Deepseek model, which seemed
to identify critical errors in trajectories effectively. This was also observed in the final agent (see
Fig. 5a).

Meta-Llama-3-8B-In
str

uct

Qwen/Q
wen2-72B-In

str
uct

Qwen/Q
wen2-57B-A

14B-In
str

uct

gpt-4
o

deepse
ek-c

oder-3
3b-in

str
uct

Ave
rage

20

0

20

40

60

80

Av
er

ag
e

S
ta

te
 R

ew
ar

d

Average State Reward Comparison

Resolved Unresolved

Figure 8: Average State Reward Comparison Across Models. This graph compares the average
state rewards assigned by different language models for resolved (green) and unresolved (red) issues.
Error bars indicate standard deviation. Most models consistently assign higher rewards to states
leading to resolved issues, with the exception of the. The ’Average’ column represents the mean
across all models, demonstrating a clear distinction between resolved and unresolved states.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

G VALUE FUNCTION PROMPTS

Value Function Search Prompt

Your task is to evaluate a search action executed by an AI agent, considering the search
parameters, the resulting file context, and the identified code from the search results. Your
evaluation will focus on whether the search action was well-constructed, whether the re-
sulting file context is relevant and useful for solving the problem at hand, and whether the
identified code is appropriate and helpful.

You will be provided with four inputs:

• Problem Statement: This will be provided within the <problem statement> XML
tag and contains the initial message or problem description the coding agent is trying to
solve.

• The Search Request: This will be provided within the <search request> XML tag
and contains the search parameters used by the agent to define the search.

• The Search Result: The content retrieved based on the search parameters provided within
a <search results> XML tag.

• Identified Code: The specific code identified from the search results, provided within the
<identified code> XML tag.

Search request parameters:

• File Pattern (file pattern): Glob patterns (e.g., **/*.py) to filter search results to specific
files or directories.

• Query (query): A natural language query for semantic search.
• Code Snippet (code snippet): Specific code snippets for exact matching.
• Class Names (class names): Specific class names to include in the search.
• Function Names (function names): Specific function names to include in the search.

Evaluation Criteria:

Search Parameters:

• Are they appropriately defined to focus the search on relevant files or code?
• Do they align well with the problem statement?

Resulting File Context:

• Does it contain relevant and useful information for solving the problem?
• Are there missing or irrelevant results indicating a need to refine the search?

Identified Code Review (most crucial):

• Is the identified code directly related to the problem?
• Does it provide the necessary functionality to address the issue?

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Overall Relevance:

• Does the combination of search parameters, file context, and identified code effectively
address the problem?

• Could there be a better approach or improvements?

Reward Scale and Guidelines:

Assign a single integer value between -100 and 100 based on how well the search action,
resulting file context, and identified code addressed the task at hand. Use the following scale:

100:

• Search Parameters: Precisely match the problem needs; no irrelevant or missing elements.
• Identified Code: Completely and accurately solves the problem with no issues.

75 to 99:

• Search Parameters: Well-defined and mostly relevant; minor improvements possible.
• Identified Code: Effectively addresses the problem with minor issues that are easily fix-

able.

0 to 74:

• Search Parameters: Partially relevant; noticeable inaccuracies or omissions.
• Identified Code: Partially solves the problem but has significant gaps or errors.

-1 to -49:

• Search Parameters: Misaligned with the problem; poorly defined.
• Identified Code: Fails to address the problem effectively; may cause confusion.

-50 to -100:

• Search Parameters: Irrelevant or incorrect; hinders problem-solving.
• Identified Code: Unrelated to the problem; provides no useful information.

Output Format:

Please ensure your output strictly adheres to the following structure:
<Explanation> [A brief explanation of the evaluation in max one paragraph.]
<Reward> [A single integer reward value between -100 and 100]

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Value Function Plan Prompt

Your role is to evaluate the executed action of the search tree that our AI agents are travers-
ing, to help us determine the best trajectory to solve a programming issue. The agent is
responsible for identifying and modifying the correct file(s) in response to the problem state-
ment.

Input Data Format:

• Problem Statement: This will be provided within the <problem statement> XML
tag and contains the initial message or problem description the coding agent is trying to
solve.

• File Context: The relevant code context will be provided within the <file context>
XML tag and pertains to the state the agent is operating on.

• History: The sequence of state transitions and actions taken prior to the current state will
be contained within the <history> XML tag. This will include information on the
parts of the codebase that were changed, the resulting diff, test results, and any reasoning
or planned steps.

• Executed Action: The last executed action of the coding agent will be provided within the
<executed action> XML tag, this includes the proposed changes and the resulting
diff of the change.

