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Figure 1: Overview of Eagle. Eagle is a family of multimodal large language models (MLLMs) with
a mixture of vision encoders. Left: comparisons between Eagle and existing competitive MLLMs
with Vicuna-13B (Chiang et al., 2023), with Eagle achieving favorable results on all 13 benchmarks.
Middle: an evolutionary road map of the design space and advanced training recipes leading to
consistent and significant improvements. Right: highlights and core features of Eagle.

ABSTRACT

The ability to accurately interpret complex visual information is a crucial topic of
multimodal large language models (MLLMs). Recent work indicates that enhanced
visual perception significantly reduces hallucinations and improves performance
on resolution-sensitive tasks, such as optical character recognition and document
analysis. A number of recent MLLMs achieve this goal using a mixture of vision
encoders. Despite their success, there is a lack of systematic comparisons and
detailed ablation studies addressing critical aspects, such as expert selection and the
integration of multiple vision experts. This study provides an extensive exploration
of the design space for MLLMs using a mixture of vision encoders and resolutions.
Our findings reveal several underlying principles common to various existing
strategies, leading to a streamlined yet effective design approach. We discover that
simply concatenating visual tokens from a set of complementary vision encoders is
as effective as more complex mixing architectures or strategies. We additionally
introduce Pre-Alignment to bridge the gap between vision-focused encoders and
language tokens, enhancing model coherence. The resulting family of MLLMs,
Eagle, surpasses other leading open-source models on major MLLM benchmarks.

1 INTRODUCTION

The success of large language models (LLMs) has triggered significant interest in enabling their
visual perception capability, such that they could see, understand, and reason in the real world. At
the center of these multimodal large language models (MLLMs) (Fei et al., 2024) is a typical design
where images are converted into a series of visual tokens by the vision encoders and appended with
the text embeddings. CLIP (Radford et al., 2021) is often chosen as the vision encoder since its visual
representation is aligned with the text space by pre-training on image-text pairs. Depending on the
architectures, training recipes and the way how vision tokens are injected into the language model,
there exist various notable families of MLLMs such as Flamingo (Alayrac et al., 2022), BLIP (Li
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et al., 2022; 2023d; Dai et al., 2024), PaLI (Chen et al., 2023e), PaLM-E (Driess et al., 2023) and
LLaVA (Liu et al., 2023d;c). Most of these works keep relatively low input resolutions due to the
limits on pre-trained vision encoders and LLM sequence length.

Recent studies (Li et al., 2024c; Liu et al., 2024a) show that stronger vision encoder design is
important for mitigating MLLM hallucinations (Liu et al., 2023a; Wu et al., 2024) and improving
resolution-sensitive tasks like optical character recognition (OCR). A constellation of works thus
focuses on enhancing the capability of the vision encoder. For example, scaling up the pre-training
data and parameters of vision encoder (Chen et al., 2023f) or dividing images into low-resolution
patches (Liu et al., 2024a; Shi et al., 2024). However, these approaches usually introduce large training
resources. An efficient yet powerful strategy is to mixing visual encoders pre-trained with different
tasks and input resolutions, either fusing higher resolution encoders with the CLIP encoder (Luo et al.,
2024; Li et al., 2024b), sequentially appending features from different encoders (Fan et al., 2024;
Lin et al., 2023b; Karamcheti et al., 2024; Tong et al., 2024), or adopting more complex fusion and
routing strategies to make the best of different encoders (Lee et al., 2024; Zong et al., 2024). Such
a “mixture-of-vision-experts” mode is shown to be effective. An important prior work, Prismatic
VLM (Liu et al., 2024b), has incorporated the efficient ensemble of vision encoders with channel
concatenation as part of their broader investigation into the design space of MLLMs. However,
a detailed study specifically focused on the design of mixture-of-vision-encoders is still lacking,
e.g., exploring expert selection strategies and comparing fusion paradigms. Additionally, several
critical challenges remain unresolved, such as scaling to more of vision encoders and addressing the
misalignment between different vision encoders.

To address the above questions, our work systematically investigates the mixture-of-vision-encoders
design space for improved MLLM perception. As shown in Fig. 1, our exploration of the design
space consists of the following steps: 1) Benchmarking various vision encoders and searching recipes
for higher resolution adaptation; 2) “Apples to apples” comparison between vision encoder fusion
strategies; 3) Progressive identification of the optimal combination of multiple vision encoders; 4)
Improved vision expert pre-alignment and data mixture. Our study covers the performance of vision
encoders pre-trained on different tasks and resolutions (e.g., vision-language alignment (Ilharco
et al., 2021; Cherti et al., 2023; Radford et al., 2021; Schuhmann et al., 2022), self-supervised
learning (Oquab et al., 2023), detection (Fang et al., 2023b;a), segmentation (Kirillov et al., 2023),
and OCR (Lee et al., 2023)). We use a round-robin approach to incorporate additional vision experts.
Starting with the basic CLIP (Radford et al., 2021) encoder, we add one additional expert each time
with the best improvement in each round.

Our work is not the first one to leverage multiple vision encoders in MLLM. However, the systematic
study leads to several interesting new findings under this setting:

• Unlocking the vision encoders during MLLM training matters. This is in sharp contrast to the
LLaVA (Liu et al., 2023d;c) family and many works that consider multiple vision encoders or
teachers (Lin et al., 2023b; Liu et al., 2024b; Fan et al., 2024; Kar et al., 2024; Ranzinger et al.,
2024; Lee et al., 2024), where freezing the vision encoders has been a common choice.

• Some recently proposed fusion strategies (Luo et al., 2024; Li et al., 2024b) do not show
significant advantages despite their advanced designs. Instead, we find that straightforward
channel concatenation stands out as a simple yet competitive fusion strategy, offering the best
efficiency and performance.

• Incorporating additional vision experts leads to consistent gain, making it a promising path to
systematic enhance MLLM perception besides scaling up single encoders. The improvement is
particularly pronounced when vision encoders are unlocked.

• We propose a pre-alignment stage where non-text-aligned vision experts are individually fine-
tuned with a frozen LLM before trained together. This stage is found to enhance the MLLM
performance significantly under the mixture-of-vision-encoder design.

We finally conclude our findings into a family of MLLMs termed Eagle. Eagle is evaluated on
a series of benchmarks, including visual question answering, OCR/document related tasks, and
benchmarks tailored for MLLMs. Our model attains state-of-the-art performance across different
benchmarks and demonstrates obvious advantages on OCR and document understanding tasks. Using
the same pre-train and supervised fine-tuning data from Cambrian-1 (Tong et al., 2024) - a concurrent
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family of vision-centric MLLMs sharing similar design spirits, Eagle models overall achieve better
performance. We hope that the Eagle can provide a highly performant and easy-to-reproduce MLLM
solution to the community.

