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ABSTRACT

Modern language and multimodal models can process a wide variety of inputs
across different languages and modalities. We hypothesize that models acquire this
capability through learning a unified representation space across heterogeneous
data types. We first show that model representations for semantically equivalent
inputs in different languages are similar in the intermediate layers, and that this
space can further be interpreted using the model’s dominant pretraining language
(when it has one) via the logit lens. We also find that models show a similar ten-
dency when processing other kinds of data, including code and visual/audio inputs.
Interventions in the unified representation space further affect model outputs in ex-
pected ways: for example, replacing the image representations in a vision-language
model with language token representations leads to output changes consistent with
the language token semantics, suggesting that the unified representations space is
not simply a byproduct of large-scale training on broad data, but something that is
actively utilized by the model during input processing.

1 INTRODUCTION

Modern language and multimodal models (LMs)1 are capable of processing heterogeneous data
types: text in different languages, non-linguistic inputs such as code and math expressions, other
modalities such as images and sound, etc. How do LMs process these distinct data types with a
single set of parameters? One strategy might be to learn specialized subspaces for each data type that
are only recruited when processing it. In many cases, however, data types that are surface-distinct
share underlying structures. This is most obvious for sentences in different languages with the same
meaning; but such shared structures are present across other data types, e.g., between an image and
its caption, or a piece of code and its natural language description. A model could leverage such
commonalities by learning to project surface forms of different data types into a unified representation
space, perform computations in it, and then project back out into surface forms when needed.

To what extent is this idealized strategy adopted by actual models? Wendler et al. (2024) find that on
simple synthetic tasks, Llama-2 (Touvron et al., 2023b) maps various input languages into a shared
“English space” before projecting back out into another language, hinting that it leverages this shared
representation scheme to an extent. We show that this is in fact a much more general phenomenon:
when a model processes inputs from multiple data types, there is a shared representation space,
and this space is scaffolded by the LM’s inherently dominant data type (usually English). By
scaffolded, we mean that the shared space can be interpreted to an extent in the dominant data type
via the logit lens (nostalgebraist, 2020).

We first show that LMs represent semantically similar inputs from different modalities to be close to
one another in the intermediate layers of the LM. Furthermore, we show that we can interpret these
intermediate representations to an extent using the LM’s dominant language—e.g., when processing
a Chinese input, an English-dominant LM “thinks” in English before projecting back out to a Chinese
space. This property extends to non-linguistic inputs. When processing code as well as visual and
audio inputs, LMs represent (and perform computations) in a natural-language-adjacent space in its
intermediate layers: for code, for example, the intermediate representations reflect program semantics,
unconstrained by surface syntax; for images, we can probe out properties of an image patch (e.g.,
color, object) from a vision-language model’s intermediate representations. Finally, we perform

1Hereafter, we use the term “language model” loosely and also consider multimodal language models that
process additional data modalities, since such models are commonly trained on top of a text LM backbone.
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Figure 1: Example of the unified representation space across various input data types. For every other layer, we
show the closest token in the model vocabulary to the hidden state. Llama-3’s (Llama-3-Team, 2024) hidden
states are the closest to English tokens when processing Chinese texts and code, in a semantically corresponding
way. LLaVA (Liu et al., 2023), a vision-language model, and SALMONN (Tang et al., 2024), an audio-language
model, have a similar behavior when processing images/audio. The boldface is for emphasis.

intervention experiments showing that intervening in the shared representation space, using the LM’s
dominant language, predictably affects model output; that is, the shared representation space (and the
processing of these representations through subsequent layers) is not an accidental byproduct of the
model’s being trained on (say) English-dominant text, but causally impacts model behavior.

Figure 2: Models can be intervened in
the dominant data type (here, English,
when processing audio) and steered to-
wards corresponding effects.

Our work is complementary and distinct from prior work that
found structural similarities between the representation spaces
of models trained (usually independently) on different data
types, such as those showing that text representations from text-
only LMs can be aligned, via a transformation, to vision/audio
representations of modality-specific models (Ilharco et al.,
2021; Merullo et al., 2022; Li et al., 2023; Ngo & Kim, 2024;
Huh et al., 2024; i.a.), the literature on cross-lingual word
embedding alignment (Mikolov et al., 2013; Artetxe et al.,
2017; Conneau et al., 2018; Schuster et al., 2019; i.a.), and
work on cross-task transfer (Moschella et al., 2023; Wu et al.,
2024; i.a.). We instead show that an LM trained on multiple
data types represents and processes them in a shared unified space without requiring explicit alignment
transformation. We hope our findings shed light on ways to more easily interpret the mechanisms of
current models and inspire future work on better model controls using these insights.

2 THE UNIFIED REPRESENTATION SPACE HYPOTHESIS

Let Xz be the domain of some data type z ∈ Z where Z is the set of model-supported data types.
E.g., for languages, XChinese could be all Chinese tokens, while for images XImage = [0, 255]w×h×3

could be the RGB values for an w × h-sized image patch. Consider an interpretation function
Mz : X ∗

z → Sz mapping an input sequence into a representation space Sz and a verbalization
function Vz : Sz → X ∗

z . Given an input prefix wz
1:t ∈ X ∗

z of length t where wz
i ∈ Xz , a sensible

(implementation-agnostic) way to continue the sequence is to first encode the input, min = Mz(w1:t),
formulate a representation of possible futures mout ∈ Sz , and finally verbalize it via Vz(m

out).

