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Abstract

Shuffle model of differential privacy is a novel distributed privacy model based on a
combination of local privacy mechanisms and a secure shuffler. It has been shown that
the additional randomisation provided by the shuffler improves privacy bounds compared
to the purely local mechanisms. Accounting tight bounds, however, is complicated by
the complexity brought by the shuffler. The recently proposed numerical techniques for
evaluating (ε, δ)-differential privacy guarantees have been shown to give tighter bounds than
commonly used methods for compositions of various complex mechanisms. In this paper,
we show how to utilise these numerical accountants for adaptive compositions of general
ε-LDP shufflers and for shufflers of k-randomised response mechanisms, including their
subsampled variants. This is enabled by an approximation that speeds up the evaluation of
the corresponding privacy loss distribution from O(n2) to O(n), where n is the number of
users, without noticeable change in the resulting δ(ε)-upper bounds. We also demonstrate
looseness of the existing bounds and methods found in the literature, improving previous
composition results for shufflers significantly.

1 Introduction

The shuffle model of differential privacy (DP) is a distributed privacy model which sits between the high trust–
high utility centralised DP, and the low trust–low utility local DP (LDP). In the shuffle model, the individual
results from local randomisers are only released through a secure shuffler. This additional randomisation
leads to “amplification by shuffling”, resulting in better privacy bounds against adversaries without access
to the unshuffled local results.

We consider computing privacy bounds for both single and composite shuffle protocols, where by composite
protocol we mean a protocol, where the subsequent user-wise local randomisers depend on the same local
datasets and possibly on the previous output of the shuffler, and at each round the results from the local
randomisers are independently shuffled. Moreover, using the analysis by Feldman et al. (2021), we provide
bounds in the case the subsequent local randomisers are allowed to depend adaptively on the output of the
previous ones.

In this paper we show how numerical accounting (Koskela et al., 2020; 2021; Gopi et al., 2021) can be
employed for privacy analysis of both single and composite shuffle DP mechanisms. To our knowledge, ours
is the only existing method enabling tight privacy accounting for composite protocols in the shuffle model. We
demonstrate that thus obtained bounds can be up to orders of magnitudes tighter than the existing bounds
from the literature. By using the tight privacy bounds we can also evaluate how significantly adversaries
with varying capabilities differ in terms of the resulting privacy bounds. Due to limited space, we have
placed most of the proofs to the Appendix.

1.1 Related work

DP was originally defined in the central model assuming a trusted aggregator by Dwork et al. (2006), while
the fully distributed LDP was formally introduced and analysed by Kasiviswanathan et al. (2011). Closely
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related to the shuffle model of DP, Bittau et al. (2017) proposed the Encode, Shuffle, Analyze framework for
distributed learning, which uses the idea of secure shuffler for enhancing privacy. The shuffle model of DP
was formally defined by Cheu et al. (2019), who also provided the first separation result showing that the
shuffle model is strictly between the central and the local models of DP. Another direction initiated by Cheu
et al. (2019) and continued, e.g., by Balle et al. (2020b); Ghazi et al. (2021) has established a separation
between single- and multi-message shuffle protocols.

There exists several papers on privacy amplification by shuffling, some of which are central to this paper.
Erlingsson et al. (2019) showed that the introduction of a secure shuffler amplifies the privacy guarantees
against an adversary, who is not able to access the outputs from the local randomisers but only sees the
shuffled output. Balle et al. (2019) improved the amplification results and introduced the idea of privacy
blanket, which we also utilise in our analysis of k-randomised response. Feldman et al. (2021) used a related
idea of hiding in the crowd to improve on the previous results, while Girgis et al. (2021) generalised shuffling
amplification further to scenarios with composite protocols and parties with more than one local sample under
simultaneous communication and privacy restrictions. We use the improved results of Feldman et al. (2022)
in the analysis of general LDP mechanisms, and compare our bounds with theirs in Section 3.3. We also
calculate privacy bounds in the setting considered by Girgis et al. (2021), namely in the case a subset of users
sending contributions to the shufflers are sampled randomly. This can be seen as a subsampled mechanism
and we are able to combine the analysis of Feldman et al. (2022), the privacy loss distribution related
subsampling results of Zhu et al. (2022) and FFT accounting to obtain tighter (ε, δ)-bounds than Girgis
et al. (2021), as shown in Section 3.4.

2 Background: numerical privacy accounting

Before analysing the shuffled mechanisms we introduce some required theory and notations. In particular,
we use the so called privacy loss distribution formalism which is based on finding so called dominating pairs
of distributions for the mechanisms at hand. This introduction is dense, for more details we refer to Koskela
et al. (2021); Gopi et al. (2021); Zhu et al. (2022).

2.1 Differential privacy and privacy loss distribution

An input dataset containing n data points is denoted as X = (x1, . . . , xn) ∈ Xn, where xi ∈ X , 1 ≤ i ≤ n.
We say X and X ′ are neighbours if we get one by substituting one element in the other (denoted X ∼ X ′).
Definition 1. Let ε > 0 and δ ∈ [0, 1]. Let P and Q be two random variables taking values in the same
measurable space O. We say that P and Q are (ε, δ)-indistinguishable, denoted P '(ε,δ) Q, if for every
measurable set E ⊂ O we have

Pr(P ∈ E) ≤ eεPr(Q ∈ E) + δ, Pr(Q ∈ E) ≤ eεPr(P ∈ E) + δ.

Definition 2. Let ε > 0 and δ ∈ [0, 1]. Mechanism M : Xn → O is (ε, δ)-DP if for every X ∼ X ′:
M(X) '(ε,δ) M(X ′). We call M tightly (ε, δ)-DP, if there does not exist δ′ < δ such that M is (ε, δ′)-DP.
The case when X and X ′ are allowed to be any data sets and δ = 0 is called ε-LDP.

We rely on the results of Zhu et al. (2022) and characterise (ε, δ)-DP bounds using the hockey-stick divergence
which for α ≥ 0 is defined as

Hα(P ||Q) =
∫

[P (t)− α ·Q(t)]+ dt,

where for x ∈ R, x+ = max{0, x}. Using the hockey-stick divergence, by (Lemma 5, Zhu et al., 2022), tight
(ε, δ)-DP bounds can also be characterised as

δ(ε) = max
X∼X′

Heε(M(X)||M(X ′)).