2 DESIGN SPACE EXPLORATION

In this section, we show how to utilize the advantages of different vision encoders via step-by-step
investigations, yielding the Eagle model family. Unlike previous methods focusing on new fusion
strategies or architectures among vision encodes, our goal is to identify a set of minimalistic design
to fuse different vision encoders supported with detailed ablations, removing any unnecessary parts.
As shown in Fig. 2, we start from extending the basic CLIP encoder (Radford et al., 2021) to a set of
vision experts with different architectures, pre-training tasks and resolutions. With these experts, we
then compare different fusion architectures and methods, and study how to optimize the pre-training
stratgies given more encoders. We also give a detailed analysis in how to select the vision encoders
to be integrated. Finally, we put all the findings together and further extend to multiple expert vision
encoders with different resolutions and domain knowledge.

2.1 BASE SETUP

We adopt LLaVA-1.5’s (Liu et al., 2023c) model architecture as the basis, which consists of a large
language model (Vicuna-v1.5 7B (Chiang et al., 2023)), a vision encoder, and a projection layer. The
projection layer projects the visual embedding from the vision encoder into the text embedding space.

Base training data. We adopt the same pre-training data (LLaVA-595k) as LLaVA-1.5 (Liu et al.,
2023c) for the first pre-training stage, which consists of 595k image text pairs. To fully examine
the potential of different vision experts and fusion methods, instead of using the SFT data from
LLaVA-1.5 (Liu et al., 2023c), we collect data from a series of tasks and convert them into multimodal
conversations for the supervised fine-tuning (SFT) stage, denoted as Eagle1.8M in Table 1.

Table 1: Composition of the base supervised fine-tuning data (Eagle1.8M).

Total Data Size Data Source

1,809k

LLaVA-1.5 (665k) (Liu et al., 2023c), DocVQA (39k) (Mathew et al., 2021), synDog-EN (50k) (Kim et al., 2022),
ChartQA (28k) (Masry et al., 2022), DVQA (25k) (Kafle et al., 2018), AI2D (15k) (Kembhavi et al., 2016a),

ShareGPT-4V (100k) (Chen et al., 2023b), laion-GPT4V (11k) (lai, 2023), LVIS-Instruct4V (220k) (Wang et al., 2023a),
LRV-Instruct (150k) (Liu et al., 2023b), Geo170k (120k) (Gao et al., 2023), LLaVAR (20k) (Zhang et al., 2023),

Visual7W (70k) (Zhu et al., 2016), Open-Hermes 2.5 (300k) (Teknium, 2023)

Base training recipes. We start from the LLaVA-1.5 (Liu et al., 2023c) recipe where the model is
first pre-trained with image-text pairs for one epoch with a batch size of 256. The whole model is
frozen and only the projector layer is updated in this pre-training stage. In the second stage, we
further fine-tune the model on the multi-modal conversation data for one epoch with a batch size of
128. The learning rates are set to be 1e-3 for the first stage and 2e-5 for the second stage, respectively.

Base evaluation. To conduct a comprehensive comparison of various methods, we adopt 11 distinct
benchmarks that span multiple tasks. These benchmarks include 1) General VQA tasks: GQA (Hud-
son & Manning, 2019), VizWiz (Gurari et al., 2018), MME (Fu et al., 2023), SEED (Li et al., 2023c);
2) OCR/document/chart understanding: OCRBench (Liu et al., 2023f), DocVQA (Mathew et al.,
2021), ChartQA (Masry et al., 2022); 3) vision-centric tasks: POPE (Li et al., 2023e), Real-
WorldQA (xAI, 2024); 4) knowledge-based tasks: ScienceQA (Saikh et al., 2022), AI2D (Kembhavi
et al., 2016b). To obtain an average score, we normalize each benchmark to a total score of 1,000 and
then calculate the average score across all benchmarks.

2.2 STRONGER CLIP ENCODER

We start our exploration by upgrading the vanilla CLIP Radford et al. (2021) model since it has
become a standard choice for most of the MLLMs Liu et al. (2023d;c). While CLIP models are
known to benefit multimodal tasks via the text-image alignment, they also have inherent drawbacks.
For instance, many existing MLLMs (Liu et al., 2023c) tend to use the pre-trained CLIP resolutions
(such as 224× 224 or 336× 336) as their input resolutions. In these cases, the encoders often fail to
capture fine-grained details that are important for resolution-sensitive tasks like OCR and document
understanding (Li et al., 2024c).
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Figure 2: Overview of the Eagle exploration. In this work, we explore the design space of
Multi-Modal Large Language Models (MLLMs) with multiple vision encoders, aiming to identify
optimized design choices and enhance MLLM perception. We collect a range of vision experts and
adapt them for integration into MLLMs. A systematic comparison of popular fusion paradigms is
then conducted under controlled settings. After identifying discrepancies between vision experts
pre-trained on different tasks, we optimize the pre-training strategy through a pre-alignment stage
and use round-robin searching to determine the optimal combination of vision encoders.

To handle increased input resolution, a common practice is to use tiling where input images are
divided into tiles and encoded separately (Liu et al., 2024a; Li et al., 2024c), or just interpolate the
position embedding of the vision transformer model to fit high-resolution inputs (Chen et al., 2023c;d;
Beyer et al., 2024). We compare these two approaches with frozen/unfrozen vision encoders under
different resolutions, with the results shown in Table 2. Our findings can be summarized as follows:

• Updating the CLIP encoder during SFT significantly improves performance at higher resolutions
but slightly reduces it when using the pre-training resolution.

• Interpolating CLIP encoder to fit the input size of 448 × 448 offers a strong balance between
efficiency and performance, trailing the 672× 672 version with less than half the tokens.

• Despite its smaller size (0.3B vs. 5.9B) and less pre-training data, the CLIP encoder gets close
with interpolation approaches InternVL’s (Chen et al., 2023f) performance under the same setting.

Table 2: Comparing different high-resolution
adaption methods. “#Tok(V)” denotes the num-
ber of visual tokens. “#Parames”, “FLOPs” and
“Img/Sec” denote the model size, complexity and
throughput (bs=4) of the vision encoder.

Method Unfreeze Res. #Tok(V) #Params FLOPs Img/Sec Avg.

Original ✗ 336 576 0.3B 119G 197.2 616.5
Original ✓ 336 576 0.3B 119G 197.2 562.6

Interpolate ✗ 448 1024 0.3B 214G 119.5 589.7
Interpolate ✓ 448 1024 0.3B 214G 119.5 670.5
Interpolate ✓ 672 2304 0.3B 480G 56.3 674.2
Tiled-input ✓ 672 2304 0.3B 476G 51.6 673.9

InternVL ✗ 448 1024 5.9B 5669G 13.52 661.9
InternVL ✓ 448 1024 5.9B 5669G 13.52 671.5

Based on the results, we can see that Direct inter-
polation to 448× 448 can achieve competitive
performance while being more efficient. We
thus use the CLIP encoder with a 448 × 448
input resolution while unlocking the encoder
during the SFT stage.