An LM parameterizes a similar process: it uses MLM to map various input data types into a repre-
sentation space SLM ⊆ Rd (early layers), performs computations in the space (middle layers), and
verbalizes the output via VLM (end layers and the LM head). However, it is unknown as to how
different data types are structured in the representation space. For example, one clearly inefficient
possibility is that the LM partitions Rd into disjoint subspaces for each data type and processes

2
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them separately. We instead hypothesize that LMs, through training, learn to represent and process
different data types in a unified representation space. That is, semantically similar inputs wz1

1:t and
wz2

1:t′ from distinct data types—for example texts in different languages that are mutual translations—
are similarly mapped in SLM; informally, MLM(wz1

1:t) ≈ MLM(wz2
1:t′). However, absolute similarity

measures (i.e., sim(MLM(wz1
1:t),MLM(wz2

1:t′))) are generally difficult and unintuitive to interpret in
high dimensional spaces.2 We thus focus on relative similarity measures, taking a semantically
unrelated sequence uz2

1:t′ , and evaluating whether wz1
1:t is closer to wz2

1:t′ than uz2
1:t′′ . Formally, our

hypothesis can be formulated as:
sim (MLM(wz1

1:t),MLM(wz2
1:t′)) > sim (MLM(wz1

1:t),MLM(uz2
1:t′′)) . (1)

Moreover, when the LM has a dominant data type z⋆ in training (e.g., English for Llama-2), we
hypothesize that this unified representation space is “anchored” by z⋆, in the sense that Eq. 1 holds
strongly enough that we can probe out to z⋆ from MLM(wz

1:t). We further expect this to hold for model
representations of the future, which autoregressive LMs are trained to model. I.e., the representation
of a prefix should better align with a verbalization of the future in z⋆ than a non-dominant z◦ (though
we now need a different kind of model representation, denoted with reprLM):

sim
(
MLM(wz

1:t), reprLM(wz⋆

>t)
)
> sim

(
MLM(wz

1:t), reprLM(wz◦

>t)
)
. (2)

We hypothesize that this holds even when z = z◦. E.g., with an English-dominant LM, its encoding of
the Chinese prefix w◦

1:t =“这篇论文太难” (trans. “This paper is so hard to”) should be closer
to the representation of the English word wz⋆

t+1 =“write” than its Chinese translation wz◦

t+1 =“写”.

3 METHOD: TESTING THE UNIFIED REPRESENTATION SPACE HYPOTHESIS

We test the above hypothesis by considering pairs of distinct data types, the dominant one z⋆ and a
non-dominant one z◦, which are different for each experiment. Whenever semantically related inputs
are available (e.g., an image and its caption), we directly test Eq. 1 by using hℓ

t , the LM’s hidden state
at position t and layer ℓ, as MLM(wz

1:t), and further using cosine similarity for the similarity function.

We operationalize Eq. 2 via the logit lens (nostalgebraist, 2020), a simple training-free approach
for interpreting the hidden states of a model. Transformer-based LMs produce the next-token
distribution using softmax

(
OhL

t

)
(omitting the bias term) where O is the output token embeddings

(or “unembeddings”) and hL
t is the final layer hidden state. Logit lens applies the same operation to the

intermediate layers to obtain plogitlens(· | hℓ
t) := softmax

(
Ohℓ

t

)
. Logit lens has been found to produce

meaningful distributions that shed light on an LM’s internal representations and computations.

Under the logit lens, reprLM in Eq. 2 considers the output embedding of single tokens, τz
⋆ ∈ Xz⋆

and τz
◦ ∈ Xz◦ . We use the first token of wz⋆

>t and wz◦

>t. Using the dot product for sim(·), Eq. 2 is
equivalent to comparing the logit lens probabilities,

plogitlens
(
τz

⋆

| hℓ
t

)
> plogitlens

(
τz

◦
| hℓ

t

)
, (3)

i.e., testing whether the probability of the continuation in the dominant language is more likely
than the continuation in the original input data type. Since the logit lens is tailored for probing out
a single token, we usually consider short-enough verbalizations such that a single BPE token can
reliability identify it. This often means that the two verbalizations are two single words that are
semantic equivalents. Nevertheless, we also consider longer future verbalizations when its first token
unambiguously suggests one interpretation in that context, which allows more flexibility.

While the above test is simple, τz
◦

is unavailable in many multimodal models without vocabulary
tokens for z◦. We thus only focus on testing Eq. 1, though logit lens enables an additional test:

plogitlens
(
τz

⋆

| hℓ
t

)
> plogitlens

(
υz⋆

| hℓ
t

)
, (4)

where υ is an unrelated token. Also, using the next token as τz
⋆

is unsuitable for multimodal models
never been trained to output at non-dominant data type positions t, but the non-language data types are
only encoded as prefixes. For such models, we hypothesize that they still fully represent the current
input in a unified space. We thus take τz

⋆

to be the last token of wz⋆

1:t′ (which is the interpretation of
wz◦

1:t under z⋆; e.g., if wz◦

1:t is an image, wz⋆

1:t′ can be the objects in the image described in language).
2See for example Beyer et al. (1999). Most prior work in the probing literature also implicitly uses relative

similarity measures since the similarity scores are normalized over a finite label set.
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Figure 3: Left: The cosine similarity of intermediate representa-
tions of English and Chinese parallel texts and the 95% CI. Right:
The same quantity minus a baseline over non-parallel texts. Parallel
texts have similar representations, particularly in middle layers.
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Figure 4: Llama-3 logit lens log prob. of
parallel English vs. Chinese tokens when
processing Chinese text and the 95% CI.
The latent representation is closer to the
English token in the middle-late layers.

4 EVIDENCE OF THE UNIFIED REPRESENTATION SPACE

We apply our tests across a diverse data types and find evidence of a unified representation space in
all cases. We show additional experiments on arithmetic data in §C with similar trends.

4.1 MULTILINGUAL

Wendler et al. (2024) find that when processing specific in-context learning (ICL) templates for highly
synthetic lexical-level tasks (word repetition, word translation, etc.) in non-English languages, the
intermediate hidden states of Llama-2 are closer to the unembeddings of English tokens than the
output language. This provides some evidence for our unified representation space hypothesis, albeit
constrained to a simple synthetic task and one LM. We show that this shared representation space is a
general property of LMs when they face naturally occurring text.