We can generally find (ε, δ)-bounds by analysing dominating pairs of distributions:
Definition 3 (Zhu et al. 2022). A pair of distributions (P,Q) is a dominating pair of distributions for
mechanismM(X) if for all α ≥ 0,

max
X∼X′

Hα(M(X)||M(X ′)) ≤ Hα(P ||Q).

2



Under review as submission to TMLR

Using dominating pairs of distributions, we can obtain δ(ε)-upper bounds for adaptive compositions:
Theorem 4 (Zhu et al. 2022). If (P,Q) dominates M and (P ′, Q′) dominates M′, then (P × P ′, Q ×Q′)
dominates the adaptive compositionM◦M′.

Having dominating pairs of distributions for each individual mechanism in a composition, the hockey-stick
divergence can be transformed into a more easily computable form by using the privacy loss random variables
(PRVs). PRV for a pair of distributions (P,Q) is defined as follows.
Definition 5. Let P (t) and Q(t) be probability density functions. We define the PRV ωP/Q as

ωP/Q = log P (t)
Q(t) , t ∼ P (t),

where t ∼ P (t) means that t is distributed according to P (t).

With slight abuse of notation, we denote the probability density function of the random variable ωP/Q by
ωP/Q(t), and call it the privacy loss distribution (PLD).

The δ(ε)-bounds can be represented using the following representation that involves the PRV.
Theorem 6 (Gopi et al. 2021). We have:

Heε(P ||Q) = EωP/Q
[
1− eε−ωP/Q

]
+ , (2.1)

Moreover, if ωP/Q is a PRV for the pair of distributions (P,Q) and ωP ′/Q′ a PRV for the pair of distributions
(P ′, Q′), then the PRV for the pair of distributions (P × P ′, Q×Q′) is given by ωP/Q + ωP ′/Q′

By identifying dominating pairs of distributions for each mechanism in a composition and by formulating
the δ(ε)-bound via hockey-stick divergence as an integral of the form equation 2.1, the numerical PLD
accountants (Koskela et al., 2021; Gopi et al., 2021) can be utilised for computing accurate δ(ε)-bounds.

We will also use the following subsampling amplification result (Proposition 30, Zhu et al., 2022) which
leads to a privacy profile for the composed mechanism M ◦ SSubset, where SSubset denotes a subsampling
procedure where, from an input of n entries, a fixed sized subset of γ · n, 0 < γ ≤ 1, entries is sampled.
Lemma 7 (Zhu et al. 2022). Denote the subsampled mechanism M̃ := M ◦ SSubset. Suppose a pair of
distributions (P,Q) is a dominating pair of distributions for a mechanism M for all datasets of size γ · n
under the ∼-neighbourhood relation (i.e., the substitute relation), where γ > 0 is the subsampling ratio (size
of the subset divided by n). Then,

Hα

(
M̃(X)||M̃(Y )

)
≤ Hα

(
γ · P + (1− γ) ·Q||Q

)
, for α ≥ 1,

Hα

(
M̃(X)||M̃(Y )

)
≤ Hα

(
P ||γ ·Q+ (1− γ) · P

)
, for 0 ≤ α < 1

(2.2)

under the substitute relation for datasets of size n.

Consider the assumptions of Lemma 7. If we consider the function h : R≥0 → R

h(α) = max{Hα

(
γ · P + (1− γ) ·Q||Q

)
, Hα

(
P ||γ ·Q+ (1− γ) · P

)
}, (2.3)

we see that f(α) clearly defines a privacy profile (it is convex and has all the other required properties of
a privacy profile). Thus we can apply the numerical method (Algorithm 1) by Doroshenko et al. (2022) to
the function h to obtain discrete-valued distribution P and Q that are dominating pairs of distributions for
M◦ SSubset.

When computing tight δ(ε)-bounds for the shufflers of the k-RR local randomisers and their compositions,
instead of equation 2.1, for certain random variables ωi, 1 ≤ i ≤ nc, where nc is the number of compositions,
we need to evaluate expressions of the form

δ(ε) = P
(∑nc

i=1
ωi ≥ ε

)
. (2.4)

The numerical PLD accounting methods are straightforwardly applied to equation 2.4 as well.
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2.2 Numerical PLD accounting using FFT

In order to evaluate integrals of the form equation 2.1, we use the Fast Fourier Transform (FFT)-based
method by Koskela et al. (2021) called the Fourier Accountant (FA). This means that each PLD is truncated
and placed on an equidistant numerical grid over an interval [−L,L], L > 0. The distributions for the sums
of the PRVs are given by convolutions of the individual PLDs and are evaluated using the FFT algorithm. By
a careful error analysis the error incurred by the numerical method can be bounded and an upper δ(ε)-bound
obtained. Expressions of the form equation 2.4 can be similarly evaluated with FFT-convolutions. We note
that alternatively, for accurately computing the integrals we could also use the FFT-based method proposed
by Gopi et al. (2021).

3 General shuffled ε0-LDP mechanisms

Feldman et al. (2022) consider general ε0-LDP local randomisers combined with a shuffler. The analysis
allows also sequential adaptive compositions of the user contributions before shuffling. The analysis is based
on decomposing individual LDP contributions to mixtures of data dependent part and noise, which leads to
finding (ε, δ)-bounds for the pair of 2-dimensional random variables (see Thm. 3.1 of Feldman et al., 2022)

P = (A+ ∆1, C −A+ ∆2), Q = (A+ ∆2, C −A+ ∆1), (3.1)

where for n ∈ N,

C ∼ Bin(n− 1, 2p), A ∼ Bin
(
C, 1

2
)
, ∆1 ∼ Bern (eε0p) and ∆2 ∼ Bin

(
1−∆1,

p
1−eε0p

)
, (3.2)

and p = 1
eε0 +1 . Intuitively, C denotes the number of other users whose mechanism outputs are

indistinguishable “clones” of the two differing users, with A denoting random split between these. Feldman
et al. (2021) also propose a numerical method to compute the hockey-stick divergence Heε(P ||Q). Using
the following lemma, we can use the FFT-based numerical accountants to obtain accurate bounds also for
adaptive compositions of general ε0-LDP shuffling mechanisms:
Lemma 8. Let X and X ′ be neighbouring datasets and denote by As(X) and As(X ′) outputs of the shufflers
of adaptive ε0-LDP local randomisers (for a detailed description of As, see Thm. 3.1 of Feldman et al., 2022,
which uses the same notation). Then, for all α ≥ 0,

Hα(As(X)||As(X ′)) ≤ Hα(P ||Q),

where P and Q are given as in equation 3.1.