2.3 VISION EXPERTS

To better establish the foundation for multi-
vision expert fusion, we extend the toolbox with
vision experts pre-trained on different tasks and
resolutions, and verify our findings on high-
resolution adaptation with these experts. This
also helps us identify the distinct advantages of
different experts. We collect a set of vision ex-
perts, including: (1) Vision-Language Alignment: CLIP (Radford et al., 2021) and ConvNeXt (Liu
et al., 2022) from OpenCLIP (Ilharco et al., 2021; Schuhmann et al., 2022). (2) Object-Centric:
EVA-02 (Fang et al., 2023b;a) pre-trained on detection datasets. (3) OCR: Pix2Struct (Lee et al.,
2023).(4) Segmentation: SAM (Kirillov et al., 2023). (5) Self-supervised: DINOv2 (Oquab et al.,
2023). We resize the output 2D feature maps of each vision encoder using bilinear interpolation or
pixel shuffle (Shi et al., 2016) to ensure that the visual token number equals 1024.
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Table 3: Comparison between different vision experts as the
MLLM encoders.

Category Vision Encoder Res. Post-process Unfreeze Avg. Model Link

VL Alignment ConvNeXt 1024 None
✗ 654.6

ConvNeXt-XXL
✓ 682.1

Segmentation SAM 1024 Pixel Unshuffle
✗ 486.2

SAM-ViT-Large
✓ 510.5

Object Detection EVA-02 1024 Resize
✗ 543.7

EVA-02-L-Det
✓ 639.1

Text Recognition Pix2Struct 1024 Resize
✗ 598.6

Pix2Struct-02-Large
✓ 606.2

Self-Supervised DINOv2 448 None
✗ 520.7

ViT-L/14-Reg
✓ 537.3

Results in Table 3 show that un-
freezing the vision experts again
leads to consistent improvement,
which is aligned with Sec. 2.2.
In addition, results in Table 10
(see Appendix A.1) further demon-
strate that MLLMs with these task-
specific vision encoders achieve
optimal performance in their pre-
training domains. EVA-02 excels
in the object hallucination evalua-
tion benchmark POPE and general
visual question answering bench-
mark GQA. CLIP and ConvNeXt
perform well across all benchmarks, benefiting from their training on large-scale image-text pairs
using contrastive loss. Conversely, while Pix2Struct excels in text recognition, it shows limited
capability in object recognition and general VQA tasks, like POPE and GQA. DINOv2 and SAM,
pre-trained with self-supervised learning and segmentation, struggle with text recognition tasks.

2.4 FUSION STRATEGY

Existing MLLM frameworks have proposed various mixture-of-vision-encoder strategies, with the
hope that their domain-specific strengths can be leveraged. In all cases, improvements in MLLM
performance have been reported with the fusion of vision encoders. However, the roles of the fusion
strategies as part of their MLLM architecture innovations, have not been decoupled and clearly
studied under an “apples to apples” comparison. It is thus not entirely clear how much improvement
is from the fusion strategies themselves versus the improved representations from various encoders.

We notice that existing popular fusion strategies, despite their variations in designs, can be broadly
represented by the following several categories: (1) Sequence Append: directly appending the visual
tokens from different backbones as a longer sequence (Fan et al., 2024; Kar et al., 2024); (2) Channel
Concatenation: concatenating the visual tokens along the channel dimension without increasing
the sequence length (Lin et al., 2023b; Karamcheti et al., 2024); (3) LLaVA-HR: injecting high-
resolution features into low-resolution vision encoders using mixture-of-resolution adapter (Luo et al.,
2024); (4) Mini-Gemini: using the CLIP tokens as the low resolution queries to cross-attend another
high-resolution vision encoder in the co-located local windows (Li et al., 2024b). (5) Deformable
Attention: a new baseline we introduce on top of Mini-Gemini, where the vanilla window attention
is replaced with deformable attention (Zhu et al., 2021). Fig. 2 gives a detailed illustration of these
fusion strategies. To better study them, we choose “CLIP+ConvNeXt” and “CLIP+ConvNeXt+SAM”
as the base multi-encoder combinations to perform comparisons.

Table 4: Comparison of different fusion methods
for different vision experts. “#Token(V)” denotes
the number of visual tokens. “#Tokens/s” denotes
the inference throughtput of the whole pipeline.

Vision Encoders Fusion #Token(V) #Tokens/s #Params Avg.

CLIP + ConvNeXt

Seq. Append 2048 46.1 1200M 690.5
Channel Concat. 1024 47.3 1184M 681.5

LLaVA-HR 1024 47.0 1219M 678.7
Mini-Gemini 1024 45.3 1201M 672.5

Deformable Attn. 1024 47.3 1201M 674.3

CLIP + ConvNeXt
+ SAM

Seq. Append 3072 40.3 1529M 686.2
Channel Concat. 1024 46.3 1495M 690.4

Our study in Table 4 shows that Channel Con-
catenation stands out with the best performance,
expandability, and efficiency. The “injection-
based” methods, such as LLaVA-HR, Mini-
Gemini and Deformable Attention, are in gen-
eral less competitive on TextVQA (Singh et al.,
2019) and OCRBench (Liu et al., 2023f), per-
forming worse than using ConvNeXt alone as
the vision encoder. Although sequence append
shows comparable performance to channel con-
catenation, it faces the challenge of handling
significantly increased sequence lengths with
additional vision encoders.

2.5 VISON-LANGUAGE PRE-ALIGNMENT

As shown in Table 3, encoders pre-trained exclusively on vision tasks (e.g., detection, OCR, and
segmentation) are less competitive compared to those pre-trained on vision language alignment.
This is possibly due to representational inconsistencies when integrated with large language models.
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Figure 3: The proposed training strategy of Eagle. It consists of three progressive stages, including
vision-language pre-alignment training, joint-project training and supervised fine-tuning. These
stages effectively leverage public data from diverse sources, ranging from noisy image-text pairs on
the web to high-quality caption, VQA, and multimodal dialogue datasets.

Additionally, when combining different encoders, there is a gap between these encoders, creating
difficulties in the training process. To address this feature inconsistency, we propose a Pre-Alignment
training stage that first aligns each individual vision encoder with the same large language model,
fostering better synergy between visual and linguistic capabilities.

Fig. 3 depicts our pre-alignment strategy. Instead of training a projector to simultaneously align
multiple vision experts as in LLaVA’s (Liu et al., 2023c) original pre-training strategy, we first align
the representation of each individual expert with a smaller language model (Vicuna-7B in practice)
using next-token-prediction supervision. As shown in Fig. 3, with pre-alignment, the whole training
process consists of three steps: 1) training each pre-trained vision expert with their own projector,
while keeping the language model frozen; 2) combining all vision experts from the first step and
training both the projector and vision experts; 3) training the whole model on SFT data.

Table 5: The effectiveness of Pre-alignment.

CLIP Vision Expert (X) Unfreeze Pre-align Avg.