• Full Git Diff: The full Git diff up to the current state will be provided within the
<full git diff> XML tag. This shows all changes made from the initial state to
the current one and should be considered in your evaluation to ensure the modifications
align with the overall solution.

• Test Results: The results of any test cases run on the modified code will be provided
within the <test results> XML tag. This will include information about passed,
failed, or skipped tests, which should be carefully evaluated to confirm the correctness of
the changes.

Evaluation Criteria:

Code Correctness: Evaluate whether the implemented code correctly addresses the prob-

lem. This includes verifying that the correct lines or sections of code have been identified
and modified appropriately. Ensure that the changes are both syntactically and logically cor-
rect, and that the diffs accurately represent the intended modifications without introducing
unrelated changes. Assess whether the modifications effectively solve the problem without
introducing new issues or inefficiencies.

Mistakes in Editing Code: Identify any errors made during the code editing process. This

involves checking for unintended deletions, incorrect modifications, or syntax errors intro-
duced through the changes. Ensure that the Git diffs maintain integrity by only including the
intended modifications and no accidental alterations to unrelated parts of the codebase.

Testing: Assess the proposed changes against existing test cases. Determine if the changes

pass all relevant tests and evaluate whether any test failures could have been reasonably
foreseen and avoided by the agent. Consider whether the agent anticipated potential test
outcomes and addressed them proactively in the solution.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

History and Action Evaluation: Review the agent’s previous state transitions and actions

to determine if the current action contributes positively to solving the problem. Pay special
attention to detect if the agent is engaging in repetitive actions without making meaningful
progress. Evaluate whether the last executed action is appropriate and logical given the
current progress and history of actions.

Reward Scale and Guidelines:

The reward value must be based on how confident you are that the agent’s solution is the
most optimal one possible with no unresolved issues or pending tasks. The scale ranges
from -100 to 100, where:

100: You are fully confident that the proposed solution is the most optimal possible, has

been thoroughly tested, and requires no further changes.

75-99: The approach is likely the best one possible, but there are minor issues or opportu-

nities for optimization. All major functionality is correct, but some small improvements or
additional testing may be needed. There might be some edge cases that are not covered.

0-74: The solution has been partially implemented or is incomplete or there are likely alter-

native approaches that might be better, i.e., this is likely not the most optimal approach. The
core problem might be addressed, but there are significant issues with tests, logical flow, or
side effects that need attention. There are likely alternative approaches that are much better.

0: The solution is not yet functional or is missing key elements. The agent’s assertion that

the task is finished is incorrect, and substantial work is still required to fully resolve the issue.
Modifying the wrong code, unintentionally removing or altering existing code, introducing
syntax errors, or producing incorrect diffs fall into this range.

-1 to -49: The proposed solution introduces new issues or regresses existing functionality,

but some elements of the solution show potential or may be salvageable. Repetitive actions
without progress fall into this range.

-50 to -100: The solution is entirely incorrect, causing significant new problems, or fails

to address the original issue entirely. Immediate and comprehensive changes are necessary.
Persistent repetitive actions without progress should be heavily penalized.

Output Format:

Please ensure your output strictly adheres to the following structure:
<Explanation> [Your brief explanation of the evaluation in max one paragraph.]
<Reward> [A single integer reward value between -100 and 100]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Value Function Request More Context Prompt

Your role is to evaluate the executed action of the search tree that our AI agents are travers-
ing, specifically for the RequestMoreContext action. This action is used when the agent
requests to see code that is not in the current context, potentially revealing an understand-
ing that relevant code is wholly or partially not visible, and enabling the agent to uncover
important missing information.

Evaluation Criteria:

• Relevance: Are the requested files and code spans likely to be relevant to the problem at
hand?

• Necessity: Is the additional context truly needed, or is the agent unnecessarily expanding
the scope?

• Specificity: Has the agent been specific in its request, or is it asking for overly broad
sections of code?

• Contextual Understanding: Does the request demonstrate a good understanding of the
codebase structure and the problem domain?

• Efficiency: Is the agent making targeted requests, or is it asking for too much unnecessary
information?

• Progress: Does this request seem likely to move the problem-solving process forward?

Input Data Format:

• Problem Statement: Provided within the <problem statement> XML tag, contain-
ing the initial problem description.

• File Context: The current code context within the <file context> XML tag.
• History: Previous state transitions and actions within the <history> XML tag.
• Executed Action: The RequestMoreContext action details within the
<executed action> XML tag, including the files and code spans requested.