Proof. By Thm. 3.2 of Feldman et al. (2021) there exists a post-processing algorithm Φ such As(X) is
distributed identically to Φ(P ) and As(X ′) identically to Φ(Q). The claim follows then from the data-
processing inequality which holds for the hockey-stick divergence (Balle et al., 2020a).

Corollary 9. The pair of distributions (P,Q) in equation 3.1 is a dominating pair of distributions for the
shuffling mechanism As(X).

Furthermore, using Thm. 4, we can bound the δ(ε) of nc-wise adaptive composition of the shuffler As using
product distributions of P s and Qs:
Corollary 10. Denote Ancs (X, z0) = As(X,As(X, ...As(X, z0))) for some initial state z0. For all
neighbouring datasets X and X ′ and for all α ≥ 0,

Hα(Ancs (X)||Ancs (X ′)) ≤ Hα(P × . . .× P ||Q× . . .×Q), (3.3)

We remark that the case of heterogeneous adaptive compositions (e.g. varying n and ε0) can be handled
analogously using Thm. 4.

Thus, using equation 3.3 for α = eε, we get upper bounds for adaptive compositions of general shuffled
ε0-LDP mechanisms with the Fourier accountant by finding the PLD for the distributions P,Q (given in

4



Under review as submission to TMLR

Eq. equation 3.1). Note that even though the resulting (ε, δ)-bound is tight for P ’s and Q’s, it need not
be tight for a specific mechanism like the shuffled k-RR. The bound simply gives an upper bound for any
shuffled ε0-LDP mechanisms.

3.1 PLD for shuffled ε0-LDP mechanisms

To analyse compositions of general shuffled ε0-LDP mechanisms, we need to form the PLD ωP/Q determined
by P and Q of Eq. equation 3.1. Denoting q = eε0p and q̃ = p

1−eε0p , p = 1
eε0 +1 , and writing out the

randomness of ∆1 and ∆2 as mixtures, we see that the random variables P and Q in equation 3.1 are given
by

P = q · P0 + (1− q)q̃ · P1 + (1− q)(1− q̃) · P2, Q = (1− q)q̃ · P0 + q · P1 + (1− q)(1− q̃) · P2,

where
P0 ∼ (A+ 1, C −A), P1 ∼ (A,C −A+ 1), P2 = (A,C −A)

and A and C are as given in equation 3.2. In the Appendix we give the required expressions to determine
the discrete-valued PLD

ωP/Q(s) =
∑

a,b
P(P = (a, b)) · δs(a,b)(s), s(a,b) = log

(
P(P=(a,b))
P(Q=(a,b))

)
, (3.4)

where δs(·), s ∈ R, denotes the Dirac delta function centred at s, and similarly also ωQ/P (s).

3.2 Lowering PLD computational complexity using Hoeffding’s inequality

The PLD equation 3.4 has O(n2) terms which makes its naive evaluation overly expensive for a large number
of users n. Using an appropriate tail bound (Hoeffding) for the binomial distribution, we can truncate part
of the probability mass and add it directly to δ. More specifically, if each PLD ωi, 1 ≤ i ≤ nc, in an
nc-composition is approximated by a truncated distribution ω̃i such that the truncated probability masses
are τi ≥ 0, respectively, then δ(ε) = δ̃(ε) + δ(∞), where δ̃(ε) is the value of the integral of Thm. 4 obtained
with the truncated PLDs and δ(∞) = 1 −

∏
i(1 − τi) ≤

∑
i τi, gives an upper bound for the composition

without truncations. Using the Hoeffding inequality we obtain an accurate approximation of ωP/Q with only
O(n) terms. We formalise this approximation as follows.
Lemma 11. Let the PLD ωP/Q be defined as in equation 3.4 (equation 3.1 gives P and Q which include
C ∼ Bin(n− 1, 2p) and A ∼ Bin

(
C, 1

2
)
) and let τ > 0. Consider the set

Sn = [max (0, (2p− cn)(n− 1)) ,min (n− 1, (2p+ cn)(n− 1))],

where cn =
√

log(4/τ)
2(n−1) and the set

Si = [max
(
0, ( 1

2 − ci) · i
)
,min

(
n− 1, ( 1

2 + ci) · i
)
],

where ci =
√

log(4/τ)
2·i . Then, ω̃P/Q defined by

ω̃P/Q(s) =
∑
i∈Sn

∑
j∈Si

P(P = (j + 1, i− j)) · δsj+1,i−j (s), sa,b = log
(

P(P=(a,b))
P(Q=(a,b))

)
(3.5)

has O(n · log(4/τ)) terms and differs from ωP/Q at most mass τ .

Proof. As A is conditioned on C, we first use a tail bound on C and then on A, to reduce the number of
terms. Using Hoeffding’s inequality for C ∼ Bin(n− 1, 2p) states that for c > 0,

P
(
C ≤ (2p− c)(n− 1)

)
≤ exp

(
− 2(n− 1)c2),

P
(
C ≥ (2p+ c)(n− 1)

)
≤ exp

(
− 2(n− 1)c2).
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Requiring that 2 · exp
(
−2(n− 1)c2) ≤ τ/2 gives the condition c ≥

√
log(4/τ)
2(n−1) and the expressions for cn

and Sn. Similarly, we use Hoeffding’s inequality for A ∼ Bin(C, 1
2 ) and get expressions for ci and Si. The

total neglected mass is at most τ/2 + τ/2 = τ . For the number of terms, we see that Sn contains at most
2cn(n − 1) =

√
n− 1

√
2 · log(4/τ) terms and for each i, and Si contains at most 2cii =

√
i
√

2 · log(4/τ) ≤√
n− 1

√
2 · log(4/τ) terms. Thus ω̃P/Q has at most O(n · log(4/τ)) terms. We get the form of equation 3.5

by an appropriate change of variables.

When evaluating ω̃P/Q, we require that the neglected mass is smaller than some prescribed tolerance τ (e.g.
τ = 10−12). When computing guarantees for compositions, the cost of FFT for evaluating the convolutions
dominates the rest of the computation.