CLIP-448 SAM-1024

✗ ✗ 630.6
✗ ✓ 648.5
✓ ✗ 662.5
✓ ✓ 672.3

CLIP-448 ConvNext-1024

✗ ✗ 652.0
✗ ✓ 670.1
✓ ✗ 681.5
✓ ✓ 686.2

CLIP-448 Pix2Struct-1024

✗ ✗ 653.5
✗ ✓ 665.7
✓ ✗ 673.7
✓ ✓ 680.4

CLIP-448 EVA-02-L-1024

✗ ✗ 630.2
✗ ✓ 645.2
✓ ✗ 659.2
✓ ✓ 668.2

To verify the proposed method, we compare the pre-
alignment strategy with the normal two-stage training
strategy in Table 5, considering both freezing and un-
freezing vision experts for comparison. As shown in
Table 5, although unfreezing the vision experts dur-
ing SFT helps improve performance by updating the
vision experts to fit the language model, the Pre-Align
strategy more effectively mitigates the inherent biases
of each vision expert and stabilizes the training pro-
cess, subsequently improving overall performance.

2.6 EXTENSION TO MULTI-EXPERTS

With the optimized strategies and training recipes of
incorporating individual vision experts, we consider
the incorporation of even more vision experts to push
the limit. To conduct the searching in a systematic
manner, we adopt a step-by-step greedy strategy to
incorporate additional vision experts.

We consider the vision experts discussed in Section 2.3 for experiments. We mark CLIP, ConvNeXt,
SAM, DINOv2, Pix2Struct, and EVA-02-L as CL, CN, SA, DI, PS, and EV, respectively. A round-robin
scheme, as shown in Fig. 4, is adopted. We first use the two top performing vision encoders, CLIP
and ConvNeXt, as the basis and gradually add one more vision encoder each time. In each round, the
best-performing vision encoder combination is retained for the next round.

Fig. 4 reveals several insights. Generally, introducing additional vision encoders enhances the
performance. This indicates that the distinct advantages of different encoders can be preserved and
utilized; for example, integrating the EVA-02 encoder improves metrics on the POPE benchmark.
Although individual metrics may vary, the aggregated performance shows an upward trend, as
evidenced by normalized average metrics, suggesting that the overall efficacy of the system is
enhanced with more encoders. Also, Fig. 4 shows that the best combination of vision experts are
CLIP, ConvNeXt, SAM, Pix2Struct, and EVA-02. We will use this recipe in the final model.
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#Encoder Encoder Combination Config #Params (M) FLOPs (G) Img/Sec Avg.

2 CL + CN X2 1155.2 3347.2 18.1 681.5

3

CL + CN + DI 1460.6 3659.9 15.1 685.4
CL + CN + SA 1463.9 4657.8 8.8 690.4
CL + CN + PS 1669.6 4373.2 6.9 685.1
CL + CN + EV X3 1459.6 4280.9 9.1 690.7

4
CL + CN + EV + DI 1765.1 4593.6 8.3 688.0
CL + CN + EV + SA 1768.4 5591.5 5.9 689.4
CL + CN + EV + PS X4 1974.1 5306.9 5.0 694.6

5
CL + CN + EV + PS + DI 2279.5 5619.5 4.7 684.7
CL + CN + EV + PS + SA X5 2282.8 6617.4 3.8 697.1

6 CL + CN + EV + PS + SA + DI X6 2588.2 6930.1 3.6 686.8 665

675

685

695

705
Avg. Score

Vision Encoder

670.5

681.5

690.7

697.1

686.8

CLIP X2 X3 X4 X5 X6

694.6

Figure 4: Results of vision expert selection process. CL, CN, EV, PS, SA and DI denote CLIP, Con-
vNeXt, EVA-02, Pix2Struct, SAM and DINOv2, respectively. (Left) The performance of various vision
encoder combinations is presented, highlighting how different pairings influence overall effectiveness.
“#Parames”, “FLOPs” and “Img/Sec” denote the model size, complexity and throughput (bs=4) of
the vision encoder. (Right) The curve illustrates the average score as the number of vision encoders
increases. Each point on the curve represents the best-performing combination for the corresponding
number of vision encoders.

3 EXPERIMENTS

In this section, we take the findings and the best explored design from Section 2 and compare against
the current state-of-the-art MLLMs on different tasks.

3.1 IMPLEMENTATION DETAILS

Language models. We use Vicuna-v1.5-7B (Chiang et al., 2023), Llama3-8B (AI@Meta, 2024) and
Vicuna-v1.5-13B (Chiang et al., 2023) as the language models.

Vision encoders. We follow the best X4 and X5 configurations, where the interpolated CLIP-448
and pre-aligned vision experts are channel-concatenated, and trained following the exact best training
recipes in Figure 3 and Table 5.

Training recipe. On Eagle1.8M, we follow the base recipe in Section 2.1 with encoder learning rate
the same as SFT (2e-5). On Cambrian data, we follow Tong et al. (2024) with PT/SFT bs=1024.

3.2 MAIN RESULTS

Evaluation on visual question answering tasks. We compare Eagle model series across three Visual
Question Answering (VQA) benchmarks, including GQA (Hudson & Manning, 2019), VQAv2 (Goyal
et al., 2017) and VizWiz (Gurari et al., 2018). As shown in Table 6, Eagle-X5 achieves state-of-the-art
performance on GQA and VQAv2, underscoring the advantages with additional vision experts.

Evaluation on OCR and chart understanding tasks. To evaluate the OCR, document and chart
understanding capabilities of Eagle, we benchmark our model on OCRBench (Liu et al., 2023f),
TextVQA (Singh et al., 2019), and ChartQA (Masry et al., 2022). As illustrated in Table 6, our model
significantly surpasses competitors on TextVQA, benefiting from its high-resolution architecture
and integration of different vision encoders. Notably, Eagle maintains a straightforward design,
supporting up to 1024x1024 resolution without requiring complex tile decomposition of images.

Fig. 5 shows some examples of OCR and document understanding cases. With high-resolution
adaptation and more vision experts, our model can identify small text within images and accurately
extracts information according to the users’ instructions. To better understand the benefits of
introducing experts pre-trained on other vision tasks, we visualize the results of a model with only the
ConvNeXt and CLIP vision encoders, compared to the results of Eagle-X5 in Fig. 5. With the full set
of vision encoders, the model can successfully correct mistakes, showing that even when equipped
with high-resolution vision encoders pre-trained on vision-language alignment, the model’s abilities
can still be enhanced by integrating additional vision experts pre-trained on diverse vision tasks.

