Under review as a conference paper at ICLR 2025

A REPRODUCIBILITY

All models and data used in our work are publicly available. We additionally provide hyperparameter
details in Appendix[2] The code will be released as a public repository upon publication.

B ADDITIONAL IMPLEMENTATION DETAILS

Moatless-Adapted is an extended version of the moatless-tools library with support for a tree struc-
ture, the ability to revert to earlier versions of the codebase, and the capability to run tests.

The standard implementation of moatless-tools is based on a finite state machine structure where a
state holds information about file context and properties set in the configuration or from previous
states. It can then transition to a new state when an action is executed. The request that initiates the
action is created by an LLM. This follows a linear structure where one state can transition to another
state. In Moatless-Adapted, this model is extended so that a state can expand by using actions to
create more states. The connections between states are then represented in a tree structure with
nodes.

Each state has a file context associated with it. This file context will be included in the prompt
sent to an LLM. To limit the size of the prompt, files are divided into ’spans,” where a span could
be, for example, a section of code (e.g., imports), a class, or a function. These are identified by
span IDs. Thus, the LLM sees a limited part of the code at a time but can request more context by
searching for or adding files and spans. The file context therefore changes over time, and a specific
state of file context is linked to a specific state. In the standard implementation of moatless-tools,
changes to the codebase are made linearly, and each change is saved directly to the file system. In
Moatless-Adapted, however, there is a need to be able to revert to earlier states and thus return to a
previous version of the codebase. To handle this, the code is stored in a git repository where each
change is committed, and each state has a reference to a commit as well as the current patch of the
diff from the initial commit that existed before starting. This way, one can go back to an earlier state
by specifying the state ID, and the commit that was current at that time will be checked out.

The test files present in the file context are run each time the Plan state is initiated, and the test
results are provided to the state. The tests are then run in Docker images built via the SWE-bench
library. To use this approach in a benchmark where a larger number of instances should be able to
run simultaneously, a solution is used where these images are run as pods in a Kubernetes cluster.
Moatless-tools communicates with the testbed by applying patches and running commands via an
APIL. When a new instance starts, a pod is created which is then reset at each run, applying the
current patch and running tests according to the test command specified in the SWE-bench library.
It’s important to add here that the agent is not aware of the PASS_TO_PASS or FAIL_TO_PASS
tests in the SWE-bench harness, but only knows how to run the tests. This corresponds to a real
engineering environment where each project can have its own test commands.

17

Under review as a conference paper at ICLR 2025

C MCTS HYPERPARAMETERS

The Monte Carlo Tree Search (MCTS) algorithm used in this study employs several hyperparame-
ters.

Table 2: MCTS Hyperparameters

Hyperparameter Description Default
c_param UCT exploration parameter 1.41
max_expansions Max children per node 5
max_iterations Max MCTS iterations 100
provide_feedback Enable feedback True
best_first Use best-first strategy True
value_function_temperature Value function temperature 0.2
max_depth Max tree depth 20
UCT Score Calculation Parameters

exploration_weight UCT exploration weight 1.0
depth_weight Depth penalty weight 0.8
depth_bonus_factor Depth bonus factor 200.0
high_value_threshold High-value node threshold 55.0
low_value_threshold Low-value node threshold 50.0
very_high_value_threshold Very high-value threshold 75.0
high_value_leaf_bonus_constant High-value leaf bonus 20.0
high_value_bad_children_bonus_constant =~ High-value bad children bonus 20.0
high_value_child_penalty_constant High-value child penalty 5.0
Action Model Parameters

action_model_temperature Action model temperature 0.2
Discriminator Parameters

number_of_agents Number of Discriminator Agents 5
number_of_round Number of debate rounds 3
discriminator_temperature Discriminator temperature 1.0

These hyperparameters can be adjusted to fine-tune the MCTS algorithm’s performance for specific
problem domains or computational constraints. The values listed here are the defaults as defined in
the TreeSearchSettings class and the MCTS implementation.