3.3 Experimental comparison to RDP

Figure 1 shows a comparison between the PLD and RDP applied to the pair of distributions P and Q
given in Feldman et al. (2022). RDP bounds for composition are computed using standard composition
results (Mironov, 2012) and the RDP bounds are converted to DP bounds using the conversion formula
given in (Canonne et al., 2020). Naive evaluation of RDP-values is O(n2) computation. We heuristically
speed up RDP evaluation using the Hoeffding inequality (Lemma 11) and check that increasing the accuracy
does not change the results.

0.2 0.4 0.6 0.8 1.0
ε

10−13

10−11

10−9

10−7

10−5

10−3

10−1

δ

RDP, nc = 4

RDP, nc = 3

RDP, nc = 2

RDP, nc = 1

PLD, nc = 4

PLD, nc = 3

PLD, nc = 2

PLD, nc = 1

Figure 1: Evaluation of δ(ε) for general single and composite shuffle (ε0, 0)-LDP mechanisms: for single
composition protocols the numerical method by Feldman et al. (2021) is close to the tight bounds from
FA (nc = 1). Their method is not directly applicable to compositions, for which the Fourier accountant
also gives tight bounds. For nc = 2 the bound for the method by Feldman et al. (2021) is computed using
the strong composition theorem (Kairouz et al., 2015). Number of users n = 104 and the LDP parameter
ε0 = 4.0.

3.4 Experimental comparison to the RDP bounds of Girgis et al. (2021)

Girgis et al. (2021) consider a protocol where a randomly sampled, fixed sized subset of users sends
contributions to the shuffler on each round, and the local randomisers are assumed to be integer-valued
ε0-LDP mechanisms. This can be seen as a composition of a shuffler and a subsampling mechanism.
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We can generalise our analysis to this case via Lemma 7, and use Algorithm 1 of (Doroshenko et al.,
2022) on the function h(α) defined in equation 2.3 to obtain the dominating pair of distributions for
the subsampled mechanism. To this end, we need to define a grid for α: {α0, . . . , αnα+1}, where
0 = α0 < α1 < . . . < αnα < αnα+1 = ∞. In practice this means that we determine α1 and αnα and
the value nα. Figure 2 illustrates the convergence of this approximation as we refine the α-grid.

0.2 0.4 0.6 0.8 1.0
ε

10−3

10−2

10−1

δ

Doroshenko et al., nα = 500

Doroshenko et al., nα = 3000

Hα(γP + (1− γ)Q||Q)

Figure 2: We apply FFT-based method on the dominating pair of distributions given by Algorithm 1
of (Doroshenko et al., 2022) applied on the function h(α) that we obtain from Lemma 7, for different sizes
of α-grids. Here, the underlying P and Q are obtained from the analysis of Feldman et al. (2022), and we
set ε0 = 3.0, n = 104, γ = 0.01, α1 = exp(−0.25), αnα = exp(0.25), and take a logarithmically equidistant
α-grid. We also plot Hα(γ · P + (1− γ) ·Q||Q) for comparison (i.e. α = eε).

As we see from Figure 3, this approach leads to considerably lower ε(δ)-bounds than the approach by Girgis
et al. (2021). Notice that the tightness of the PLD-based bound is that of the analysis of (Feldman et al.,
2021) which gives the dominating pair (P,Q) of equation 3.1 and that the RDP-based analysis of (Girgis
et al., 2021) is fundamentally different. This explains the fact that the bounds seem to cross as the number
of compositions grows large.

4 Shuffled k-randomised response

Balle et al. (2019) give a protocol for n parties to compute a private histogram over the domain [k] in the
single-message shuffle model. The randomiser is parameterised by a probability γ, and consists of a k-ary
randomised response mechanism (k-RR) that returns the true value with probability 1− γ and a uniformly
random value with probability γ. Denote this k-RR randomiser by RPHγ,k,n and the shuffling operation by S.
Thus, we are studying the privacy of the shuffled randomiserM = S ◦ RPHγ,k,n.

Consider first the proof of Balle et al. (2019, Thm. 3.1). Assuming without loss of generality that the differing
data element between X and X ′, X,X ′ ∈ [k]n, is xn, the (strong) adversary As used by Balle et al. (2019,
Thm. 3.1) is defined as follows.
Definition 12. Let M = S ◦ RPHγ,k,n be the shuffled k-RR mechanism, and w.l.o.g. let the differing element
be xn. We define adversary As as an adversary with the view

ViewAsM(X) =
(
(x1, . . . , xn−1), β ∈ {0, 1}n, (yπ(1), . . . , yπ(n))

)
,
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10−2

10−1

100

101
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P
ε

ε0 = 3.0, n = 105, γ = 0.01, δ = 1/n

ε from RDP upper bound (Girgis et al., 2021)

(P,Q) from Feldman et al. (2022)

Figure 3: Evaluation of ε(δ) for compositions of subsampled shufflers. We compare the bounds obtained
using FA and the PLD determined by Lemma 7, and the RDP-bounds given in Thm. 2 of (Girgis et al., 2021)
that are mapped to ε(δ)-bounds using Lemma 1 of (Girgis et al., 2021). Here the number of compositions
nc varies and n is fixed. Here γ denotes the subsampling ratio.

where y are the outputs from the shuffler, β is a binary vector identifying which parties answered randomly,
and π is a uniformly random permutation applied by the shuffler.

Assuming w.l.o.g. that the differing element xn = 1 and x′n = 2, the proof then shows that for any possible
view V of the adversary As,

P(ViewAsM (X)=V )
P(ViewAsM (X′)=V )

= N1
N2

, where Ni denotes the number of messages received by
the server with value i after removing from the output Y any truthful answers submitted by the first n− 1
users. Moreover, Balle et al. (2019) show that for all neighbouring X and X ′,

ViewAsM(X) '(ε,δ) ViewAsM(X ′) (4.1)

for
δ(ε) = P

(
N1

N2
≥ eε

)
, (4.2)

where
N1 ∼ Bin

(
n− 1, γ

k

)
+ 1, N2 ∼ Bin

(
n− 1, γ

k

)
. (4.3)

From the proof of Balle et al. (2019, Thm. 3.1) we directly get the following representation for tight δ(ε) for
non-adaptive compositions of the k-RR shuffler. With certain techniques used by Zhu et al. (2022) to show
that adaptive compositions can be analysed using dominating pairs of distributions, we can show that the
result holds also for adaptive compositions.
Theorem 13. Consider nc adaptive compositions of the k-RR shuffler mechanismM and an adversary As
as described in Def. 12 above. Then, the tight (ε, δ)-bound is given by

δ(ε) = P

(
nc∑
i=1

Zi ≥ ε

)
,
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where Zi’s are independent and for all 1 ≤ i ≤ nc, Zi ∼ log
(
N1
N2

)
, where N1 and N2 are distributed as in

equation C.7.