Reward Scale and Guidelines: Assign a single integer value between -100 and 100 based

on how well the RequestMoreContext action addresses the task at hand:

100: Perfect request that is highly likely to provide crucial missing information.

75-99: Good request with minor improvements possible in specificity or relevance.

0-74: Partially relevant request, but with noticeable inaccuracies or potential for better tar-

geting.

-1 to -49: Poor request that is likely to provide mostly irrelevant information or expand the

scope unnecessarily.

-50 to -100: Very poor request that is entirely irrelevant or demonstrates a fundamental

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

misunderstanding of the problem or codebase structure.

Output Format: Please ensure your output strictly adheres to the following structure:

<Explanation> [Your explanation of the evaluation in max two paragraphs.]
<Reward> [A single integer reward value between -100 and 100]

Value Function Edit Prompt

Your role is to evaluate the executed action of the search tree that our AI agents are travers-
ing, with the goal of ensuring that a complete and verified solution is in place. The agent
believes that it has finished solving the programming issue.

Evaluation Criteria

Solution Correctness and Quality: Verify that the proposed changes logically address the

problem statement. Ensure the changes fit contextually within the existing codebase without
introducing new issues. Confirm syntactic correctness and that there are no syntax errors
or typos. Assess whether the solution represents an overall improvement and is the most
optimal approach possible.

Accuracy of Code Modifications: Check that the agent correctly identified the appropriate

code spans to modify. Ensure the changes made are accurate and do not include unintended
modifications. Look for any alterations to unrelated parts of the code that could introduce
new problems.

Testing and Test Results Analysis:

• Importance of Test Updates: It is crucial that the agent updated existing tests or added
new tests to verify the solution. Failure to do so should be heavily penalized. The agent
should ensure that code changes are validated by appropriate tests to confirm correctness
and prevent regressions.

• Assess Test Coverage: Evaluate whether the agent has adequately tested the solution,
including adding new tests for new functionality or changes. Verify that the tests cover
relevant cases and edge conditions.

• Penalization for Lack of Testing: When calculating the reward, heavily penalize the
agent if they failed to update or add necessary tests to verify the solution.

Consideration of Alternative Approaches: Always assess whether there could be a better

alternative approach to the problem. Mention any potential alternative solutions in your
explanation if they are applicable.

Identification and Explanation of Mistakes: If the agent made incorrect actions, identify

exactly where and why the mistakes occurred. Explain the impact of any syntax errors,
incorrect code modifications, or unintended changes.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Assessment of Agent’s Completion Assertion: Verify if the agent’s assertion that the task

is finished is accurate. Determine if substantial work is still required to fully resolve the
issue and address this in your evaluation.

Input Data Format:

• Problem Statement: This will be provided within the <problem statement> XML
tag and contains the initial message or problem description the coding agent is trying to
solve.

• File Context: The relevant code context will be provided within the <file context>
XML tag and pertains to the state the agent is operating on.

• History: The sequence of state transitions and actions taken prior to the current state will
be contained within the <history> XML tag. This will include information on the
parts of the codebase that were changed, the resulting diff, test results, and any reasoning
or planned steps.

• Reasoning for Completion: The reasoning provided by the agent for why the task is
finished will be provided within the <reasoning for completion> XML tag. This
includes the agent’s explanation of why no further changes or actions are necessary.

• Full Git Diff: The full Git diff up to the current state will be provided within the
<full git diff> XML tag. This shows all changes made from the initial state to
the current one and should be considered in your evaluation to ensure the modifications
align with the overall solution.

• Test Results: The results of any test cases run on the modified code will be provided
within the <test results> XML tag. This will include information about passed,
failed, or skipped tests, which should be carefully evaluated to confirm the correctness of
the changes.

Reward Scale and Guidelines:

The reward value must be based on how confident you are that the agent’s solution is the
most optimal one possible with no unresolved issues or pending tasks. It is important that
the agent updated or added new tests to verify the solution; failure to do so should be heavily
penalized. The scale ranges from -100 to 100, where:

100: You are fully confident that the proposed solution is the most optimal possible, has

been thoroughly tested (including updated or new tests), and requires no further changes.

75-99: The approach is likely the best one possible, but there are minor issues or opportu-

nities for optimization. All major functionality is correct, but some small improvements or
additional testing may be needed. There might be some edge cases that are not covered.

0-74: The solution has been partially implemented or is incomplete, or there are likely

alternative approaches that might be better. The core problem might be addressed, but there
are significant issues with tests (especially if the agent did not update or add new tests),
logical flow, or side effects that need attention.

0: The solution is not yet functional or is missing key elements. The agent’s assertion that

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

the task is finished is incorrect, and substantial work is still required to fully resolve the
issue.