18

Under review as a conference paper at ICLR 2025

D ABILITY OF MCTS TO ESCAPE UNPRODUCTIVE LOOPS VS. BASELINE

Moatless-adapted SWE-search
Srard (-~

2]
5
2|
2

Ide

RequestCodeChange RequestCodeChange

13
b4
S >R
=) o
)G R
R LAY
o S
e s

m|
2
o
o
2
®

<}
o
o
o
o
&

Request| ange

b3
2]
o
3
=

)

100

m
e
SH=|
ol O]
oo

ol

o

EditCode

o, >
a4
2
oF \SHg
I

Request ange 75

>
2]
2
El
ol

m
ZPe,
ol =]
oMo
oMo
-1
o

Node42

0

~—
Requestc:oﬂethange
—
Action8
e
EditCode
Node!
~—

Reques(cﬂag hange RequestCodeChange RequestCodeChange

Action10
~—

EditCode e

Reward

Node11
~—

RequestCodeChange

Action12 e
~—

m
o
15}
o
2
5
‘ m
2
T
|
®
3

m
Zj
HE

O
B H
w8

Requesti

5}
o
al

O
=

ange

>,
2|
ol
3
N
!
a
8

)
L

ode7

ode54

m
2,
Iz
o
ol
®

=z
sh2
o
2
&

Request!

S
o
ol

o
-

ange

>,
2

'(SI
=
>

RequestCodeChange

m
2
O
o
ol
o

o

z;
S
o
2

-100

S
o"

de

o
=

Request! ange

>,
2
aI
2
!

m
[
O
o
o
o

0,
S\ 43
2
Nﬂ
o 3
m
=
‘;'
o
2
5

RequestCodeChange

I 2
BNE
A
2/
3 8

o
-1
o
I

S
o
-1
o
=

RequestCodeChange

>,
2]
o
S
S|
X

EditCo
Node23'

i

RequestCodethange
Action24
~

EditCode
Node25'
'~

[TERMINATED]

Figure 6: Avoiding Repetitive Actions, django__django__10914. We found that the base agent can
often get stuck performing repetitive actions that do not bring it closer to solving the issue, and which
commonly lead to unresolvable dead-ends. In this example, the base agent was stuck implementing
wrong tests which continuously returned errors. In contrast, when this happens in SWE-Search, the
Value Agent recognizes this, terminating these trajectories quickly, as happens in Node 73 (orange).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E MODEL INSTANCE RESOLUTION UNIQUENESS

To understand the complementary strengths of different models in resolving software issues, we
analyzed how unique their resolved issue subsets where. Figure[7]illustrates the resolution patterns
for each model across five of the codebases in SWE-bench-lite.

django matplotlib pytest scikit-learn

B GPT-40 B GPT-40-mini B Qwen2.5-72B-Instruct WM DeepSeek-V2.5 B Llama-3.1-70B-Instruct

Figure 7: Unique Issue Resolution Patterns Across Models and Libraries. Each column repre-
sents a different Python repository, and each row within a column represents a specific issue. Colored
blocks indicate successful resolution by the corresponding model (see legend). White spaces denote
unresolved issues. This visualization highlights the diverse problem-solving capabilities of different
models across various software domains, demonstrating that no single model dominates across all
issues and libraries.

20

Under review as a conference paper at ICLR 2025

F ABILITY OF VALUE FUNCTION TO DISCERN SUCCESSFUL TRAJECTORIES

Before implementing SWE-Search, we conducted a general study across many models to evaluate
the models’ ability to differentiate states which led to resolved vs. unresolved issues. Figure[§]shows
the results of this study. We found that in general, models assigned higher rewards to states which
eventually led to resolved issues. Of particular interest was the Deepseek model, which seemed
to identify critical errors in trajectories effectively. This was also observed in the final agent (see

Fig.[Bh).

Average State Reward Comparison

T 80
©
=
(]
r 60
2
8
D 401
[
(=)
©
o 204
>
<
0-
20 I Resolved B Unresolved
& S o
\&c} é‘“\) e‘& >
& & & N
2 Q
& AV A
b & &% &
@‘b Q\Q/ A 06
> ° v 5
3 QO &)
& W S o
3 G 0\0 ?)@Q
N o
(e

Figure 8: Average State Reward Comparison Across Models. This graph compares the average
state rewards assigned by different language models for resolved (green) and unresolved (red) issues.
Error bars indicate standard deviation. Most models consistently assign higher rewards to states
leading to resolved issues, with the exception of the. The ’Average’ column represents the mean
across all models, demonstrating a clear distinction between resolved and unresolved states.

21

Under review as a conference paper at ICLR 2025

G VALUE FUNCTION PROMPTS

Value Function Search Prompt

Your task is to evaluate a search action executed by an Al agent, considering the search
parameters, the resulting file context, and the identified code from the search results. Your
evaluation will focus on whether the search action was well-constructed, whether the re-
sulting file context is relevant and useful for solving the problem at hand, and whether the
identified code is appropriate and helpful.