4.1 Tight bounds for varying adversaries using the Fourier accountant

Following the reasoning of the proof of Balle et al. (2019, Thm. 3.1), for adversary As (see Def. 12), we can
compute tight δ(ε)-bounds using Thm. 13. Having tight bounds also enables us to evaluate exactly how much
different assumptions on the adversary cost us in terms of privacy. For example, instead of the adversary
As we can analyse a weaker adversary Aw, who has extra information only on the first n − 1 parties. We
formalise this as follows.
Definition 14. Let M = S ◦ RPHγ,k,n be the shuffled k-RR mechanism, and w.l.o.g. let the differing element
be xn. Adversary Aw is an adversary with the view

ViewAwM (X) =
(
(x1, . . . , xn−1), β ∈ {0, 1}n−1, (yπ(1), . . . , yπ(n))

)
,

where y are the outputs from the shuffler, β is a binary vector identifying which of the first n − 1 parties
answered randomly, and π is a uniformly random permutation applied by the shuffler.

Note that compared to the stronger adversary As formalised in Def. 12, the difference is only in the vector
β. We write b =

∑
i βi, and B for the corresponding random variable in the following. The next theorem

gives the random variables we need to calculate privacy bounds for adversary Aw.
Theorem 15. Assume w.l.o.g. differing elements xn = 1, x′n = 2, and adversary Aw as given in Def. 14. To
find a tight DP bound forM = S ◦ RPHγ,k,n we can equivalently analyse the random variables Pw, Qw defined
as

Pw = P1 + P2, Qw = Q1 +Q2, (4.4)
where

P1 ∼ (1− γ) ·N1|B, P2 ∼ γ
k · (B + 1), Q1 ∼ (1− γ) ·N2|B, Q2 ∼ γ

k · (B + 1),
N1|B = Bin(B, 1/k) + Bern(1− γ + γ/k) N2|B = Bin(B, 1/k) + Bern(γ/k),

B ∼ Bin(n− 1, γ).

As a direct corollary to this theorem, and analogously to Thm. 13, we have the following result which allows
computing tight δ(ε)-bounds against the adversary Aw for adaptive compositions.
Theorem 16. Consider nc adaptive compositions of the k-RR shuffler mechanismM and an adversary Aw
as described in Def. 14 above. Then, the tight (ε, δ)-bound is given by

δ(ε) = P
(∑nc

i=1
Zi ≥ ε

)
,

where Zi’s are independent and for all 1 ≤ i ≤ m,

Zi ∼ log
(
N1

N2

)
, N1 ∼ Pw, N2 ∼ Qw,

where Pw and Qw are given in equation C.1.

4.2 Experimental comparison between specialized analysis of k-RR (Balle et al., 2019) and
specialized Clones - analysis (Feldman et al., 2022)

In Figure 4 we compare the specialized k-RR PLD obtained from (Balle et al., 2019) and the PLD obtained
from the ’Clones’-analysis of Feldman et al. (2022) combined with FA. Interestingly, we find that the
numerical bounds are very close to each other (Figure 4). We compare using the k-RR parameter values
of our Figure 3 in the main text, i.e. γ = 0.25, and k = 4. We increase the parameters of FA so that the
discretisation error is negligible. The fact that the lines cross is not a contradiction: the underlying analysis
of k-RR is has stronger assumptions about the adversary than the analysis by Feldman et al. (2022), and on
the other hand the analysis by Feldman et al. (2022) is not tight as it involves analytical approximations. For
the weaker adversary (Pw and Qw) we already obtain much stronger guarantees than by using the analysis
by Feldman et al. (2022).
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δ
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4
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6

ε

FA + Clones by Feldman et al., nc = 16

FA + Clones by Feldman et al., nc = 4

FA + Clones by Feldman et al., nc = 1

FA, Ps and Qs, nc = 16

FA, Ps and Qs, nc = 4

FA, Ps and Qs, nc = 1

FA, Pw and Qw, nc = 16

FA, Pw and Qw, nc = 4

FA, Pw and Qw, nc = 1

Figure 4: k-RR with the strong adversary (Ps and Qs from [BBG19]) and our weak adversary (Pw and Qw)
and tight (ε, δ)-DP bounds obtained using FA for different number of compositions nc. Total number of
users n = 1000, probability of randomising for each user γ = 0.25, and k = 4. Also shown are the bounds
computed using results of [FMT22] combined with FA that hold for general ε0-LDP local randomizers. In
this case (k-RR), ε0 = log (((1− γ) · k + γ)/γ).

5 On the difficulty of obtaining bounds in the general case

We have provided means to compute accurate (ε, δ)-bounds for the general ε0-LDP shuffler using the results
by Feldman et al. (2021) and tight bounds for the case of k-randomised response. Using the following
example, we illustrate the computational difficulty of obtaining tight bounds for arbitrary local randomisers.
Consider neighbouring datasets X,X ′ ∈ Rn, where all elements of X are equal, and X ′ contains one element
differing by 1. Without loss of generality (due to shifting and scaling invariance of DP), we may consider the
case where X consists of zeros and X ′ has 1 at some element. Considering a mechanismM that consists of
adding Gaussian noise with variance σ2 to each element and then shuffling, we see that the adversary sees
the output ofM(X) distributed asM(X) ∼ N (0, σ2In), and the outputM(X ′) as the mixture distribution
M(X ′) ∼ 1

n · N (e1, σ
2In) + . . . + 1

n · N (en, σ2In), where ei denotes the ith unit vector. Determining the
hockey-stick divergence Heε(M(X ′)||M(X)) cannot be projected to a lower-dimensional problem, unlike in
the case of the (subsampled) Gaussian mechanism, for example, which is equivalent to a one-dimensional
problem (Koskela and Honkela, 2021). This means that in order to obtain tight (ε, δ)-bounds, we need to
numerically evaluate the n-dimensional hockey-stick integral Heε(M(X ′)||M(X)). Using a numerical grid
as in FFT-based accountants is unthinkable due to the curse of the dimensionality. However, we may use
the fact that for any dataset X, the density function fX(t) of M(X) is a permutation-invariant function,
meaning that for any t ∈ Rn and for any permutation σ ∈ πn, fX

(
σ(t)

)
= fX(t). This allows reducing the

number of required points on a regular grid for the hockey stick integral from O(mn) to O(mn/n!), where
m is the number of discretisation points in each dimension. Recent research on numerical integration of
permutation-invariant functions (e.g. Nuyens et al., 2016) suggests it may be possible to significantly reduce
or even eliminate the dependence on n using more advanced integration techniques. In the Appendix C.3 we
give results on experiments where we have computed Heε(M(X ′)||M(X)) using Monte Carlo integration on
a hypercube [−L,L]n which requires ≈ 5 · 107 samples for getting two correct significant figures already for
n = 7.