Experiment 1: Representation similarity of mutual translations. Translation datasets enable
a direct test for Eq. 1, with semantically equivalent cross-lingual sentences as wz1

1:t and wz2
1:t′ and

a randomly chosen non-matching sentence as uz2
1:t′′ . We use the professionally-translated English-

Chinese parallel sentences from Chen et al. (2016) (N = 5260). For each sentence pair, we use
a template to transform each sentence and compute the representation cosine similarity for each
layer, using the last token position as the sentence representation following Wu et al. (2023), which
preserves sentence information (Morris et al., 2023). We consider two English-dominant LMs, Llama-
2 and Llama-3, one Chinese-dominant LM, Baichuan-2 (Yang et al., 2023), and one multilingual LM,
BLOOM (BigScience, 2023), specifically the 7B/8B variants. §A.1 contains more details.

In Figure 3, the raw cosine similarity is high, up to >80% (left), and it is also significantly higher than
the non-matching pairs’ similarities (right), but only in the middle layers. These trends corroborate
the unified representation space hypothesis. Notably, this trend also exists for BLOOM, which means
that such a unified space still exists even without a dominating language.

Experiment 2: Probing out continuations in the dominant language. We next test Eq. 3: whether
continuations in the dominant language have higher probability than those in the input language. We
use 1,000 Chinese and English sentences from Wikipedia (Wikimedia-Foundation, 2023). For the
English-dominant LLama-3, we use a Chinese prefix wz◦

1:t as input and take τz
◦

to be the next Chinese
token (i.e., wz◦

t+1) and τz
⋆

to be the (first token of the) English translation of wz◦

t+1. §A.1 has further
details. Figure 4 plots the logit lens probability for the two tokens as well as the uniform distribution
probability. In early layers, we cannot read out either token better than random chance. After layer 17,
the model representations are substantially closer to the English token than the Chinese token until
layer 31, showing that the model hidden space is indeed better scaffolded by English than Chinese.

Next, we extend this analysis to consider global language-level trends across languages. We first
compute p(w | z), the token distribution under a language z, by running the LM tokenizer on the
language-specific split of the mC4 dataset (Xue et al., 2021). We then use Bayes’ rule to estimate
p(z | w) ∝ p(w | z)p(z) with a uniform prior p(z).3 We finally compute the probability of hℓ

t

3This prior obviously does not reflect the training language distribution, but in fact makes our trends even
more salient, since using a real (or estimated) p(z) would make p(z | w) even larger for the dominant language.
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Figure 5: Latent language probabilities for various models, visualizing the top 3 languages per layer. Regardless
of the input language, the dominant model language is more salient in the early-middle layers, and the
input language is more salient in the final layers. Bloom does not have a clear intermediate latent language.

belonging to each language as p(z | hℓ
t) ∝

∑
w∈V p(z | w)plogitlens(w | hℓ

t). If our hypothesis that
the universal representation space is better scaffolded by the dominant language is true, we expect the
dominant language z⋆ to have the highest probability across input languages in the middle layers.

Figure 5 shows the top 3 languages for each layer on 10,000 English/Chinese Wikipedia sentences.
When English-dominant models process Chinese text, Wendler et al.’s finding generalizes, where
English dominates in the intermediate layers and Chinese only dominates in the final layers. On the
Chinese-dominant LM, this trend flips: when processing English text, its intermediate layers are
closer to Chinese space and the final layers are closer to English space. For BLOOM, a multilingual
model with a relatively balanced training language mixture, we do not see a clear dominating language
in the intermediate layers; when we manually inspect the closest token, in most cases we observe
symbols with no clear semantics (though this does not mean it does not have a unified representation
space: see experiment 1). 70B model trends in §A.1 are highly similar to the 7B/8B ones.

4.2 CODE

...
def largest_distance(numbers):
  dist = 0
  for idx, elem in enumerate(numbers):
    for idx2, elem2 in enumerate(numbers):
      if idx != idx2:
        ...

...
def has_close_ements(
  numbers: List[float], threshold: float
) -> bool:
  ...

...
has_close_elements([1.0, 2.0, 3.0...
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Figure 6: Logit lens analysis on Llama-2 processing example
Python programs. For every other layer, we show the closest
token in the model vocabulary (which is sometimes the blank
token), where we look at the hidden states before the grayed-out
texts. The model tends to verbalize the future prediction in
English that correspond to the code continuations (in gray).

Many recent LMs are trained on code
corpora (Touvron et al., 2023a;b;
Llama-3-Team, 2024; Gemini-Team,
2024). We find that they similarly
process code by projecting it into a
unified representation space shared
with regular language tokens. Figure 6
shows examples, where LMs in the
intermediate layers tend to verbalize
the future in free-form English, un-
constrained by program syntax. E.g.,
in the first program, given the Python
prefix “... for idx, elem in
enumerate(numbers): for idx2,
elem2 in enumerate(numbers”, in-
stead of the groundtruth continuation
in Python “): if idx != idx2:
...”, the most salient intermediate
token is “except”, likely attempting
to predict in English “(for each element in numbers) except if it is equal to idx”.
Similarly, in a list expression “[1.0, 2.0,” instead of continuing in Python “ 3.0”, it predicts “and”,
which is a natural way to continue in English. In these cases, it is difficult to obtain semantically
equivalent English-Python pairs, so we only test Eq. 3 across targeted cases in Python below.