You will be provided with four inputs:

* Problem Statement: This will be provided within the <problem_statement> XML
tag and contains the initial message or problem description the coding agent is trying to
solve.

* The Search Request: This will be provided within the <search_request> XML tag
and contains the search parameters used by the agent to define the search.

* The Search Result: The content retrieved based on the search parameters provided within
a<search_results> XML tag.

* Identified Code: The specific code identified from the search results, provided within the
<identified_code> XML tag.

Search request parameters:

* File Pattern (file_pattern): Glob patterns (e.g., **/*.py) to filter search results to specific
files or directories.

* Query (query): A natural language query for semantic search.
* Code Snippet (code_snippet): Specific code snippets for exact matching.
* Class Names (class_names): Specific class names to include in the search.

* Function Names (function_names): Specific function names to include in the search.

Evaluation Criteria:

Search Parameters:

* Are they appropriately defined to focus the search on relevant files or code?

* Do they align well with the problem statement?

Resulting File Context:

* Does it contain relevant and useful information for solving the problem?

* Are there missing or irrelevant results indicating a need to refine the search?

Identified Code Review (most crucial):

* Is the identified code directly related to the problem?

* Does it provide the necessary functionality to address the issue?

22

Under review as a conference paper at ICLR 2025

Overall Relevance:

* Does the combination of search parameters, file context, and identified code effectively
address the problem?

* Could there be a better approach or improvements?

Reward Scale and Guidelines:

Assign a single integer value between -100 and 100 based on how well the search action,
resulting file context, and identified code addressed the task at hand. Use the following scale:

100:

* Search Parameters: Precisely match the problem needs; no irrelevant or missing elements.

* Identified Code: Completely and accurately solves the problem with no issues.

75 t0 99:

» Search Parameters: Well-defined and mostly relevant; minor improvements possible.

* Identified Code: Effectively addresses the problem with minor issues that are easily fix-
able.

0 to 74:

 Search Parameters: Partially relevant; noticeable inaccuracies or omissions.

* Identified Code: Partially solves the problem but has significant gaps or errors.

-1 to -49:

 Search Parameters: Misaligned with the problem; poorly defined.

* Identified Code: Fails to address the problem effectively; may cause confusion.

-50 to -100:

» Search Parameters: Irrelevant or incorrect; hinders problem-solving.

* Identified Code: Unrelated to the problem; provides no useful information.

Output Format:

Please ensure your output strictly adheres to the following structure:
<Explanation> [A brief explanation of the evaluation in max one paragraph.]
<Reward> [A single integer reward value between -100 and 100]

23

Under review as a conference paper at ICLR 2025

Value Function Plan Prompt

Your role is to evaluate the executed action of the search tree that our Al agents are travers-
ing, to help us determine the best trajectory to solve a programming issue. The agent is
responsible for identifying and modifying the correct file(s) in response to the problem state-
ment.

Input Data Format:

* Problem Statement: This will be provided within the <problem_statement> XML
tag and contains the initial message or problem description the coding agent is trying to
solve.

* File Context: The relevant code context will be provided within the <file_context>
XML tag and pertains to the state the agent is operating on.

 History: The sequence of state transitions and actions taken prior to the current state will
be contained within the <history> XML tag. This will include information on the
parts of the codebase that were changed, the resulting diff, test results, and any reasoning
or planned steps.

* Executed Action: The last executed action of the coding agent will be provided within the
<executed_action> XML tag, this includes the proposed changes and the resulting
diff of the change.

* Full Git Diff: The full Git diff up to the current state will be provided within the
<full_git_-diff> XML tag. This shows all changes made from the initial state to
the current one and should be considered in your evaluation to ensure the modifications
align with the overall solution.

* Test Results: The results of any test cases run on the modified code will be provided
within the <test_results> XML tag. This will include information about passed,
failed, or skipped tests, which should be carefully evaluated to confirm the correctness of
the changes.

Evaluation Criteria:

Code Correctness: Evaluate whether the implemented code correctly addresses the prob-

lem. This includes verifying that the correct lines or sections of code have been identified
and modified appropriately. Ensure that the changes are both syntactically and logically cor-
rect, and that the diffs accurately represent the intended modifications without introducing
unrelated changes. Assess whether the modifications effectively solve the problem without
introducing new issues or inefficiencies.