10
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6 Discussion

We have shown how numerical privacy accounting can be used to calculate accurate upper bounds for
compositions of various (ε, δ)-DP mechanisms and different adversaries in the shuffle model. An alternative
approach would be to use the Rényi differential privacy (Mironov, 2017). However, as illustrated by the
comparison against the results of Girgis et al. (2021) in Fig. 3, numerical PLD accounting leads to
considerably tighter bounds. For shuffled mechanisms, the difference appears even more significant than
for regular DP-SGD (Koskela et al., 2020; 2021), showing up to an order of magnitude reduction in ε.

Numerical and analytical privacy bounds are in many cases complementary and serve different purposes.
Numerical accountants allow finding the tightest possible bounds for production and enable more unbiased
comparison of algorithms when accuracy of accounting is not a factor. Analytical bounds enable theoretical
research and understanding of scaling properties of algorithms, but the inaccuracy of the bounds raises the
risk of misleading conclusions about privacy claims.

While our results provide significant improvements over previous state-of-the-art, they only provide optimal
accounting for k-randomised response. Developing optimal accounting for more general mechanisms as well
as extending the results to (ε0, δ0)-LDP base mechanisms are important topics for future research.
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A Auxiliary results for determining the PLD of general ε0 shufflers

We recall the following from Section 3.1. Denoting q = eε0p and q̃ = p
1−eε0p , p = 1

eε0 +1 , the dominating pair
of distributions (P,Q) is determined are given by the mixtures

P = q · P0 + (1− q)q̃ · P1 + (1− q)(1− q̃) · P2, Q = (1− q)q̃ · P0 + q · P1 + (1− q)(1− q̃) · P2,

where
P0 ∼ (A+ 1, C −A), P1 ∼ (A,C −A+ 1), P2 = (A,C −A)

and for n ∈ N, A and C are as

C ∼ Bin(n− 1, 2p), A ∼ Bin
(
C, 1

2
)
, ∆1 ∼ Bern (eε0p) and ∆2 ∼ Bin

(
1−∆1,

p
1−eε0p

)
.

In this section we give the expressions needed to determine the PLD

ωP/Q(s) =
∑

a,b
P(P = (a, b)) · δsa,b(s), sa,b = log

(
P(P = (a, b))
P(Q = (a, b))

)
, (A.1)

and similarly also ωQ/P .
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A.1 Determining the log ratios sa,b

To determine sa,b’s, we need the following auxiliary results.
Lemma A.1. When b > 0 and a > 0, we have:

P(P0 = (a, b)) = a

b
· P(P1 = (a, b)).

Proof. We see that P0 = (a, b) if and only if A = a− 1 and C = a+ b− 1. Since

P(A = a− 1 |C = a+ b− 1) =
(
a+ b− 1
a− 1

)
1

2a+b−1

= a

b
·
(
a+ b− 1

a

)
1

2a+b−1

= a

b
· P(A = a |C = a+ b− 1),

we see that
P(P0 = (a, b)) = P(C = a+ b− 1) · P(A = a− 1 |C = a+ b− 1)

= P(C = a+ b− 1) · a
b
· P(A = a |C = a+ b− 1)

= a

b
· P(P1 = (a, b)),

since P1 = (a, b) if and only if A = a and C = a+ b− 1.

Lemma A.2. When b > 0 and a > 0, we have:

P(P0 = (a, b)) = 2(1− 2p)a
(n− a− b)p · P(P2 = (a, b)).

Proof. We see that P2 = (a, b) if and only if A = a and C = a+ b. Since,

P(C = a+ b) =
(
n− 1
a+ b

)
(2p)a+b(1− 2p)n−1−a−b

= 2p
1− 2p

(
n− 1
a+ b

)
(2p)a+b−1(1− 2p)n−1−a−b+1

= 2p
1− 2p

n− a− b
a+ b

(
n− 1

a+ b− 1

)
(2p)a+b−1(1− 2p)n−1−a−b+1

= 2p
1− 2p

n− a− b
a+ b

· P(C = a+ b− 1)

and since

P(A = a |C = a+ b− 1) =
(
a+ b− 1

a

)
1

2a+b−1 = b

a+ b

1
2

(
a+ b

a

)
1

2a+b = b

a+ b

1
2 · P(A = a |C = a+ b)

we see that
P(P0 = (a, b)) = P(C = a+ b− 1) · P(A = a− 1 |C = a+ b− 1)

= P(C = a+ b− 1) · a
b
· P(A = a |C = a+ b− 1)

= 2(1− 2p)a
(n− a− b)p · P(C = a+ b) · a

b
· P(A = a |C = a+ b)

= 2(1− 2p)a
(n− a− b)p · P(P2 = (a, b)).

13
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As a corollary of Lemmas A.1 and A.2 we get the following expressions with which we can also determine
the log ratios sa,b.
Corollary A.3. We have:

P
(
P = (a, b)

)
=
[
q + (1− q)q̃ · b

a
+ (1− q)(1− q̃) (n− a− b)p

2(1− 2p)a

]
· P
(
P0 = (a, b)

)
and

P
(
Q = (a, b)

)
=
[
q · b

a
+ (1− q)q̃ + (1− q)(1− q̃) (n− a− b)p

2(1− 2p)a

]
· P
(
P0 = (a, b)

)
.

Probabilities for the cases a = 0 and b = 0 become extremely small already for moderate values of n. When
using the Hoeffding inequality based O(n)-approximation to determine the PLDs, we do not need to evaluate
these probabilities so we do not consider writing out them.

Corollary A.3 gives P
(
P = (a, b)

)
and P

(
Q = (a, b)

)
in terms of P(P0 = (a, b)), and that is given by the

following expression which we get by change of variables.
Lemma A.4. When a > 0,

P(P0 = (a, b)) =
(
n− 1
i

)(
i

j

)
pi(1− p)n−1−i 1

2i ,

where (a, b) = (j + 1, i− j) (i.e., C = i and A = j).