Evaluation on multimodal benchmarks. We evaluate Eagle on seven benchmarks for MLLMs
to demonstrate its capabilities from different perspectives, including MME (Fu et al., 2023), MM-
Bench (Liu et al., 2023e), SEED (Li et al., 2023c), MathVista (Lu et al., 2024), MMMU (Yue et al.,
2024), ScienceQA (Saikh et al., 2022), and POPE (Li et al., 2023e). Specifically, MME, MMBench,
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Table 6: Main results with base training data. SQAI denotes image split of ScienceQA.
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B LLaVA-1.5 (Liu et al., 2023c) 1510 64.3 58.6 - - 85.9 66.8 62.0* 50.0 78.5* 297 58.2 -
LLaVA-NeXt (Liu et al., 2024a) 1519 67.4 70.2 34.6 35.8 86.5 70.1 64.2* 57.6 80.0* 490 64.9 -
InternVL (Chen et al., 2023f) 1525 - 65.4 - - 86.4 - 62.9* 52.5 79.3* - 57.0 -
LLaVA-HR (Luo et al., 2024) 1554 - 64.2 - - 87.6 65.1 64.2* 48.7 81.9* - 67.1 -
Monkey (Li et al., 2024c) - - - - - - - 60.7* 61.2* 80.3* 514 67.6 65.1
Mini-Gemini (Li et al., 2024b) 1523 65.8 - 32.2 36.8 - 71.1 64.5* - - 477 65.2 -
Eagle-X5 1528 68.4 73.9 37.0 36.3 88.8 70.0 64.9* 54.4 83.4* 529 71.2 67.7
Eagle-X5 (+Pre-Align) 1582 69.7 73.7 38.2 38.0 88.7 71.9 64.6* 58.7 83.6* 566 71.9 69.3

Vi
cu

na
-1

3B

LLaVA-1.5 (Liu et al., 2023c) 1531 67.7 61.6 - 36.4 85.9 71.6 63.3* 53.6 80.0* 331 61.3 -
LLaVA-NeXt (Liu et al., 2024a) 1575 70.0 71.9 35.3 36.2 86.2 73.5 65.4* 60.5 82.8* 514 67.1 62.2
InternVL (Chen et al., 2023f) 1546 - - - - 87.1 - 63.9* 54.6 80.2* 517 58.7 -
LLaVA-UHD (Xu et al., 2024) 1535 68.0 - - - 89.1 72.0 65.2* 56.1 81.7* - 67.7 -
LLaVA-HR (Luo et al., 2024) 1540 - 64.5 - - 87.8 68.1 64.8* 57.9 82.6* - 68.1 -
Mini-Gemini (Li et al., 2024b) 1565 68.6 70.6 37.0 37.3 - 71.9 65.8* - - 466 65.9 56.6
Eagle-X5 1609 69.2 74.1 38.8 36.6 87.8 72.7 66.2* 59.3 83.8* 574 74.2 69.9
Eagle-X5 (+Pre-Align) 1605 71.6 74.9 42.7 38.5 89.2 75.5 64.6* 60.9 84.5* 598 73.3 72.1

and SEED assess the overall performance on various real-world tasks based on reasoning, recognition,
knowledge, and OCR. MMMU focuses on challenging problems from diverse domains that require
college-level knowledge. POPE evaluates the visual hallucinations of MLLMs. The metrics used
in our paper adhere to the default settings of these benchmarks. We report the perception score for
MME, the en_dev split for MMBench, the image split of SEED, the test-mini split of MathVista,
the val split of MMMU, the F1-score of POPE, and the image split of SQA to align with the reported
scores from other models.

Table 7: Comparison between different training strategies. “1
epoch” means we train Eagle for 1 epoch in the supervised fine-
tuning stage. ‘unlock*” means we unlock vision encoders in the
pre-training stage. More details in Table. 13.

Config Summary Pre-align Pre-train Fine-tune Avg.

1 epoch ✗ LLaVA-595K Eagle1.8M 697.1

2 epoch ✗ LLaVA-595K Eagle1.8M 698.3

1 epoch, unlock* ✗ LLaVA-595K Eagle1.8M 698.0

1 epoch, unlock* ✗ LLaVA-595K+Eagle1.8M Eagle1.8M 699.5

1 epoch Eagle1.8M LLaVA-595K Eagle1.8M 706.6

1 epoch, unlock* Eagle1.8M LLaVA-595K Eagle1.8M 707.1

1 epoch, unlock* LLaVA-595K+Eagle1.8M LLaVA-595K Eagle1.8M 707.8

1 epoch, unlock* LLaVA-595K+Eagle1.8M LLaVA-595K+Eagle1.8M Eagle1.8M 708.9

From the data presented in Ta-
ble 6, Eagle consistently sur-
passes existing models across
various MLLMs on SEED and
MME, demonstrating the com-
prehensive knowledge and rea-
soning abilities of Eagle. With
the help of vision encoders on
object-centric tasks, Eagle also
achieves the best performance on
the POPE benchmark. Addition-
ally, the Pre-Alignment strategy
discussed in Sec. 2.5 has been
found to further enhance perfor-
mance when integrating multiple
task-specific vision backbones.
This approach not only mitigates the inherent biases of each vision expert and the synergy between
different modalities but also establishes a robust framework for the multiple-expert fusion.

Ablation study on different training strategies. Table. 7 presents our step-by-step experiments
to find optimal strategy. We found that our best recipe is to first pre-align each vision expert on
LLaVA-595K + Eagle1.8M. In the pretraining stage, we combine all vision experts from the first step
and training both the projector and vision experts on LLaVA-595K + Eagle1.8M. Finally, we train the
whole model on the Eagle1.8M.

Comparison with Cambrian-1. Using the same pre-training and supervised fine-tuning datasets from
Cambrian-1 (Tong et al., 2024), Eagle demonstrates superior performance across all the evaluated
benchmarks without bells and whistles. As shown in Table 8, Eagle outperforms the Cambrian-
1 counterparts considerably on the OCR and Chart category. Consistent improvements are also
observed on the General, Knowledge and Vision-Centric categories, showing the robustness and
generalization ability of the improved perception design in Eagle.
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Table 8: Results using the same training data as Cambrian-1 (Tong et al., 2024). SQAI denotes
ScienceQA-IMG (Saikh et al., 2022). RWQA denotes the RealworldQA (xAI, 2024).