Mistakes in Editing Code: Identify any errors made during the code editing process. This

involves checking for unintended deletions, incorrect modifications, or syntax errors intro-
duced through the changes. Ensure that the Git diffs maintain integrity by only including the
intended modifications and no accidental alterations to unrelated parts of the codebase.

Testing: Assess the proposed changes against existing test cases. Determine if the changes

pass all relevant tests and evaluate whether any test failures could have been reasonably
foreseen and avoided by the agent. Consider whether the agent anticipated potential test
outcomes and addressed them proactively in the solution.

24

Under review as a conference paper at ICLR 2025

History and Action Evaluation: Review the agent’s previous state transitions and actions

to determine if the current action contributes positively to solving the problem. Pay special
attention to detect if the agent is engaging in repetitive actions without making meaningful
progress. Evaluate whether the last executed action is appropriate and logical given the
current progress and history of actions.

Reward Scale and Guidelines:

The reward value must be based on how confident you are that the agent’s solution is the
most optimal one possible with no unresolved issues or pending tasks. The scale ranges
from -100 to 100, where:

100: You are fully confident that the proposed solution is the most optimal possible, has

been thoroughly tested, and requires no further changes.

75-99: The approach is likely the best one possible, but there are minor issues or opportu-

nities for optimization. All major functionality is correct, but some small improvements or
additional testing may be needed. There might be some edge cases that are not covered.

0-74: The solution has been partially implemented or is incomplete or there are likely alter-
native approaches that might be better, i.e., this is likely not the most optimal approach. The

core problem might be addressed, but there are significant issues with tests, logical flow, or
side effects that need attention. There are likely alternative approaches that are much better.

0: The solution is not yet functional or is missing key elements. The agent’s assertion that
the task is finished is incorrect, and substantial work is still required to fully resolve the issue.

Modifying the wrong code, unintentionally removing or altering existing code, introducing
syntax errors, or producing incorrect diffs fall into this range.

-1 to -49: The proposed solution introduces new issues or regresses existing functionality,

but some elements of the solution show potential or may be salvageable. Repetitive actions
without progress fall into this range.

-50 to -100: The solution is entirely incorrect, causing significant new problems, or fails

to address the original issue entirely. Immediate and comprehensive changes are necessary.
Persistent repetitive actions without progress should be heavily penalized.

Output Format:

Please ensure your output strictly adheres to the following structure:
<Explanation> [Your brief explanation of the evaluation in max one paragraph.]
<Reward> [A single integer reward value between -100 and 100]

25

Under review as a conference paper at ICLR 2025

Your role is to evaluate the executed action of the search tree that our Al agents are travers-
ing, specifically for the RequestMoreContext action. This action is used when the agent
requests to see code that is not in the current context, potentially revealing an understand-
ing that relevant code is wholly or partially not visible, and enabling the agent to uncover
important missing information.

Evaluation Criteria:

* Relevance: Are the requested files and code spans likely to be relevant to the problem at
hand?

* Necessity: Is the additional context truly needed, or is the agent unnecessarily expanding
the scope?

* Specificity: Has the agent been specific in its request, or is it asking for overly broad
sections of code?

* Contextual Understanding: Does the request demonstrate a good understanding of the
codebase structure and the problem domain?

* Efficiency: Is the agent making targeted requests, or is it asking for too much unnecessary
information?

* Progress: Does this request seem likely to move the problem-solving process forward?

Input Data Format:

* Problem Statement: Provided within the <problem_statement> XML tag, contain-
ing the initial problem description.

* File Context: The current code context within the <file_context> XML tag.
» History: Previous state transitions and actions within the <history> XML tag.

* Executed Action: The RequestMoreContext action details within the
<executed_action> XML tag, including the files and code spans requested.

Reward Scale and Guidelines: Assign a single integer value between -100 and 100 based

on how well the RequestMoreContext action addresses the task at hand:

100: Perfect request that is highly likely to provide crucial missing information.

75-99: Good request with minor improvements possible in specificity or relevance.

0-74: Partially relevant request, but with noticeable inaccuracies or potential for better tar-

geting.

-1 to -49: Poor request that is likely to provide mostly irrelevant information or expand the

scope unnecessarily.

-50 to -100: Very poor request that is entirely irrelevant or demonstrates a fundamental

26

Under review as a conference paper at ICLR 2025

misunderstanding of the problem or codebase structure.