B Proof of the Lemma: Lowering PLD computational complexity using Hoeffding’s
inequality

Using an appropriate tail bound (Hoeffding) for the binomial distribution, we can truncate part of the
probability mass and add it directly to δ. More specifically, if each PLD ωi, 1 ≤ i ≤ nc, in an nc-composition
is approximated by a truncated distribution ω̃i such that the truncated probability masses are τi ≥ 0,
respectively, then

δ(ε) = δ̃(ε) + δ(∞),

where δ̃(ε) is the value of the hockey-stick divergence obtained with the truncated PLDs ω̃i, 1 ≤ i ≤ nc, and
where

δ(∞) = 1−
∏
i

(1− τi) ≤
∑
i

τi,

gives an upper bound for the composition without truncations, see e.g. Thm 1 in Sommer et al. (2019).
Using the Hoeffding inequality we obtain an accurate approximation of ωP/Q (or ωQ/P ) with only O(n)
terms. We formalise this approximation as follows.
Lemma 11. Let τ > 0. Consider the set

Sn = [max (0, (p− cn)(n− 1)) ,min (n− 1, (p+ cn)(n− 1))],

where cn =
√

log(4/τ)
2(n−1) and the set

Si = [max
(
0, ( 1

2 − ci) · i
)
,min

(
n− 1, ( 1

2 + ci) · i
)
],

where ci =
√

log(4/τ)
2·i . Then, the distribution ω̃P/Q defined by

ω̃P/Q(s) =
∑
i∈Sn

∑
j∈Si

P(P = (j + 1, i− j)) · δsj+1,i−j (s), sa,b = log
(

P(P=(a,b))
P(Q=(a,b))

)
(B.1)

has O(n · log(4/τ)) terms and differs from ωP/Q at most mass τ .
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Proof. Using Hoeffding’s inequality for C ∼ Bin(n− 1, p) states that for c > 0,

P
(
C ≤ (p− c)(n− 1)

)
≤ exp

(
− 2(n− 1)c2),

P
(
C ≥ (p+ c)(n− 1)

)
≤ exp

(
− 2(n− 1)c2).

Requiring that 2 · exp
(
−2(n− 1)c2) ≤ τ/2 gives the condition c ≥

√
log(4/τ)
2(n−1) and the expressions for cn

and Sn. Similarly, we use Hoeffding’s inequality for A ∼ Bin(C, 1
2 ) and get expressions for ci and Si. The

total neglegted mass is at most τ/2 + τ/2 = τ . For the number of terms, we see that Sn contains at
most 2cn(n− 1) =

√
n− 1

√
2 · log(4/τ) terms and for each i, Si contains at most 2cii =

√
i
√

2 · log(4/τ) ≤√
n− 1

√
2 · log(4/τ) terms. Thus ω̃P/Q has at mostO(n·log(4/τ)) terms. We get the expression equation B.1

by the change of variables a = i+ 1 (A = i) and b = i− j (C = j).

C Auxiliary results for Section 4

C.1 Proof of Theorem 15

We restate the theorem for ease of reading and then give the proof.

Theorem 15. Assume w.l.o.g. differing elements xn = 1, x′n = 2, and adversary Aw as given in Def. 14. To
find a tight DP bound forM = S ◦ RPHγ,k,n we can equivalently analyse the random variables Pw, Qw defined
as

Pw = P1 + P2, Qw = Q1 +Q2, (C.1)

where

P1 ∼ (1− γ) ·N1|B, P2 ∼
γ

k
· (B + 1),

Q1 ∼ (1− γ) ·N2|B, Q2 ∼
γ

k
· (B + 1),

B ∼ Bin(n− 1, γ),
NB
i |B ∼ Bin(B, 1/k), i = 1, 2,

N1|B = NB
1 |B + Bern(1− γ + γ/k),

N2|B = NB
2 |B + Bern(γ/k).

Proof. Notice that for k-RR, seeing the shuffler output is equivalent to seeing the total counts for each class
resulting from applying the local randomisers to X or X ′. The adversary Aw can remove all truthfully
reported values by client j, j ∈ [n− 1]. Denote the observed counts after this removal by ni, i = 1, . . . , k, so∑k
i=1 ni = b+ 1.
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We now have
P(ViewAwM (x) = V )

=
k∑
i=1

P(N1 = n1, . . . , Ni = ni − 1, Ni+1 = ni+1, . . . Nk = nk|B)·

P(R(xn) = i) · P(B = b)

=
(

b

n1 − 1, n2, . . . , nk

)(
1
k

)b
·
(

1− γ + γ

k

)
· γb(1− γ)n−1−b

+
k∑
i=2

(
b

n1, . . . , ni − 1, ni+1, . . . , nk

)(
1
k

)b
· γ
k
· γb(1− γ)n−1−b

=
(

b

n1, n2, . . . , nk

)
γb(1− γ)n−1−b

kb

[
n1(1− γ + γ

k
) +

k∑
i=2

ni
γ

k

]

=
(

b

n1, n2, . . . , nk

)
γb(1− γ)n−1−b

kb
·[

n1(1− γ + γ

k
) + (b+ 1− n1)γ

k

]
=
(

b

n1, n2, . . . , nk

)
γb(1− γ)n−1−b

kb

[
n1(1− γ) + γ

k
(b+ 1)

]
.

(C.2)

Noting then that P(RPHγ,k,n(x′n) = i) = (1 − γ + γ
k ) when i = 2 and γ

k otherwise, repeating essentially the
same steps gives

P(ViewAwM (X ′) = V ) =
(

b

n1, n2, . . . , nk

)
γb(1− γ)n−1−b

kb

[
n2(1− γ) + γ

k
(b+ 1)

]
. (C.3)

Looking at ratio of the two final probabilities given in Eqs. equation C.2 and equation C.3 we have

PV∼ViewAwM (X)

[
P(ViewAwM (X) = V )
P(ViewAwM (X ′) = V )

≥ eε
]

= P
[
N1|B · (1− γ) + γ

k (B + 1)
N2|B · (1− γ) + γ

k (B + 1) ≥ e
ε

]
,

where we write Ni|B, i ∈ {1, 2} for the random variable Ni conditional on B. This shows that for DP bounds,
the adversaries’ full view is equivalent to only considering the joint distribution of Ni, B, i ∈ {1, 2}, and we
can therefore look at the neighbouring random variables

Pw = P1 + P2, Qw = Q1 +Q2, (C.4)

where
P1 ∼ (1− γ) ·N1|B, P2 ∼

γ

k
· (B + 1),

Q1 ∼ (1− γ) ·N2|B, Q2 ∼
γ

k
· (B + 1).