Experiment 1: Simple Python list literals. We systematically test the list case, where hl
t is the

hidden state after processing “,”, τz
⋆

=“and”, and τz
◦

is the actual next token. Figure 7 shows
that this trend holds systematically on all such commas in the MBPP dataset (Austin et al., 2021)
(N = 6923, including unit tests): as expected, in the final layers, the representation is closer to the
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Figure 7: Llama-2 logit lens log prob.
at commas in Python list literals, of the
English “and” token (and baseline to-
kens) vs. the next token in the program.
The representation is closer to “and”
in early-middle layers, while the code
token dominates in later layers.
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Figure 8: Llama-2 logit lens probabilities of a function call argument’s
name (its semantic role) vs. the actual argument expression token, in
MBPP. The latent representation is closer to the semantic argument
name in the early-middle layers, and reverses for the final layers.

ground truth next token’s unembedding, and closer to “and” in the middle layers. We also show the
probability with two other tokens, “or” and “not”, as baselines, both of which are lower than “and”.

Experiment 2: Python function call arguments. Function arguments have names in the defini-
tion, such as “range(start, end, step)”; but when invoked, they are filled with actual context-
appropriate expressions. We call the argument names “semantic roles”, and the context-specific
expressions the “surface forms”, inspired by thematic relations in linguistics (Fillmore, 1968). In the
second example in Figure 1, we show that LMs predict the arguments by first “thinking” about their
semantic role (τz

⋆

) and then instantiating with surface-constrained expressions (τz
◦
). We extract all

function calls and arguments from MBPP with simple filtering, resulting in 540 arguments (see §A.2
for details). For each argument, we use the logit lens to inspect the hidden states at the preceding
token (“(” or “,”). For each argument, Figure 8 visualizes if the semantic role or the surface form is
closer to each layer’s hidden state of Llama-2. The semantic role (τz

⋆

) dominates for the early to
middle layers, even though the role token usually does not appear in the context at all, and only in the
final layers do the representations converge towards the surface form argument (τz

◦
).

4.3 VISUAL INPUT
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Figure 9: The cosine similarity difference between intermediate repre-
sentations of matching images and captions, over non-matching ones.
Left: LLaVa, Right: Chameleon. Semantically matching images and
captions have more similar representations than non-matching ones.
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Figure 10: The frequency of the clos-
est token to LLaVa’s hidden states
describing the image color, against
a baseline using “white”. In many
cases, the correct color word is the
closest to the image representation.

Past work has investigated the representation of separately trained vision and text models, often
finding that their representation spaces are similarly structured and alignable (Merullo et al., 2022;
Li et al., 2023; Huh et al., 2024; i.a.). We show that when trained together, vision-language models
learn to project both modalities into a joint representation space. Current vision-language models
typically represent images by segmenting them into patches, embedding them into “image tokens”,
and then feeding them into the transformer model along with other text tokens (Lu et al., 2023; 2024;
Liu et al., 2023; i.a.). We hypothesize that the intermediate representations of the image patches are
close to the corresponding language tokens that describe the scene. Experimental details are in §A.3.

Experiment 1: Representation similarity between an image and its caption. Though not
constituting exact semantic equivalence, an image paired with its caption provides one possible
test for Eq. 1. We take 1000 images and corresponding captions in the MSCOCO dataset (Lin
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(b) Caption, Chameleon
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Figure 11: When processing an image patch, model logit lens probabilities of either the nouns in the correspond-
ing caption or the patch segmentation label, as well as a baseline for each with no correspondence between the
patch and the label. The image representations better match the semantically corresponding English words.

et al., 2014) and measure their hidden states cosine similarity in LLaVA-7B (Liu et al., 2023) and
Chameleon-7B (Chameleon-Team, 2024). As in Eq. 1, we subtract the average cosine similarity
between non-matching image-caption pairs as a baseline, separately for each layer. Figure 9 shows
that semantically matching inputs, even though in different modalities, are more similarly mapped in
the models’ hidden space, though the similarities are lower than for mutual translations (§4.1).

Experiment 2: Patch-level analysis using logit lens. We now test the image-description similarity
using the logit lens, in Eq. 4. First, as a toy setting for illustration, we inspect LLaVA’s representations
of pure color images, specifically those in red, green, blue, and black. Figure 10 shows that, in up to
more than 20% of the time in the intermediate layers (averaged across the patches and the four colors,
N = 2304), the closest token is the corresponding color word (out of all vocabulary tokens).
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Figure 12: The cosine similar-
ity difference between interme-
diate representations of match-
ing audios and labels, over non-
matching ones. Semantically
matching audios and labels
have more similar representa-
tions than non-matching ones.
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Figure 13: When SALMONN
processes an audio clip, the logit
lens probabilities of the English
words in the audio label vs. an-
other random label. The audio
representations better match
the semantically corresponding
label in English.

We next consider the image cap-
tions, the same 1000. For each
image patch, we compute a patch-
caption alignment score by sum-
ming over the logit lens proba-
bilities for all the nouns in the
sentence as a proxy for objects in
the image. We average this align-
ment score over all patches in all
images, separately for each trans-
former layer. For the irrelevant to-
ken baseline, for each image, we
compute the alignment score with
an unrelated caption where we
normalize the number of nouns
so that the score is comparable.
Figures 11a and 11b show that
the matching caption better aligns with the image patch representations than an unmatched caption,
reliable across all layers for LLaVa and consistently in the middle-upper layers for Chameleon.

Finally, we perform a finer-grained study using not caption information but segmentation information,
with object labels in specific image locations. The setup is similar to captions, but the alignment
score is not computed using the correspondence between each patch and each noun in the caption,
but each patch with the corresponding object label. For the irrelevant token baseline, we compute
the alignment by aligning each patch with a different randomly chosen object category from all
categories. Figures 11c and 11d show that, for LLaVa, the patches are much better aligned to the
corresponding labels than randomly assigned labels (which have near-0 logit lens probability). For
Chameleon, this is the case for only one middle layer, and not in a statistically significant way, though
we will show in §5 that Chameleon’s latent space can be reliably steered using English tokens.