Output Format: Please ensure your output strictly adheres to the following structure:

<Explanation> [Your explanation of the evaluation in max two paragraphs.]
<Reward> [A single integer reward value between -100 and 100]

Value Function Edit Prompt

Your role is to evaluate the executed action of the search tree that our Al agents are travers-
ing, with the goal of ensuring that a complete and verified solution is in place. The agent
believes that it has finished solving the programming issue.

Evaluation Criteria

Solution Correctness and Quality: Verify that the proposed changes logically address the

problem statement. Ensure the changes fit contextually within the existing codebase without
introducing new issues. Confirm syntactic correctness and that there are no syntax errors
or typos. Assess whether the solution represents an overall improvement and is the most
optimal approach possible.

Accuracy of Code Modifications: Check that the agent correctly identified the appropriate

code spans to modify. Ensure the changes made are accurate and do not include unintended
modifications. Look for any alterations to unrelated parts of the code that could introduce
new problems.

Testing and Test Results Analysis:

» Importance of Test Updates: It is crucial that the agent updated existing tests or added
new tests to verify the solution. Failure to do so should be heavily penalized. The agent
should ensure that code changes are validated by appropriate tests to confirm correctness
and prevent regressions.

» Assess Test Coverage: Evaluate whether the agent has adequately tested the solution,
including adding new tests for new functionality or changes. Verify that the tests cover
relevant cases and edge conditions.

* Penalization for Lack of Testing: When calculating the reward, heavily penalize the
agent if they failed to update or add necessary tests to verify the solution.

Consideration of Alternative Approaches: Always assess whether there could be a better

alternative approach to the problem. Mention any potential alternative solutions in your
explanation if they are applicable.

Identification and Explanation of Mistakes: If the agent made incorrect actions, identify

exactly where and why the mistakes occurred. Explain the impact of any syntax errors,
incorrect code modifications, or unintended changes.

27

Under review as a conference paper at ICLR 2025

Assessment of Agent’s Completion Assertion: Verify if the agent’s assertion that the task

is finished is accurate. Determine if substantial work is still required to fully resolve the
issue and address this in your evaluation.

Input Data Format:

* Problem Statement: This will be provided within the <problem_statement> XML
tag and contains the initial message or problem description the coding agent is trying to
solve.

* File Context: The relevant code context will be provided within the <file_context>
XML tag and pertains to the state the agent is operating on.

 History: The sequence of state transitions and actions taken prior to the current state will
be contained within the <history> XML tag. This will include information on the
parts of the codebase that were changed, the resulting diff, test results, and any reasoning
or planned steps.

* Reasoning for Completion: The reasoning provided by the agent for why the task is
finished will be provided within the <reasoning_for_completion> XML tag. This
includes the agent’s explanation of why no further changes or actions are necessary.

* Full Git Diff: The full Git diff up to the current state will be provided within the
<full_git_-diff> XML tag. This shows all changes made from the initial state to
the current one and should be considered in your evaluation to ensure the modifications
align with the overall solution.

* Test Results: The results of any test cases run on the modified code will be provided
within the <test_results> XML tag. This will include information about passed,
failed, or skipped tests, which should be carefully evaluated to confirm the correctness of
the changes.

Reward Scale and Guidelines:

The reward value must be based on how confident you are that the agent’s solution is the
most optimal one possible with no unresolved issues or pending tasks. It is important that
the agent updated or added new tests to verify the solution; failure to do so should be heavily
penalized. The scale ranges from -100 to 100, where:

100: You are fully confident that the proposed solution is the most optimal possible, has

been thoroughly tested (including updated or new tests), and requires no further changes.

75-99: The approach is likely the best one possible, but there are minor issues or opportu-

nities for optimization. All major functionality is correct, but some small improvements or
additional testing may be needed. There might be some edge cases that are not covered.

0-74: The solution has been partially implemented or is incomplete, or there are likely
alternative approaches that might be better. The core problem might be addressed, but there

are significant issues with tests (especially if the agent did not update or add new tests),
logical flow, or side effects that need attention.

0: The solution is not yet functional or is missing key elements. The agent’s assertion that

28

Under review as a conference paper at ICLR 2025

the task is finished is incorrect, and substantial work is still required to fully resolve the
issue.

-1 to -49: The proposed solution introduces new issues or regresses existing functionality,
but some elements show potential or may be salvageable. Modifying the wrong code, unin-

tentionally removing or altering existing code, introducing syntax errors, producing incorrect
diffs, or failing to update or add necessary tests fall into this range.