-1 to -49: The proposed solution introduces new issues or regresses existing functionality,

but some elements show potential or may be salvageable. Modifying the wrong code, unin-
tentionally removing or altering existing code, introducing syntax errors, producing incorrect
diffs, or failing to update or add necessary tests fall into this range.

-50 to -100: The solution is entirely incorrect, causing significant new problems or failing

to address the original issue entirely. Immediate and comprehensive changes are necessary.
Persistent repetitive actions without progress, or failure to update or add tests when neces-
sary, should be heavily penalized.

Output Format: Please ensure your output strictly adheres to the following structure:

<Explanation> [Your explanation of the evaluation in max two paragraphs.]
<Reward> [A single integer reward value between -100 and 100]

H MOATLESS TOOLS STATE RIGIDITY

The Moatless-tools version (v0.0.2) enforces a rigid transition structure where agents must follow
a specific sequence (search → identify → plan → edit). The implementation of this state transition
system can be found here: 2.

H.1 STATE TRANSITION SYSTEM

The transition system is configured through a function that accepts three optional parameters:

• max tokens in edit prompt: Controls the token limit for edit operations
• global params: Defines parameters applicable across all states
• state params: Specifies state-specific parameters

H.2 STATE FLOW

The system defines a directed graph of states with specific transition rules:

1. Search Phase (SearchCode):
• Initial state for code operations
• Can transition to IdentifyCode upon successful search
• Can move directly to PlanToCode when complete

2. Identification Phase (IdentifyCode):
• Processes search results
• Can return to SearchCode if needed
• Progresses to DecideRelevance when finished

3. Decision Phase (DecideRelevance):
• Evaluates identified information
• Can trigger new searches

2https://github.com/aorwall/moatless-tools/blob/8ec5d5193b6dce88ec6273c7ec31f9ea3a0bba6f/
moatless/transitions.py#L184

29

https://github.com/aorwall/moatless-tools/blob/8ec5d5193b6dce88ec6273c7ec31f9ea3a0bba6f/moatless/transitions.py#%23L184
https://github.com/aorwall/moatless-tools/blob/8ec5d5193b6dce88ec6273c7ec31f9ea3a0bba6f/moatless/transitions.py#%23L184

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

• Transitions to planning when ready, excluding message field

This rigid structure ensures that tools are accessed in a predictable sequence, preventing conflicts
while maintaining system integrity. Additional transitions defined in CODE TRANSITIONS com-
plete the state machine’s behavior set.

I COST ANALYSIS

Table 3 presents the API costs for Moatless-Adapted and SWE-Search across different models.
Search-based exploration of multiple solutions results in higher computational costs.

Model Moatless-Adapted SWE-Search
GPT-4o $40.86 $576.00
GPT-4o-mini $9.90 $52.34
Qwen-2.5-72b-Instruct* $8.50 $42.50
DeepseekCoderV2.5 $3.66 $18.37
Llama-3.1-70b-Instruct* $9.00 $45.00
*Estimated costs based on comparable API pricing

Table 3: Cost comparison (USD) between Moatless-Adapted and SWE-Search

J COMPUTE-MATCHING ANALYSIS

Table 4 compares SWE-Search against compute-matched baselines. SWE-Search Pass@5 uses the
5 generated answers in 1 run, while for Moatless-Adapted uses the 5 generated solutions across 5
runs. We avoid doing the comparison on GPT-4o to avoid exorbitant API costs.

Model SWE-Search Moatless-Adapted
Pass@1 Pass@5 Pass@5

GPT-4o 31.0 34.0 -
GPT-4o-mini 17.0 22.3 17.0
Qwen-2.5-72b-Instruct 24.7 25.7 22.3
DeepseekCoderV2.5 21.0 23.3 22.0
Llama-3.1-70b-Instruct 17.7 22.3 21.7

Table 4: Performance comparison (%) between SWE-Search and compute-matched baselines

K INTERACTIVE DEMO

To help visualize the search process and provide transparency into our method, we provide an in-
teractive demo at http://74.241.196.91. The demo presents a tree visualization where each
node represents a state/action pair in the search process. Clicking on a node reveals detailed infor-
mation including:

• Complete LLM interactions and tool calls
• State-specific value function outputs and reasoning
• Context information used for decision-making
• File changes and test results where applicable
• Test creation/execution and their outputs

This interface allows readers to explore how the search algorithm navigates through different states,
makes decisions, and evaluates potential solutions. The visualization particularly highlights how
state-specific value functions guide the exploration process and how the discriminator compares
candidate solutions.

30

http://74.241.196.91