Model Knowledge General OCR and Chart Vision-Centric
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Llama3-8B
MGM-HD 55.7 75.1 37.3 37.0 73.5 72.7 1606 72.7 73.2 64.5 62.9 59.1 47.7 70.2 74.6 40.4 18.7 62.1

Cambrian-1 61.3 80.4 42.7 49.0 73.0 73.1 1547 75.9 74.7 64.6 71.3 73.3 62.4 71.7 77.8 57.6 51.3 64.2
Eagle-X5 65.2 84.1 43.5 56.9 76.2 74.0 1587 75.5 76.5 64.9 77.0 80.7 62.6 76.7 87.1 59.6 52.0 67.2

Vicuna-13B
MGM-HD 54.1 71.9 37.3 37.0 70.1 70.7 1597 68.6 70.6 63.7 60.8 56.6 46.6 70.2 69.8 38.4 19.3 57.5

Cambrian-1 60.2 79.3 40.0 48.0 73.6 73.7 1610 75.7 74.4 64.3 71.3 73.8 61.9 72.8 76.8 52.2 41.3 63.0
Eagle-X5 63.8 82.6 42.2 54.6 73.8 74.6 1651 75.7 75.0 65.0 75.7 78.6 62.4 74.9 86.7 54.8 44.6 65.0

Yi-34B
MGM-HD 62.4 77.7 48.0 43.4 80.5 76.2 1659 80.6 75.3 65.8 68.1 67.6 51.8 74.1 78.9 52.3 37.3 67.2

Cambrian-1 67.0 85.6 49.7 53.2 79.7 76.8 1689 81.4 75.3 65.8 71.9 75.6 60.0 76.7 75.5 60.3 52.7 67.8
Eagle-X5 68.6 85.5 53.2 57.9 79.1 76.3 1677 81.0 75.6 64.9 75.4 77.2 62.4 78.8 83.0 59.8 50.0 69.5

4 RELATED WORK

4.1 MULTIMODAL LARGE LANGUAGE MODELS

Our work is related to the general architecture design of multimodal large language models. Besides
the line of representative open-source research mentioned in the introduction section, other notable
families of MLLMs include, but are not limited to MiniGPT-4 (Zhu et al., 2023; Chen et al., 2023a),
Lynx (Zeng et al., 2023), Otter (Li et al., 2023b;a), Qwen-VL (Bai et al., 2023), CogVLM (Wang et al.,
2023b; Hong et al., 2024), VILA (Lin et al., 2023a), GPT-4V (Achiam et al., 2023), Gemini (Team
et al., 2023), and Llama 3.1 (Dubey et al., 2024). Depending on how vision signals are integrated
into the language model, MLLMs can be broadly categorized into “cross-modal attention” ones and
“prefix-tuning” ones (Yin et al., 2024). The former injects visual information into different layers
of LLMs using cross-modal attention (Alayrac et al., 2022; Li et al., 2023b), whereas the latter
views the visual tokens as part of the language token sequence and directly append them with text
embeddings (Liu et al., 2023d; Li et al., 2022; 2023d). Our model belongs to the prefix-tuning family
by following a LLaVA-styled multimodal architecture. Considering that MLLM is a fast growing
field, readers are recommended to refer to more detailed studies and surveys such as (Yin et al., 2024;
Li et al., 2024a; Fei et al., 2024).

4.2 VISION ENCODER DESIGN FOR MLLMS

Our work is closely related to research focusing on improved vision encoder designs for MLLM.
Early works (Liu et al., 2023d; Li et al., 2022) usually adopted vision encoder pre-trained on vision-
language alignment tasks such as CLIP (Radford et al., 2021) and EVA-CLIP (Sun et al., 2023).
Stronger vision encoders such as SigLIP (Zhai et al., 2023) and InternVL (Chen et al., 2023f) have
been proposed to improve vision-language tasks with improved designs, larger model sizes, and
better training recipes. Considering that the models are often pre-trained on low-resolution images
and lack the ability to encode fine-grained details, higher resolution adaptation is often performed to
increase the MLLM input resolution (Chen et al., 2023c;d; Beyer et al., 2024; Chen et al., 2024).

Besides higher resolution adaptation, models such as LLaVA-NeXT (Liu et al., 2024a), LLaVA-
UHD (Xu et al., 2024), Monkey (Li et al., 2024c), InternLM-XComposer (Dong et al., 2024), and
InternVL (Chen et al., 2024) use adaptive tiling to divide high resolution input into lower resolution
patches that are processed separately. Although the ability to handle higher resolution is similarly
made possible with the introduction of additional vision experts, its spirit is slightly orthogonal to the
tiling techniques in terms of diversifying the introducing the diversity of visual representations. Both
techniques are compatible and can be combined together.

Our work is most related to existing models using multiple vision encoders for improved perception.
Mini-Gemini (Li et al., 2024b) and LLaVA-HR (Luo et al., 2024) propose to fuse high-resolution visual
features into the low-resolution visual tokens. Apart from the resolution issue, these pre-trained vision
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User: Below are shown, for five metals, reduction reactions and 
standard electrode potential values. Which of these metals is the 
least reactive? explain your answers in detail. 
Option: (A)Au (B) Cu (C) Ni(D) Fe (E) Na

Eagle: The least reactive metal among the given options is (A) Au.
Explanation: The standard electrode potential (E") is a measure of the tendency of a 
metal to lose electrons and undergo a reduction reaction. The higher the E" value, 
the more reactive the metal is.
In the given table, the standard electrode potential values are as follows. 
(A)Au: +1.420 V (B) Cu:+0.340 V (C) Ni:-0.250V (D) Fe:-0.440V (E) Na:-2.924V
Comparing these values, we can see that the metal with the highest E"value 
(+1,420 V) is Au. which indicates that it is the least reactive among the given 
options. The other metals have lower E" values, making them more reactive than 
Au.

User: What’s the value of the row “low” and column 
“referents”?

CLIP + ConvNeXt baseline: 2012-13
Eagle-X5: 10,970 (60%)

User: Tell me the locations of all the number 10 jerseys in the 
picture. Answer the questions in details with a few sentences

CLIP + ConvNeXt baseline: There are two number 10 jerseys in the picture. One is on 
the left side of the group, and the other is on the right side
Eagle-X5: In the image, there are two players wearing jerseys with the number 10. One 
of them is standing in the center of the group, while the other is positioned towards the 
right side of the group. Both players are part of the basketball team, as indicated by 
their uniforms and the context of the image.

User: What’s the opening time 
of the restaurant on Sunday?

CLIP + ConvNeXt baseline: 
11:30-2:00
Eagle (more vision experts): 
closed

User: What’s the total cost of Fat cell 
size (Mt. Sinai) in the -05 year?

User: What was the committee 
strength for the first meeting?

Eagle: 6

Eagle: $35,864

Effectiveness of more vision experts

Qualitative Examples

Figure 5: Qualitative comparison of different numbers of vision experts. Baseline means Eagle
with only CLIP+ConvNext. More Vision Experts denotes the Eagle-X5 model. We highlight a
failure case in RED. BLUE indicates the correct answers. With more vision experts, Eagle can more
precisely capture the information in the image and provide the correct answer.

encoders may lack specific abilities such as reading text and localizing objects. Hence, a series of
works have integrated vision models pretrained on different tasks for more comprehensive capabilities.
For example, Mousi (Fan et al., 2024), Prismatic VLM (Karamcheti et al., 2024) and Brave (Kar
et al., 2024) fuse visual tokens from different vision encoders by concatenating along the channel or
token direction. There are also more complex approaches, including knowledge distillation Ranzinger
et al. (2024), augmenting the input prompt with the information output by the vision experts (Lee
et al., 2024; He et al., 2024; Liu et al., 2024b). or using routing network to assign input to proper
vision experts (Zong et al., 2024). A closely related work, Prismatic VLM (Karamcheti et al., 2024),
systematically explores the design space of MLLMs across various dimensions, including data,
training recipes, and notably, it also includes the vision encoder ensemble as part of its enhancement
strategies. However, it lacks a comprehensive ablation study and discussion addressing the challenges
associated with combining multiple vision encoders.