4.4 AUDIO

Audio is another modality that is often modeled jointly with text (Lu et al., 2024; Gong et al., 2024;
2023; i.a.), and we perform similar experiments using SALMONN, an audio-text model. We use the
VGGSound dataset (Chen et al., 2020) which contains 10-second audio clips with labels, e.g., “duck
quacking” or “playing cello”. We use the same two multimodal tests as in the vision case.

Experiment 1: Representation similarity between audio and its label. We study the represen-
tation cosine similarity between an audio and its label description, and subtract from it a baseline

7
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Table 1: Steering Llama-3’s output sentiments using trigger words in English vs. the input language (either
Spanish or Chinese). We report the mean sentiment, disfluency (perplexity), and relevance of the continuation,
as well as the standard deviation across 10 seeds. Cross-lingual steering is consistently successful, sometimes
even more than monolingual steering, without substantial damage in text fluency and relevance.

Text Lang. Steering Dir. Steering Lang. Sentiment Disfluency (↓) Relevance (↑)

Spanish

None None 0.143±0.022 7.35±1.19 0.861±0.002

↓ Spanish 0.125±0.034 10.54±2.39 0.842±0.004

English 0.139±0.026 8.75±2.20 0.857±0.002

↑ Spanish 0.175±0.035 7.98±2.04 0.856±0.002

English 0.159±0.026 7.35±1.01 0.859±0.003

Chinese

None None 0.178±0.030 11.06±3.12 0.869±0.004

↓ Chinese 0.152±0.040 10.78±2.66 0.866±0.005

English 0.161±0.029 11.36±1.13 0.864±0.004

↑ Chinese 0.153±0.034 11.12±3.12 0.870±0.004

English 0.179±0.032 10.90±3.25 0.869±0.003

which is the average cosine similarity between non-matching pairs, separately for each layer. On
1000 samples from VGGSound, we see in Figure 12 that semantically matching audios and labels
have more similar representations in the intermediate layers.

Experiment 2: Token-level analysis using logit lens. Unlike for vision-language models where
we can map individual image patches to model token positions, such correspondence does not exist in
SALMONN. This limits us to position-agnostic evaluations like the captioning study, preventing fine-
grained analysis such as segmentation. Similar to the captioning experimental design, we measure the
average logit lens probabilities of the words in the label, and consider a random label in the dataset
with no word overlap as the baseline. On the same 1000 samples, Figure 13 shows a familiar trend,
where the audio hidden states are closer to semantically corresponding label words. We note that
this is a lower bound—many words in some labels, such as the prepositions in the label “writing on
blackboard with chalk”, are unlikely to be represented in the audio hidden states.

5 INTERVENING IN THE UNIFIED REPRESENTATION SPACE

Prior work has argued that interpretability results should be tested under a causal framework, to
ensure that the observation is not an incidental byproduct of model training that has no actual effect
on model behavior (Vig et al., 2020; Ravichander et al., 2021; Elazar et al., 2021; Chan et al., 2022;
i.a.). In this section, we show that the unified representation space does causally affect model output.
Specifically, semantically transforming τz

⋆

in English interpretably leads to corresponding behavior
changes in the non-dominant data type. We report relevant hyperparameters in §B.

Multilingual. Past work has shown that (monolingual) interventions in the middle layers can steer
the output of LMs in predictable fashions (Subramani et al., 2022; Turner et al., 2024; Rimsky et al.,
2024; i.a.). If the English-dominant LMs have a unified representation space scaffolded by English
tokens, we should be able to intervene on this space in English even when processing other languages.
We use a popular hidden space intervention technique, Activation Addition (ActAdd; Turner et al.,
2024), which operates in two stages: (1) taking a steering word (and optionally also a contrastive
one) that semantically represents the steering effect, passing it through the same model, and taking
its hidden states at an intermediate layer; (2) adding the steering hidden states to the hidden states
for the original forward pass of the regular generation process, at the same layer. We take their
sentiment-steering experiment but generalize it cross-lingually. See Turner et al. (2024) for details.

We consider two non-dominant languages, Spanish and Chinese, and take 1000 texts in the InterTASS
dataset (Spanish; Díaz-Galiano et al., 2018) and the multilingual Amazon reviews corpus (Chinese;
Keung et al., 2020), and generate continuations either without modifications or intervened using
ActAdd. As the steering vector, we use the difference between a positive sentiment trigger word and
a negative one, in the appropriate direction for negative or positive steering. Specifically, we use
“Good” and “Bad” for English, “Bueno” and “Malo” for Spanish, and “好” and “坏” for Chinese. In

8
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Figure 14: For (a) code, (b) images, and (c) audio, steering model output using English words, for various
intervention strengths ((a) and (c)) and layers ((b)). (a) and (b) measure successfulness with the proportion
of instances steered to the correct output, and (c) measures the probability of predicting mammals. Overall,
intervening in the unified representation space in English reliably leads to desired model output changes.

addition to sentiment evaluation, we also measure the generation fluency and compute the relevance
of the generation with the prefix using trained models, following Turner et al. (2024). Ideally, the
intervention should achieve the desired sentiment without hurting text fluency/relevance (see §B.1).

Because we take some intermediate layer representation of the steering words (step (1)), if the unified
representation space is language-agnostic, we expect similar representations and similar steering
effectiveness across steering languages. Table 1 shows that this is indeed true on Llama-3: ActAdd in
the text language is in most cases effective, achieving the intended effect on sentiment, with usually
only a modest decrease in fluency and relevance, often statistically insignificant. This aligns with
the English-only findings in Turner et al. (2024). And intervening in English is similarly effective as
using the text language. Table 2 (appendix) shows the results for Llama-2, with very similar trends.

Code. Based on our semantic role observation in §4.2, we run a intervention experiment using
the “range” function. We focus on two overloaded versions of “range”: “range(start, end)” and
“range(end)”. If the unified representation space causally affects model output, then intervening in it
using the semantic role tokens should affect the function version used in a given context.