Writing nBi for the count in class i resulting from the noise sent by the n− 1 parties, from k-RR definition
we also have

B ∼ Bin(n− 1, γ) and NB
i |B ∼ Bin(B, 1/k), (C.5)

i = 1, . . . , k. As V ∼ ViewAwM (X), we finally have

N1|B = NB
1 |B + Bern(1− γ + γ/k), N2|B = NB

2 |B + Bern(γ/k). (C.6)

The distributions equation C.5 and equation C.6 determine the neighbouring distributions Pw and Qw given
in equation C.4 which completes the proof.
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C.2 Composition Result for Shuffled k-randomised response

Balle et al. (2019, Thm. 3.1) shows that δ(ε)-bounds against the strong adversary are obtained by a certain
analysis of the random variables:

N1 ∼ Bin
(
n− 1, γ

k

)
+ 1, N2 ∼ Bin

(
n− 1, γ

k

)
. (C.7)

From the proof of Balle et al. (2019, Thm. 3.1) we directly get the following result for adaptive compositions
of the k-RR shuffler.
Theorem 13. Consider nc adaptive compositions of the k-RR shuffler mechanismM and an adversary As.
Then, the tight (ε, δ)-bound is given by

δ(ε) = P

(
nc∑
i=1

Zi ≥ ε

)
,

where Zi’s are independent and for all 1 ≤ i ≤ nc, Zi ∼ log
(
N1
N2

)
, where N1 and N2 are distributed as in

equation C.7.

Proof. We first remark that for any α ≥ 0, i.e., for any neighbouring X and X ′, when α ≥ 0,

Hα(ViewAsM(X)||ViewAsM(X ′)) = P
(
N1
N2
≥ α

)
, (C.8)

where N1 ∼ Bin(n−1, γk )+1, N2 ∼ Bin(n−1, γk ). This can be seen directly from the arguments of the proof
of Balle et al. (2019, Thm. 3.1). Next, we may use a similar argument as in the proof of (Zhu et al., 2022,
Thm. 10). By using equation C.8 repeatedly, we see that for an adaptive composition of two mechanisms
M1 andM2:

δ(ε) = PV∼ViewAsM1
(X),V ′∼ViewAsM2

(X,V )

[
P(ViewAsM1

(X)=V )·P(ViewAsM2
(X,V )=V ′)

P(ViewAsM1
(X′)=V )·P(ViewAsM2

(X′,V )=V ′)
≥ eε

]
= PV∼ViewAsM1

(X)

[
PV ′∼ViewAsM2

(X,V )

[
P(ViewAsM1

(X)=V )·P(ViewAsM2
(X,V )=V ′)

P(ViewAsM1
(X′)=V )·P(ViewAsM2

(X′,V )=V ′)
≥ eε

]]

= PV∼ViewAsM1
(X)

PV ′∼ViewAsM2
(X,V )

 P(ViewAsM2
(X,V )=V ′)

P(ViewAsM2
(X′,V )=V ′)

≥ e
ε−log

P(ViewAsM1
(X)=V )

P(ViewAsM1
(X′)=V )




= PV∼ViewAsM1
(X)

N2
1

N2
2
≥ e

ε−log
P(ViewAsM1

(X)=V )

P(ViewAsM1
(X′)=V )


= PV∼ViewAsM1

(X)

[
P(ViewAsM1

(X)=V )

P(ViewAsM1
(X′)=V )

≥ e
ε−log

N2
1

N2
2

]

= P

[
N1

1
N1

2
≥ e

ε−log
N2

1
N2

2

]
= P

[
N1

1 ·N
2
1

N1
2 ·N2

2
≥ eε

]
= P

[
log
(
N1

1
N1

2

)
+ log

(
N2

1
N2

2

)
≥ ε
]
,

where N1
1 , N

2
1 ∼ Bin(n− 1, γk ) + 1, N1

2 , N
2
2 ∼ Bin(n− 1, γk ). The proof for nc > 2 goes analogously.

The proof of the following result which allows computing tight bounds against the adversary Aw, goes
analogously to the proof of Thm. 13.
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Theorem 16. Consider m compositions of the k-RR shuffler mechanism M and an adversary Aw. Then,
the tight (ε, δ)-bound is given by

δ(ε) = P

(
m∑
i=1

Zi ≥ ε

)
,

where Zi’s are independent and for all 1 ≤ i ≤ m,

Zi ∼ log
(
N1

N2

)
, N1 ∼ Pw, N2 ∼ Qw,

where Pw and Qw are given in equation C.1.

C.3 Experiment for Section 5

Consider neighbouring datasets X,X ′ ∈ Rn, where all elements of X are equal, and X ′ contains one element
differing by 1. Without loss of generality (due to shifting and scaling invariance of DP), we may consider the
case where X consists of zeros and X ′ has 1 at some element. Considering a mechanismM that consists of
adding Gaussian noise with variance σ2 to each element and then shuffling, we see that the adversary sees
the output ofM(X) distributed asM(X) ∼ N (0, σ2In), and the outputM(X ′) as the mixture distribution
M(X ′) ∼ 1

n ·N (e1, σ
2In)+ . . .+ 1

n ·N (en, σ2In), where ei denotes the ith unit vector. In order to obtain tight
(ε, δ)-bounds, we need to numerically evaluate the n-dimensional hockey-stick integral Heε(M(X ′)||M(X)).

In Figure 5 we have computed Heε(M(X ′)||M(X)) up to n = 7 using Monte Carlo integration on a
hypercube [−L,L]n which requires ≈ 5 · 107 samples for getting two correct significant figures for n = 7.

0.5 1.0 1.5 2.0
ε

10−13

10−11

10−9

10−7

10−5

10−3

10−1

δ

n=2

n=4

n=6

n=7

Figure 5: Approximation of tight δ(ε) for shuffled outputs of Gaussian mechanisms (σ = 2.0) by Monte Carlo
integration of the hockey-stick divergence Heε(M(X ′)||M(X)), using 5 ·107 samples (two correct significant
figures).
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