5 CONCLUSION

We conduct an in-depth analysis study on the design space for integrating vision encoders for
multimodal large language models. Unlike previous works that focus on designing novel fusion
paradigms, we find systematic design choice matters and discover a series of useful techniques. Step
by step, we optimize the training recipes of individual vision encoders, identify an extendable and
efficient fusion method, and gradually combine vision encoders with different domain knowledge.
The results show the importance of basic design space. We hope our work can serve as a new basis
and bring new inspiration for the vision encoder design for MLLM.
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A APPENDIX

A.1 BENCHMARK DETAILS

In this section, we provide the additional benchmark details for the tables in Section 2. The detailed
comparison of different adaptation methods for the CLIP encoder are shown in Table 9. Table 10
shows the comparison between different vision encoders on all the adopted benchmarks. Table 11 list
the detailed results on the vision encoder fusion methods. Table 12 shows the comparison between
different vision encoder combinations on each benchmark.

Table 9: Comparison of different high-resolution adaption methods to strengthen CLIP model
(336x336). RWQA denotes the RealworldQA (xAI, 2024).

Vision Encoder Unfreeze Res GQA VizWiz MME SEED OCR DocVQA ChartQA AI2D POPE RWQA SQA Avg.

Original ✗ 336 63.2 55.1 1574 70.2 354 59.6 42.1 71.1 86.7 58.0 72.5 616.5
Original ✓ 336 60.9 54.0 1501 61.8 305 56.4 24.5 69.3 80.9 53.6 72.0 562.6

Interpolate ✗ 448 62.7 53.8 1470 69.1 299 58.4 37.7 71.2 85.7 55.3 69.6 589.7
Interpolate ✓ 448 65.6 57.8 1534 73.7 526 65.0 61.1 73.7 87.3 57.7 71.5 670.5
Interpolate ✓ 672 64.9 55.7 1503 72.4 509 64.6 62.0 72.2 87.1 57.4 71.2 674.2
Tiled-input ✓ 672 63.0 54.9 1529 72.5 435 64.9 65.7 71.5 87.6 57.0 71.4 673.9

InternVL ✗ 448 63.6 56.9 1537 71.7 529 65.0 58.6 72.9 87.4 59.2 70.2 661.9
InternVL ✓ 448 65.6 57.8 1534 73.7 526 65.0 61.1 73.7 87.3 58.8 71.5 671.5

Table 10: Comparison between different vision experts as the MLLM encoders.

Category Vision Encoder Unfreeze Res GQA VizWiz MME SEED OCR DocVQA ChartQA AI2D POPE RWQA SQA Avg.

VL Alignment ConvNeXt
✗ 1024 63.3 53.5 1526 70.6 404 70.4 60.8 71.6 87.5 57.1 68.6 635.0
✓ 1024 63.3 54.4 1510 72.9 518 77.9 67.0 72.1 88.1 58.8 68.6 659.7

Segmentation SAM
✗ 1024 57.3 49.0 1216 56.9 38 20.1 17.4 69.2 84.3 49.2 66.8 471.1
✓ 1024 60.2 51.5 1291 65.9 35 21.2 17.8 70.7 86.4 54.1 65.7 494.7

Object Detection EVA-02
✗ 1024 63.1 51.1 1359 69.2 123 25.6 25.2 71.2 88.5 57.9 66.1 523.5
✓ 1024 64.3 55.5 1449 72.7 358 57.1 57.5 72.2 88.3 59.6 67.7 614.4

Text Recognition Pix2Struct
✗ 1024 53.1 48.1 1296 53.4 460 71.0 61.0 69.6 79.2 46.7 65.5 578.7
✓ 1024 54.9 47.3 1262 55.1 472 72.5 62.0 68.7 80.0 49.3 66.6 584.8

Self-Supervised DINOv2
✗ 448 62.4 53.1 1438 67.4 41 20.2 17.3 70.7 85.3 53.3 67.1 503.1
✓ 448 64.2 55.5 1466 71.8 45 20.4 17.5 71.4 87.4 57.3 67.8 518.0

Table 11: Comparison of different fusion methods for different vision experts. “#Tokens(V)”
denotes the number of visual tokens.

Vision Encoders Fusion #Tokens(V) GQA VizWiz MME SEED OCR DocVQA ChartQA AI2D POPE RWQA SQA Avg.

CLIP + ConvNeXt

Seq. Append 2048 64.8 54.5 1563 73.4 532 77.7 67.6 72.4 87.9 61.2 68.8 690.5
Channel Concat. 1024 63.2 48.0 1497 73.5 551 77.7 67.0 72.4 88.3 59.1 70.7 681.5

LLaVA-HR 1024 64.5 57.2 1538 72.0 498 74.5 63.8 72.3 87.7 59.2 68.7 678.7
Mini-Gemini 1024 65.3 56.9 1548 72.9 478 68.3 63.2 71.5 87.3 59.7 69.4 672.5

Deformable Attn. 1024 64.0 57.3 1504 72.7 463 69.5 64.4 73.3 87.4 62.8 68.9 674.3

CLIP + ConvNeXt
+ SAM

Seq. Append 3072 64.3 53.6 1539 73.2 525 77.9 67.0 72.3 87.4 60.1 69.5 686.2
Channel Concat. 1024 63.3 55.9 1528 73.3 545 78.9 67.2 72.3 88.4 59.2 70.0 690.4
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Table 12: Detailed comparison on vision encoder combinations.

#Encoder Encoder Combination GQA VizWiz MME SEED OCR DocVQA ChartQA AI2D POPE RWQA SQA Avg.

2 CL + CN 63.2 48.0 1497.0 73.5 551.0 77.7 67.0 72.4 88.3 59.1 70.7 681.5

3

CL + CN + DI 63.3 55.9 1528.0 73.3 545.0 78.9 67.2 72.3 88.4 59.2 70.0 690.4
CL + CN + SA 64.6 55.3 1504.0 73.3 526.0 75.7 64.9 72.1 88.3 61.1 70.9 685.4
CL + CN + PS 63.2 51.4 1497.0 73.3 550.0 78.5 65.9 73.1 87.7 60.3 70.5 685.1
CL + CN + EV 63.2 51.7 1565.0 73.9 538.0 77.7 67.8 73.6 89.0 61.4 69.4 690.7

CL + CN + EV + DI 63.6 54.9 1512.0 73.8 547.0 77.0 66.7 73.1 88.9 60.4 69.7 689.4
CL + CN + EV + SA 64.3 57.7 1533.0 73.7 521.0 75.2 65.3 72.2 88.5 61.1 70.2 688.0
CL + CN + EV + PS 64.8 56.5 1561.0 73.4 540.0 78.8 67.5 72.2 88.4 59.9 70.5 694.6

5
CL + CN + EV + PS + SA 64.7 59.1 1528.0 73.9 529.0 78.6 67.8 72.9 88.8 62.2 69.7 697.1
CL + CN + EV + PS + DI 64.7 54.1 1506.0 73.7 541.0 75.1 64.9 72.7 88.3 60.0 70.3 684.7

6 CL + CN + EV + PS + SA + DI 63.8 57.8 1512.0 73.5 525.0 75.1 65.8 71.8 88.4 61.4 69.9 686.8

Table 13: Comparison between different training strategies. ‘1 epoch” means we train Eagle
for 1 epoch in the supervised fine-tuning stage. ‘unlock*” means we unlock vision encoders in the
pre-training stage.