-50 to -100: The solution is entirely incorrect, causing significant new problems or failing
to address the original issue entirely. Immediate and comprehensive changes are necessary.

Persistent repetitive actions without progress, or failure to update or add tests when neces-
sary, should be heavily penalized.

Output Format: Please ensure your output strictly adheres to the following structure:

<Explanation> [Your explanation of the evaluation in max two paragraphs.]
<Reward> [A single integer reward value between -100 and 100]

H MOATLESS TOOLS STATE RIGIDITY

The Moatless-tools version (v0.0.2) enforces a rigid transition structure where agents must follow
a specific sequence (search — identify — plan — edit). The implementation of this state transition
system can be found here:

H.1 STATE TRANSITION SYSTEM
The transition system is configured through a function that accepts three optional parameters:

* max_tokens_in_edit_prompt: Controls the token limit for edit operations
* global_params: Defines parameters applicable across all states

* state_params: Specifies state-specific parameters

H.2 STATE FLOW
The system defines a directed graph of states with specific transition rules:

1. Search Phase (SearchCode):

* Initial state for code operations

* Can transition to IdentifyCode upon successful search

* Can move directly to P1lanToCode when complete
2. Identification Phase (IdentifyCode):

* Processes search results

e Can return to SearchCode if needed

* Progresses to DecideRelevance when finished
3. Decision Phase (DecideRelevance):

 Evaluates identified information

* Can trigger new searches

2https ://github.com/aorwall/moatless—tools/blob/8ec5d5193b6dce88ec6273cTec31f9eal3albbabf/
moatless/transitions.py#L184

29

https://github.com/aorwall/moatless-tools/blob/8ec5d5193b6dce88ec6273c7ec31f9ea3a0bba6f/moatless/transitions.py#%23L184
https://github.com/aorwall/moatless-tools/blob/8ec5d5193b6dce88ec6273c7ec31f9ea3a0bba6f/moatless/transitions.py#%23L184

Under review as a conference paper at ICLR 2025

* Transitions to planning when ready, excluding message field

This rigid structure ensures that tools are accessed in a predictable sequence, preventing conflicts
while maintaining system integrity. Additional transitions defined in CODE_TRANSITIONS com-
plete the state machine’s behavior set.

I CoST ANALYSIS

Table |3| presents the API costs for Moatless-Adapted and SWE-Search across different models.
Search-based exploration of multiple solutions results in higher computational costs.

Model Moatless-Adapted SWE-Search
GPT-40 $40.86 $576.00
GPT-40-mini $9.90 $52.34
Qwen-2.5-72b-Instruct” $8.50 $42.50
DeepseekCoderV2.5 $3.66 $18.37
Llama-3.1-70b-Instruct” $9.00 $45.00

“Estimated costs based on comparable API pricing

Table 3: Cost comparison (USD) between Moatless-Adapted and SWE-Search

J COMPUTE-MATCHING ANALYSIS

Table 4] compares SWE-Search against compute-matched baselines. SWE-Search Pass@5 uses the
5 generated answers in 1 run, while for Moatless-Adapted uses the 5 generated solutions across 5
runs. We avoid doing the comparison on GPT-40 to avoid exorbitant API costs.

Model SWE-Search Moatless-Adapted

Pass@1 Pass@5 Pass@5
GPT-40 31.0 34.0 -
GPT-40-mini 17.0 22.3 17.0
Qwen-2.5-72b-Instruct 24.7 25.7 22.3
DeepseekCoderV2.5 21.0 233 22.0
Llama-3.1-70b-Instruct 17.7 22.3 21.7

Table 4: Performance comparison (%) between SWE-Search and compute-matched baselines

K INTERACTIVE DEMO

To help visualize the search process and provide transparency into our method, we provide an in-
teractive demo athttp://74.241.196.91. The demo presents a tree visualization where each
node represents a state/action pair in the search process. Clicking on a node reveals detailed infor-
mation including:

* Complete LLM interactions and tool calls

* State-specific value function outputs and reasoning

» Context information used for decision-making

* File changes and test results where applicable

* Test creation/execution and their outputs
This interface allows readers to explore how the search algorithm navigates through different states,
makes decisions, and evaluates potential solutions. The visualization particularly highlights how

state-specific value functions guide the exploration process and how the discriminator compares
candidate solutions.

30

http://74.241.196.91