We take all single-argument “range(end)” calls in the MBPP dataset (N = 159) and attempt to
expand it into “range(0, end)”. As the intervention, we use an even simpler method than ActAdd:
because the unembedding vectors of the semantic roles are close to the intermediate hidden states, we
simply compute the difference between the unembeddings of two contrasting trigger tokens (“start”
– “end”), scale it by a constant coefficient, and add it to the hidden representation corresponding to
the open parenthesis “(” at an intermediate layer (layer 17). For all these “range” call in the dataset,
we let Llama-24 generate without and with intervention. Figure 14a shows that, with increasing
intervention strength, more instances are successfully steered to “range(0, end)”, up to 67%.

Visual inputs. We show that we can steer the output of vision-language models by intervening on
the image patches using language tokens. As the models we examined in §4.3 can only generate text,
we analyze how this affects the textual output, specifically focusing on Chameleon which showed a
weaker trend in §4.3. Focusing on the color setup, if the representation for a color is similar between
visual and language inputs, we hypothesize that we can replace the image hidden states corresponding
to one pure color image patch with the unembedding of the language token for another color, and
mislead the model to “perceive” the new color when asked about it. Note that replacing the hidden
state is a more invasive intervention than addition. But there is one confounder: the intervened word
may lexically bias the model to generate the same word, without any reasoning that incorporates the
new color. To control for this, we show two colors in one image and only intervene at the positions
corresponding to one color: if the intervention unconditionally and lexically biases the generation to
the new color, this effect would (incorrectly) affect both colors.5

4We do not consider Llama-3 in this case because its default behavior usually generates “range(0, end)” in
the first place, and it is unclear how to steer from “range(0, end)” to “range(end)”.

5We tested settings that require more sophisticated reasoning such as asking for a country flag with the
two colors, or asking about spatial relationships of the colors. They seem to be beyond the capability of
Chameleon-7B—even without interventions, the model cannot answer the questions correctly.
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We consider all color pairs using the same colors as in §4.3: red, green, blue, and black, and picking
one color in the pair and intervene to a new third color (N = 48). As the intervention, we start
from a layer ℓ and replace all hidden states at and after ℓ to be the unembedding of the new color
minus the old color. We ask the model what the two colors in the image are, and only consider the
intervention successful if the model answers both the new color and the other unintervened color
correctly. Figure 14b shows the success rate across all ℓ: it gets as high as above 80%.6 We highlight
that, for both this experiment and the earlier ones in this section, the interventions are not even
necessarily guaranteed to lead sensible outputs, let alone correct ones.

Audio. We perform a similar intervention with SALMONN, with the same desideratum that the
QA process should require reasoning rather than outputting the intervened token as-is. We consider
1000 animal sounds in the VGGSound dataset, specifically only single-word animals, and ask “Is
this animal a mammal?” We intervene both on mammal sounds with a random non-mammal word
and vice versa, in case the intervention only biases the model in a certain direction. We perform the
invention similarly to the code case, adding the unembedding difference between the new trigger word
and the original animal name, scaled by a constant, at layer 13. We measure the probability of the
“Yes” token and the “No” token and compute the normalized “Yes” probability. Figure 14c visualizes
the two cases across intervention strengths. As the strength increases, the model is more likely to
predict in the steered direction, again demonstrating cross-data-type intervention effectiveness.

6 RELATED WORK

Representation alignment between separately trained models. A long line of work has investi-
gated the representations of separately trained mono-data-type models, and showed that they can be
aligned through a transformation. In the multilingual case, it has been found that separately trained
word embeddings for different languages can be aligned (Mikolov et al., 2013; Smith et al., 2017; Cao
et al., 2020; i.a.). Similarly, prior work has shown that visual representations and text representations
from different models can be mapped together (Merullo et al., 2022; Koh et al., 2023; Maniparambil
et al., 2024; i.a.). Huh et al. (2024) argued that these are possible because the different data modalities
are projections of the same underlying reality. Our work, in contrast, looks at a single model that
processes multiple input data types and finds that the resulting representations align, without needing
a transformation. Xia et al. (2023) considered an objective that explicitly trains the model to increase
such alignment, while we analyze how it organically emerges through autoregressive training.

Representation evolution throughout layers. Past work has analyzed the representation evolution
throughout transformer layers, inspecting how it affects reasoning (Yang et al., 2024), factual-
ity (Chuang et al., 2024), knowledge (Jin et al., 2024), etc. From another angle, work on layer pruning
and early exiting also speaks to representation dynamics across layers (Gromov et al., 2024; Sanyal
et al., 2024; i.a.). Mechanistically, Elhage et al. (2021), Merullo et al. (2024), Todd et al. (2024),
Hendel et al. (2023), i.a., more precisely characterized the representation changes algorithmically.

Inspecting model hidden states. We adopted the logit lens for its simplicity which brings few
confounders. However, alternatives exist, usually requiring some training (Belrose et al., 2023;
Ghandeharioun et al., 2024; Templeton et al., 2024; i.a.). They allow for more expressive explanations,
though at the risk of overfitting. Similar methods have been developed for other modalities, such as
Toker et al. (2024). Testing our hypothesis using these methods would be valuable future work.

7 CONCLUSION

Throughout extensive experiments across multiple data types, we have shown that language and
multimodal models encode inputs from distinct languages and modalities into a joint representation
space. Plus, intervening on this space leads to interpretation model behavior changes. We hope our
findings future work to build more transparent and efficient models exploiting such properties.