Config Prealign Pretrain Finetune G
Q

A

M
M

E

O
C

R

Sc
iQ

A

PO
PE

D
oc

V
Q

A

C
ha

rt
Q

A

SE
E

D

V
iz

w
iz

A
I2

D

R
W

Q
A

Avg.

1 epoch ✗ llava595k Eagle1.8M 64.7 1528 52.9 69.7 88.8 78.6 67.7 73.9 59.1 72.8 62.2 697.1
2 epoch ✗ llava595k Eagle1.8M 65.4 1539 51.4 70.3 87.9 79.8 67.9 73.8 58.5 73.5 62.7 698.3

1 epoch, unlock* ✗ llava595k Eagle1.8M 64.1 1541 54.4 71.5 88.5 79.1 68.5 74.0 56.6 72.2 61.9 698.0
1 epoch, unlock* ✗ llava595k+Eagle1.8M Eagle1.8M 65.3 1545 54.8 70.5 88.5 78.8 68.4 73.5 57.5 72.0 62.9 699.5

1 epoch Eagle1.8M llava595k Eagle1.8M 64.5 1579 55.4 71.6 88.7 79.3 68.9 73.9 58.9 73.9 63.4 706.6
1 epoch, unlock* Eagle1.8M llava595k Eagle1.8M 65.1 1561 56.0 71.3 88.5 79.3 69.5 74.2 59 73.5 63.4 707.1
1 epoch, unlock* llava595k+Eagle1.8M llava595k Eagle1.8M 64.5 1570 56.0 71.7 89 79.7 68.9 74.0 58.5 74.0 63.7 707.8
1 epoch, unlock* llava595k+Eagle1.8M llava595k+Eagle1.8M Eagle1.8M 64.6 1582 56.6 71.9 88.7 79.8 69.3 73.7 58.7 73.5 63.9 708.9
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A.2 ADDITIONAL QUALITATIVE RESULTS

Fig. 6 demonstrates that our model can perform reasoning based on the knowledge to answer some
difficult questions. Fig. 7 shows some examples of OCR and document understanding cases.

Input Image:

User: Below are shown, for five metals, reduction reactions 
and standard electrode potential values. Which of  these 
metals is the least reactive? explain your answers in detail.  
Option: (A)Au (B) Cu (C) Ni(D) Fe (E) Na

Eagle: The least reactive metal among the given options is (A) Au.
Explanation: The standard electrode potential (E") is a measure of the 
tendency of a metal to lose electrons and undergo a reduction reaction. The 
higher the E" value, the more reactive the metal is.
In the given table, the standard electrode potential values are as follows. 
(A)Au: +1.420 V (B) Cu:+0.340 V (C) Ni:-0.250V (D) Fe:-0.440V (E) Na:-2.924V
Comparing these values, we can see that the metal with the highest E"value 
(+1,420 V) is Au. which indicates that it is the
least reactive among the given options. The other metals have lower E" 
values, making them more reactive than Au.

Input Image: User: Which car in the picture is more aerodynamic? And explain your 
answers in detail.
Eagle: The car in the picture that is more aerodynamic is the one on the right. This is 
because it has a streamlined shape, with a smooth and curved body that reduces air 
resistance. The streamlined shape allows the car to move more efficiently through the 
air, which can result in better fuel efficiency and lower emissions. The car on the left. on 
the other hand. has amore rectangular shape, which can cause more air resistance and 
make it less aerodynamic.

Input Image:

User: What are the similarities and differences between 
these two pictures?

Eagle: The two pictures show a red panda in a natural setting, 
resting on a tree branch. The similarities between the two images 
include the presence of the red panda, the tree branch, and the 
natural environment.
The differences lie in the position of the red panda and the angle 
of the photographs. In the first picture, the red panda is curled up 
and sleeping on the tree branch, while in the second picture, the 
red panda is sitting upright on the branch, looking alert and 
awake. The first photo captures the red panda in a more relaxed 
state, while the second photo shows the animal in a more active 
and attentive position.

Input Image:

User: The original placement of  this painting was 
Option:
(A)in the Prado Museum in Madrid, showing a willingness to 
be compared to great Spanish painters of  the past
(B) in the cathedral in Madrid, indicating a desire to find 
acceptance with the Catholic Church
(C) in the study of  king Philip Iv, challenging him to consider 
the multitude of  interpretations the painting represents
(D) in the reception room at the Royal Palace in Madrid, 
where the portraits of  the royal family would be viewable by 
visiting dignitaries

Eagle: (C) in the study of king Philip Iv, challenging him to 
consider the multitude of interpretations the painting 
represents

Input Image:
User: Who was the patron of  the building? 
Options:
(A) Abd al-Malik
(B) Justinian
(C) Charlemagne (D) shah Jahan

Eagle: (B)

Figure 6: Qualitative results of Eagle on VQA tasks requiring college-level knowledge or deliberate
reasoning.

Input Image:
User: Render the figure in Markdown format.

Eagle:

Input Image:

User: What’s the total cost of  Fat cell size (Mt. 
Sinai) in the -05 year?

Eagle: $35,864

Input Image:

User: What was the committee 
strength for the first meeting?

User: What was the committee 
strength for the last meeting?

Eagle: 6

Eagle: 5

Input Image: User: Describe the chart in detail?

Eagle: The image presents a bar chart that provides a 
forecast for the cloud computing market size in China for the 
years 2019 to2022. The chart is divided into two columns, 
one for private cloud and the other for public cloud. The 
years are labeled on the x-axis, while the market size is 
represented on the y-axis in billions of RMB, The chart shows 
that the market size for private cloud and public cloud have 
been steadily increasing over the years. The highest market 
size is for 2022, which is for public cloud, indicating a 
significant growth in this sector. The lowest market size is for 
2019, which is for private cloud, suggesting that the private 
cloud market has been growing at a slower pace compared 
to the public cloud market. 

Figure 7: Qualitative samples on OCR and document understanding tasks. Eagle is able to
extract useful information from small text.
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