6One may argue this is conceptually similar to a half-language half-image input. There are many distinctions:
most importantly, a half-image is not processable by Chameleon and severely goes out of its training distribution,
since it only ever processes images of size exactly 512 × 512. Other distinctions include: the presence of a
special token marking the beginning of the image; our intervention repeats the new color token, once for each
patch, rather than just one; and the token representation is held constant across layers rather than evolving; etc.
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A EXPERIMENTAL DETAILS FOR §4

A.1 MULTILINGUAL

For Experiment 1, for each sentence pair, we use a template to transform each sentence. This is due
to the automatic code-switching behavior of LMs. For an English model processing Chinese text,
we expect the Chinese tokens to have high probabilities in the final layer because they need to be
output; however, we observe these models tend to code-switch back to their dominant language after
a full sentence, which confounds our analysis. We therefore put the parallel sentences into a template,
“{English Sentence} This represents” (and the corresponding Chinese version), as the model is less
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Figure 15: Latent language probabilities for various models, visualizing the top 3 languages per layer. Regard-
less of the input language, the dominant model language is more salient in the early-middle layers, and
the input language is more salient in the final layers. Bloom does not have a clear intermediate latent
language.

likely to code-switch mid-sentence after “represents”. We experimented with other templates that
led to similar results. Furthermore, for sentence in GALE (Chen et al., 2016), we make sure the
transcript;unicode is not empty for both the source and the translation.

For Experiment 2, due to tokenization, it is challenging to obtain exactly parallel English-Chinese
tokens, and hence we perform aggressive filtering. We consider only text positions where the next
BPE token (1) is a valid Chinese word (as segmented by Jieba (Sun, 2024)), and (2) has an English
translation (using the English-Chinese dictionary CC-CEDICT (MDBG, 2024)). For example, “今
天是开心的一天” (Today is a happy day), Llama-3 tokenizes it as {‘今天’, ‘是’, ‘开’, ‘心’, ‘的
一’, ‘天’}, while Jieba segments it to be {‘今天’, ‘是’, ‘开心’, ‘的’, ‘一天’}. We only keep {‘今天’,
‘是’}. Furthermore, only ‘今天’’s translation is a single token, the only token that survives the cutoff
is ‘今天’.

The full result of Figure 5 is in Figure 15. We observe that the 7B/8B and 70B models of the same
model family have highly similar trends, so we only consider the 7B/8B models in other experiments.

A.2 CODE

We consider all non-zero-argument function calls in the MBPP dataset, excluding unit tests. We
automatically identify the argument names (the “semantic roles”) by function inspection for built-in
functions and by looking at the function definition for those defined in-context, and skip when this
is not possible. We also ignore arguments whose semantic roles are generically called “obj” or
“object”, and instances where the instantiated surface-form argument is the same as the semantic
role. We look the hidden state corresponding to the previous token, either “(” or “,”, except when
tokenization renders this impossible (e.g., when the previous token is merged with a part of the
surface argument). This leaves 540 arguments.

A.3 VISION-LANGUAGE

To pass the images through the model, we embed them in templates, only for the logit
lens experiments. For the color experiment, we use the template “USER: What is the color
in the image?<image>\n ASSISTANT:”. For the caption and segmentation experiments, we
use “USER: What is in the image?\n<image> ASSISTANT:” for LLaVA and “What is in the
image?\n<image>” for Chameleon.
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Table 2: Steering Llama-2’s output sentiments using trigger words in English vs. the input language (either
Spanish or Chinese). We report the mean sentiment, disfluency (perplexity), and relevance of the continuation,
as well as the standard deviation across 10 seeds. Cross-lingual steering is consistently successful, sometimes
even more than monolingual steering, without substantial damage in text fluency and relevance.

Text Lang. Steering Dir. Steering Lang. Sentiment Disfluency (↓) Relevance (↑)

Spanish

None None 0.144±0.014 8.58±0.57 0.850±0.006

↓ Spanish 0.143±0.012 8.84±0.79 0.847±0.006

English 0.097±0.024 8.99±0.72 0.847±0.005

↑ Spanish 0.164±0.018 9.11±0.50 0.844±0.005

English 0.149±0.015 8.35±0.30 0.849±0.006

Chinese

None None 0.223±0.036 14.63±2.65 0.844±0.009

↓ Chinese 0.117±0.080 15.29±2.47 0.840±0.011

English 0.156±0.076 14.80±2.24 0.842±0.008

↑ Chinese 0.359±0.077 545.94±1544.36 0.839±0.010

English 0.227±0.038 14.14±2.42 0.845±0.009

For all caption and segmentation experiments, we use the MSCOCO 2017 dataset. For the caption
evaluation, for each image patch (with the associated caption for the entire image), we compute a scalar
patch-caption alignment score (for each layer separately), by averaging the logit lens probabilities of
all nouns in the caption at that image patch position.7 The baseline is similarly calculating by taking
an irrelevant caption (see §4.3). We then average the patch-caption alignment score across all patches
in all images to obtain the curves in Figure 11a and 11b.

For the segmentation evaluation, we use the MSCOCO 2017 panoptic segmentation labels. The
metric calculation is similar as above. Instead of a scalar patch-caption alignment score, we consider
a scalar patch-label alignment score between a patch and its matching segmentation label, computed
likewise using the logit lens. We consider a patch and a label as matching if there is an image segment
with that label that occupies more than half of the pixels in the patch. Under this definition, a patch
cannot have more than one label. When a patch is not matched with any label, we disregard it. In
the baseline, we use a randomly chosen incorrect label from all possible labels for the alignment
score. Finally, we average this alignment score across all patches in all images to obtain the curves in
Figure 11c and 11d.

B EXPERIMENTAL DETAILS FOR §5

For both the code and vision-language intervention experiments, we use argmax decoding.

B.1 MULTILINGUAL

For each language, we sample N = 1000 instances from the training set of InterTASS for Spanish
and the multilingual Amazon reviews corpus for Chinese. Following Turner et al. (2024), we use
trained models for various metrics. We automatically evaluate the sentiment of the generation using a
DistillBERT-based (Sanh et al., 2020) model finetuned for multilingual sentiment analysis,,8 judge
the generation fluency by taking the conditional perplexity of the generation given the prefix from
Llama-3.1-70B (Llama-3-Team, 2024),9 and compute the relevance of the generation with the prefix
by computing the cosine similarity between the generation and the prefix using a XLM-R-Large-
based (Conneau et al., 2020) model finetuned for sentence representation (Wang et al., 2024). All
these models support both Spanish and Chinese.

7Words with NOUN or PROPN tags given by SpaCy’s en_core_web_trf model (Honnibal & Montani, 2017).
8https://huggingface.co/lxyuan/distilbert-base-multilingual-cased-sentiments-student
9We also tried using Mistral-Nemo-Base (https://huggingface.co/mistralai/

Mistral-Nemo-Base-2407), and found similar trends.
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Figure 16: Results for the arithmetic experiments. The 95% CI is plotted in all. Expressions in Arabic numerals
have similar representation as corresponding expressions in English, as well as the unembeddings of
corresponding number words in English.

We perform ActAdd by passing both the positive and negative steering words through the LM, taking
their hidden states at layer 17, computing their difference, scaling it by a constant, and adding it to
the normal generation forward pass also at layer 17, exactly following Turner et al. (2024), except we
use a scaling coefficient of 5, rather than 2 in their experiments, for which we observed a larger effect.
For generation, we use a temperature of 1, top-p=0.3, and a frequency penalty of 1, all following
Turner et al. (2024), without tuning.

We showed the Llama-3 intervention results in Table 1, and here in Table 2 we show the results on
Llama2, with similar trends.

C EXPERIMENTS WITH ARITHMETIC EXPRESSIONS

We hypothesize that a similar trend exists when LMs process arithmetic expressions where they route
to a shared space anchored by numerical words in English in intermediate layers. We consider simple
expressions in the form of “a=b+c” or “a=b*c”; for simplicity, we restrict “a” and “b” to be at most
two digits and “c” to be a single positive digit.

Experiment 1: Representations are similar for translations. Here, we only consider the right-
hand side, “b+c” and “b*c”, as wz1

1:t in Eq. 1. Like in the multilingual case, we translate them
into English (e.g., “five plus three”) as wz2

1:t′ , and evaluate the representation cosine similarity
between every English expression and every numeric expression, throughout layers. We group
the pairwise cosine similarities in three buckets: (1) exact translation (e.g., “5+3” and “five plus
three”; N = 1123), (2) non-exact but same value (e.g., “5+3” and “two plus six”; N = 13293),
and (3) different value (N = 1247836). Figure 16a shows that exact translations have high cosine
similarity, although this is to be expected since embeddings of numbers and their corresponding
English words are near one another (thus even a bag-of-word-embeddings should also have high
similarity). More interestingly, we that the similarities are still higher when the surface forms are
distinct but the “meaning” of the expression (i.e., the value of the expression) is the same. Next,
like in §4.1, we subtract the cosine similarities among non-translation pairs as a baseline (uz2

1:t′).
Figure 16b shows high similarity in the early-middle layers for translations over the baseline, but
gradually decreasing to near 0.

Experiment 2: Representations are anchored by semantically-equivalent English words. We
hypothesize that, for some prefix such as “a=b+”, the intermediate representations hℓ

t are close to the
English word for “c” that would make the equality hold. First, we randomly sample 100 such prefixes
and take the representation of the last token at all layers. For each prefix, we plot the representation
evolution throughout layers using PCA, as well as the unembeddings of numbers in English τz

⋆

vs.
numerals τz

◦
. Figure 18 shows that the representations indeed go through the space occupied by the

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 0.5 1 1.5 2 2.5 3
Intervention Strength Coefficient

0

20

40

60

80

100
Pr

op
or

tio
n 

of
 In

st
an

ce
s (

%
)

Correct
Unchanged
Other

Llama-2
Llama-3

Figure 17: Steering arithmetic expressions’ re-
sults to a different value.

First Principal Component

Se
co

nd
 P

ri
nc

ip
al

 C
om

po
ne

nt

0
zero

1one
2two

3three 4four 5five 6six 7seven 8eight 9nine

0

5

10

15

20

25

30

La
ye

r

Figure 18: The Llama-3 hidden representation evolution
when predicting a number, projected by PCA where the
principal components are learned on the output embeddings
of 20 number tokens, 10 in English and 10 numerals.

English words in intermediate layers. Next, we repeat our logit lens experiments, inspecting the log
probability of the following numeral token vs. its English version (N = 1123). Figure 16c shows
that the two tokens have similar log probability until around layer 25, after which the numeral token
dominates.

Experiment 3: Intervention. We perform intervention using our arithmetic expressions, for
example “4=1+3”. We intervene by attempting to modify the token after “+” to be one smaller, e.g. “2”
here, and expect this to not only lead the model to output “2” instead of “3”, but also fundamentally
affects the model’s reasoning process and causes the model to patch this error with an additional
suffix “+1”, i.e., “4=1+2+1”. We use ActAdd except for adding the intervention vector (e.g., “three” –
“two”) only at the position of “+”.10 For all addition expressions in our data (N = 846), we perform
such intervention at an intermediate layer (25 for Llama-3 and 30 for Llama-2) and measure how
often this leads to the model correctly outputting the decremented number followed by “+1”, versus
unchanged, or changed to some other output. Figure 17 shows that, as the intervention coefficient
(i.e., the scaling constant of the vector) increases, this procedure leads to the expected output for up
to > 90% of the instances.

10Another difference is that we do not use the hidden representation after seeing e.g. “three”, because that
usually represents the next token. Instead, we use a prefix that uniquely determines the number, e.g. “Eight
equals to five plus”, and take the last token hidden representation, which is supposed to represent “three”.
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